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Abstract

This work proposes the use of Structure-from-motion (Sfm) and Iterative Closest Point (ICP) as a
forest fire georeferencing algorithm to be used with images captured by an aerial vehicle. Sfm+ICP
uses the real time video captured by an aircraft’s camera, as well as its IMU and GPS measurements to
reconstruct a dense 3D point cloud of the disaster area captured by the camera. The Sfm reconstruction
is divided in two steps: a sparse reconstruction step using Speeded up robust features (SURF) for
camera pose estimation, and a dense reconstruction step relying on a Kanade–Lucas–Tomasi (KLT)
feature tracker initialized using the minimum eigenvalue algorithm. This dense 3D reconstruction is
then registered to a real Digital Elevation Model (DEM) of the surrounding area, thus refining the point
cloud to better match the terrain. The reconstruction is then used as the basis of the georeferencing
estimates, as any target’s location can be estimated by averaging the 3D coordinates corresponding to
its nearby pixels. The algorithm was validated with a real forest fire video. The results demonstrate
that Sfm+ICP can perform accurate 3D reconstructions while also georefering several targets in a
forest fire environment. The results also show the algorithm is robust to high IMU and GPS errors,
making it a far better option than optic-ray-based georeferencing for UAVs with unreliable telemetry.
Keywords: forest fire, UAV, structure from motion, georeferencing, DEM, ICP

1. Introduction

Forest fires have reached unprecedented figures in
Portugal. In the 1980’s, 75000ha of Portuguese land
burned in forest fires. That number increased to
100000 ha in the 1990’s and 150000ha in the 2000’s,
and that trend shows no signs of slowing down, with
a series of socioeconomic and climate change related
effects contributing to an ever increasing fire risk [5].

While downward economic cycles, budget
scarcity, rural depopulation and forest land mis-
management have exacerbated Portugal’s fire risk,
other southern European nations have also been
affected by forest fires. In the 2010’s, over 3 million
hectares of European land burned as a result of
forest fires. Whilst the main victims were Portugal
and the Mediterranean countries of Spain, Italy,
France and Greece, climate change will continue to
cause rising temperatures and decreasing rainfall,
which will likely increase the length and severity
of the fire season [3]. Additionally, high emissions
climate models predict that by 2070 most of
Central Europe may also experience regular and
lengthy fire seasons [2].

UAVs are relevant components of modern fire-
fighting operations, which will help us fight the

next waves of fire seasons. UAVs possess rapid
maneuverability, extended operational range, im-
proved personal safety and cost efficiency, when
compared to other remote sensing solutions, mak-
ing them particularly useful in fire monitoring and
detection, given their ability to perform fire search,
confirmation and observation [20]. Georeferencing
algorithms are a critical aspect of these remote sens-
ing systems: by locating a fire quickly and accu-
rately, fire monitoring systems can rely on quality
data to be used by fire propagation models and fire-
fighting authorities, saving lives and property.

Georeferencing is the process of assigning loca-
tions to geographical objects within a geographic
frame of reference. In practice this means associat-
ing a set of 2D pixel coordinates from one image to
a set of 3D world coordinates, most often expressed
in latitude, longitude and altitude. There are two
main methods to solve the georeferencing problem:
direct and indirect georeferencing.

On the one hand, direct georeferencing uses nav-
igational information and the camera to determine
a target’s geographic coordinates. Most direct geo-
referencing methods try to solve a single-ray back-
projection problem: the process of determining the

1



ground coordinates of pixels in a single aerial image
with the support of a DEM. Direct georeferencing
is the most common method used in medium al-
titude georeferencing (between 500m and 1000m).
Santana [16] presents a novel direct georeferencing
algorithm to be used in forest fire scenarios. He
proposes the use of Iterative Ray Tracing (IRT),
which was initially proposed by Xiang in [18], in
conjunction with an unscented transform to both
estimate the target’s position, and its uncertainty.
This approach is well suited for medium altitude
georeferencing, but its accuracy degrades dramat-
ically when relying on error prone GPS and IMU
measurements, since it has no way to correct large
telemetry errors. Xu proposes an electro-optical
stabilization and tracking platform which integrates
the camera with the UAV’s navigational data [19],
in order to stabilize the camera’s orientation. Xu
also proposes the use of a Cubature Kalman filter.
These techniques greatly improve the georeferenc-
ing accuracy of the direct algorithm, however, they
also increase its implementation cost, complexity
and computation time.

On the other hand, indirect georeferencing meth-
ods do not rely on navigational information, in-
stead, they register photographs to georeferenced
data, such as a DEM or satellite images. This reg-
istration can be done by directly comparing a pho-
tograph to a satellite image, but most state of the
art algorithms process the image before the regis-
tration. For example, Structure from motion (Sfm)
constructs a 3D point cloud from several sequential
images, which can then registered to a DEM. The
two most common medium altitude indirect georef-
erencing methods are Image registration and Sfm.

Image registration is the process of overlaying two
images of the same scene taken at different times,
from different viewpoints and with different sen-
sors. The papers mentioned below use this pro-
cess to register images taken by an UAV with geo-
referenced satellite/aerial images, and use the re-
sult of that registration to perform georeferencing.
There are two types of image registration methods:
correlation-based and pattern based. On the one
hand, correlation-based methods place the sensed
image at every location in the reference image, and
adopt a similarity criteria to decide the most ac-
curate location. On the other hand, pattern-based
methods do not directly use image intensity lev-
els, instead, they match patterns in both the sensed
and reference image to find the best fit. Conte [7]
proposes a correlation-based image registration ap-
proach. Correlation-based methods are efficient and
can be applied to areas with no obvious landmarks,
such as forests. However, correlation-based meth-
ods are not as accurate as pattern-based ones, be-
ing very sensitive to scene changes, such as smoke,

fire or tree canopy height differences. Zhuo [21]
uses Scale-Invariant Feature Transform (SIFT) in a
pattern-based image registration approach, match-
ing UAV images with satellite images. This ap-
proach achieves a decimeter level accuracy, however,
it is not practical for medium altitude tilted cam-
era platforms, especially when operating in dynamic
environments, such as wild forest fires. Lindsten et
al. [13] use environmental classification to classify
and match superpixels. This method is more ro-
bust to orientation estimation errors, but not to
dynamic environment changes. However, environ-
mental classification outperforms classic feature de-
tectors in the accuracy of pattern-based image reg-
istration in rural scenes. Hamidi [8] uses database
matching techniques to refine the coarse initial alti-
tude and position parameters of the camera derived
from its navigational data. Image registration is
used as a first refinement step, while a direct IRT
method is used to perform the georeferencing step
itself, taking advantage of the refined camera poses.

Structure from motion (Sfm), which was initi-
ated by the computer vision research community,
has now been widely used for automated triangula-
tion of overlapping UAV-based frame imagery. Sfm
is a set of computer vision algorithms that facilitate
the photogrammetric reconstruction of 3D scenes
from images alone. It has gained popularity in re-
cent years due to its ability to deal with sets of
unordered and heterogeneous images without prior
or accurate knowledge of the camera’s intrinsic and
extrinsic parameters. Sfm is used for forest remote
sensing in [4] and [14]. These papers prove that Sfm
can be used for medium altitude forest remote sens-
ing with meter level accuracy and LIDAR equiva-
lent point cloud density. They also prove that it can
be run in real time, and perform georeferencing and
data collection at the same time. Notwithstanding
Sfm faces some obstacles in forest environments, as
is highlighted by Iglhaut et al. [10]: feature ex-
tractors perform poorly in forests, where the scene
is often dynamic, and sudden illumination changes
are commonplace.

The present work proposes a Sfm+ICP georefer-
encing method. Here, Sfm is used to reconstruct a
3D model of the fire area using techniques most sim-
ilar to [4] and [12]. The reconstruction is then im-
proved by matching it to a known DEM of the ter-
rain around the aircraft, similarly to [17] but with
a more flexible registration algorithm that matches
the downsampled reconstructed point cloud and the
upsampled DEM. This registration is in essence
similar to DEM matching, but instead of matching
DEMs, the algorithm matches high density point
clouds, which is more computationally intensive,
but yields better registration results. Using Sfm
allows the algorithm to densely reconstruct the op-
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erational area and consequently georefer dozens of
targets at the same time with no increase in compu-
tation time. Using it in real time is also challenging
due to some of its time intensive routines, thus the
algorithm needs to use a simple and quick kind of
Sfm that still guarantees high georeferencing accu-
racy. Moreover, using the ICP makes this algorithm
robust to telemetry errors, even when they are ex-
ceedingly large.

2. Background
The Sfm+ICP algorithm is naturally comprised of
two main blocks: Structure from motion and It-
erative Closest Point. Both these subroutines are
introduced in the following subsections.

2.1. Structure from motion
Structure from motion is the process of estimating
the 3D structure of a scene from a set of images.
It can produce high quality, dense, 3D point clouds
of a landform for minimal financial cost [11]. Sfm
is already well established in fields such as archae-
ology and cultural heritage [15], and its use as a
topographic survey technique has surged in recent
years.

The Sfm problem can be formulated as:

Given: m images of n fixed 3D points.
Problem: Estimate the m projection matrices, Pi,
and n 3D points, Xj , from the mn correspondences,
xij , assuming the following camera model holds
true:

xij = PiXj , i = 1, ....,m , j = 1, ..., n, (1)

where Pi are 3x4 matrices and Xj and xij are, re-
spectively, 3D and 2D points in homogeneous coor-
dinates.

Figure 1 shows a simple Sfm example with only 3
images. In real applications, not all the 3D points,
Xj , are present in every single image, and the point
correspondences, xij , contain outlier matches, how-
ever, the basic idea behind Sfm still holds true.

Sfm is not a single technique, it is a workflow,
employing multiple algorithms developed from 3D
computer vision, traditional photogrammetry and
more conventional survey techniques. Most pub-
lished Sfm implementations follow the same 5 step
process [11]: The first step is to detect keypoints in
all the m images. Each keypoint is a specific pixel
that contains a distinct feature. Then, the key-
points are matched across all images, in order to
find the correspondences xij . Thirdly Multi-view
triangulation (MVT) is used to initially estimate
the 3D points, Xj , and the projection matrices, Pi.
Next, Bundle adjustment (BA) is performed to re-
fine the initial Xj and Pi estimates provided by the
previous step. Some Sfm applications iterate MVT
and BA to converge on a better 3D reconstructions,

while others do this just once. Finally, a Linear
similarity transformation is applied: the Xj esti-
mates provided by the BA are expressed in an arbi-
trary reference frame relative to the camera. Hence,
Sfm’s final step is to scale, translate and rotate the
3D points, Xj , to get a reconstruction expressed in
N-E-D reference frame.

Sfm’s principal output is a 3D point cloud of the
scene captured by the images it processed. The re-
construction’s point density depends mostly on the
feature extractor used and the type of scene being
surveyed: the more distinct features a scene has, the
more dense its reconstruction will be. On the other
hand, the reconstruction’s georeferencing accuracy
hinges on the accuracy of the camera model, GPS
and IMU. Sfm has no way to minimize the effect of
these errors, hence why ICP is used.

2.2. Iterative Closest Point
ICP is a point cloud registration framework used
to find a local transformation to align two sets of
points. Each step of the ICP algorithm attempts
to align the two point clouds closer and closer, con-
verging on a rotation matrix and translation vec-
tor that minimize the average distance between the
point two clouds [6].

The ICP algorithm is based on a simple four step
iterative process, designed to sequentially bridge
the gap between the fixed and moving point clouds:

1. Select points on one point cloud.

2. Find the closest points on the other (fixed)
point cloud.

3. Minimize the sum of the distances between the
two sets of points. This produces a new point
cloud more similar to the fixed one than in the
previous iteration.

4. Repeat the previous 3 steps until the the two
point clouds are similar enough.

In most geoscientifical applications, the moving
point cloud is recovered from the environment using
some point cloud extraction sensor, such as LIDAR,
RADAR or Sfm. On the other hand, the fixed point
cloud is often a Digital Elevation Model (DEM) of
the environment being worked on.

DEMs were traditionally created from exist-
ing topographic maps and aerial photos, however,
most recent DEMs are generated using synthetic-
aperture radar usually mounted on a satellite, or
from even newer techniques such as LIDAR. Eu-
rope’s most accurate DEM is the EU-DEM v1.1 [1]
which was made by merging elevation data from the
Shuttle Radar Topography Mission (SRTM) and
the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) DEMs. SRTM
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Figure 1: Structure from motion problem [9]

was generated using synthetic-aperture radar while
ASTER was made from satellite images. EU-
DEM v1.1 combines the perks of both ASTER and
SRTM, resulting in a 30m resolution DEM with a
7m RMSE of most of Europe’s countries.

3. Implementation

Sfm+ICP’s main input is a set of sequential pho-
tographs/video frames taken by an aircraft’s cam-
era, which allows the Sfm block to densely recon-
struct the fire region. However, without additional
knowledge of the aircraft’s orientation and localiza-
tion, that reconstruction is not grounded to Earth
coordinates. Hence, the Sfm+ICP algorithm also
uses the aircraft’s GPS and the camera’s IMU in or-
der to transform the reconstructed point cloud from
the camera’s reference frame to an inertial N-E-D
reference, centered on a point with known coordi-
nates. That transformation is determined by regis-
tering the point cloud to a DEM of the surrounding
area. Finally, the algorithm receives a set of pixels
corresponding to the targets that the user intends
to georefer.

With those inputs, the algorithm produces two
outputs: the targets’ geographic coordinates and a
dense 3D point cloud of the fire area.

The SFM+ICP algorithm has four sequential
main blocks: motion estimation, dense reconstruc-
tion, point cloud registration and target georefer-
encing.

Motion estimation estimates the camera’s pose
at the time each photograph was taken. This step’s
algorithm can be seen in Algorithm 1. The camera
poses are estimated using a simple and quick Sfm,
often called ”sparse Sfm” in contrast to the ”dense
Sfm” used in the next step. Sparse Sfm is a Sfm
algorithm that uses sparse features, allowing it to
be run several times faster than dense Sfm. The
attribute sparse comes from the fact that this Sfm
step extracts only the best quality features, reject-
ing lower quality ones, which allows it to accurately

estimate the camera’s pose in each of the images.
These poses are this block’s main output, and will
be used in the next step to produce the dense point
cloud, which is then used as the basis for the geo-
referencing estimates.

Algorithm 1 Motion estimation algorithm

Inputs: images, IP.
Outputs: camera poses.

1: Initialize the first camera pose as the global ref-
erence frame’s origin.

2: Extract SURF features from the first image.
3: for all remaining images do
4: Extract SURF features from the image.
5: Match these features to the last image’s fea-

tures.
6: Estimate the pose of the camera relative to

the previous camera, using the matched fea-
tures.

7: Convert this relative pose to a global pose.
8: end for
9: Estimate the 3D location of all the features

matched between all the images, using Multi-
view triangulation.

10: Refine the camera poses and feature 3D loca-
tions using Bundle adjustment.

Dense reconstruction generates a dense point
cloud of the area captured in the images. The dense
reconstruction algorithm can be seen in Algorithm
2 .It starts by detecting features in each image and
matching them across all the images. Multi-view
triangulation is then used to coarsely estimate the
3D location of these features, which is then refined
using a single bundle adjustment. These three steps
produce an unscaled point cloud in the camera’s ref-
erence frame, that is transformed to a scaled iner-
tial reference frame using the telemetry data. The
final step is to remove outliers from the point cloud,
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using their location and reprojection error.

Algorithm 2 Dense reconstruction algorithm

Inputs: images, IP, refined camera poses, GPS,
altitude and camera orientation (given by the
IMU).
Outputs: dense point cloud in an inertial
North-East-Down reference frame.

1: Initialize the KLT point tracker with Min Eigen
features extracted from the first image.

2: for all remaining images do
3: Find the previous tracked features on the

next image, using the KLT.
4: end for
5: Estimate the 3D location of all the points

tracked, using multi-view triangulation.
6: Exclude points with reprojection error higher

than 2 pixels.
7: Refine the camera poses and feature 3D loca-

tions using Bundle adjustment.
8: Rotate the point cloud using the pitch and

heading of the first camera pose.
9: Translate the point cloud using the altitude of

the first camera pose.
10: Scale the point cloud using the ratio between

the refined camera poses and the GPS.
11: Remove outliers from the point cloud using

their distance and elevation.

Point cloud registration improves the point
cloud’s precision by matching it to a real DEM of
the surrounding area using ICP, i.e. translating and
rotating the point cloud in a way that minimizes the
distance between the real map and the reconstruc-
tion. This step’s algorithm can be seen in Algo-
rithm 3. The DEM is interpolated to match the
point cloud’s resolution, which is downsampled to
a 2.5m resolution. This specific downsampling and
interpolation step for the point cloud and the DEM
was chosen, because it yielded a better horizontal
accuracy than using the standard 25m resolution
DEM . Finally, the ICP’s RMSE is used to evaluate
the algorithm success up to this point: if the RMSE
is too high, it means that the 3D reconstruction is of
poor quality, thus the algorithm discard the current
point cloud and goes back to the first step, motion
estimation.

Target georeferencing computes the targets’
geolocation using the refined dense reconstruction
from the last step. This the simplest and quickest
of the four main blocks, as it simply averages the
3D position of the 10 closest features to the target
in order to estimate its location. This final step’s
algorithm can be seen in the last four lines of Algo-
rithm 3.

Algorithm 3 Registration and target georeferenc-
ing algorithm

Inputs: DEM, dense point cloud of the terrain,
GPS coordinates, target pixels.
Outputs: target coordinates , rectified point
cloud.

1: Select a relevant subsection of the EU DEM
v1.1 using the GPS coordinates.

2: Interpolate the selected DEM to a 2.5 metre
resolution.

3: Downsample the dense point cloud to a 2.5 me-
tre resolution.

4: Perform ICP between the downsampled point
cloud and the interpolated DEM. Use a point
to plane minimization metric.

5: Apply the rigid transformation provided by the
ICP to the full dense point cloud.

6: for all target pixels do
7: Find the 10 closest features to each target

pixel and their corresponding 3D locations in
the rectified point cloud.

8: Average the location of the 10 closest fea-
tures, using Inverse distance weighting, where
each location estimate is weighted according to
its pixel distance from the target.

9: end for

4. Results
The dataset used to validate the algorithm is a se-
ries of frames taken from a video captured by a fixed
wing UAV loitering above a forest fire near Pombal,
Portugal at 39.832856N -8.519885E at the 16th of
August 2019.

Figure 2: DEM around the fire

Figure 3 shows two images from the dataset. This
dataset was sampled at a rate of 2Hz from 15s of
continuous footage. The footage is unstable, with
some sharp camera movements and video cutoffs
that degrade the reconstructions quality, hence only
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a short part of the video was usable.
The two frames in figure 3 show a typical Por-

tuguese forest fire: a small village surrounded by a
dense and vast forest and a large column of smoke
above it. This column of smoke obscures part of the
terrain under and behind it, hindering the ICP reg-
istration. At the same time, the forest surrounding
the town is dense and has few distinct features, fur-
ther complicating the reconstruction process. The
last hindrance can be seen in Figure 2: the terrain
elevation range is only 100m and there are no large
hills to assist the ICP registration. However, the
terrain is still complex and distinct enough to per-
form Sfm+ICP georeferencing.

(a) Frame 0

(b) Frame 30

Figure 3: First and last frame used

4.1. Reconstruction results
Figure 4 shows the reconstructed point cloud and
the true camera trajectory. The aircraft performs
a coordinated turn heading northwest with a slight
bank angle, naturally changing its distance to the
fire in all three spatial coordinates. The camera
changes its heading and pitch throughout the video
in order to track the fire’s progress, and inadvert-
edly changes its rotation due to flight induced dis-
turbances.

The reconstruction can also be seen in detail in
figure 5. Comparing this reconstruction with figure
3, one can see that all of the village is reconstructed
with a high point density. The forests surrounding
it are also well represented, although with a smaller
point density. The smoke seen in figure 3 obscures
the terrain northeast of the town, and most of the
smoke is not considered as a feature, with only a
small amount of gray points hovering north of the
town at 400m altitude. These smoke points should
be considered outliers, as they serve no purpose for
the georeferencing algorithm, but the fact that a
small amount of them managed to bypass the out-
lier removal block is not serious, as the ICP can eas-
ily classify these points as outliers, since the rest of
the reconstruction is close enough to the real DEM.

Table 1 provides statistics regarding Sfm’s perfor-
mance with this dataset: 48ha were reconstructed,
with an average of 96 points per hectare. While this
density is not as high as one might have predicted,
it is more than enough to accurately georefer all
the buildings in the village and several targets out-
side of it, as well as the firefront itself. Only 48ha
were reconstructed, however, this is mostly due to
the smoke obscuring the terrain behind it, so the
camera is unable to capture more.

Table 1: Reconstruction statistics

Reconstruction
area [ha]

Average points
per
reconstruction

Points
per
hectare

48 4616 96

4.2. Georeferencing results

Figure 6 shows the average XY and Z errors for sev-
eral sequential algorithm runs, and table 2 presents
basic statistics regarding those results. All of these
runs were made sequentially and with the same
inputs and tuning parameters, however, they do
present different outputs, since Sfm is not a de-
terministic process, having some degree of stochas-
ticity. They show an average XY georeferencing
error of just 49.1m, which is on par with state of
the art medium altitude georeferencing algorithms.
The XY results show a good error dispersion, with
a relatively small standard deviation, meaning that
the algorithm is, not only accurate, but also con-
sistent. There is one clear outlier with 81.2m XY
error, however most results are roughly in the 30m-
60m range.
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Figure 4: 3D reconstruction and aircraft trajectory

Figure 5: 3D reconstruction with equal scale

Table 2: Georeferencing accuracy statistics after
ICP

XY [m] Z [m]
Max 81.2 6.9
Mean 49.1 4.7
Median 49.4 4.7
Standard deviation 16.7 1.3
Range 52.7 3.7

The average Z error shown in figure 6 and Table
2 is just 4.7m, and its standard deviation is only
1.3m. These statistics demonstrate that Sfm+ICP
can also consistently and accurately determine a
target’s elevation, even if the camera is flying at
900m altitude. While this Z accuracy can be a use-
ful property in some instances, a target’s elevation
can also be estimated by sampling a DEM at the
desired coordinates. Notwithstanding, the low Z er-
ror also means that the reconstruction is consistent
with the terrain, therefore the dense reconstruction
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is useful for more than just georeferencing, for in-
stance, it can be used as a new dynamic map of the
disaster area.

Figure 6 reveals a correlation between the XY
and Z errors: reconstructions with high XY also
tend to have a high Z error, which is unsurprising
due to the way that the ICP corrects both the XY
Z errors. However, it shows that, since the Z error
can be in part estimated using a DEM, this corre-
lation can be used to assess if a reconstruction is
horizontally accurate or not.

Figure 7 shows the XY and Z error distribution
for the four targets georefered. The results show
that the four targets have a low average XY error,
and that some even have a similar accuracy as the
DEM itself. There is one clear outlier reconstruc-
tion that had a very poor accuracy, however, apart
from it, the algorithm performed consistently and
accurately across all targets.

The Z error also shows a low error somewhat con-
sistently across the four targets, however, here the
outlier’s impact is more clear: the mean Z error of
each target (represented by red lines) is much lower
than the median, for every single target. While
the difference between the mean and the median
for each target is no more than 2m, it shows that
the vertical error is much more sensible to bad reg-
istrations than initially thought. This is likely due
to this dataset’s high pitch error (around 5 degrees),
which makes the registration step all the more dif-
ficult. Despite this, the vertical results are still on
par with the state of the art, and could be further
improved if more stringent reprojection error and
ICP RMSE constraints were applied, at the cost of
a longer algorithm run time and sparser reconstruc-
tion.

5. Conclusions
This work presented a new and robust Sfm+ICP
georeferencing algorithm designed for medium alti-
tude forest fire monitoring. Its secondary achieve-
ment is the algorithm’s ability to perform a recon-
struction of the area around the fire. Both these
features are useful for the FIREFRONT project,
as they further the project’s ability to perform real
time georeferencing in adverse conditions, while also
opening the door to other Sfm based research in the
field of forest fire monitoring.

The algorithm is designed to work with any
medium altitude aircraft with a camera, IMU and
GPS, and it is able to match state of the art al-
gorithms accuracy-wise, even when these sensors
have a high level of noise. This robustness to IMU
and GPS errors is especially relevant since optic-
ray-based georeferencing algorithms are unable to
fix these high sensor noises by themselves, there-
fore having a Sfm-based algorithm, such as the one
presented in this work, provides the FIREFRONT

project with a valuable georeferencing alternative.

The next step in Sfm+ICP research is to test it in
real time with a predefined flight pattern and an ac-
curate way to assess the algorithm’s georeferencing
accuracy. This endeavour would also be invaluable
to other georeferencing algorithms, as all of them
would be uniformly and accurately evaluated using
a dataset especially made for just that.

The algorithm can still be subject to some al-
terations to increase its accuracy and efficiency,
namely: a more complex feature tracking solution,
having multiple ICP iterations with different pa-
rameters, or integrating fire segmentation data with
the target georeferencing step.

Lastly, Sfm+ICP could be used as a measurement
model in a SLAM implementation, or as an initial-
ization step in a direct georeferencing algorithm (or
vice-versa).
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