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Transcriptional regulatory networks are responsible for controlling gene

expression. These networks are composed of many interactions between

transcription factors and their target genes. Carrying a combinatorial nature

that encompasses several regulatory processes, they allow an organism to

respond to disturbances that may occur in the surrounding environment.

In this thesis, we explore different possibilities for the study of transcrip-

tional regulatory networks. The intention is to reveal which functions and/or

processes are encoded in the regulatory patterns that constitute the transcrip-

tional regulatory networks. To accomplish that, we study a set of regulatory

networks from closely related yeast species using different methods, divid-

ing the workflow into two phases. The first phase consists of a detection of

modules followed by their functional characterization. With this, we showed

that the regulatory networks can be divided into functional modules that

represent the biologic functions of the respective species. In the second

phase, we move towards a cross-species analysis. Here, we compare the

functional elements of the different species and we study the similarities

among them. The purpose of this analysis is to discover if there are any

functional elements conserved across the distinct organisms. Overall, our

thesis provides a novel pipeline to analyze how the structure and function of

regulatory networks of different species may relate to each other. In addition,

we explore how those similarities between species can help to infer some

properties in networks.

Additional Key Words and Phrases: Complex Networks, Transcriptional Reg-

ulatory Networks, Multilayer Networks, Community Detection, Functional

Modules

1 INTRODUCTION
Gene expression is the biological process that allows a cell to respond

to its changing environment. Each cell is the product of specific

gene expression events involving the transcription of thousands of

genes. The transcription factors (TFs) are the core elements in the

control of gene expression. These are responsible for the activation

or inhibition of the genes under their regulation, the target genes

(TGs). Normally, the expression level of a target gene is the result of

the combinatorial regulation of multiple transcription factors. The

hundreds of interactions between transcription factors and target

genes define a transcriptional regulatory network that underlies

cellular identity and function.

The morphological differences between species/organisms arise

from the differential regulation of genes. The information for this

differential regulation is encoded in the genomic regulatory code

of each individual and it is the product of evolution [Davidson

2001]. The transcriptional regulatory networks of organisms are

assembled during their evolution and combine new regulatory links

and preexisting ones. These networks are of great biological im-

portance and their study is sure to bring new developments to the

scientific community. The understanding of differential gene ex-

pression is facilitated by the analysis of transcriptional regulatory

networks [Davidson et al. 2002; Luscombe et al. 2004]. Therefore,

insights from the structure and evolution of these networks can be

translated into predictions and used for the analysis of the regula-

tory networks of different organisms.

Despite their central role in biology, the structure and dynamics

of transcriptional regulatory networks are largely undefined. In this

thesis, we study transcriptional regulatory networks, represented as

graphs. Graphs are the simplest way to represent complex systems.

These can be used to portray the most varied complex systems,

many of these systems are present in our daily life. Such as our social

networks formed by family and friends or the transport network

we use to move around. Also, our regulatory interactions between

thousands of genes and transcription factors can be represented as

graphs.

In this thesis, our goal is to broaden our knowledge about tran-

scriptional regulatory networks. To achieve our goal, we analyze

the structure of these networks by inspecting their division into

modules and their functional characterization. Furthermore, our

analysis continues with a cross-species comparison. Here, compare

the information gathered in the functional characterization of the

species to identify conserved functional elements across species.

The exploration of the community structure is the most common

way to study the structure of a network. In Network Science, a

community (or module) is defined as a group of nodes that have a

higher likelihood of connecting to each other than to nodes of other

communities. In biological networks, communities can express bio-

logical functions. For example, the identification of communities can

be used to discover new structures associated with specific biologi-

cal functions previously unknown [Lewis et al. 2010; Voevodski et al.

2009]. The field of Network Science has offered several community

detection methods based on different approaches targeting different

types of problems [Fortunato 2010].

The second phase of our analysis consists of a cross-species com-

parison. Cross-species studies have proven to be crucial in modern

biology. They are important to study the differences and similarities

between species, which is fundamental to understanding their evolu-

tion. For example, it allows the identification of conserved structures

between different organisms [Borneman et al. 2007; Matthews et al.

2001]. Related to cross-species studies, are the studies between dif-

ferent types of data, also important in the biologic field. For example,

in medical research, the study of different types of cancer tissues

allows the prediction of candidate driving genes in cancer [Cantini

et al. 2015]. The use of a multilayer network can be very useful

in this cases since it allows the representation and comparison of

different types of information, which is not possible with the simple

and common graph representation.

1.1 Objective
In this work, we make a characterization of transcriptional regu-

latory networks of several closely related species with the generic

goal of gaining insight into this kind of network. In particular, we

consider the readily available dataset from YEASTRACT+ [Monteiro

et al. 2019] which provides a set of closely related yeast species with

annotated data, both in terms of functional annotation and in terms



of mapping between nodes of different species. To accomplish this,

we use some Network Science methods. We outline our approach by

dividing it into two phases: (1) detection and functional characteri-

zation of communities/modules; (2) cross-species comparison. With

our approach, we aim to analyze the interplay between structure

and function for each species and also between species.

The first step of the characterization involves the examination of

the community structure of the networks. In transcriptional regu-

latory networks, we assume that a community is associated with

one or more biologic functions. We begin by performing detection

of communities on the networks. Then, we proceed with the func-

tional characterization of the communities found. The motivation

is to verify if the networks can be divided into well-defined func-

tional communities that reflect the different functions present in

the regulatory code of the species. In this step, we apply several

community detection techniques to understand which technique

is the most suitable for our problem. Within the set of algorithms

to be applied, some are suitable for the study of overlapping and

signed communities. Regarding the study of overlapping commu-

nities, the transcription factors may be associated with multiple

regulatory processes. Therefore, the study of this type of communi-

ties can be useful as it allows genes to belong to different functional

groups. Transcriptional regulatory networks can be seen as signed

networks, the relationship between transcription factors and target

genes may be negative (denoting inhibition) or positive (denoting

activation). Thus, the study of polarized communities may be useful

in the identification of regulatory processes in our species.

Moving to the second stage, we focus on the cross-species compar-

ison to identify the main similarities between species. Comparing

the functional modules discovered in the first stage, we intend to

find out if there are strongly connected modules between different

species, which can reveal the functional similarity between organ-

isms or help us to infer functional elements in other species. To

finalize our characterization, we use a multilayer network approach

combining networks of different species. Then, we proceed with a

final community detection step. The goal is to detect modules that

may reunite genes from different species that may encode important

regulatory patterns conserved across species.

1.2 Outline and Contributions
This document is organized as follows. In Section 2, we start by

presenting some concepts that are fundamental to understanding

our approach. Then, Section 3 is focused on the state-of-the-art

underlying our work. Moving to Section 4, we begin the study of

the transcriptional regulatory networks. The second phase of the

analysis is described in Section 5. Finally, in Section 6, we draw

the concluding remarks, also commenting on the limitations of our

approach and possible future analyses related to our results.

During the development of this thesis, we contributed with two

accepted talks at two main conferences in the Network Science

Community: Networks 2021 and CompleNet 2021.

2 CONCEPTS
In this section, we present some concepts essential for the reading

of the document. First, we introduce some Network Science con-

cepts. Then, we review two biological concepts, the transcriptional

regulatory networks (the focus of our work) and the Gene Ontology

(GO), a useful resource to functionally characterize our species.

Graph. A graph, 𝐺 , is represented by the tuple (𝑉 , 𝐸) where 𝑉 is

the set of vertices/nodes and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges/links that

connect the nodes. The size of 𝑉 is denoted by 𝑁 = |𝑉 | and is the

size of the graph, the size of 𝐸 is denoted by 𝐿 = |𝐸 |. A node/vertex
represents an entity in a graph. This entity and can be a person

in a social network, a company in a financial market, a station

in a transport network, or a gene in a transcriptional regulatory

network. An edge, or link, represents a relation between two nodes.

This interaction can represent a friendship between two people

in a social network, a connection between two companies that

do business together in a financial market, a connection between

two stations in a transport network, or a connection between a

transcription factor and a target gene in a transcriptional regulatory

network. Two nodes 𝑖 and 𝑗 are adjacent or neighbors if there is an
edge 𝑒 connecting them, i.e., 𝑒 = (𝑖, 𝑗) ∈ 𝐸.

Community. In Network Science a community or a module is de-
fined as a group of nodes that have a higher likelihood of connecting

to each other than to nodes of other communities. Thus, communi-

ties are locally dense connected subgraphs in a network. Communi-

ties play a particularly important role in some areas. They allow us

to obtain important information about the functional components

of a system and the impact of local structures on dynamics at a

global scale. Modularity [Newman and Girvan 2004] is the measure

that allows us to quantify the quality of a partition 𝑐 in a graph 𝐺 .

Multilayer Network. The basic representation by graphs is the

most common and simple way to portray complex systems. How-

ever, with the evolution of research in complex systems, it became

necessary to study systems that are increasingly complex but closer

to reality. It has become essential to go beyond the simple repre-

sentation by graphs. This lead to the emergence of a new approach,

the representation of systems by a multilayer network [Boccaletti

et al. 2014; Kivelä et al. 2014]. In this scenario, we consider layers in

addition to nodes and edges, Figure 1.

Fig. 1. Multilayer network with three layers. The intra-layer edges are
represented by solid lines and the inter-layer edges by the dotted lines.
Figure obtained from [Kivelä et al. 2014].

In a multilayer network, each layer is associated with an aspect.
This aspect can be the type of links or an instant of time. This way,

it is possible to build a network in which all edges of different types

are embedded in different layers of interaction. There are three types

of edges in multilayer networks:
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• Intra-layer edges - edges connecting two nodes in the same

layer

• Inter-layer edges - edges connecting two nodes in different
layers

• Couplings - edges connecting two copies of the same node

in different layers

In our approach, we build a multilayer network in which the

layers represent different species. The inter-layer edges are estab-

lished between homologous genes of different species. There are no

couplings in this case.

Transcriptional Regulatory Networks. The transcriptional regu-
latory networks are responsible for the gene regulation that controls

genomic expression. This process allows a cell or an organism to

respond and adapt to a variety of stimuli from the environment like

unexpected and stressful situations. A gene can be:

• Transcription factor (TF) - gene that have a regulatory
role

• Target gene (TG) - gene regulated by the transcription

factors

The regulatory association between two genes can represent the

activation or inhibition of the expression of the target gene by the

transcription factor.

A transcriptional regulatory network can be represented as a

directed graph and a variation of a signed graph 𝐺 = (𝑉 , 𝐸,𝑤). The
nodes of 𝑉 are transcription factors or target genes (or both), and

the edges of 𝐸 are the directed connections between transcription

factors and target genes. The edges denote activation or repression

effects on transcription, so, we define edge labels 𝑤 ∈ {−1, 1, 0}
between two nodes (𝑖, 𝑗) as follows:𝑤𝑖, 𝑗 = 1 when the transcription

factor 𝑖 is an activator of the target gene 𝑗 and𝑤𝑖, 𝑗 = −1 when the

transcription factor 𝑖 is a repressor of the target gene 𝑗 . When we

do not know if it is an activator or repressor, 𝑤𝑖, 𝑗 = 0. The out-

degree of a gene is the number of target genes that it regulates and

the in-degree of each gene is the number of transcription factors

controlling its transcription. A gene can be a transcription factor and

a target gene at the same time. If a gene acts only as a transcription

factor, its in-degree is 0, if it acts only as a target gene, its out-degree

is also 0.

GeneOntology (GO). The Gene Ontology1 [Ashburner et al. 2000]
is the most comprehensive resource about the functions of genes

and is also the one that is mostly used to support modern biological

research. It subdivides the functionality of a gene into three distinct

ontologies:

• Molecular function - the activity of the gene at the molec-

ular level

• Cellular component - the location of the activity of the

gene in relation to the biological structures

• Biological process - biological process that contains the
molecular function of the gene

Each of these three ontologies is a hierarchy of terms, each term

has a definition that allows us to define the relationships the terms

have with each other. A hierarchy is composed of several levels,

1
http://geneontology.org/

apart from the terms that are leaves, all terms can have children,

and these children represent a more specific term/process than

the parent. The Gene Ontology allows the characterization of a

gene in three distinct aspects, each corresponding to one of the

ontologies. Having a set of genes, we can use the relationships

between the terms to identify the main processes associated with

that set. Therefore, this is a useful resource in biology, since it allows

the functional characterization of organisms.

3 RELATED WORK
In this section, we present the background of community detection

and cross-species analysis. In the field of community detection, we

review some proposed methods and concepts. Moreover, we cite

some works regarding community detection in biological networks.

Closing this section, we mention some studies on cross-species anal-

ysis and some involvingmultilayer network approaches in biological

networks.

3.1 Community Detection
Methods. The study of communities has become the most studied

property regarding the structure of a network. Here, we review

several Network Science methods developed to solve the problem

of community detection. Starting with the divisive algorithms, the

well-known Girvan-Newman [Girvan and Newman 2002] is the

most commonly used algorithm. Modularity-optimization-based

methods are the most popular class for community detection. Here,

we highlight the Louvain [Blondel et al. 2008], Clauset-Newman-

Moore [Clauset et al. 2004] and Leiden [Traag et al. 2019] algorithms.

Another class of methods is the class of spectral algorithms, as an

example, we have the Donetti-Muñoz algorithm [Donetti andMunoz

2004]. Not belonging to the previous mention categories, we have

the Infomap algorithm [Rosvall and Bergstrom 2008], the Label

Propagation algorithmet al. [Raghavan et al. 2007] and the Markov

Cluster algorithm [Van Dongen 2000]. Regarding the detection of

overlapping communities, CFinder [Adamcsek et al. 2006] is the

software package implementing the Clique Percolation technique

developed by Palla et al. [Palla et al. 2005]. Lastly, for detection of

communities in signed networks we point the spectral algorithm by

Cucuringu et al. [Cucuringu et al. 2019]. A more specific description

of some of these algorithms can be found at [Fortunato 2010].

Communities significance. The significance of a partition is re-

lated to its robustness and stability against random perturbations of

the graph structure. The idea is that if a partition is significant, it will

be recovered if the structure of the graph is changed. On the other

hand, if a partition is not significant, it will collapse when the struc-

ture of the graph is modified. Karrer et al. proposed a method to test

the significance of a partition [Karrer et al. 2008]. Also Lancichinetti

et al. [Lancichinetti et al. 2010] proposed two measures,𝐶-score and

𝐵-score, to estimate the significance of single communities and not

only of the whole partition.

Communities in Biological Networks. The study of communi-

ties is regularly used in the investigation of cellular systems of organ-

isms such as protein-protein interaction (PPI) networks, gene regula-

tory networks (GRN), andmetabolic networks (MN). In PPI networks
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of yeast species, the study of communities allowed the identification

of modules corresponding to important protein complexes [Chen

and Yuan 2006; Rives and Galitski 2003; Sen et al. 2006; Spirin and

Mirny 2003]. In MN, with the investigation of the community struc-

tures, it was possible the detection of functional modules [Ahn et al.

2010; Ravasz et al. 2002]. Finally, in GRN, it was achievable the

discovery of functionally related groups of genes [Wilkinson and

Huberman 2004] and identification of groups of genes associated

with functions that drive cancer [de Anda-Jáuregui et al. 2019].

3.2 Cross-species Comparison
A major challenge of biological research is to understand the com-

plex networks of interacting genes and proteins that give rise to bio-

logical form and function. Approaches based on cross-species com-

parisons usually provide a valuable framework to address these chal-

lenges, in this section, we cite some of the works related to this topic.

In PPI networks, cross-species can be used to predict protein-protein

interactions (interologues) conserved across species [Matthews et al.

2001; Sharan et al. 2005; Wiles et al. 2010]. The characterization

of interspecies differences in gene regulation is fundamental for

understanding the diversity and evolution of species. For exam-

ple, Borneman et al. [Borneman et al. 2007] identified considerable

divergence in binding sites of transcription factors across closely

related yeasts species. In another study [Stuart et al. 2003], from the

comparison of correlated patterns of gene expression from different

species, the authors were able to find co-expressed genes in these.

Multilayer Approach in Biologic Networks. Multilayer net-

works are useful in the study of biological networks since it allows

the combination of multiple levels of genomic and molecular interac-

tion data. In PPI networks, this type of approach has already helped

to make predictions of protein functions in yeast [Zhao et al. 2016]

and in human [Liang et al. 2019]. In the medical field, this approach

supported the recognition of candidate driver cancer genes [Cantini

et al. 2015; Yu et al. 2019].

4 IDENTIFICATION OF FUNCTIONAL MODULES
In this section, we begin the study of the transcriptional regulatory

networks. First, we introduce the networks of the species by present-

ing their characteristics. Then, we start the study of networks with

the detection of modules and following functional characterization.

4.1 Data
The data we use in this work is a series of transcriptional regulatory

networks from different yeast species. In particular, we consider the

data from the Yeastract+
2
portal which provides the transcrip-

tional regulatory networks of 10 closely-related yeast species [Mon-

teiro et al. 2019]. The characteristics of these networks are presented

in Table 1.

From Table 1, it is clear that the species have different levels of

documentation, as reflected by the number of nodes and edges. S.
cerevisiae is the network with more regulatory associations between

transcription factors and target genes. These associations may be

2
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Network #Nodes #Edges #TFs #TGs ⟨𝑘𝑖𝑛⟩ ⟨𝑘𝑜𝑢𝑡 ⟩ CC D
S. cerevisiae 6 886 195 498 220 6 886 28.40 28.40 0.47 4

S. cerevisiae B 6 478 45 209 176 6 475 6.98 6.98 0.22 5

C. albicans 6 015 35 687 118 6 015 5.93 5.93 0.28 5

Y. lipolytica 5 288 9 238 5 5 288 1.75 1.75 0.36 4

C. parapsilosis 3 381 6 986 11 3 380 2.07 2.07 0.25 4

C. glabrata 2 133 3 508 40 2 116 1.64 1.64 0.09 6*

C. tropicalis 665 698 16 663 1.05 1.05 0.01 5

K. pastoris 561 581 4 559 1.04 1.04 0.01 5

K. lactis 111 126 10 106 1.14 1.14 0.15 2*

Z. bailii 32 31 1 31 0.97 0.97 0.00 2

K. marxianus 4 3 1 3 0.75 0.75 0.00 2

Table 1. Networks Properties. CC stands for Clustering Coefficient and D
for Diameter, ⟨𝑘𝑖𝑛 ⟩ for average in-degree and ⟨𝑘𝑜𝑢𝑡 ⟩ for average out-degree.
In the Diameter field, a value followed by a * represents the value of the
Diameter for the largest component of the graph.

classified into two major groups: (1) those supported by DNA bind-

ing evidence; (2) those supported by expression evidence. Due to

the high level of information of S. cerevisiae, we add a new network

to our set. S. cerevisiae B consists of filtering the original network

keeping only the regulatory associations supported by binding evi-

dence. This filtering aims to clarify the future interpretation of the

results in this species. Comparing the characteristics of the orig-

inal and filtered networks, we observe that the number of nodes,

transcription factors, and target genes remains close to the original.

This indicates that the filtering of the original network managed

to retain most of the genetic evidence of S. cerevisiae. Unlike the
species mentioned above, there are species whose networks are

small and sparse. Enumerating these species we have: C. tropicalis,
K. pastoris, K. lactis, Z. bailii and K. marxianus. This lack of genetic

evidence suggests that the characterization of these species may not

reflect their biological nature. Therefore, we decide to discard these

networks from the current analysis. S. cerevisiae and C. albicans are
the species with the highest node degree, which is normal since

these have more transcription factors than the others and each node

is expected to be involved in multiple processes. On the other hand,

Y. lipolytica is the one with fewer transcription factors, only five,

and its clustering coefficient is the highest among the networks, re-

vealing that the nodes are concentrated around those transcription

factors. Due to this structural organization, it is likely that in this

species the number of modules detected is limited by the number of

transcription factors.

4.2 Comparative Analysis of Modules
The first phase of our approach is the detection of modules. We

select a collection of algorithms that exploit the diverse ideas and

techniques of Network Science developed over the years. The set is

composed of the following algorithms: Girvan-Newman (GN), Lou-

vain, Leiden, Clauset-Newman-Moore (CNM), Label Propagation

(LP), Markov Clustering (MC), Infomap, CFinder (CF), and a spectral

clustering technique (SC) for modules detection on signed networks.

With the application of the spectral technique, we hope to verify if

the networks contain polarized modules that may be important for

understanding their structure. To execute the introduced algorithms,

we used libraries where they are already implemented.
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Some of the considered algorithms are stochastic, i.e, the result

may change in each run because their procedure depends on ran-

dom events. The Louvain, the Label Propagation, and the Infomap

are the non-deterministic algorithms we use in our approach. To

compare the different outputs of the algorithms, we run these 1 000

times. To study the different partitions given, we compare each pair

of different partitions having the number of modules equal to the

value of the mode. To make this comparison, we use the package

clusim [Gates and Ahn 2019] that allows us to compare different

partitions using similarity measures, in our case we use Rand In-
dex [Rand 1971]. The similarity results achieved a high value and

with low variance. Therefore, despite the stochasticity of the algo-

rithms, the high similarity and low variance show that the structural

differences between the partitions are minimal. Thus, regarding sto-

chastic algorithms, we adopt one of the results having the number

of modules equal to the mode.

Due to the temporal complexity of Girvan-Newman and CFinder

algorithms, it was not possible to run them on some of the biggest

networks. We tried to run these algorithms for a timeout of two

weeks, however, the execution of these algorithms did not come to

an end. Table 2 displays the number of modules obtained for the

networks using the different algorithms of our set.

Network GN Louvain Leiden CNM LP MC Infomap CF SC
S. cerevisiae - 5 5 3 1 1 54 - 2

S. cerevisiae B - 12 11 6 1 78 48 34 2

C. albicans - 12 12 7 1 11 23 19 -

Y. lipolytica 1 4 4 4 1 1 1 3 -

C. parapsilosis 25 8 8 6 1 2 5 4 -

C. glabrata 17 14 13 12 16 24 29 14 -

Table 2. Number of modules obtained for each network using the different
algorithms.

The results in Table 2 show that different algorithms give dif-

ferent results regarding the number of modules obtained. Some of

the algorithms fail to detect modules, such as the Label Propaga-

tion, Girvan-Newman, and Spectral Clustering in signed networks,

this lead us not to choose to study these results. There is a great

divergence between the number of modules obtained between S.
cerevisiae and S. cerevisiae B. Therefore, the filter applied to create S.
cerevisiae B network reveals to be essential in the search for modules

in this species. Whereas that the division of S. cerevisiae B in mod-

ules points to a better division of species, we decide on using the

filtered network to study S. cerevisiae. In Y. lipolytica few modules

were detected, a consequence of the low number of transcription

factors. Thus, in the future functional analysis of these modules, few

functions should be identified for this species. Regarding the rest of

the species, it was possible to extract some modules. Indicating that

the functional characterization of these may be more complete. To

better understand the division in modules, we decide to study the

distribution of their sizes for the different algorithms. We Figure 2

we present the distributions for C.albicans as example.

We expect that a balanced division of the networks (modules

of the same magnitude) should be the case that better reflects the

division of species according to their biological function. The dis-

tribution shows that the modularity-based algorithms (Louvain,

Fig. 2. Modules size distribution for C. albicans

Leiden and, Clauset-Newman-Moore) have a more balanced divi-

sion than the others. Infomap, despite some very small modules,

produced others with equivalent size to those mentioned above. In

the case of CFinder, although it has modules that include almost

the entire network, the smaller ones can help us to understand if

the species benefit from an overlapping communities study. Lastly,

Markov Clustering gives us a very unbalanced division, so we decide

to discard these results.

To close the first phase of our analysis, we analyze the significance

of the modules obtained with the modularity-based algorithms. For

this purpose, we calculate their 𝐶-score and 𝐵-score, Table 3. Look-

ing at the𝐶-score values, in none of the algorithms it was possible to

identify significant modules. However, the 𝐵-score says the opposite,

indicating that the 𝐶-score is a very restrictive measure. According

to the 𝐵-score values, the Louvain algorithm only produced one

significant module, which may be a consequence of its stochasticity.

Regarding the other two algorithms, both produce significant mod-

ules. Combining the significance of some modules and the balanced

division, at that point, Leiden seems to be the one that best captures

the structure of the species. Nevertheless, in the functional analysis,

we take into account the results of Infomap, CFinder, Louvain, and

Clauset-Newman-Moore, which also present interesting results.

Louvain Leiden Clauset-Newman-Moore

𝐶 𝐶-score 𝐵-score 𝐶-score 𝐵-score 𝐶-score 𝐵-score

0 1.00 1.00 0.99 1.02e-27 0.97 6.53e-67

1 1.00 1.00 0.99 0.39 1.00 2.07e-69

2 0.99 0.29 1.00 0.01 0.98 1.17e-16

3 1.00 1.00 1.00 0.99 0.99 0.99

4 0.99 1.00 0.99 0.63 0.99 0.01

5 0.99 1.00 0.99 0.01 0.99 0.99

6 0.99 1.00 0.99 1.00 - -

7 1,00 1.00 0.99 0.83e-9 - -

8 0.99 1.00 0.99 1.00 - -

9 0.99 1.00 0.99 0.01 - -

10 1.00 1.00 0.99 0.32 - -

11 0.99 1.33e-70 - - - -

Table 3. Significance of the modules obtained for S. cerevisiae.

4.3 Functional Analysis of Modules
This section refers to the label assignment process that consists of

assigning one or more labels to the found modules. These labels

represent specific functionalities of species. Therefore, it allows
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the functional characterization of these. The idea of the labeling

process is to associate to the modules the most represented Gene

Ontology terms among their genes. To obtain all terms associated

with a module, we need to obtain all terms directly linked with the

genes, then, we go through all the terms in the hierarchy until we

reach the root to obtain the higher level terms of the module.

To label the modules, we have to identify the most significant

and representative terms of each module. Given the set of terms

associated with a module, we perform a three-step filtering of the

terms: (1) select only the most global terms (level 2 and 3 terms); (2)

keep only the most specific terms of the module using the statistical

measure p-value; (3) retain the terms with a good representation in

the module (represented in at least 10% of the genes).

Algorithms Performance. Using S. cerevisiae as a reference, we
compare the performance of algorithms that we consider to have

interesting results. Beginning with the modularity-based methods,

Figure 3. A first look shows that most modules have more than

one label, exposing the functional diversity of these. However, it is

observable that not all genes in the modules are linked to function-

alities that characterize the modules they belong to. By applying

the p-value filtering, we obtain only the most specific terms of each

module. Therefore, there are always fractions of genes in the mod-

ules that are not associated with any of the terms. These genes

correspond to behaviors that end up being captured in other mod-

ules.

(a) Leiden (b) Louvain

(c) Clauset-Newman-Moore (d) Gene Ontology Terms

Fig. 3. Modules and respective functions for modularity-based methods
on S. cerevisiae. The bar of each term symbolizes its representation in the
module. The pair of values at the top of each bar are respectively the size of
the module and the percentage of genes of the module related with at least
one term (in the module).

In Figure 3, we observe that some functions appear with high

representation in the modules. Such as the metabolic process, cel-

lular process, biological regulation, or response to stimulus. This

points to the importance that these functions have in the species.

In contrast, others seem to be less represented. Being specific func-

tions, these are associated with a smaller set of genes. Reproduction,

reproductive process, and transporter activity are good examples of

specific functions detected in the modules. The Clauset-Newman-

Moore algorithm is the worst performer algorithm, capturing the

least diversity of functions. Comparing the results from Louvain

and Leiden we can observe that some modules are very similar in

terms of functionality. However, Leiden was able to identify func-

tions that Louvain could not, such as the cellular process (usually

heavily represented in modules) or reproductive process. Moreover,

in general, the modules from Leiden have more functional diversity

and the ratio of genes that contribute to the classification of the

modules is greater. This combination of factors leads us to conclude

that the Leiden algorithm had a better performance in dividing and

capturing the functionalities of the species.

Fig. 4. Modules of S. cerevisiae obtained with CFinder and respective func-
tions.

In Figure 4 we present the results of the label assignment process

in the modules of S. cerevisiae found with CFinder. The majority

of the modules are too small and their classification does not help

us to characterize the species. However, we can retain some new

information about the species, such as the presence of previously

not detected functions in modules of acceptable size. For example,

in M27 we notice the presence of the functions: transcription regu-

lator activity, developmental process, and signaling. Finally, we also

notice M1, which represents almost the entire species and has four

associated functions with good representation (all of them previ-

ously detected with the Leiden algorithm). This evidence helps us

to confirm that these are important functions in this organism.

Lastly, in Figure 5, we witness the poor performance of Infomap.

Although it managed to classify some modules of relevant size, it

failed to classify the vast majority of modules.

Functional Analysis of Remaining Species. Closing this chapter,
we analyze the results of the label assignment process for the remain-

ing species in the study. We use the results for the modules obtained

with the Leiden algorithm, Figure 6, since it is the algorithm with

the best performance for S. cerevisiae.
Starting with C. albicans, we notice the absence of terms in M0,

M9, M10. In M0, since the module encompasses a large part of the

species, it is difficult to detect significant terms using the p-value.

All the remaining modules are associated with at least one function.
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Fig. 5. Modules of S. cerevisiae obtained with Infomap and respective func-
tions.

Many of those are associated with three or more terms, capturing

many of the functions of the species. An interesting point is the asso-

ciation of somemodules to functions such asmulti-organism process

and growth, which are not sufficiently representative/significant to

be associated with a module in S. cerevisiae. Also in C. parapsilosis
and C. glabrata, some modules are associated with functions not

detected in S. cerevisiae. Due to the large sizes of S. cerevisiae mod-

ules, it is difficult for specific terms to have a good representation

in these, since they are associated with few genes. In all of these

species, general functions already captured in S. cerevisiae were

also detected, such as metabolic process, response to stimulus, or

biological regulation. Revealing once again the central role these

have in the functionality of different organisms. It is noticed that the

modules of C. glabrata are associated with more functionality than

the modules of C. parapsilosis and Y. lipolytica, although we have

more generic evidence on the last two. Whereas that C. glabrata has
more transcription factors, we assume that the information about

this species contains genetic evidence about more biological pro-

cesses. This results in a more diversified classification of modules

in comparison to C. parapsilosis and Y. lipolytica.

5 CROSS-SPECIES COMPARISON
Here, we begin our cross-species comparison. First, we compare

the functional modules discovered in Section 4 and we settle some

similarities between species. Then, we move to a multilayer ap-

proach where we search for potential functional structures con-

served among species.

5.1 Functional Comparison of Modules
We resort to the homology mappings between species to establish

the connections betweenmodules. Each link in a homologymapping

denotes the connection between two homologous genes. In biology,

(a) C. albicans (b) Y. lipolytica

(c) C. parapsilosis (d) C. glabrata

(e) Gene Ontology Terms

Fig. 6. Label Assignment results for the different species using Leiden algo-
rithm.

it is established that the DNA sequence of two homologous genes

derives from a common ancestor (may or may not have the same

function). For this work, the homology mappings are obtained from

Yeastract+ [Monteiro et al. 2019].

S. cerevisiae vs C. albicans. In this subsection, we portray the

comparing process between S. cerevisiae and C. albicans. For this
purpose, we explore the level of connection between the functional

modules obtained with the Leiden algorithm. In Figure 7(a) we

present a Sankey diagram representing the connections between

the modules for both species.

To understand the level of connection between modules, we per-

form an analysis to assess the quality of the mappings. First, we

calculate the number of links shared between every pair of modules

of the two species. Then, we compare these distributions with 1 000

realizations of the same process in a null model, which consists of

maintaining the community structure of both networks but with

randomization of the nodes. Consequently, this procedure results

in different mappings between species. In Figure 7(b) we introduce

the heat map of the z-scores representing the level of connection

between modules. The heat map reveals the existence of some pairs
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(a) Sankey Diagram (b) Heat map

Fig. 7. Figure 7(a) - Sankey diagram representing the connections between
the modules of S. cerevisiae and C. albicans. Figure 7(b) - heat map repre-
senting the level of connectivity between the modules of S. cerevisiae and C.
albicans.

of modules with strong connections in relation to others (green and

blue colors).

By consulting the functional characterization of module pairs

with stronger connectivity, we verify the sharing of functions be-

tween some of themodules. This circumstance points to homologous

genes with the same function as the cause for the strong connectiv-

ity in some of the pairs of modules. One good example is the pair of

modules M0 and M2 of S. cerevisiae and C. albicans respectively. In
both cases, the metabolic and cellular processes are widely repre-

sented terms, homologous genes associated with those functions

may be the origin for this solid connection. However, in other cases,

mutual labels only represent a small part of the genes of the modules.

Such as in M1 of S. cerevisiae and M4 of C. albicans, that is by far

the strongest connection between the two species. In this case, the

mutual functions between modules seem not to be sufficient justifi-

cation for such a strong connection. Thus, this strong connection

may arise from other events, such as the sharing of functions that

were only detected in one of the modules (cellular and metabolic

process). Closing the analysis, we notice the connection between

M5 of S. cerevisiae and M1 of C. albicans. The functions of M1 of C.
albicans may serve as predictions for possible functions in M5 of S.
cerevisiae since this one is unlabeled.

Detailed Analysis of Connections. Here, we perform a detailed

analysis of some strong connections between modules. For this

purpose, we examine the terms associated with the links of the

connections. A term is associated with a link if the term is common

to the homologous genes in it. In Table 4 we present some of the

most relevant connections.

The detailed analysis of the connections demonstrates that there

are functional elements of considerable size in different species

formed by homologous genes with the same functions. Since a ho-

mologous gene is a gene inherited in two species by a common

ancestor, this evidence reveals the conservation of functional ele-

ments across different organisms. Also, using the information of

Table 4, we can diagnose functional elements in some modules that

were not detected until now. Such as the metabolic and cellular

processes in M1 of S. cerevisiae. Finally, we look at the connection

between M0 of C. albicans and M0 of Y. lipolytica. With this cross-

species analysis, we unveil some functional elements present in M0

Terms
Connections GO:0071840 GO:0005198 GO:0008152 GO:0009987 GO:0005488 GO:0065007

M1-Sc 0.10 0.14 0.17 0.18 0.07

M4-Ca 0.13 0.16 0.21 0.23 0.11

M0-Sc 0.03 0.09 0.10 0.06 0.04

M0-Yl 0.01 0.04 0.05 0.03 0.02

M0-Ca 0.03 0.10 0.12 0.07 0.04

M0-Yl 0.03 0.09 0.10 0.06 0.04

Terms Function
GO:0071840 cellular component organization or biogenesis

GO:0005198 structural molecule activity

GO:0008152 metabolic process

GO:0009987 cellular process

GO:0005488 binding

GO:0065007 biological regulation

Table 4. Strongly connected pairs of modules from different species. For
each module, we can consult the percentage of genes that have homologous
with the same function in the other one that is part of the connection.
Looking at the first pair, it is possible to verify that in M6 of S. cerevisiae,
0.09% of the genes participate in the connections related to the metabolic
process. A green cell means that the term was found in the module through
the label assignment process, a cell in red denotes the opposite (the term
was not found in the module).

of C. albicans. With this new information, it is clear that the absence

of labels assigned to this module in the label assignment process

results from its large size.

5.2 Multilayer Approach for Cross-Species Comparison
In the previous section, we found functional elements conserved

across species. However, we did not check if these elements have

other associated functions or even if they overlap, since each gene

can be associated with more than one term. Therefore, in this final

step, we build a multilayer network between species in which we

perform a modules detection using the Infomap algorithm since it is

suitable for this type of network. With the detection and functional

characterization of the modules, we seek to identify and characterize

functional structures conserved across species. In this multilayer

network, the inter-layer links are those of the homology mappings

between species.

Once again, we use the species S. cerevisiae and C. albicans to
create the multilayer network. From the detection of modules, we

could find several modules. The size distribution of those modules

is displayed in Figure 8(a). We notice that one of the modules en-

compasses the vast majority of genes from both species. Therefore,

this one should not contain characteristic information about the

genetic conjugation of both species. On other hand, the remaining

modules are smaller and contain equivalent sizes. In Figure 8(b) it

is possible to verify the balanced constitution of the modules.

Going further with our analysis, we study the contribution of

the genes of each species for the classification of the modules in

the multilayer network. The comparison between the labels of each

module and those of the respective gene groups can be seen in

Figure 9.

Looking at the classification of the first module, we can see that

by dividing the module into two groups it is possible to detect some

functionalities (which is not possible in the entire module). However,

the labels are unrelated, indicating that this module cannot provide

useful information about the similarity between species. Regarding
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(a) Modules Size Distribution (b) Modules Constitution

Fig. 8. Figure 8(a) - size distribution of the modules found with Infomap
algorithm in the multilayer network of S. cerevisiae and C. albicans. Figure
8(b) - constitution of the modules found in the multilayer network of S.
cerevisiae and C. albicans.

Fig. 9. Comparison of labels between the modules of the multilayer and the
respective groups of genes from S. cerevisiae and C. albicans. The three bars
side-by-side respectively describe the labels of the module, of the genes
from S.cerevisiae and the genes from C. albicans. At the top of the first bar
of each module is shown the module size and the number of inter-layer
links in the module.

the other modules, by comparing the number of inter-layer links

with the size of the modules, we deduce that a considerable pro-

portion of these modules are composed of homologous genes of

the two species. Thus, the detection of modules was able to detect

compact structures composed of genes from both species. Some

modules are mostly classified and are the result of the combination

of functionally identical homologous genes from the two species.

The majority of the functionality of these modules is present in the

genes of both species. Thus, we consider these modules as func-

tional structures conserved in the species. In these circumstances,

we can include the modules M2, M4, M7, M11, M12 and M13. By
analyzing the representation of the functions in those modules, we

recognize that there are functions equally represented. Such as the

metabolic and cellular process in M2 and M11 or reproduction and

reproductive process in M7. This evidence confirms that part of

the functional elements identified as conserved in Section 5.1 are

actually the same structure.

6 CONCLUSIONS
In this thesis, we studied transcriptional regulatory networks of

yeast species. With the results obtained in this work, we managed

to contribute with relevant information about the species in study.

Let us detail these developments.

Our contributions began in Section 4 with the functional anal-

ysis of modules detected in the species. From the algorithms used

for the detection of modules, the methods based on optimization

of the modularity achieved better performance. Of these, we high-

light Leiden, which best managed to combine a balanced division

of modules with a good functional classification. The classification

of modules revealed that there are biological functions more repre-

sented than others among species. Suggesting that these are central

processes in the development of the organisms. From these pro-

cesses, we can enumerate the metabolic process, cellular process,

biological regulation ,or response to stimulus. From the comparison

of functional modules between species, we identified some func-

tions such as growth or multi-organism process in species with less

genetic evidence that were not detected in S. cerevisiae. Also, we
observed that the quantity of genetic evidence does not translate

into a better functional characterization of species. We conclude

that the functional diversity detected in species is correlated to the

number of transcription factors and the different processes in which

they participate.

In Section 5, the cross-species comparison allowed us to draw

some conclusions about the genetic similarity that exists between

species. First, by evaluating the degree of connection between mod-

ules of different species, we verified the existence of some strong

connections. It was demonstrated that these strong connections

have their origin in the conservation of functional elements in the

modules. The structural elements conserved in the modules were

identified as being formed by homologous genes associated with

important functions such as metabolic or cellular processes. These

connections were also fundamental to infer new functional elements

in some modules. Finally, with the creation of the multilayer, we

confirmed the existence of preserved structures across species. In

these preserved structures, we were able to verify the combination

of functions previously defined as conserved.

6.1 Limitations and Future Work
Although we have achieved good results with our approach, we

have encountered some limitations. The biggest constraints reside

in the label assignment process. The first is the difficulty of finding

meaningful terms with the p-value approach in large modules (in

relation to the others). Therefore, if there is an unbalanced division
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of the network, it will be difficult to label the large modules. Also,

the threshold we used to consider a term as relevant in a module

(10%) may be too restrictive. As a consequence, specific terms (only

associated with a small set of nodes), may end up not being detected

by the method. To overcome this problem, a possible solution would

be to adapt the threshold value to the size of the modules. Thus,

larger modules would have lower threshold values to facilitate the

detection of more specific functions.

Lastly, additional future work is worth exploring. In Section 5.2, it

would be possible to explore in more detail the conserved structures

found across species. For example, since we only look at global

processes, an analysis of their sub-processes could reveal whether

or not these modules can encode specific regulatory patterns. Fur-

thermore, we found some genes in those modules that were not

associated with any Gene Ontology terms. We could attempt to use

the functions of the modules in which these genes are to predict

their functionality, always taking into account that we do not have

the genetic evidence to confirm the possible predictions for these

genes.
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