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Abstract

Transcriptional regulatory networks are responsible for controlling gene expression. These networks

are composed of many interactions between transcription factors and their target genes. Carrying a

combinatorial nature that encompasses several regulatory processes, they allow an organism to respond

to disturbances that may occur in the surrounding environment. In this thesis, we explore different

possibilities for the study of transcriptional regulatory networks. The intention is to reveal which functions

and/or processes are encoded in the regulatory patterns that constitute the transcriptional regulatory

networks. To accomplish that, we study a set of regulatory networks from closely related yeast species

using different methods, dividing the workflow into two phases. The first phase consists of a detection of

modules followed by their functional characterization. With this, we showed that the regulatory networks

can be divided into functional modules that represent the biologic functions of the respective species.

In the second phase, we move towards a cross-species analysis. Here, we compare the functional

elements of the different species and we study the similarities among them. The purpose of this analysis

is to discover if there are any functional elements conserved across the distinct organisms. Overall,

our thesis provides a novel pipeline to analyze how the structure and function of regulatory networks

of different species may relate to each other. In addition, we explore how those similarities between

species can help to infer some properties in networks.

Keywords

Complex Networks; Transcriptional Regulatory Networks; Multilayer Networks; Community Detection;

Functional Modules.

iii





Resumo

As redes regulatórias de transcrição são responsáveis pelo controlo da expressão genética. Estas são

compostas por diversas interações entre fatores de transcrição e os seus genes-alvo. Sendo portadoras

de uma natureza combinatória que engloba diversos processos regulatórios, estas são responsáveis

pelas respostas dos organismos a perturbações que podem ocorrer no ambiente circundante. Nesta

tese, exploramos várias possibilidades para o estudo de redes regulatórias de transcrição. A intenção é

revelar quais as funções e/ou processos codificados nos padrões regulatórios que constituem as redes

de transcrição de genes. Para isso, estudamos um conjunto de redes regulatórias de transcrição de

espécies de levedura fortemente relacionadas entre si usando diferentes métodos, dividindo o fluxo de

trabalho em duas fases. A primeira fase consiste na deteção de módulos seguida da sua caracterização

funcional. Com isso, mostramos que as redes podem ser divididas em módulos funcionais representa-

tivos das funções biológicas das respetivas espécies. Na segunda fase, avançamos para uma análise

entre espécies. Aqui, comparamos os elementos funcionais das diferentes espécies e estudamos as

semelhanças entre eles. O objetivo desta análise é descobrir se existem elementos funcionais conser-

vados entre os distintos organismos. No geral, esta dissertação fornece uma nova forma de analisar

como a estrutura e a funcionalidade das redes regulatórias de diferentes espécies se podem rela-

cionar. Além disso, exploramos como as semelhanças entre espécies podem ajudar a inferir algumas

propriedades nas diferentes redes.

Palavras Chave

Redes Complexas; Redes regulatórias de transcrição; Redes Multicamada; Deteção de Comunidades;

Módulos Funcionais.
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Gene expression is the biological process that allows a cell to respond to its changing environment.

Each cell is the product of specific gene expression events involving the transcription of thousands of

genes. These transcription events that culminate in gene expression are constantly changing when cells

progress through the cell cycle. In response to environmental changes or during the development/growth

of the organism [5–9]. The transcription factors (TFs) are the core elements in the control of the gene

expression. These are responsible for the activation or inhibition of the genes under their regulation, the

target genes (TGs). Normally, the expression level of a target gene is the result of combinatorial regula-

tion of multiple transcription factors [10–14]. The hundreds of interactions between transcription factors

and target genes defines a transcriptional regulatory network that underlies cellular identity and function.

Moreover, the combinatorial nature of the gene transcription provides a flexible gene expression to the

organisms.

The development processes in complex animals are governed by the genomic regulatory code

present in the transcriptional regulatory networks, whose function is to control the transcription of the

genes in space and time [11, 15]. The morphological differences between species arise from the dif-

ferential regulation of genes. Therefore, the information for this differential regulation is encoded in the

genomic regulatory code of each individual and it is the product of evolution [16]. The transcriptional

regulatory networks of organisms are assembled during their evolution. They are a puzzle of old and

new features, combining new regulatory links and preexisting ones. These networks are of great bio-

logical importance and their study is sure to bring new developments to the scientific community. The

understanding of differential gene expression is facilitated by the analysis of transcriptional regulatory

networks [17–19]. Therefore, insights from the structure and evolution of these networks can be trans-

lated into predictions and used for the analysis of the regulatory networks of different organisms.

Despite their central role in biology, the structure and dynamics of transcriptional regulatory net-

works are largely undefined. In this thesis, we study transcriptional regulatory networks, represented as

graphs. Graphs are the simplest way to represent complex systems. These can represent a wide variety

of entities and their interactions. Entities are represented by nodes and interactions by edges. The rep-

resentation by graphs can be used to portray the most varied complex systems, many of these systems

are present in our daily life – such as our social networks formed by family and friends, the transport

network we use to move around, the supply network that takes water to our houses or the power grid

that provides us with electricity. Even our nervous system, in which innumerable neurons communi-

cate through synapses, and our regulatory interactions between thousands of genes and transcription

factors, can be represented as graphs.

In this thesis, the goal is to broaden the knowledge about transcriptional regulatory networks. To

achieve this, we analyze the structure of these networks by inspecting their division into modules and

their functional characterization. Furthermore, our analysis continues with cross-species comparison.
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In this comparison, we use the information gathered in the functional characterization of the species to

infer some similarities between species.

The exploration of the community structure is the most common way to study the structure of a

network. In Network Science, a community (or module) is defined as a group of nodes that have a higher

likelihood of connecting to each other than to nodes of other communities. The study of communities

has gained great importance in different areas. In the case of biological networks, communities can

express biological functions. For example, the identification of communities can be used to discover new

structures associated with specific biological functions previously unknown [20–22]. The field of Network

Science has offered several community detection methods based on different approaches targeting

different types of problems [23].

The second phase of our analysis consists of a cross-species comparison in which we compare

the functional modules identified in the first phase. Cross-species studies have proven to be crucial in

modern biology. They are important to study the differences and similarities between species, which

is fundamental to understanding their evolution. For instance, it allows the identification of conserved

structures between different organisms [24–27]. Related to cross-species studies, are the studies be-

tween different types of data, which are also important in the biologic field. For example, in medical

research, the study of different types of cancer tissues allows the prediction of candidate driving genes

in cancer [28, 29]. In this type of comparison, the use of a multilayer network can be very useful. This

approach allows the representation and comparison of different types of information, which is not always

possible with the simple and common graph representation.

1.1 Objective

In this dissertation, we provide a characterization of transcriptional regulatory networks of several closely

related species with the generic goal of gaining insight about this type of networks. In particular, we con-

sider the readily available dataset from YEASTRACT+ [30] which provides a set of closely related yeast

species with annotated data, both in terms of functional annotation and in terms of mapping between

nodes of different species. To accomplish this, we use some Network Science methods. We outline our

approach by dividing it into two phases: (1) detection and functional characterization of communities/-

modules; (2) cross-species comparison. With this approach, we aim to analyze the interplay between

structure and function for each species and also between species.

The first step of the characterization involves the examination of the community structure. A commu-

nity within a network can have different connotations depending on the type of network. In the case of

transcriptional regulatory networks, we assume that a community may be associated with one or more bi-

ologic functions. We begin by performing a detection of communities on the networks. Then, we proceed
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with the functional characterization of the communities found. The motivation is to verify if the networks

can be divided into well-defined functional communities that reflect the different functions present in the

regulatory code of the species. In this step, we apply several community detection techniques. In order

to understand which technique is most appropriate for our problem, we compare the results obtained

using the different algorithms. Within the set of algorithms to be applied, some are suitable for the study

of overlapping and signed communities. Regarding the study of overlapping communities, the transcrip-

tion factors may be associated with multiple regulatory processes. Therefore, the study of this type of

communities can be useful as it allows genes to belong to different functional groups. Transcriptional

regulatory networks can be seen as signed networks, the relationship between transcription factors and

target genes may be negative (denoting inhibition) or positive (denoting activation). Thus, the study of

polarized communities may be useful in the identification of regulatory processes in our species.

Moving to the second stage, we focus on the cross-species comparison to identify the main similari-

ties between species. Comparing the functional modules discovered in the first stage, we intend to find

out if there are strongly connected modules between different species, which can reveal the functional

similarity between organisms. Also, those similarities may help us to infer functional elements in other

species. To finalize our characterization, we use a multilayer approach combining networks of differ-

ent species. Then, we proceed with a final multilayer community detection step. The goal is to detect

modules that may reunite genes from different species that may encode important regulatory patterns

conserved across species.

1.2 Outline and Contributions

This thesis is organized as follows. In Chapter 2, we start by presenting the necessary background. This

chapter is divided into two major sections. In the first one, we list the basic concepts of Network Science,

which include the different types of graphs, their properties, and different methods to generate random

graphs. We also introduce the concept of multilayer network that is fundamental for our approach.

Moving to the second section, it includes the biological concepts that are the focus of our work, the

transcriptional regulatory networks.

Chapter 3 focuses on the state-of-the-art underlying our work. The first section concerns commu-

nity detection. Here, we describe the different community-finding algorithms developed in the Network

Science field. Then, we refer to the importance/meaning the communities may have within a network.

Finally, we provide some studies regarding community detection in biological networks. Moving to the

second half, we specify several cross-species studies in biological networks. We also cite some works

on multilayer network approaches.

In Chapter 4, we begin the study of the transcriptional regulatory networks. Firstly, we present our
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networks and perform an initial analysis of their basic properties. Then, we proceed with the detection

of modules and present the results obtained. We continue with the functional analysis of these modules,

which is done through the label assignment process. Here, we compare and discuss the performance

of the algorithms used, illustrate the label assignment process in S.cerevisiae, and conclude with a

discussion of the results obtained in the different species.

The second phase of our analysis is described in Chapter 5. Initially, we study the degree of con-

nection between the functional modules obtained in the first stage. For this, we use the homology

mappings between species. Afterward, we build a multilayer network between species using the homol-

ogy mappings as inter-layer links. We finish with the detection of modules in the multilayer network and

subsequent functional characterization of these.

Finally, in Chapter 6, we draw the concluding remarks, also commenting on the limitations of our

approach and possible future analyses related to our results.

During the development of this thesis, we contributed with two accepted talks at two main confer-

ences in the Network Science Community: Networks 2021 and CompleNet 2021.
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2.1 Network Science Concepts

Complex systems can be modeled as graphs that represent the system entities and the interactions

among them. The representation of complex systems by graphs is quite simple. However, graphs

express very complex behaviors and dynamics that are characteristics of the systems they represent.

The characterization of the structure and dynamics of these networks is fundamental to understanding

the complex systems and their phenomena. In the following sections, we present some basic concepts

of Network Science that are useful for the development of this thesis.

2.1.1 Graph Theory Basic Concepts

Networks are represented by graphs and graph theory is the branch of mathematics that studies the

properties of a graph. In this section, we present some crucial concepts of graph theory.

A graph, G, is represented by the tuple (V,E) where V is the set of vertices/nodes and E ⊆ V ×V is

a set of edges/links that connect the nodes. The size of V is denoted by N = |V | and is the size of the

graph, the size of E is denoted by L = |E|. We say that a graph is sparse if |E| << N/2.

A node/vertex represents an entity in a graph. This entity and can be a person in a social network,

a company in a financial market, a station in a transport network, or a co-worker in a company network.

An edge, or link, represents a relation between two nodes. This interaction can represent a friendship

between two people in a social network, a connection between two companies that do business together

in a financial market, a connection between two stations in a transport network, or a connection between

two people that work in the same department in a company network. Two nodes i and j are adjacent or

neighbors if there is an edge e connecting them, i.e., e = (i, j) ∈ E.

(a) Undirected Graph (b) Directed Graph (c) Weighted Graph

Figure 2.1: Different types of graphs. Circles represent the nodes and the lines represent the edges/links. In 2.1(a)
the graph is undirected, so, the link connecting the nodes A and B means that A is connected to B and
B is connected with A. The Figure 2.1(b) represents a directed graph in which the links are ordered,
so, B is connected to A but the opposite is not true. In Figure 2.1(c) is presented a weighted graph, in
which edges have weights that represent some measure between the nodes.

A graph G = (V,E) is a directed graph (Figure 2.1(b)) if E is a set of ordered pairs (the connection
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between nodes have a direction), in this case, (i, j) is different from (j, i). A graph G = (V,E) is an

undirected graph (Figure 2.1(a)) when E is a set of unordered pairs.

A subgraph G′ = (V ′, E′) of a graph G = (V,E) is a graph whose set of nodes V ′ is a subset of V

and whose set of edges E′ is a subset of E, i.e, V ′ ⊆ V and E′ ⊆ E, with i, j ∈ V ′ ∀(i, j) ∈ E′.

A path between two nodes i and j is the sequence of links such that each link connects two nodes,

and all of these links form the path that connects the nodes i and j. The distance between two nodes i

and j is the length of the path between them and is denoted by d(i, j). The shortest path between the

nodes i and j is the path with the shortest length. If there is no path between two nodes i and j, we set

d(i, j) =∞. The diameter of a graph G is the longest shortest path between any two nodes of G.

A graph G is connected if there is a path in G between any pair of vertices, otherwise it is discon-

nected. In a disconnected graph G, a connected component C of G, C ⊆ V , is the maximal set of

nodes, such that, exists a path between any pair of nodes of C.

A weighted graph G = (V,E,w) (Figure 2.1(c)), is a graph where each edge (i, j) has an associated

weight w(i, j), w : E → R. As an example, the weight can represent the cost of traveling between two

stations i and j on a transport network. A signed network is a graph G where the elements of E have a

binary weight w(i, j) ∈ {−1, 1} that expresses a positive or negative relation between nodes.

(a) Bipartite Graph (b) 5-Clique Graph

Figure 2.2: Figure 2.2(a) is a bipartite graph, which we can divide into two disjoint sets, one in red (A,B,C) and the
other in blue (D,E,F). The second figure, 2.2(b), is a complete graph with five nodes, we denote it by
5-clique graph.

A bipartite graph G = (V,E), Figure 2.2(a), is a graph where the set of nodes V can be divided into

two disjoint sets U and S such that each edge of E connects a node from U and a node from S.

A clique or a complete graph G = (V,E), is a graph in which all nodes are connected to each other.

If G is complete, we denote G by KN or N -clique, see Figure 2.2(b).

Depending on the operations, the size of the graph, or other factors, we may need to represent

the graphs in different ways. These different ways to represent a graph have their advantages and

disadvantages. Next, we present the most usual representations.
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Adjacency Matrix

Considering a graphG, the adjacency matrix A is aN×N square matrix in which the entriesAi,j ∈ {0, 1}

follows the rule:

Ai,j =

{
0, if (i, j) 6∈ E
1, if (i, j) ∈ E.

(2.1)

As an example, in Figure 2.3(b), we present the adjacency matrix for the graph of Figure 2.3(a). The

main advantage of this representation is the access time, it takes O(1) time to check if two nodes are

connected or not since we only need to look at the respective entry of the matrix. On the other hand,

the main disadvantage is the space needed to represent the matrix. This representation requires O(N2)

space complexity and is inefficient for large and sparse graphs.

Adjacency List

Representing a graph G with a adjacency list requires a linked list of size N . Each entry of this list is

a list containing the neighbors for each node. Figure 2.3(c) illustrates the adjacency list for the graph

of Figure 2.3(a). The main advantage of this one is that requires less space than the adjacency matrix.

This representation has a total space complexity of O(N + L), O(N) from storing all nodes, and O(L)

for all the neighbors of the nodes. Unlike the previous representation, the principal disadvantage is the

access time, because we have to go through all the neighbors of the node to see if there is a connection

with another node. This representation is better for sparse graphs.

(a) Graph (b) Adjacency Matrix (c) Adjacency List

Figure 2.3: Graph Representation. Figure 2.3(a) is an undirected graph and Figures 2.3(b) and 2.3(b) are the
representations of the graph in the form of an adjacency matrix and adjacency list respectively.

2.1.2 Network Measures

Complex networks can be characterized by centrality measures. These centrality measures show the

importance of a node inside the network and can be based on node degree, shortest paths, or how

close a node is to others, among many other network characteristics.
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The degree of a node represents the number of links incident on the node and is denoted by k.

In a social network, the degree can represent the number of friends that a person has. In a directed

graph, the degree is divided in two components: indegree kin (number of ongoing links) and outdegree

kout (number of outgoing links). The average degree of the network, represented by 〈k〉, is the average

between the degrees of the network nodes, and the formula is given by:

〈k〉 = 1

N

N∑
i=1

ki (2.2)

The degree distribution is the probability that a randomly chosen node has degree k and is given by:

pk =
Nk
N

(2.3)

where Nk is the number of nodes with degree k.

The closeness centrality was proposed by Bavelas [31] and measures how close a node is from all

the other nodes of the network and is given by the formula:

C(i) =
N − 1∑
j(j 6=i) dij

(2.4)

where dij is the size of the shortest path between the nodes i and j.

The betweenness centrality [32] is used to characterize how important a node is in the communica-

tion with others nodes. It is defined as the number of paths between pairs of nodes that go through a

given node:

B(i) =
1

N2

∑
s6=t 6=i

σst(i)

σst
(2.5)

where σst(i) represents the number of paths between s and t that runs through node i, and σst repre-

sents the total number of paths between s and t. Girvan and Newman generalized Freeman’s between-

ness centrality to edges, the edge betweenness centrality is defined as the number of the shortest paths

that go through an edge in a graph [33].

The clustering coefficient is a measure that indicates how the nodes of a graph tend to group to-

gether [2]. For a node i of degree k the local clustering coefficient is defined as:

CCi =
2Li

k(k − 1)
(2.6)

where Li represents the number of links between the neighbors of node i. The global clustering coeffi-

cient can be also defined as the number of closed triangles in a network:

CC =
3× number of triangles
number of triplets

(2.7)
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where a triplet is a group of three nodes i, j and k, which can form a triangle.

2.1.3 Modularity

In Network Science a community or a module is a group of nodes that have a higher likelihood of

connecting to each other than to nodes from other communities. Thus, communities are locally dense

connected subgraphs in a network. Communities play a particularly important role in some areas. They

allow us to obtain important information about the functional components of a system and the impact of

local structures on dynamics at a global scale.

Modularity is the measure that allow us to quantify the quality of a partition c in a graph G, i.e., allow

us to compare particular modules/communities. The modularity of a set of nodes is given by the formula:

Mc =
Lc
L
− (

kc
2L

)2 (2.8)

where Lc is the number of links within the module c, L is the total number of links of the network, and

kc is the total degree of the nodes in the module c. The total modularity of the network is the sum of the

values of modularity of each module [34]:

M =

nc∑
c=1

[
Lc
L
− (

kc
2L

)2] (2.9)

where nc is the total number of modules.

Figure 2.4: Examples of different partitions for the same network. Image from [1].

A network can have different values of modularity. This value depends on how the network is parti-

tioned. Figure 2.4 illustrates examples of different partitions for the same network. The best partition for

a network is the one with the greatest value for modularity. In Figure 2.4a., the partition with maximum

modularity can accurately capture both communities, in Figure 2.4b. (lower modularity) we deviate from
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these two communities. If we take the whole network as a single module, Figure 2.4c., the value of the

modularity is equal to zero because the first and second terms of the equation (2.9) are equal. Finally,

if each node represents a module, the value of the modularity is negative because the first term of the

equation (2.9) becomes zero.

2.1.4 Random Networks

In the last decades, many real-world networks have been submitted to several studies. In these studies,

scientists try to propose hypotheses that seek to explain the behaviors of these networks. To test these

hypotheses is essential to have realistic network models that can reproduce the properties of these real-

world networks such as degree distribution and clustering coefficient. These models act like terms of

comparison for studying real-world networks. By applying the hypothesis in these models is possible to

draw some conclusions about the networks in study. In this subsection, we discuss some random graph

models proposed in Network Science.

The challenge of creating a random network is to decide where to place the borders between nodes

to produce a network with the properties of a real system. Two main models were proposed:

• G(N, L) Model - proposed by Erdős and Rényi [35], N nodes are labeled and connected with L

links chosen at random.

• G(N, p) Model - introduced by Gilbert [36], each pair of N labeled nodes is connected with proba-

bility p.

These models can produce random networks with a degree distribution that follows a Poisson distri-

bution. However, as large real networks become available, it was found that their degree distribution is

not a Poisson distribution [1].

Small-World Networks

The small world property, also known as six degrees of separation [37,38], states that any person in the

world could meet anyone, anywhere in the world, with a maximum of six or fewer acquaintances between

them. This means that the distance between two randomly chosen nodes in a network is typically very

short. Given that and the fact that real networks do not follow a Poisson Distribution, a new model to

generate random networks was proposed by Duncan Watts and Steven Strogatz in [2], the model is

represented in Figure 2.5:

• We start with a ring of nodes, each one connected to the set of k immediate neighbors.
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Figure 2.5: Watts-Strogatz model, whereas p increases, the randomness of the network increases. Image from [2].

• With probability p each link is rewired to a randomly chosen node. For a small p the network

maintains a high clustering coefficient but the random long-range links can drastically decrease

the distances between the nodes.

• For p = 1 all links are rewired, so the network becomes completely random.

With this model, it is possible to achieve a better approximation in what concerns the clustering

coefficient observed in real networks but fails to explain the degree distribution.

Scale-Free Networks

With the growth of computational power, many large real networks started to be analyzed, being the

World Wide Web a good example [39]. The degree distribution of some real networks can be approxi-

mated by the power-law distribution:

pk = k−γ (2.10)

These networks are called scale-free networks. A power-law degree distribution indicates that most

of the nodes of the network have a small degree and only a few have a high degree, these are denoted

by hubs. This was observed in some complex networks as science collaboration or protein interaction

networks [1]. Hubs play a key role in the dynamics of systems. Then, scale-free networks started to play

a fundamental role in the study of complex systems, although power-law distributions being rare [1, 40]

and may only be observed in large networks [41,42].

A.L. Barabasi and R. Albert created a model to generate scale-free networks, denoted by B-A

model [43]. This model is composed of two steps:

• Growth - at each timestep, we add a new node with m links that connect with the nodes already in

the network.
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• Preferential Attachment - the connections between the nodes are probabilistic, depending on the

degree of the nodes, making older nodes having a high degree, creating hubs.

Statistical Analysis of Network Properties

The study of networks often involves the analysis of structural properties. Network motifs [44] is a good

example of a structural property often studied in Network Science. To verify the occurrence/presence

of this type of properties in networks, it is common to use statistical analysis. In this statistical analysis,

null models are used as a comparison term. Thus, it is possible to confirm the presence or absence of

properties in the original networks. One commonly used statistical measure is the z-score, defined as:

z − score = foriginal − 〈frandom〉
σ(frandom)

(2.11)

The foriginal is the frequency or number of occurrences of a given property in the original network,

〈frandom〉 is the average of the frequency of the property in the random model (it can be a set of random

networks) and σ is the standard deviation.

2.1.5 Multilayer Networks

The basic representation by graphs is the most common and simple way to portray complex systems.

Despite its simplicity, it has been extremely successful. However, with the evolution of research in

complex systems, it became necessary to study systems that are increasingly complex but closer to

reality. Therefore, it has become essential to go beyond the simple representation by graphs. For

example, edges may have heterogeneous characteristics such as connection type, values/strengths,

or be active only at certain times. These restrictions lead to the emergence of a new approach, the

representation of systems by a multilayer network [3, 45, 46]. In this scenario, we consider layers in

addition to nodes and edges, Figure 2.6.

In a multilayer network, each layer can be associated with an aspect. This aspect can be the type of

links or an instant of time. In this way, we can build a network in which all edges of different types are

embedded in different layers of interactions. There are three types of edges in multilayer networks:

• Intra-layer edges - edges connecting two nodes in the same layer

• Inter-layer edges - edges connecting two nodes in different layers

• Couplings - edges connecting two copies of the same node in different layers

In a multilayer network with links from M different types, to represent the connections at a layer α,

with α = 1, ...,M , we use an adjacency matrix A[α] = {a[α]ij }. The entry a[α]ij for i, j = 1, ..., N is 1 in case
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Figure 2.6: Multilayer network with three layers. The intra-layer edges are represented by solid lines and the inter-
layer edges by the dotted lines. Figure obtained from [3].

of existence of a link between i and j at layer α and 0 otherwise. Therefore, all intra-layer connection of

a multilayer are a set of M adjacency matrices A = {A[1], A[2], ..., A[M ]}, with A ∈ RM×N×N≥0 [47]. This

representation can be extended for weighted multilayer networksW = {W [1],W [2], ...,W [M ]} [47,48].

For each node i, the connections between different layers α and β, is given by a M × M matrix

Ci = {c[αβ]i }. The entry c[αβ]i for α, β = 1, 2, ...,M is 1 or 0, depending on whether or not it is possible

to go from layer α to layer β through node i. So, the inter-layer connections are represented using a

set of N matrices, C = {C1, C2, ..., CN}, with C ∈ RN×M×M≥0 . Thus, the multilayer network M can be

represented by a tuple with the set of intra-layer connections A and the set of inter-layer connections C:

M≡ (A, C) (2.12)

The connections between two different layers α and β can be different, depending on the type of

multilayer network we want to represent. Therefore, a multilayer network can have a different repre-

sentation from 2.12. We also can represent a multilayer network with a tensor T = {τ [αβ]ij } [49]. The

entry τ [αβ]ij is 1 if there is a connection between node i of layer α and node j of layer β and 0 otherwise.

If the multilayer network is a weighted network, the value of the entry τ [αβ]ij is the weight of the edge.

Therefore, we have a second representation for multilayer networks:

M≡ T (2.13)

Properties

The study of nodes is the main focus of network investigations, where scientists are always interested

in the study of the entities’ properties. In this section, we introduce and review a set of local and global

properties for the nodes in a multilayer network.

In a multilayer network, not all nodes have connections at all layers. As a consequence, a node i is

defined as active on a layer α if has at least one connection with another node at the same layer. The
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node-activity vector is defined as:

bi = {b[1]i , ..., b
[M ]
i }, (2.14)

b
[α]
i = 1 if node i is active on layer α and b[α]i = 0 otherwise. The total activity of a node i represents the

number of layers in which the node is active, and is defined as Bi =
∑M
α=1 b

α
i , 0 ≤ Bi ≤ M [50]. The

number of active nodes at layer α is represented by N [α].

The degree of a node in a multilayer network is described by the vector

ki = {k[1]i , ..., k
[M ]
i }, (2.15)

where k[α]i =
∑
i 6=j a

α
ij is the number of edges incident in node i at layer α. The overlapping degree [47]

of a node i is the total number of connections of the node in the whole multilayer network and is charac-

terized by

oi =

M∑
α=1

kαi . (2.16)

The participant coefficient [47] measures the heterogeneity of the number of neighbors of a node i

across the layers

Pi =
M

M − 1
[1−

M∑
α=1

(
kαi
oi

)2], (2.17)

Pi = 1 when the number of neighbors of node i is equal across the layers and Pi = 0 when a node is

active in just one layer.

In a multilayer network, we can study the clustering coefficient separately for each layer, however,

this tells us very little about the interplay between the several layers in terms of clustering. A 2-triangle

is a triangle that is formed by an edge belonging to one layer and the two other edges belonging to a

second layer, a 3-triangle is a triangle which three edges are in three different layers. A 1-triad centered

at node i (j − i− k), is a triad in which both edges j − i and i− k are on the same layer. Also, a 2-triad,

is a triad in which both edges are in two different layers. Given the previous definitions, we can give two

definitions of clustering coefficient for multilayer networks from [51]. For each node i, the first coefficient

Ci,1 is defined as the ratio between the number of 2-triangles with a vertex in i and the number of 1-triads

centered in i, we can express this clustering coefficient as:

Ci,1 =

∑
α

∑
α′ 6=α

∑
j 6=i,m6=i(a

[α]
ij a

[α′]
jm a

[α]
mi)

(M − 1)
∑
α k

[α]
i (k

[α]
i − 1)

. (2.18)

The second clustering coefficient is described as the ratio between the number of 3-triangles having
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node i as vertex and the number of 2-triads centered in i. Therefore, we have the equation:

Ci,2 =

∑
α

∑
α′ 6=α

∑
α′′ 6=α,α′

∑
j 6=i,m6=i(a

[α]
ij a

[α′′]
jm a

[α′]
mi )

(M − 2)
∑
α

∑
α′ 6=α

∑
j 6=i,m 6=i(a

[α]
ij a

[α′]
mi )

. (2.19)

Both definitions of clustering above are expressed in terms of adjacency matrix formalism (2.12). For

the tonsorial formalism, in 2.13, similar definition can be provided, as in [52].

The reachability is an important aspect in the study of graphs. In a multilayer network, the node

interdependence introduced in [53], is defined as:

λi =
1

N − 1

∑
j 6=i

ψij
σij

, (2.20)

here σij is the total number of shortest paths between i and j in the whole multilayer and ψij is the

number of shortest paths between i and j which make use of links in two or more layers. The network

interdependence is given by λ = ( 1
N )
∑
i λi.

A measure of centrality, like the eigenvector centrality, can be calculated by layer and we can build a

vector for the different values of centrality:

Ei = {E[1]
i , ..., E

[M ]
i }, (2.21)

where Eαi is the centrality of node i at layer α.

Several approaches were proposed to define the centrality of a node in multilayer networks, a detailed

description of these approaches can be found at [47,54,55].

2.2 Biology Concepts

2.2.1 Transcriptional regulatory networks

The transcriptional regulatory networks, Figure 2.7(b), are responsible for the biological process of gene

regulation that controls the genomic expression. This process allows a cell or an organism to respond

and adapt to a variety of stimuli from the environment like unexpected and stressful situations. A gene

in these networks can be:

• Transcription factors (TF) - gene that have a regulatory role;

• Target gene (TG) - gene regulated by the transcription factors.

The regulatory association between two genes, Figure 2.7(a), can represent the activation or inhibi-

tion of the expression of the target gene by the transcription factor.
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(a) Regulatory
Association

(b) Transcriptional Regulatory
Network

Figure 2.7: Figure 2.7(a) represents a simple regulatory association between a transcription factor and a target
gene. Figure 2.7(b) illustrates an example of a transcriptional regulatory network. Images obtained
from [4].

A transcriptional regulatory network can be represented as a directed graph and a variation of a

signed graph G = (V,E,w). The nodes of V are transcription factors or target genes, and the edges

of E are the directed connections between transcription factors and target genes. Nodes can be tran-

scription factors and target genes at the same time. The edges denote activation or repression effects

on transcription, so, we define edge labels w ∈ {−1, 1, 0} between two nodes (i, j) as follows: wi,j = 1

when the transcription factor i is an activator of the target gene j and wi,j = −1 when the transcription

factor i is a repressor of the target gene j. There is the case when we do not know if it is an activator

or repressor, thus in this case wi,j = 0. The out-degree of a gene is the number of target genes that it

regulates and the in-degree of each gene is the number of transcription factors controlling its transcrip-

tion. A gene can be a transcription factor and a target gene at the same time. If a gene acts only as a

transcription factor, its in-degree is 0, if it acts only as a target gene, its out-degree is also 0.

2.2.2 Gene Ontology

The Gene Ontology (GO)1 [56] is the most comprehensive resource about the functions of genes and

is also the one that is mostly used to support modern biological research. All the functional knowledge

present in GO is structured and presented in a way which allows it to be easily used for computational

analysis. Gene Ontology is subdivided into three distinct ontologies:

• Molecular function - the activity of the gene at the molecular level

• Cellular component - the location of the activity of the gene in relation to the biological structures

1http://geneontology.org/
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• Biological process - biological process that contains the molecular function of the gene

Each of these three ontologies is a hierarchy of terms, each term has a definition that allows us

to define the relationships the terms have with each other. A hierarchy is composed of several levels,

apart from the terms that are leaves, all terms can have children, and these children represent a more

specific term/process than the parent. The Gene Ontology allows the characterization of a gene in three

distinct aspects, each corresponding to one of the ontologies. Having a set of genes, we can use the

relationships between the terms to identify the main processes associated with that set. Therefore, this

is a useful resource in biology, since it allows the functional characterization of organisms.
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In this section, we present the background of community detection and cross-species analysis. In

the field of community detection, we review the proposed methods to find communities. Moreover, we

discuss some methods to evaluate the significance of a community in a network and we close by citing

some works regarding community detection in biological networks. Moving to cross-species analysis,

we review some studies on the subject in order to understand how the comparison between species can

help us to infer some information about previously non-characterized organisms. Finally, we cite some

works involving multilayer network approaches in biological networks.

3.1 Community Detection

Since its origin, graph theory has been extremely useful to represent and study a wide variety of sys-

tems from different areas. Biological, social or information networks can be represented by graphs,

among others. The analysis of these graphs is fundamental for understanding the systems they portray.

Structural analysis of a graph often involves the study of the community structure property introduced

by Girvan and Newman [33]. Also called clusters or modules, these are groups of nodes that probably

share common properties or play similar roles within the network. The identification of modules and

their boundaries helps us to classify the nodes concerning their structural importance within communi-

ties. Moreover, the detection and subsequent classification of communities also allow us to inspect the

connections and similarities between them. In biological networks, communities can represent specific

functions of an organism. This way, community detection in these networks is essential to study the

organization of the organisms in different functional components.

The study of communities is an important area of research and has received considerable attention

from the scientific field. It has become the most studied property with regard to the structure of a net-

work. Thus, there are several methods and techniques developed in the field of Network Science whose

objective is to solve the problem of community detection. Next, we consider some of these methods,

taking into account their complexity and also the type of graphs they are developed for. These methods

are displayed in Table 3.1. Furthermore, we discuss the significance/importance of a community within a

network and the similarity that may exist between communities. Lastly, we introduce some works about

community detection in biological networks.

3.1.1 Divisive Algorithms

The strategy of divisive algorithms is to detect inter-community edges. Then, by removing these, it is

possible to disconnect communities from each other. The crucial point of this type of algorithm is to find

a property/measure that allows the identification of those edges.

The algorithm proposed by Girvan and Newman [33, 34] known as the Girvan-Newman algorithm

25



Algorithm Directed Undirected Weighted Unweighted Signed Overlapping Multilayer Code Availability
Girvan-Newman [33,34] x x x NetworkX

Radicchi [57] x x Not found
Fortunato-Latora-Marchiori [58] x x Not found

Newman [59] x x x code
Clauset-Newman-Moore [60] x x x x NetworkX

Louvain [61] x x x x NetworkX
Leiden [62] x x x cdlib

Guimerà-Amaral [63] x x x x x Not found
Donetti-Muñoz [64] x x Not found

Capocci-Servedio-Colaiori-Caldarelli [65] x x x x Not found
ICS [66] x x Not found

Infomap [67] x x x x x iGraph
Label Propagation [68] x x x NetworkX

Markov Clustering Algorithm [69] x x cdlib
CFinder [70] x NetworkX
Baumes [71] x Not found

Link Clustering [72] x cdlib
CONGA [73] x cdlib, Gregory
Peacock [73] x Gregory
Anchuri [74] x Not found
Bonchi [75] x Not found

Cucuringu [76] x SigNet
Esmailian-Jalili [77] x Not found

Table 3.1: Community detection algorithms.

(GN), is one of the first proposed algorithms and also one of the most popular. The authors focused

on the betweenness centrality as the metric to identify boundaries between communities. The algorithm

consists of two steps: (1) Computing the edge betweenness for all edges; (2) Removal of the edges with

the largest values. These steps are repeated until all edges are removed. Being a hierarchical clustering

technique [78], the resulting partitions are represented in a dendrogram in which each leaf is a node.

Each cut in the dendrogram represents a partition of the network in modules, where usually, the partition

with the highest modularity value is selected. The main disadvantage of this algorithm is that it can be

considerably slower. In sparse graphs, the algorithm has a complexity of O(N3).

Radicchi et al. [57] created a new method, the Radicchi algorithm, proposing a new measure, the

edge clustering coefficient. This measure generalizes to edges the idea of clustering coefficient intro-

duced by Watts and Strogatz [2]. After computing the values of the clustering coefficient for the edges,

the edges removed are the ones with the lowest values for the measure, likely to correspond to inter-

community edges. The time complexity for this algorithm is O(L4/N2), or O(N2) on sparse graphs. The

method implemented by Radicchi was extended for weighted networks by Castellano et al. [79] and for

bipartite graphs, by Zhang et al. [80].

Another algorithm based on a different centrality measure was proposed by Fortunato et al. [58].

The Fortunato-Latora-Marchiori method uses the information centrality measure, which is based on the

concept of efficiency introduced by Latora and Marchiori [81]. The efficiency of a graph estimates how

easy it is for information to travel within the network and it is defined as the average of the inverse of all

shortest paths in a network. The information centrality of an edge is the relative variance of the efficiency

of a graph when the edge is removed. Therefore, in the algorithm, the authors remove the edges with

larger centrality values. Computing the information centrality for an edge requires the calculation of the
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distances between every pair of vertices. This can be done using a faster method to perform a breadth-

first search (BFS) that takes time O(LN) [82], O(L2N) for all edges. Since the process is repeated until

all edges are removed, the total complexity of the procedure is O(L3N), O(N4) on sparse graphs. Since

it is also a hierarchical algorithm, the authors select the partition with the largest value of modularity as

the final result.

3.1.2 Modularity Optimization Algorithms

The modularity measure has become an essential element for a wide variety of clustering techniques.

Nowadays, modularity maximization is the most popular class of methods for community detection. A

high value for the modularity indicates a good partition, so, the partition corresponding to the maximum

modularity in a network should be the best or at least a very good one.

The first modularity-based algorithm is the greedy method by Newman [59]. The algorithm starts with

N clusters, each one containing a node. The edges are added one by one and the addition of a new

edge may or not form a new community. In the beginning, the first edge will merge two nodes forming

the first module. The edges are selected in a way that the new partition gives the maximum increase

or minimum decrease of modularity concerning the previous configuration. The insertion of an edge

that is already inside a community does not change the partition and the value of the modularity stays

the same. The final result for the algorithm is the partition that maximizes the value of modularity. The

running time of this algorithm is O((L + N)N), or (N2) on sparse graphs. Clauset et al. [60] proposed

a fast implementation of the technique proposed by Newman, the Clauset-Newman-Moore algorithm.

Using more efficient data structures to perform more efficiently the operations of the technique, this

approach reaches a complexity of O(Nlog2N) on sparse graphs.

Introduced by Blondel et al. [61], the Louvain algorithm is considered one of the best-known modularity-

based algorithms. Initially, all nodes of the graph are a different community. In the first phase, for each

vertex i, is computed the gain in the modularity from putting i in the community of its neighbor j, then, i is

moved to the community of the neighbour that yields to the largest increase of modularity. In the second

phase, the nodes of each community are aggregated in a unique new node representing the commu-

nity. The two previous steps are repeated until it is not possible to optimize the modularity value. This

algorithm achieves a computational complexity of O(NlogN). The Leiden algorithm [62], is a variation

of the Louvain algorithm. It tries to solve the problem of the Louvain algorithm which tends to discover

communities that are internally disconnected. Therefore, the Leiden algorithm has a second phase in

which the communities from the first phase are refined, where these may split into new communities.

This algorithm guarantees that the resulting communities are well connected.

Simulated annealing introduced by Kirkpatrick et al. [83] is a probabilistic method for global optimiza-

tion. It consists in performing an exploration of the possible states to optimize a certain function F .
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Guimerà-Amaral algorithm [63] is based on this technique and is composed of two types of moves: local

moves, where a vertex is moved from one community to another; global moves, which consists of the

merge or split of communities. This method can get very close to the true value of maximum modularity,

but it has the disadvantage of being very slow. The complexity cannot be estimated as it depends on

the parameters chosen for the modularity optimization.

3.1.3 Spectral Algorithms

The spectral properties of graph matrices can be used to find partitions. Spectral clustering uses the

eigenvectors of the Laplacian matrices to transform the nodes of a graph in a set of points in some metric

space, where the coordinates of the points are the eigenvalues of the vectors. Then, the set of points are

clustered using a standard technique such a k-means clustering [84]. The Donetti-Muñoz algorithm [64]

is an example of a spectral clustering algorithm. Since the values of the eigenvector components are

close for nodes in the same community, the authors used them as coordinates to turn nodes into points in

a metric space. Therefore, the nodes can be displayed in a M -dimensional space using M eigenvectors.

To group the nodes, the authors use a hierarchical clustering method [78] in which only communities with

at least one edge connecting them can be merged. For the similarity measure between vertices, it is

used Euclidean and angle distance. The final partition for the graph is the partition of the dendrogram

resulting from the hierarchical clustering that has a larger modularity value.

Capocci et al. [65] proposed another spectral algorithm, the Capocci-Servedio-Colaiori-Caldarelli

method. Here, the authors use the eigenvector components of the right stochastic matrix R. This matrix

is obtained from the adjacency matrix by dividing each row by the sum of its elements. If a graph has

a number n of connected components, the largest n eigenvalues are equal to 1, with the eigenvectors

having equal values for vertices in the same component. Therefore, the communities can be found by

inspecting the components of the eigenvectors with an eigenvalue of 1.

We close this section by describing the ICS algorithm by Yang and Liu [66]. In the first step of the

algorithm, the adjacency matrix of the network is put in the block-diagonal form, for this, it is computed

the clustering centrality for the nodes. This measure is similar to the eigenvector centrality introduced by

Bonacich [85], which is given by the eigenvector corresponding to the largest eigenvalue in the adjacency

matrix. The value of the centrality is similar to nodes in the same cluster. Therefore, it is possible to

see the blocks by listing the nodes in non-decreasing order of their centrality. The cluster found at some

step is divided in two if the resulting components are communities, otherwise, the algorithm ends. For

the authors, a community is a subgraph such that the external degree of each vertex is bigger than the

internal degree.
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3.1.4 Alternative Algorithms

In this section, we introduce some alternative algorithms that do not belong in the previous categories.

Infomap is an algorithm developed by Rosvall and Bergstrom [67]. In this approach, the goal is to

optimally compress the information needed to describe the dynamic process of information diffusion

across the graph. The process of information diffusion in this case is a random walk. The optimal

compression is achieved by optimizing the Minimum Description Length quality function [86,87]. For the

optimization, it is used a greedy search combined with the technique of simulate annealing [83].

Another alternative method is the Label Propagation algorithm introduced by Raghavan et al. [68].

Each node is initialized with a unique community label. At each iteration, is performed a sweep over all

nodes in which each vertex takes the label shared by the majority of its neighbors. In the case of a tie,

one of the majority labels is picked at random. Some labels will disappear and others will be propagated

through the graph. The process reaches convergence when each node has the majority label of its

neighbors.

Lastly, the Markov Cluster algorithm by Van Dongen [69]. The method consists of a simulation of

the process of flow diffusion in a network. It starts with the transfer matrix T of the graph. Then, the

algorithm is divided into two steps. In the first step, called expansion, the transfer matrix is raised to

some integer power p, generating matrixM. The second step, called inflation, lies in the raising of each

entry of the matrix M to some power α. Next, the elements of each column are divided by their sum,

generating the new transfer matrix. The two steps are repeated until the transfer matrix remains equal.

The graph described by the final matrix is disconnected and each one of the components represents a

module of the network.

3.1.5 Algorithms for Overlapping Communities

The algorithms discussed previously are designed for community detection in partitions where each

vertex is assigned to a single community. However, in some networks, each vertex may be shared

between communities. The issue of detecting overlapping communities has become quite popular in

the last two decades. The most famous technique in respect to this problem is the Clique Percolation

method by Palla et al. [88]. It is based on the idea that the edges within a community are likely to form

cliques. The authors introduced some concepts to implement the idea. Two k -cliques are adjacent if

they share k − 1 nodes. Therefore, a community is the maximal union of k -cliques that can be reached

from each other through a set of adjacent k -cliques. CFinder is the software package implementing the

technique developed by Palla et al. [70].

Baumes et al. [71] proposed two algorithms to find overlapping communities, the Rank Removal

(RaRe) and Iterative Scan (IS). To achieve the best performance, they use the Rank Removal algorithm
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improved by the Iterative Scan algorithm. Here, a community is seen as a subgraph that locally optimizes

a given function W , which is related to the link density of the cluster. Different overlapping sets of nodes

may be locally optimal, so, nodes can be shared between them. The IS, is a greedy optimization of

function W , starting from a random node/edge, nodes are removed or added one by one until is not

possible to increase W . The procedure is repeated using another seed that is randomly picked. The

algorithm stops when it finds a previously identified community. RaRe consists of removing important

vertices until the graph is fragmented into components of a given size that represents the cores of the

clusters. Then, the removed vertices are added to the graph and are associated with those clusters for

which the addition increases the value of W . The complexity of the whole process of combining the two

algorithms is O(N2) in sparse graphs.

To facilitate the identification of overlapping communities, some authors proposed to look into com-

munities as sets of edges rather than nodes. One example of this case is the Link Clustering algorithm

developed by Ahn et al. [72]. It was proposed to group links with a hierarchical clustering technique. The

authors used a similarity measure for a pair of adjacent links that is defined by the size of the overlap

between the neighbours of the non-coincident end-vertices divided by the total of different neighbors of

those end-vertices. The sets of edges are merged pairwise in descending order until all edges are in the

same cluster. To select the best partition for the network in the resulting dendrogram, Ahn et al. intro-

duced a quality function called partition density that measures the edge density within the communities.

Gregory proposed two algorithms in which the original network is transformed into another that can

be fed to a clustering algorithm. Then, the disjoint communities found are transformed into potentially

overlapping communities of the original network. The first one is called CONGA [89] and is based on

the Girvan-Newman algorithm. The algorithms start by calculating the edge betweenness of edges and

split betweenness of vertices, which is the number of shortest paths that would run between two parts

of a vertex if it was split. Then, remove the edge with maximum edge betweenness or split vertex with

maximum split betweenness. These two steps are repeated until no edges remain. The complexity of

the algorithm is O(N3) on sparse graphs. The second method is the Peacock algorithm [73]. At first, it is

calculated the vertices with highest split betweenness. Then, the vertex with the highest value is divided

in two with an edge connecting the resulting nodes. This process is repeated until the maximum split

betweenness is sufficiently small. In both algorithms, it is performed a community detection algorithm in

the transformed network. The overlapping communities are obtained replacing the original names of the

vertices that were split.

3.1.6 Algorithms for Signed Networks

Many complex systems can be modeled as signed networks, that contain both positive and negative

relations. For example, in a transcriptional regulatory network, each node denotes a gene. A positive link
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denotes a positive relationship (activation of gene expression) and a negative link denotes a negative

relationship (inhibition of gene expression). The community detection in signed networks has been

under-explored. In this section, we cite some proposed community-finding algorithms for this kind of

network. In most of the following approaches, the goal is to find polarized communities, in which the

edges within them are positive and the edges that connect different communities are negative.

The spectral algorithms have been used to solve the problem of community detection in several

types of networks. Thus, some extensions of these have also emerged for signed networks. Some

examples are the works done by Anchuri et al. [74], Bonchi et al. [75] and Cucuringu et al. [76]. An al-

ternative method to the spectral clustering techniques is the Esmailian-Jalili algorithm [77]. The authors

introduced a Map Equation for signed networks that is based on the assumption that negative edges in-

crease the probability of staying inside a community. Thus, it tries to minimize the positive links between

communities and the negative links within communities.

3.1.7 Communities Evaluation

In this section, we discuss how the significance of community structure can be measured. We also

review how we can compare the similarity between two different partitions.

Communities Significance

Given a network, we can use a clustering algorithm to find communities in it. We already saw that

the modularity measure evaluates the partition of a network. However, high values of modularity do

not necessarily indicate that a graph has an established cluster structure. Random graphs may have

partitions with a high value of modularity and this is the result of the randomness of structural properties

of those graphs. Therefore, the concept of the significance of a partition is related to its robustness

and stability it against random perturbations of the graph structure. The idea is that if a partition is

significant, it will be recovered if the structure of the graph is changed. On the other hand, if a partition

is not significant, it will collapse when the structure of the graph is modified.

Karrer et al. [90] introduced a method to test the significance of a partition. It performs a sweep over

all edges in which each edge is removed with probability α and replaced by another edge between a pair

of vertices (i, j) that is chosen at random with probability pij = kikj/2E. This perturbation affects only

the organization of the vertices, the basic structural properties of the graph are conserved. For a given

α, some iterations of the perturbation procedure described previously are performed. After obtaining

the final modified graph, the communities are identified in this one. Finally, to obtain the stability of the

cluster structure, the partition obtained from the modified graph is compared with the original one.

Also Lancichinetti et al. [91] used a random graph with similar properties to the original one to access

the statistical significance of the cluster structure. In this case, the authors estimate the significance of
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single communities and not of the whole partition. The main idea is to verify how likely a community C is

also a community of a random graph with the same degree sequence as the original. This likelihood is

called C-score and is calculated using the node w of C, which is the node with the lowest internal degree

kinw , it is called the worst node. Being k′inw the internal degree of the worst node of a random community

in the null model, the C-score is the probability that k′inw is larger or equal to kinw . A value of the C-score

lower or equal to 5% indicates that the community is significant and not a product of random properties

of the network. However, relying only on the worst node to evaluate the whole group can be a very

severe criterion which can lead to high values for the C-score. Therefore, Lancichinetti et al. developed

a new measure called B-score that includes a longer list of nodes for the computation of the statistical

significance of a community. The rank of a node i if the probability of finding a node with an internal

degree equal or higher to kini in the null model given its degree ki and C. The worst nodes correspond

to the highest-ranked nodes. So, the B-score is the minimum probability that the sum of the ranks for

the worst t nodes of a random community is lower than the given for community C. If a community

is significant with respect to the C-score, is also significant according to the B-score. Despite this,

the opposite is not necessarily true, low values of the B-score do not necessarily correspond to small

C-scores.

Communities Similarity

Using a community detection algorithm, a network is divided into a set of communities that forms a

clustering. Some community detection algorithms may output different clusterings for the same network,

such as the Infomap and the Louvain that are stochastic algorithms. Therefore, one may want to an-

alyze the differences between clusterings. To understand and evaluate different clusterings, we need

to compare them, there are some measures for this purpose that are based on different principles. We

have measures based on counting pairs, that consist in counting pairs of objects that are classified in the

same way in both clusterings. Then, there are the measures based on set overlaps, they try to match

clusters that have a maximum absolute or relative overlap. Finally, we have the measures based on the

mutual information metric. Here, we present two examples of measures based on counting pairs.

Given a set S of n elements and two partitions X and Y , a is the number of pairs that are in the same

subset in X and Y , b is the number of pairs that are in different subsets in X and Y , c is the number of

pairs that are in the same subset in X but in different subsets in Y and d is the number of pairs that are

in different subsets in X but in the same subset in Y .

The Rand Index [92] counts correctly classified pairs of elements and is given by:

R(X,Y ) =
a+ b

a+ b+ c+ d
=
a+ b(
n
2

) =
2(a+ b)

n(n− 1)
(3.1)
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The Jaccard Index [93] is similar to Rand Index, however, it disregards the pairs of elements that are

in different clusters for both clusterings.

J(X,Y ) =
a

a+ c+ d
(3.2)

3.1.8 Communities in Biological Networks

The vast amount of information currently available about biological organisms allows us to explore the

interactions between proteins, genes, and metabolic processes of these organisms. The graph repre-

sentation is regularly used in the investigation to study the cellular systems of some organisms such

as protein-protein interaction (PPI) networks, gene regulatory networks (GRN), and metabolic networks

(MN). The study of communities in biological networks suggests that these are characterized by a mod-

ular organization in which the modules are associated with specific functions. From this point of view,

a module is an entity composed of several elements that perform a specific task, separable from the

functions of the other modules. Therefore, the identification of biological modules is fundamental to

uncover the functional organization of these networks. However, the information about the proteins or

genes in these networks and their interactions is often incomplete, which makes it sometimes difficult to

infer some information about the behavior of modules. In the following paragraphs, we present some of

the community detection works developed in the context of biological networks.

Regarding PPI networks, Rives and Galitski [94] studied networks of the yeast species S. cerevisiae.

The authors studied proteins involved in processes that lead the microorganism to a filamentous form.

They detected some modules with a hierarchical clustering technique and conclude that the nodes

that mostly interact with members of their community are important proteins. Also, it was concluded

that edges between communities represent important points of communication between modules. In

other work, Spirin and Mirny [95] identified functional modules that correspond to protein complexes in

yeast. Different techniques were used for the detection of modules: clique detection, superparamagnetic

clustering [96] and optimization of cluster edge density. They estimated the significance of the clusters

by computing the p-value for each one in random networks with the same degree sequence of the

original network. From the functional annotations of the genes, it was possible to verify that the modules

aggregate proteins with the same or similar biological functions, in many cases, the modules coincide

with known protein complexes. Chen and Yuan [97] also found functional modules that contain protein

complexes in yeast species, applying a modified Girvan-Newman algorithm. Furthermore, they were

able to make predictions of unknown functions of some genes based on the functional cluster they

belong to. Farutin et al. [98] derived a hierarchical decomposition of PPI networks. They managed to

identify modules from different levels, modules at lower levels are the nodes of higher-level modules. The

authors found that some higher-level modules in human PPI networks correspond to general biological
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concepts such as regulation of gene expression or intercellular communication. Sen et al. [99] identified

protein modules in yeast species using the eigenvector of the Laplacian matrix. Lewis et al. [21] explored

the relationship between communities in PPI networks and the biological behaviors. For the detection

of communities, it was used the multiresolution approach by Reichardt and Bornholt [100]. Lewis et al.

concluded that many communities are biologically homogeneous, i.e, the functional similarity between

protein pairs inside the community is larger than the functional similarity between all protein pairs of the

network.

Metabolic networks have also been investigated with community detection algorithms. Holme et

al. [101] used a hierarchical clustering method based on the Girvan-Newman algorithm. With this

method, it was possible to detect modules with different levels of density. Which demonstrates the hier-

archical structure of these networks. Ravasz et al. [102], studied the metabolic network of Escherichia

coli. The authors investigated the relation between topological modules and functional properties of

the metabolites belonging to the modules. It was found that substrates of a given small molecule class

correspond to well-delimited regions of the metabolic network. Therefore, it was possible to associate

the topological modules with some specific functionalities. Ahn et al. [72], found link communities in

metabolic networks. Using the Gene Ontology it was possible to associate functional terms with the

communities.

Wilkinson and Huberman [103] analyzed a gene regulatory network (GRN) to detect groups of re-

lated genes. The authors built the network by connecting pairs of genes that are mentioned to be

related in biological articles. It was used a modified version of the Girvan-Newman algorithm in which

the betweenness centrality is computed considering only the shortest paths of a small subset of all pairs

of nodes. The results revealed that the genes belonging to the same cluster turn out to be function-

ally related to each other. In another study [104], the authors inspected the community structure of

a transcriptional co-expression network obtained from breast cancer tissue and non-cancer adjacent

breast tissue as a control. Then, analyzed the functions associated with the communities using en-

richment analysis. The biological functions associated with the modules were different in cancer tissue

and healthy tissue. Breast cancer modules were associated with functions that drive disease, whereas

modules in healthy tissues were linked to functions associated with the maintenance of homeostasis.

However, they observed that the connectivity patterns formed by the association of gene modules and

biological functions are similar in the disease and normal tissue, suggesting that the compartmentaliza-

tion of functional regulation through gene expression remains intact. Bar-Joseph et al. [105] developed a

new algorithm to detect gene modules in GRN. In this case, a gene module is defined as a set of genes

to which the same set of transcription factors binds. The authors applied the algorithm in S. cerevisiae

and discovered biologically relevant groups of genes. It was also found that the function of the genes

present in the modules was consistent with the functions of their regulators.
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3.2 Cross-species Comparison

A major challenge of biological research is to understand the complex networks of interacting genes and

proteins that give rise to biological form and function. The large amount of data available on biological

networks presents a lot of opportunities to study the evolution and function of organisms. Some exam-

ples are the PPI networks and the GRN that are crucial to discover conserved evolutionary structures

and diversity among species. Approaches based on cross-species comparisons usually provide a valu-

able framework to address these challenges, in this section, we cite some of the works related to this

topic.

Wiles et al. [24] compared PPI networks of five different species (human, mouse, fly, worm, yeast)

to predict interologues across species. Interologues are protein-protein interactions conserved between

organisms. The authors were able to identify interologues conserved across the fives species. Using

the Gene Ontology (GO)1 [56] to analyze the conserved interactions, it was found that orthologous

proteins (proteins with the same specificity in different organisms) are highly over-represented in known

protein-protein interactions. Wiles et al. developed three confidence scores to measure the quality

of protein interactions. Lisa Matthews et al. [25] used the protein interaction map of S. cerevisiae to

predict interologues in C. elegans. By performing a BLAST search between pairs of orthologs of the

proteins in the interaction map of S. cerevisiae, it was possible to identify interologues in C. elegans.

Most of the conserved interactions between the two species have been identified as being involved in

metabolic processes. Sharan et al. [106] also compared PPI networks of different species, C. elegans,

D. melanogaster, and S. cerevisiae. The authors developed a multiple networks alignment framework

to create a network alignment graph. In this graph, each node consists of a group of similar proteins

and an edge between two nodes represents conserved protein interactions between the corresponding

protein groups. By performing a search over the alignment graph, they were able to identify short linear

paths of interacting proteins. These paths represent signal transduction pathways and dense clusters of

protein interactions that model protein complexes. Brian Kelley et al. [107], like Sharon et al, also used a

strategy for aligning two PPI networks. Analyzing the global alignment graph, the authors demonstrated

that between two distantly related species, S. cerevisiae and H. pylori, there is a large complement of

evolutionarily conserved pathways. Caufield et al. [108] used protein-protein interactions across different

bacterial species to create a meta-interactome. From the meta-interactome, the authors found that 429

protein interactions are conserved across two or more species. These interactions were used to predict

protein functions between the different species. Another cross-species analysis was done by Wang

et al. [109], using the PPI networks of 11 organisms, predicted the interactome of the Stegodyphus

mimosarum species. Revealing once again that comparative analysis between species may provide

additional information about evolution among species.

1http://geneontology.org/
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Differences between related entities are generally attributed to gene modifications. Therefore, the

characterization of inter-species differences in gene regulation is fundamental for understanding the

diversity and evolution of species. Borneman et al. [26] used chromatin immunoprecipitation and mi-

croarray analysis to detect the transcription factors binding sites of three closely related yeast species.

The authors were able to identify three different classes of transcription factor binding events. Those

conserved across the three species, those in only two of the species, and the specific binding events

located in only one of the species. Most of the target genes present in all species are present in only

one or two of the species, revealing a considerable divergence in binding sites across the yeasts. These

results reflect the specialization of the organisms, this divergence in the regulation of the species may

be responsible for their evolutionary adaptation.

Zhang et al. [27] performed another study between species in which they predicted human and plant

target genes using RNAhybrid [110]. Then, a cross-species regulatory network was built with the target

genes previously mentioned. From the regulatory network, it was possible to extract some modules,

these modules were associated with three categories: ion transport, metabolic process, and stress re-

sponse. The similar functions found between human and plant target genes indicate the existence of

a relation between exogenous plant miRNA targets and digestive/urinary organs, these findings point

to the utility of cross-species comparison in the study of human regulatory mechanisms. Two recent

studies have combined cross-species expression and sequence comparisons to infer gene functions. In

the first study, Stuart et al. [111] compared correlated patterns of gene expression from humans, fruit

flies, worms, and yeast. They started by constructing a list of metagenes, a metagene is defined as a set

of genes from several organisms that are considered similar when performing a BLAST search. The au-

thors identified pairs of metagenes whose expression is present in multiple organisms, suggesting that

the co-expression of those has been conserved across evolution. Then, they build a gene co-expression

network in which a node represents a metagene and a link represents significant co-expression be-

tween two metagenes. In this network, Stuart et al. identified 12 blocks where the components were

highly interconnected. From the information about the metagenes, it was possible to infer the biological

processes associated with the components in the blocks whose function was unknown. In the other

study, Bergmann et al. [112] used a slightly different strategy to Stuart et al. where six different species

were analyzed. Starting with a set of co-expressed genes, Sa, associated with a particular function in

organism a, using a BLAST search, they identified the set of homologous genes in organism b, Sb. From

Sb, only a subset of genes S′b was co-expressed, these genes were identified as functional conserved

homologous of Sa. Furthermore, S′b turned into S′′b by including genes from organism b that were

co-expressed with genes in S′b but do not share sequence similarity with the genes in Sa. Introducing

an example, the authors started with a set of heat-shock genes from yeast. Then, identified a set of

co-regulated genes in E. coli and C. elegans. Later, they found that existed more co-regulated genes in
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C. elegans that were also linked with heat-shock response. However, their orthologs were not annotated

in this way in the yeast. Once again, it was possible to infer functionality in non-characterized genes.

Multilayer Approach in Biological Networks

The biological relationships characterized by different networks are in most cases not independent,

like gene co-expression or transcription factor networks. Therefore, in certain cases, studying single

networks turned out to be insufficient to unveil functional regulatory patterns from the interactions across

multiple layers of biological information. In recent years, multilayer networks have played a special role

in network theory, in the case of biological networks, allowing us to combine multiple levels of genomic

and molecular interaction data. In this section, we present some works in which it is used a multilayer

approach to study biological networks.

Zitnik and Leskovec [113] developed an algorithm called OhmNet. This algorithm aims to study pro-

teins in different tissues to understand their features. The authors applied the method in a multilayer of

PPI networks of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet

was able to accurately predict the associated cellular functions, and also generated hypotheses about

protein actions in the tissues. Kapadia et al. [114] used the OhmNet algorithm to predict features of a

multilayer blood cell PPI network. Shinde and Jalan [115] used a multilayer PPI network to study the

life stages in C. elegans, the proteins occurring in different life cycles were distributed over six layers

representing the different life stages. The study of the multilayer revealed crucial differences in each

layer and also the presence of varying complexity among them. Another study in PPI was introduced by

Zhao et al. [116], in which they constructed a multilayer of PPI networks for protein function prediction.

The authors were successful in predicting protein functions in S. cerevisiae. Liang et al. [117] combined

human and yeast PPI networks to form a multilayer network for the identification of functional modules

of genes. The authors developed a clustering algorithm to identify modules in the multilayer network.

They were able to predict functional modules that covered over 90% of the proteins in both organisms.

Cantini et al. [28], proposed a multilayer network approach combining different layers of genomic

data for the identification of candidate driving genes in cancer. They combined transcription factor co-

targeting, microRNA co-targeting, protein-protein interaction, and gene co-expression networks. Next,

were applied some community detection algorithms. Using enrichment analysis in the communities

found, they identified a set of candidate driver cancer genes. From those genes, some of them were

already known oncogenes while others were new. The combined information from the different layers

allowed the extraction of information on regulatory patterns and functional roles of different cancer driving

genes. Rai et al. [29] introduced another multilayer approach to understanding the behavior of cancer

cells. The authors investigate seven different types of cancer: breast, oral, ovarian, cervical, lung, colon,

and prostate. They created two multilayer networks, the normal and the disease network, each one was
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composed of seven layers, one for each type of cancer. From the networks, Rai et al. extracted three

different sets of proteins: common in all normal cells, common in all cancer cells, and common in normal

and disease cells. Yu et al. [118] in similar work, constructed a multilayer network of three PPI networks

in three different tissues: breast, prostate, and blood. Then, observed the overlapping between the

genes under the action of a drug used in the treatment of cancer - trichostatin A (TSA). The authors

detected two drug-target modules, identifying gene patterns associated with the emergence of cancer.

More recently, Zheng et al. [119] develop a method for identifying the disease driver nodes in multi-

layer networks. The authors used three disease-related biological multilayer networks to test the algo-

rithm. They discover nodes in the minimal set of driver nodes that could act as drug targets in biological

experiments.
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4
Identification of Functional Modules
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In this chapter, we begin the study of the transcriptional regulatory networks. First, we introduce the

networks of the species by presenting their characteristics. Then, we initialize the study of the networks

with the detection of modules where we discuss the results obtained using the different algorithms.

Further ahead, we continue with the label assignment process on the modules found. We evaluate the

performance of the different algorithms and we close with a comparison of results between species.

4.1 Data

The data we use in this work is a series of transcriptional regulatory networks from different yeast

species. In particular, we consider the data from the YEASTRACT+1 portal which provides the transcrip-

tional regulatory networks of 10 closely-related yeast species [30]. The characteristics of these networks

are presented in Table 4.1.

Network #Nodes LC #Nodes #Edges #TFs #TGs 〈kin〉 〈kout〉 CC D
S. cerevisiae 6 886 6 886 195 498 220 6 886 28.40 28.40 0.47 4
S. cerevisiae B 6 478 6 478 45 209 176 6 475 6.98 6.98 0.22 5
C. albicans 6 015 6 015 35 687 118 6 015 5.93 5.93 0.28 5
Y. lipolytica 5 288 5 288 9 238 5 5 288 1.75 1.75 0.36 4
C. parapsilosis 3 381 3 381 6 986 11 3 380 2.07 2.07 0.25 4
C. glabrata 2 133 2 129 3 508 40 2 116 1.64 1.64 0.09 6*
C. tropicalis 665 665 698 16 663 1.05 1.05 0.01 5
K. pastoris 561 561 581 4 559 1.04 1.04 0.01 5
K. lactis 111 70 126 10 106 1.14 1.14 0.15 2*
Z. bailii 32 32 31 1 31 0.97 0.97 0.00 2
K. marxianus 4 4 3 1 3 0.75 0.75 0.00 2

Table 4.1: Networks Properties. CC stands for Clustering Coefficient, D for Diameter, and LC for Largest Compo-
nent. In the Diameter field, a value followed by a * represents the value of the Diameter for the largest
component of the graph.

From the characteristics in Table 4.1, it is possible to obtain the first impressions about the consti-

tution of the different networks. The species have different levels of documentation, as reflected by the

number of nodes and edges. S. cerevisiae is the network with more regulatory associations between

transcription factors and target genes. These associations may be classified into two major groups: (1)

those supported by DNA binding evidence; (2) those supported by expression evidence. Due to the

high level of information of the S. cerevisiae species, we add a new network to our set. S. cerevisiae B

consists of filtering the original network keeping only the regulatory associations supported by binding

evidence. This filtering aims to clarify the future interpretation of the results in this species. Comparing

the characteristics of the original and filtered networks, we observe a drastic decrease in the number

of edges. However, the number of nodes, transcription factors, and target genes remains close to the

original. This indicates that the filtering of the original network managed to retain most of the genetic
1http://yeastract-plus.org
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evidence of S. cerevisiae. Unlike the species mentioned above, there are species whose networks are

small and sparse. Enumerating these species we have: C. tropicalis, K. pastoris, K. lactis, Z. bailii and

K. marxianus. This lack of genetic evidence suggests that the characterization of these species may not

reflect their biological nature. Therefore, we decide to discard these networks from the current analysis.

The analysis of the rest of the networks shows that the degree of connection differs among the networks.

S. cerevisiae and C. albicans are the species with the highest node degree, which is normal since these

have more transcription factors than the others. So, each node is expected to be involved in multiple

processes. On the other hand, Y. lipolytica is the one with fewer transcription factors, only five, and

its clustering coefficient is the highest among the networks, revealing that the nodes are concentrated

around those transcription factors. Due to this structural organization, it is likely that in this species the

number of modules detected is limited by the number of transcription factors. The network of the species

C. glabrata is disconnected, but the largest connected component contains almost all nodes of the entire

network. Thus, in the diameter field, we adopt the value of this largest component. In the rest of the

document, we will only use the term modules to simplify the reading of the thesis.

4.2 Comparative Analysis of Modules

The first phase of our approach is the detection of modules. In this step, we perform a wide spectrum

of modules detection methods in our networks. Once the results are obtained, we evaluate the per-

formance of the different techniques to find out which one has the best performance. In this case, we

assume that the best performance is the one that better reflects the series of biological functions of the

species. Obviously, we cannot test all modules detection techniques on all networks due to the huge

number of necessary analyses. Therefore, we select a collection of algorithms that exploit the diverse

ideas and techniques of Network Science developed over the years. The set of chosen algorithms is

composed of the following algorithms: Girvan-Newman (GN), Louvain, Leiden, Clauset-Newman-Moore

(CNM), Label Propagation (LP), Markov Clustering (MC), Infomap, CFinder (CF), and a spectral clus-

tering technique (SC) for modules detection on signed networks. With the application of a spectral

technique, we hope to verify if the networks contain polarized modules that may be important for un-

derstanding their structure. Those methods can be described in Section 3.1. To execute the introduced

algorithms, we used libraries where they are already implemented. In Table 3.1 we can consult the

library in which each algorithm is available.

Some of the considered algorithms are stochastic, i.e, the result may change in each run because

their procedure depends on random events. The Louvain, the Label Propagation, and the Infomap are

the non-deterministic algorithms we use in our approach. Therefore, we run these algorithms 1 000 times

and compare the results obtained to verify if we can use one of these results in the species analysis. To
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study the different partitions, we compare each pair of different partitions having the number of modules

equal to the most common result, i.e, equal to the value of the mode. To make this comparison, we use

the package clusim [120] that allow us to compare different partitions using similarity measures, in our

case we use Jaccard Index [93] and Rand Index [92], both described in Section 3.1.7. To illustrate this

process of comparison of partitions, in Figure 4.1 we present a diagram in which we can observe the

values of similarity between the different partitions of the two most documented species, S. cerevisiae B

and C. albicans, using the Louvain algorithm. The values obtained for the different similarities are quite

different, for the Jaccard Index the values in both networks are considerably low and with high variation.

This may be a consequence of comparing two clusters with very different sizes. Comparing a large

cluster to a small one decreases the intersection value and increases the union value, this leads to a low

value for this measure. The results achieved for the Rand Index show a high value, around 0.9, and with

low variance. Therefore, despite the stochasticity of the algorithms, the high similarity and low variance

show that the structural differences between the partitions are minimal. Thus, in our analyzes of the

partitions given by stochastic algorithms, we adopt one of the results having the number of modules

equal to the mode.

(a) C. albicans (b) S. cerevisiae B

Figure 4.1: Boxplot diagram illustrating the values of similarity for the partitions found with the Louvain algorithm in
C. albicans 4.1(a) and S. cerevisiae B 4.1(b). In the diagram, it is possible to observe the value of the
lower and upper limit, first and third quartiles, average (orange), and mean (green).

Due to the temporal complexity of the Girvan-Newman and CFinder method, it was not possible

to run them on some of the biggest networks. We tried to run these algorithms for a timeout of two

weeks. However, the execution of these algorithms did not come to an end. Some of the algorithms

are dependent on a variable k, in CFinder, where k represents the k -cliques we pretend to find; for the
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Spectral Clustering, k represents the number of modules we want the algorithm to find. In both cases,

we start with k equal to 2. Then, we increment it by 1 until we can not find any more modules. Table 4.2

displays the number of modules obtained for the networks using the different algorithms of our set.

Network GN Louvain Leiden CNM LP MC Infomap CF SC
S. cerevisiae - 5 5 3 1 1 54 - 2
S. cerevisiae B - 12 11 6 1 78 48 34 2
C. albicans - 12 12 7 1 11 23 19 -
Y. lipolytica 1 4 4 4 1 1 1 3 -
C. parapsilosis 25 8 8 6 1 2 5 4 -
C. glabrata 17 14 13 12 16 24 29 14 -

Table 4.2: Number of modules obtained for each network using the different algorithms.

The results in Table 4.2 show that different algorithms give different results regarding the number

of modules obtained. Some of the algorithms fail to detect modules, such as the Label Propagation

for the biggest networks. Also, the absence of results for the Girvan-Newman and Spectral Clustering

in signed networks lead us not to choose to study these results. Louvain and Leiden have similar

results for all species. In general, Markov Clustering and Infomap are the algorithms that can find a

large number of modules. The CFinder was able to find some modules, which indicates that the study

of overlapping modules may help understand these species. The results show that there is a great

divergence between the number of modules obtained between S. cerevisiae and S. cerevisiae B. For

this reason, the filter applied to create the S. cerevisiae B network reveals to be essential in the search

for modules in this species. Whereas that the division of S. cerevisiae B in modules points to a better

division of species into functionalities, we decide on using the filtered network to study the S. cerevisiae

in the rest of the thesis. In Y. lipolytica few modules were detected, as expected since there are a low

number of transcription factors in the information we have about this one. This gives us the idea that

in the future functional analysis of these modules, few functions should be identified for this species.

For the rest of the species under analysis, it was possible to extract some modules. Which indicates

that the functional characterization of these may be more complete. To better understand the division in

modules, we decided to study the distribution of their sizes for the different algorithms, in Figure 4.2 are

these distributions for the species S. cerevisiae and for C. albicans.

The analysis of the distributions shows different magnitudes between modules of the distinct algo-

rithms. A very large gap between the sizes of the modules can make the classification of modules

unbalanced since very large modules may aggregate a lot of functionality and small ones may not be

associated with any functionality at all. From there, a balanced division of the networks, in which the

modules have sizes of the same magnitude, should be the case that better reflects the division of species

according to their biological function. In both cases of Figure 4.2, the modularity-based algorithms (Lou-

vain, Leiden, and Clauset-Newman-Moore) seem to contain a more balanced division, which indicates
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(a) C. albicans (b) S. cerevisiae

Figure 4.2: Modules size distribution for C. albicans 4.2(a) and S. cerevisiae 4.2(b).

that the partitions given by these algorithms may be an important point of study. The Infomap, although it

yields some very small modules, others are of a magnitude equivalent to those found with the previously

mentioned algorithms. In the field of overlapping modules, CFinder found modules of different orders,

from those that include almost the entire network to the smallest. Therefore, in this case, in the analysis

of the modules, we considered only the smallest ones, as the larger ones should not be functionally

specific and should capture a large amount of behavior. Markov Clustering is the algorithm where the

sizes of the modules are most unbalanced, so we decide to discard these results.

To close the first phase of our analysis, we analyze the significance of the modules obtained with

the modularity-based algorithms, since these seem to be the best performing algorithms. To test the

significance of the modules, we calculate their C-score and B-score. To exhibit an example of the

values obtained, in Table 4.3 we list the results for S. cerevisiae. According to the C-score values,

in none of the algorithms, it was possible to identify significant modules. However, the B-score says

the opposite, which indicates that the C-score is a very restrictive measure. In networks with many

connections between modules, this one easily reaches a high value. Looking at the B-score values,

the Louvain algorithm seems to have only one significant module. This may be a consequence of the

stochasticity of the algorithm. Comparing the B-score values of the two other algorithms, both produce

significant modules. Despite that, the distribution of the Leiden modules size seen in Figure 4.2 shows

that after the first phase of our analysis, this algorithm seems to be the one that best captures the

structure of the species. Nevertheless, in the rest of the thesis, we will take into account the results of

Infomap, CFinder, Louvain and, Clauset-Newman-Moore, which also present interesting results.
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Louvain Leiden Clauset-Newman-Moore
C C-score B-score C-score B-score C-score B-score
0 1.00 1.00 0.99 1.02e-27 0.97 6.53e-67
1 1.00 1.00 0.99 0.39 1.00 2.07e-69
2 0.99 0.29 1.00 0.01 0.98 1.17e-16
3 1.00 1.00 1.00 0.99 0.99 0.99
4 0.99 1.00 0.99 0.63 0.99 0.01
5 0.99 1.00 0.99 0.01 0.99 0.99
6 0.99 1.00 0.99 1.00 - -
7 1,00 1.00 0.99 0.83e-9 - -
8 0.99 1.00 0.99 1.00 - -
9 0.99 1.00 0.99 0.01 - -

10 1.00 1.00 0.99 0.32 - -
11 0.99 1.33e-70 - - - -

Table 4.3: c.

4.3 Functional Analysis of Modules

This section refers to the label assignment process. This process consists of assigning one or more

labels to each one of the previously found modules. These labels represent specific behaviors/function-

alities of the species. Therefore, it allows us to define the modules at a functional level.

Each gene of a species is associated with one or more specific Gene Ontology terms, where each

of these terms belongs to one of the three ontologies. For example, a gene can have more than one

term, one corresponding to the biological process and another corresponding to the molecular function.

The idea behind the labeling process is to calculate the terms of the Gene Ontology present in each

module and then associate to these modules the terms that are most represented among their genes.

Thus, to perform the labeling process, we must obtain all terms and respective representations for each

module. The set of terms associated with a module is composed of the terms directly associated with its

genes and by all higher-order terms in the hierarchy of the Gene Ontology that have a relation with the

previous ones. To get all terms in a module, we first get the terms directly linked with the genes. Then,

we use the relations between terms to go through all the terms in the hierarchy until we reach the root.

This way, it is possible to have all terms associated with a module, from the most specific at the bottom

of the hierarchy to the most global at the top.

We use the procedure described in the previous paragraph to find all terms associated with each

module. Then, to calculate the number of times a term appears in a module, we sum its occurrences in

the set of genes that constitute the module. The extraction of terms revealed a large number of terms

present in the different modules. To continue with the label assignment process, we obtain the most

significant and representative terms of the set of terms of each module. Therefore, we perform a three-

step filtering of the terms: (1) select only the most global terms; (2) retain only the most specific terms of

the module; (3) retain the terms with a good representation in the module. Each module contains several
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terms, from the most specific to the most global. So, in the first step, we select the highest-level terms

in the GO hierarchy (levels 2 and 3). To perform the second step of the filtering, we use the statistical

measure p-value, which allows us to detect the most specific terms of each module concerning the global

network. Additionally, we use different p-value intervals to see the changes in the labeling process as

the p-value threshold increases. Lastly, we analyze the degree of representation of each term in the

modules. By setting a specific threshold, the terms of the module will be those whose representation

is greater than or equal to the threshold. In our work, we decide to consider a threshold of 10%. To

be selected, a term must be represented in at least 10% of the genes of the module. This way, we can

reveal processes that may be associated with a large number of genes or just a few.

The labeling process was applied to the modules of the different species detected by the algorithms

discussed in Section 4.2. In the remainder of this section, first, we compare the performance of the

different algorithms in S. cerevisiae since it is the species with most genetic evidence. Then, we illustrate

the whole label assignment process using the algorithm with the best performance in S. cerevisiae.

Finally, we close this chapter by evaluating the results of the process on the different species, also using

the same algorithm as the previous step.

Algorithms Performance

Using S. cerevisiae as a reference, we compare the performance of algorithms that we consider to have

interesting results. First, we start by analyzing the modularity-based methods, Figure 4.3. A first look

shows that most modules have more than one label, exposing the functional diversity of these. However,

not all genes are linked to the functionalities that characterize their modules. By applying the p-value

filtering, we obtain only the most specific terms of each module. Therefore, there are always fractions

of genes in the modules that are not associated with any of the terms. These genes correspond to

behaviors that end up being captured in other modules. By reading the image, it is possible to check

the representation of each term in the respective module. This representation is the ratio of genes of

the module associated with the term. For some of the modules, the overall representation of the terms

exceeds the value 1. This is a consequence of the combination of terms in some genes. Normally, these

are related terms, such as the metabolic and cellular processes.

In Figure 4.3, we observe that some functions appear in all classifications and with high representa-

tion. Such as the metabolic process, biological regulation, catalytic activity, response to stimulus, among

others. This aspect points out the importance that some functions have in the species. In contrast, some

terms have a more residual representation. This leads us to believe that these terms represent specific

functions and are associated with a smaller set of genes. Reproduction, reproductive process, and

transporter activity are good examples of specific functions detected in the modules. In the case of re-

production, this one only emerges in the modules from Leiden and Louvain. A possible explanation for
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(a) Leiden (b) Louvain

(c) Clauset-Newman-Moore (d) Gene Ontology Terms

Figure 4.3: Modules and respective functions for modularity-based methods on S. cerevisiae. The bar of each term
symbolizes its representation in the module. The pair of values at the top of each bar are respectively
the size of the module and the percentage of genes of the module related with at least one term (in the
module).

this situation is the fact that these terms are associated with a small number of genes, so, their detec-

tion is more difficult in modules of larger sizes such as those identified by the Clauset-Newman-Moore

algorithm. The Clauset-Newman-Moore is the algorithm with the poorest performance, it fails in the de-

tection of some functionalities such as reproduction, reproductive process, or localization. Furthermore,

some modules are associated with terms that only cover a small part of the entire module, such M1 or

M2. Comparing the results from Louvain and Leiden we can observe some similarities and differences.

Starting with the similarities, it is clear that the classification of some modules is practically identical.

Also, in both cases, there is an unclassified module despite its considerable size. We can verify the

following similarities between modules from Leiden and Louvain: M6 with M4, M3 and M10 with M3, M9

with M0 and M9. Regarding the differences, in the case of Leiden, there are only two modules that have

one or no associated terms (M5 and M6) while in Louvain there are five (M1, M4, M6, M7 and M8). The
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Leiden algorithm allows us to capture a wide variety of functions in the modules. Furthermore, there are

terms detected with Leiden that are not detected in the case of Louvain, such as the cellular process

and the reproductive process. This combination of factors leads us to conclude that the classification

of the Leiden modules is more diverse and complete. Closing the comparison, we conclude that the

Leiden algorithm had a better performance in dividing and capturing the functionalities of the species.

In Section 4.2 we recognized that the results of CFinder and Infomap algorithms seem to be inter-

esting. Here, we analyze the classification of their modules. Beginning with CFinder, in Figure 4.4 we

present the outcome of performing the label assignment process in the modules found with this algo-

rithm. We note that some modules are functionally similar such as M22 and M26. This occurs because,

Figure 4.4: Modules of S. cerevisiae obtained with CFinder and respective functions.

when k increases in CFinder, it is common to find larger modules that encompass small modules pre-

viously found for a smaller k. Therefore, the classification of these modules ends up being similar. We

also pay attention to some modules that have a lot of functionality assigned. However, these modules

are too small and their classification does not give us a general idea about the functions present in the

species. Few modules give us some new information about the species, like M26 and M27 which contain

functions previously not detected: transcription regulator activity, developmental process, and signaling.

Finally, we also notice M1, which represents almost the entire species and has four associated functions

with good representation (all of them previously detected with the Leiden algorithm). The results of this

module help us to confirm that these are important functions in this organism. About the performance

of this algorithm, although it is not as good as the performance of Leiden, it managed to confirm some

conclusions previously established.
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Figure 4.5: Modules of S. cerevisiae obtained with Infomap and respective functions.

Finally, we discuss the functional characterization of the modules detected with Infomap. By analyz-

ing Figure 4.5, we find that the performance of Infomap is not the best either. Although it managed to

classify some modules of relevant size, it failed to classify the vast majority of modules. Therefore, the

algorithm was not able to divide the species into good functional elements.
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Functional Analysis on S. cerevisiae

To exemplify the label assignment process, we use the modules found by the Leiden algorithm in S.

cerevisiae. Figure 4.6 displays the number of terms obtained for the modules of S. cerevisiae. By

examining the figure it is possible to consult the number of terms of levels 2 and 3 for each module, and

it is also possible to count the number of terms for each p-value interval.

Figure 4.6: Number of Gene Ontology terms associated with the modules of S. cerevisiae found by the Leiden al-
gorithm. For each module, the two bars side by side represents the terms of levels 2 and 3, respectively.
The value above each column represents the ratio of nodes in the module that are associated with at
least one of the terms. Terms with different p-values are identified with different colors as shown in the
subtitle.

Analyzing the terms of level 2, we observe that modules have different numbers of associated terms

and the ratio of genes of the modules that are associated with the modules is also different. Module 5

is the one in which this ratio is lower and most genes are not associated with the terms. Therefore, it

should be difficult to functionally characterize this module. About the remaining modules, almost all of

them have a high proportion of nodes associated with the terms, this fact suggests that must be possible

to assign functions to them. If we look at the different terms, we see that most are found in the first

p-value interval, indicating that these are more representative of the module than the others. However,

despite not being so representative, many terms belong to other p-value intervals. This implies that these

may complement the functional information about the modules, being essential for the label assignment

process. To assign labels to the modules, we decide to look at the level 2 terms associated with the

modules. These terms and respective representations are listed in Table 4.4.

As we have already seen, each gene can be associated with terms from different ontologies. How-

ever, only the Biological Process and the Molecular Function are essential to classify the modules. The

51



Term M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Biological Process
metabolic process (GO:0008152) 0.62 0.60 0.62
cellular process (GO:0009987) 0.77
cellular component organization or biogenesis (GO:0071840) 0.39 0.37 0.4 0 0.39
response to stimulus (GO:0050896) 0.23 0.22
localization (GO:0051179) 0.25 0.28
reproduction (GO:0000003) 0.11 0.09
reproductive process (GO:0022414) 0.11 0.09
biological regulation (GO:0065007) 0.37 0.39 0.38
detoxification (GO:0098754) 0.01 0.01
carbon utilization (GO:0015976) 0.01
developmental process (GO:0032502) 0.09
multi-organism process (GO:0051704) 0.07
signaling (GO:0023052) 0.06 0.06
nitrogen utilization (GO:0019740) 0.01
cell aggregation (GO:0098743) 0.01
locomotion (GO:0040011) 0.01
Molecular Function
binding (GO:0005488) 0.58
structural molecule activity (GO:0005198) 0.19
transporter activity (GO:0005215) 0.10 0.10 0.09 0.10
catalytic activity (GO:0003824) 0.40 0.43 0.42 0.43
molecular transducer activity (GO:0060089) 0.01
antioxidant activity (GO:0016209) 0.01
transcription regulator activity (GO:0140110) 0.06
protein folding chaperone (GO:0044183) 0.01
translation regulator activity (GO:0045182) 0.02
molecular function regulator (GO:0098772) 0.08
Cellular Component
organelle part (GO:0044422) 0.53 0.51 0.53 0.51
protein-containing complex (GO:0032991) 0.39 0.44 0.37
cell part (GO:0044464) 0.89 0.91
cell (GO:0005623) 0.89 0.91
membrane (GO:0016020) 0.35 0.35
membrane part (GO:0044425) 0.28 0.28
organelle (GO:0043226) 0.73 0.75 0.79
membrane-enclosed lumen (GO:0031974) 0.24
supramolecular complex (GO:0099080) 0.02 0.02 0.02
extracellular region (GO:0005576) 0.07 0.03

Table 4.4: Gene Ontology Terms of level 2 and respective representation for the modules of S. cerevisiae species
found with the Leiden algorithm. The color of each cell corresponds to the interval of the p-value of the
term.

Cellular Component information only indicates where the genes act, so, it is not necessary to functionally

classify the modules. The vast majority of modules contain several associated terms, the high represen-

tation of these terms in the modules demonstrates that it is possible to proceed with their classification.

This can cause a module to be associated with one or more biological functions. In the third step of

the filtering of the terms, we define that terms are significant in a module if their representation in the

module is greater than or equal to 10%. Referring to the terms in Table 4.4, we can proceed with the

label assignment process. The labeling process for S. cerevisiae culminates in the following attributions:

M0 - metabolic process, cellular process and binding; M1 - cellular component organization or biogen-

esis and structural molecule activity; M2 - response to stimulus and transporter activity; M3 - metabolic

process, localization, transporter activity and catalytic activity; M4 - cellular component organization or

biogenesis, reproduction and reproductive process; M6 - catalytic activity ; M7 - cellular component

organization or biogenesis, localization, biological regulation and transporter activity; M8 - response to

stimulus, biological regulation and catalytic activity; M9 - cellular component organization or biogenesis
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and biological regulation; M10 - metabolic process and catalytic activity.

Of all the modules of the species, only module 5 could not be classified due to the third step of

the filtering. All the others have been associated with functions that characterize their behavior. The

terms that were associated with the modules have different levels of representation, such as the term

reproduction and the term metabolic process. This contrast reveals that some are global processes,

associated with a large number of genes, and others are specific, being affiliated with a small set of

elements. By consulting Table 4.4, one can notice that even if the terms appear in different modules, their

representation in these modules has a similar value. As the modules are of similar sizes, this indicates

that in different modules there are different groups of genes with similar sizes that are associated with

the same function. The labeling shows that there are some modules associated with the same functions.

To distinguish the behaviors of modules with identical terms, we analyze the terms of level 3 that are

sub-processes of level 2 terms, these are listed in Table 4.5.

Term M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Biological Process
cellular metabolic process (GO:0044237) 0.61 0.59
organic substance metabolic process (GO:0071704) 0.60 0.58
primary metabolic process (GO:0044238) 0.58
nitrogen compound metabolic process (GO:0006807) 0.56 0.50
biosynthetic process (GO:0009058) 0.40
cellular component biogenesis (GO:0044085) 0.21 0.21 0.23
response to chemical (GO:0042221) 0.13 0.11
small molecule metabolic process (GO:0044281) 0.15 0.19
cellular component organization (GO:0016043) 0.32 0.33 0.35
cellular localization (GO:0051641) 0.16
establishment of localization (GO:0051234) 0.26
regulation of biological quality (GO:0065008) 0.12
regulation of biological process (GO:0050789) 0.33 0.32
cellular response to stimulus (GO:0051716) 0.19
regulation of molecular function (GO:0065009) 0.11
oxidation-reduction process (GO:0055114) 0.10
Molecular Function
hydrolase activity (GO:0016787) 0.18 0.22
oxidoreductase activity (GO:0016491) 0.11
transferase activity (GO:0016740) 0.17 0.19
catalytic activity, acting on a protein (GO:0140096) 0.13

Table 4.5: Gene Ontology terms of level 3 for S. cerevisiae.

The introduction of the new results allows us to enrich the attributions captures with the label as-

signment process started earlier. The previous classification of modules becomes: M0 - metabolic

process (cellular metabolic process, organic substance metabolic process, primary metabolic process,

nitrogen compound metabolic process, biosynthetic process), cellular process and binding; M1 - cellular

component organization or biogenesis (cellular component biogenesis) and structural molecule activity;

M2 - response to stimulus (response to chemical) and transporter activity; M3 - metabolic process (ni-

trogen compound metabolic process and small molecule metabolic process), localization, transporter

activity and catalytic activity (hydrolase activity); M4 - cellular component organization or biogenesis

(cellular component organization and cellular component biogenesis), reproduction and reproductive
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process; M6 - catalytic activity (oxidoreductase activity and transferase activity); M7 - cellular compo-

nent organization or biogenesis (cellular component organization and cellular component biogenesis),

localization (cellular localization and establishment of localization), biological regulation (regulation of

biological quality) and transporter activity; M8 - response to stimulus (response to chemical and cel-

lular response to stimulus), biological regulation (regulation of biological process) and catalytic activity

(hydrolase activity and catalytic activity, acting on a protein); M9 - cellular component organization or

biogenesis (cellular component organization) and biological regulation (regulation of biological process

and regulation of molecular function); M10 - metabolic process (cellular metabolic process, organic sub-

stance metabolic process, small molecule metabolic process, oxidation-reduction process) and catalytic

activity (transferase activity).

The enrichment of the modules’ attributions with more specific labels, allows us to distinguish some

of the functionalities between the modules. Regarding the metabolic process, M0 is the module that has

more sub-functionalities and therefore is the most complete in comparison with M3 and M10. The huge

number of sub-functionalities of the metabolic process may be the reason for its high representation

in the modules. The term cellular component organization and biogenesis are divided into two sub-

functionalities, M4 and M7 are more complete containing both, while M1 and M9 have only one. Modules

M7, M8 and M9 have different behaviors in relation to the biological regulation process. While M7 is

intended for the regulation of biological quality, M8 and M9 are related to the regulation of the biological

process. However, M9 is also responsible for regulating the molecular function. Finally, in the catalytic

activity, the behaviors of the modules are also distinct from the four sub-functionalities found, each

module is associated at most with two, revealing some specificity between them. This deeper study of

the level 3 terms allows us to conclude that, although some modules share some general labels, they

are in charge of distinct functions.

Functional Analysis of Remaining Species

Closing this chapter, we analyze the results of the label assignment process for the remaining species

in the study, these are presented in Figure 4.7. In this analysis, we use the results for the modules

obtained with the Leiden algorithm, since it is the algorithm with the best performance for S. cerevisiae.

Starting with C. albicans, exists an absence of terms in M0, M9, M10. In the first of these modules,

a plausible reason for the absence of terms is the fact that this module represents a large fraction of the

species, which makes it difficult to detect terms with a good p-value. About M9 and M10, this must be

caused by the simple absence of meaningful terms or lack of representation of those terms. All the re-

maining modules are associated with at least one function. Many of those modules are associated with

three or more terms, capturing many of the functions of the species. An interesting point is the associa-

tion of some modules to functions such as multi-organism process and growth, which are not sufficiently
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representative/significant to be associated with a module in S. cerevisiae. As with C. albicans, also in

other species some modules represent a large part of the species and end up not being associated with

any biological function. Looking at the functions detected in the different species, we note that also in

C. parapsilosis and C. glabrata, some modules are associated with functions that are not detected in S.

cerevisiae. These events may have their origin in the size of modules of S. cerevisiae. Due to their large

sizes, it is difficult for more specific terms to have a good representation in these, as they are associ-

ated with few genes. In all of these species, general functions already captured in S. cerevisiae were

also detected, such as metabolic process, response to stimulus, or biological regulation. This reveals

the central role they play in the functionality of different organisms. By comparing the results between

species, it is possible to verify that the modules of C. glabrata are associated with more functionality

than the modules of C. parapsilosis and Y. lipolytica, although we have more generic evidence on the

last two. Whereas C. glabrata has more transcription factors, we assume that the information about this

species contains genetic evidence about more biological processes. This results in a more diversified

classification of modules in comparison to C. parapsilosis and Y. lipolytica.
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(a) C. albicans (b) Y. lipolytica

(c) C. parapsilosis (d) C. glabrata

(e) Gene Ontology Terms

Figure 4.7: Label Assignment results for the different species using Leiden algorithm.
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In this chapter, we continue the analysis of the species introduced in Section 4.1. After the extraction

of the modules and respective functional characterization, our procedure culminates in a comparison

between species. Initially, we compare the functional modules discovered in Section 4.3 and we settle

some similarities between species. For this, we consider the modules from different species with a

high degree of connectivity between them. Finally, we move on to a multilayer network approach where

we search for potential functional structures conserved among species. For this, we perform the last

modules detection step followed by the functional evaluation of the modules obtained.

5.1 Functional Comparison of Modules

In this section, we analyze the degree of connection between modules of different species. We resort

to the homology mappings between species to establish the connections between modules. Each link

in a homology mapping between two species denotes the connection between two genes that have a

high degree of similarity. We call these genes, homologous genes. In biology, it is established that

the DNA sequence of two homologous genes derives from a common ancestor. They may or may not

have the same function. A homology mapping is formed by performing a BLAST search, which allows the

comparison between genetic sequences of two different species. For each gene of one species, is picked

the gene of the other species with which it is most similar. For this work, the homology mappings are

obtained from YEASTRACT+ [30]. We start by illustrating the process of modules comparison between

species using the two most documented, S. cerevisiae and C. albicans. Afterward, we discuss the most

relevant connections between species.

S. cerevisiae vs C. albicans

Different species are interconnected through pairs of homologous genes. Therefore, also the modules

between different species are interconnected. In this subsection, we portray the comparing process be-

tween two different species. For this purpose, we explore the level of connection between the functional

modules of S. cerevisiae and C. albicans obtained with the Leiden algorithm. In Figure 5.1(a) we present

a Sankey diagram representing the connections between the modules for both species.

The Sankey diagram shows that a module contains connections with multiple modules of the other

species. An explanation for this fact is the involvement of a transcription factor in multiple biological

functions. We also note that the modules that seem to have a stronger connection are the larger ones.

However, M0 from C. albicans was not tagged in the process of label assignment. This suggests that

the comparison between species may be crucial to uncover some functionalities in not labeled modules.

Although we can draw some conclusions from the Sankey diagram, it is not enough to understand the

level of connection between modules. Therefore, we perform an analysis to assess the quality of the

59



(a) Sankey Diagram (b) Heat map

Figure 5.1: Figure 5.1(a) - Sankey diagram representing the connections between the modules of S. cerevisiae and
C. albicans. Figure 5.1(b) - heat map representing the level of connectivity between the modules of S.
cerevisiae and C. albicans.

mapping between modules. First, we calculate the number of links shared between every pair of modules

of the two species. Then, we compare these distributions with 1 000 realizations of the same process

in a null model. This null model consists of maintaining the community structure of both networks but

with randomization of the nodes. Consequently, this procedure results in different mappings between

species. In Figure 5.1(b) we introduce the heat map of the z-scores representing the level of connection

between modules, here, we consider the original network against the null model. The heat map reveals

the existence of some pairs of modules with strong connections in relation to others (green and blue

colors). To a better visualization of the z-score values, we present those in Table 5.1.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
M0 1.17 1.25 2.52 -0.54 -1.14 -2.90 -0.10 -2.00 -0.35 -2.27 0.98 0.72
M1 -4.25 -0.71 -1.71 -1.91 20.36 -2.39 -1.31 -0.81 -1.68 -2.31 -0.54 -0.03
M2 -3.34 2.09 -0.17 2.02 -0.47 3.68 0.69 -1.64 -1.47 0.48 -0.76 -0.25
M3 -1.64 1.42 0.60 -0.50 -1.26 -0.06 1.92 -1.91 2.86 1.10 -1.41 -0.44
M4 -1.13 0.77 2.08 -2.91 1.50 -0.66 -0.59 1.81 0.81 -0.89 -0.13 -0.24
M5 -2.77 3.28 -1.14 0.67 -0.75 0.62 -0.54 -0.23 1.08 0.78 -0.62 2.35
M6 -2.18 4.32 -0.90 -1.61 -1.40 1.26 0.82 -0.21 -0.31 -0.97 -1.37 0.77
M7 1.90 -0.25 0.67 -1.36 -1.90 -0.17 1.95 -0.81 0.05 -1.92 0.15 1.38
M8 2.03 0.29 -0.51 -1.32 -1.30 -0.29 -0.15 1.80 0.27 -2.25 -0.32 0.05
M9 -0.01 0.45 -2.19 2.55 -0.72 2.17 -2.23 -1.50 0.18 -0.34 1.70 0.45
M10 -0.81 2.22 0.80 -1.40 2.92 -0.23 -0.16 -0.79 -2.23 -0.98 -0.70 0.25

Table 5.1: Z-score values between the modules of S. cerevisiae and C. albicans.

In Table 5.1 we highlight some pairs of modules with high connectivity. Given the labels previously

assign to the modules, we compare these between the selected pairs of modules. Table 5.2 displays the

comparison of labels between modules of the two different species.

60



S. cerevisiae C. albicans Labels
M0 M2 binding, metabolic process, cellular pro-

cess
metabolic process, cellular process, cel-
lular component organization or biogene-
sis

M1 M4 cellular component organization or bio-
genesis, structural molecule activity

cellular component organization or bio-
genesis, structural molecule activity,
binding, metabolic process, cellular pro-
cess

M2 M5 response to stimulus, transporter activity response to stimulus, multi-organism pro-
cess, growth, transcriptional regulator ac-
tivity

M3 M8 localization, catalytic activity, transporter
activity, metabolic process

catalytic activity

M5 M1 binding, metabolic process, cellular pro-
cess, catalytic activity, biological regula-
tion, response to stimulus

M6 M1 catalytic activity binding, metabolic process, cellular pro-
cess, catalytic activity, biological regula-
tion, response to stimulus

M9 M3 cellular component organization or bio-
genesis, biological regulation

biological regulation, response to stimu-
lus, multi-organism process, growth

M10 M4 metabolic process, catalytic activity cellular component organization or bio-
genesis, structural molecule activity, bind-
ing, metabolic process, cellular process

Table 5.2: Comparison of labels between the modules of S. cerevisiae and C. albicans.

Using the homology mappings between species, we proved that some modules are strongly con-

nected. By analyzing Table 5.2, we try to verify if the high connection translates into the functional

similarity between modules. We start by verifying the sharing of functions between some of the mod-

ules. This circumstance points to homologous genes with the same function as the cause for the strong

connectivity in some of the pairs of modules. One good example is the pair of modules M0 and M2

of S. cerevisiae and C. albicans respectively. In both cases, the metabolic and cellular processes are

widely represented terms. Therefore, homologous genes associated with those functions may be the

origin of this solid connection. However, in other cases, mutual labels only represent a small part of the

genes of the modules. Such as in M1 of S. cerevisiae and M4 of C. albicans, that is by far the strongest

connection between the two species. In this case, the mutual functions between modules seem not to

be sufficient justification for such a strong connection. Thus, this strong connection may arise from other

events, such as the sharing of functions only detected in one of the modules (cellular and metabolic

process). Another hypothesis might be that homologous genes can have different functions, as a result

of the evolutionary divergence of species. Hereupon, two modules can be tightly connected and at the

same time functionally distinct. By performing an examination of the terms shared across modules, we

notice that these are widely represented terms. This evidence confirms that these are very important

and common processes in the species. Closing the analysis, we notice the connection between M5 of S.

cerevisiae and M1 of C. albicans. The first does not contain any functionality, unlike the other, in which

some functions were detected. In this way, the functions of M1 of C. albicans can serve as predictions
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for possible functions in M5 of S. cerevisiae. Yet, the current information is not enough to make these

predictions. For this, it is necessary to proceed to a more detailed study of the connections between the

modules.

Detailed Analysis of Connections

We conclude the comparison between modules of different species by analyzing, in a more detailed way,

the most relevant connections. With this more detailed study, we aim to find an explanation for the origin

of the stronger connections. In addition, we use this study to infer some functions in modules that were

not detected with the label assignment process in Section 4.3. To extract the stronger and most relevant

connections, we use the procedure previously illustrated with S. cerevisiae and C. albicans. Although

there are some pairs with strong connections, we set a threshold for the z-score value to select only the

most revealing ones.

In Table 5.3 we present the extracted connections. To study these connections, we examine the

terms associated with the links that connect two different modules. A term is associated with a link

if the term is common to the homologous genes in it. The value of a cell in Table 5.3 represents the

ratio of genes in the module that have an association in the other module for the respective term. In

other words, denotes the ratio of genes in the module that have homologous with the same function in

the other. A green cell implies that the term was detected in the module through the label assignment

process carried out in Section 4.3. On other hand, a red cell implies that the term was not detected.

Considering the red cells, we can conclude that some modules contain functional elements not detected

before.

The connections between modules are assigned to several terms. It is possible to highlight some that

are present in almost all of the connections between modules. Among these terms are the metabolic

process, cellular process, catalytic activity, biological regulation, and cellular component organization

or biogenesis. These terms were previously identified as highly represented among different modules

across species. The detailed analysis of the connections demonstrates that there are functional ele-

ments in different species formed by homologous genes with the same functions. Since a homologous

gene is a gene inherited in two species by a common ancestor, this evidence reveals the conservation

of functional elements across the different organisms. The results obtained reinforce the idea that the

functions associated with the conserved structures are truly important and essential in the species.

Using the information of Table 5.3, we can diagnose functional elements in some modules that were

not detected until now. Some of these elements represent large portions of the respective modules.

Good examples are the metabolic process and cellular process in M1 of S. cerevisiae, localization in

M7 of C. glabrata, or growth in M10 of C. glabrata. Finally, we look at the strong relation between M0

of C. albicans and M0 of Y. lipolytica. No functionality was identified in M0 of C. albicans in the label
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Terms
Connections GO:0071840 GO:0005198 GO:0008152 GO:0009987 GO:0005488 GO:0065007 GO:0051179 GO:0003824 GO:0005215 GO:0050896

M6-Sc 0.09 0.10 0.06 0.04 0.07 0.04
M1-Ca 0.05 0.06 0.04 0.02 0.04 0.02
M1-Sc 0.10 0.14 0.17 0.18 0.07
M4-Ca 0.13 0.16 0.21 0.23 0.11
M0-Sc 0.03 0.09 0.10 0.06 0.04
M0-Yl 0.01 0.04 0.05 0.03 0.02
M7-Sc 0.05 0.10 0.13 0.09 0.05 0.04 0.02
M0-Yl 0.01 0.03 0.03 0.02 0.01 0.01 0.01
M3-Sc 0.05 0.05 0.03 0.04 0.03
M7-Cg 0.22 0.23 0.12 0.19 0.12
M0-Ca 0.03 0.10 0.12 0.07 0.04
M0-Yl 0.03 0.09 0.10 0.06 0.04
M1-Ca 0.07 0.06 0.06 0.02 0.08 0.01
M3-Yl 0.07 0.06 0.05 0.02 0.07 0.01
M2-Ca 0.04 0.05 0.06 0.04 0.02 0.02
M2-Cg 0.12 0.14 0.19 0.11 0.06 0.05
M1-Ca 0.04 0.04 0.03 0.01 0.04 0.02
M5-Cg 0.17 0.17 0.13 0.06 0.17 0.09

Terms Function
GO:0071840 cellular component organization or biogenesis
GO:0005198 structural molecule activity
GO:0008152 metabolic process
GO:0009987 cellular process
GO:0005488 binding
GO:0065007 biological regulation
GO:0051179 localization
GO:0003824 catalytic activity
GO:0005215 transporter activity
GO:0050896 response to stimulus

Table 5.3: Strongly connected pairs of modules from different species. For each module, we can consult the per-
centage of genes that have homologous with the same function in the other one that is part of the
connection. Looking at the first pair, it is possible to verify that in M6 of S. cerevisiae, 0.09% of the genes
participate in the connections related to the metabolic process. A green cell means that the term was
found in the module through the label assignment process, a cell in red denotes the opposite (the term
was not found in the module).

assignment process. However, with this cross-species analysis, we unveil some functional elements

present in this module. With this new information, it is clear that the absence of labels assigned to this

module results from its large size. Thus, the difficulty of finding particular features in large modules using

the p-value is a limitation of our approach.

5.2 Multilayer Approach for Cross-Species Comparison

In the previous section, we used the homology mappings between species to find strong connections

between modules. With the analysis of these connections, we end up finding functional elements con-

served across species. However, we did not check if these elements have other associated functions

or even if they overlap, since each gene can be associated with more than one term. For example, we

identified sets of homologous genes linked to the metabolic process and cellular process in the same

module. These are two closely related terms since they are often represented in the same modules.

Therefore, it is very likely that the sets of homologous genes associated with these terms are the same.

In this final step, we build a multilayer network between species in which we perform a modules de-

tection. To carry out the detection of the modules we use the Infomap algorithm since it is suitable
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for this type of network. With the detection and functional characterization of the modules, we seek to

identify and characterize functional structures conserved across species. In this multilayer network, the

inter-layer links are those of the homology mappings between species.

Once again, we use the species S. cerevisiae and C. albicans to create the multilayer network in

which we apply the detection of the module. From the application of the Infomap algorithm, we could find

several modules. The size distribution of those modules is displayed in Figure 5.2(a). By interpreting the

size distribution, we notice that there is a module that encompasses the vast majority of genes from both

species. Therefore, this one should not contain characteristic information about the genetic conjugation

of both species. On other hand, the remaining modules are smaller and contain equivalent sizes. In

Figure 5.2(b) it is possible to verify that those modules are constituted by genes from both species. The

constitution of the modules appears to be balanced, having almost half the genes of each species.

(a) Modules Size Distribution (b) Modules Constitution

Figure 5.2: Figure 5.2(a) - size distribution of the modules found with Infomap algorithm in the multilayer network of
S. cerevisiae and C. albicans. Figure 5.2(b) - constitution of the modules found in the multilayer network
of S. cerevisiae and C. albicans.

Once the modules are extracted, we proceed to their functional characterization. In Figure 5.3 we

provide the results of the label assignment process for the modules found. In what concerns the classi-

fication of modules, we observe that M0 has no labels associated with it. As has happened with other

modules, this is a consequence of the difficulty of our approach in finding meaningful terms in modules

that contain a large portion of the network genes. Regarding the remaining modules, most of them

are well classified. However, some are just partially classified. For example, we have M3, M9, M10,

M15 and M17 in which just a portion of the genes are associated with the obtained labels. Looking

at the functionalities, most of them were previously detected in the label assignment for both species.

Nonetheless, others were not, such as the molecular function regulator detected in M12 or M16.

Going further with our analysis, we study the contribution of the genes of each species for the clas-
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Figure 5.3: Gene Ontology terms for the different modules found in the multilayer network of S. cerevisiae and C.
albicans. For each module are displayed the assigned labels. The bar size of each label depicts its
representation in the module. The tuple at the top of each bar illustrates the size of the module and the
proportion of the module classified with at least one of the labels.

sification of the modules in the multilayer network. To carry out this analysis, we divide each module

into two groups of genes, those belonging to S. cerevisiae and those belonging to C. albicans. Then,

we perform the label assignment process in those groups. The comparison between the labels of each

module and those of the respective gene groups can be seen in Figure 5.4.

Looking at the first module, we can see that by dividing the module into two groups it is possible to de-

tect some functionalities. However, these are unrelated, which indicates that this module cannot provide

useful information about the similarity between species. Regarding the other modules, by comparing

the number of inter-layer links with the size of the modules, we deduce that a considerable proportion of

these modules are composed of homologous genes of the two species. Therefore, almost all of these

modules have structural elements conserved in the species. By inspecting the functions associated with

those modules, it is noticed that some of these contain terms that are only associated with the genes of

one species. Such as M5 or M18. This way, we cannot consider these as functional elements conserved

across species. Then, we have modules where there is conservation of some functions, yet, this is a

residual conservation and does not represent the vast majority of the functionality of the module. This

happens in M14 with localization and in M16 with molecular function regulator (a function not previously

detected in none of the species). Finally, we have the modules that are mostly classified and are the

result of the combination of functionally identical homologous genes from the two species. The majority

of the functionality of these modules is present in the genes of both species. Thus, we consider these
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modules as functional structures conserved in the species. In these circumstances, we can include the

modules M2, M4, M7, M11, M12 and M13. By analyzing the representation of the functions in those

modules, we recognize that there are functions equally represented. Such as the metabolic and cellular

process in M2 and M11 or reproduction and reproductive process in M7. This evidence confirms that

part of the functional elements identified as conserved in Section 5.1 are actually the same structure.

In conclusion, this multilayer approach allowed us to identify functional structures conserved across

species.
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Figure 5.4: Comparison of labels between the modules of the multilayer and the respective groups of genes from S.
cerevisiae and C. albicans. The three bars side-by-side respectively describe the labels of the module,
of the genes from S.cerevisiae and the genes from C. albicans. At the top of the first bar of each module
is shown the module size and the number of inter-layer links in the module.
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6.1 Conclusions

In this thesis, we studied transcriptional regulatory networks, responsible for the genetic regulation of

organisms. More specifically we analyzed the transcriptional network of closely-related yeast species.

Our approach consisted of two phases. The first one corresponds to the study of functional elements

in the species (Chapter 4). For this purpose, we analyzed the structure of the networks by performing

a modules detection step. Then, we unveiled the functionalities associated with the genes of the ex-

tracted modules. In the second stage, we executed a cross-species comparison where we consider the

homology mappings between species to find functional structures conserved among species (Chapter

5). With the results obtained in this work, we managed to contribute with important information about

the species in study.

In Chapter 4. we began with the functional analysis of modules detected in the species. From

the different algorithms used for module detection, the methods based on optimization of the modu-

larity achieved better performance. Of these, we highlight Leiden, which best managed to combine a

balanced division of modules with a good functional classification. After extracting the modules, the

functional analysis was performed using the label assignment process. The classification of modules

revealed that there are biological functions more represented than others among species. Suggesting

that these are central processes in the development of the organisms. From these processes, we can

enumerate the metabolic process, cellular process, biological regulation, response to stimulus, or cat-

alytic activity. Moving to Section 4.3, we verified that, although some modules seem functionally related,

these may be responsible for distinct sub-processes. In the conclusion of the chapter, we compared

the functional characterization of the different species. Here, we point out some interesting results. For

instance, the identification of specific functions such as growth or multi-organism process in species

with less genetic evidence that were not detected in S. cerevisiae. Also, we observed that the quantity

of genetic evidence does not translate into a better functional characterization of species. We conclude

that the functional diversity detected in species is correlated to the number of transcription factors and

the different processes in which they participate.

In Chapter 5, the cross-species comparison allowed us to draw some conclusions about the genetic

similarity that exists between species. First, by evaluating the degree of connection between modules of

different species, we verified the existence of some strong connections. It was demonstrated that these

strong connections have their origin in the conservation of functional elements in the modules. The

structural elements conserved in the modules were identified as being formed by homologous genes

associated with important functions such as metabolic process, cellular process, biological regulation,

among others. These connections were also fundamental to infer new functional elements in some

modules that were not detected in Chapter 4. Finally, with the creation of the multilayer network, we

confirmed the existence of preserved structures across species. In these preserved structures, we were
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able to verify the combination of functions previously defined as conserved. This final step also allowed

the identification of functions not previously detected in the species.

In conclusion, with our approach, we were able to functionally characterize the different yeast species.

We identified the functions most represented in the species and responsible for most of their behavior.

Beyond that, we also uncovered less represented functions responsible for specific processes in the

species. Lastly, we identified the structures conserved across species and the functions associated with

them.

6.2 Limitations and Future Work

Although we achieved good results with our approach, we have encountered some limitations. Starting

with the detection of modules, some of the algorithms did not present acceptable results. This limited

the number of algorithms used, so it was not possible to compare a wide variety of modules detection

techniques. Nevertheless, the biggest constraints reside in the label assignment process. First, it is

difficult to find meaningful terms with the p-value similarity in large modules (in relation to the others).

Therefore, if there is an unbalanced division of the network, it will be difficult to label the larger modules.

A possible solution would be to increase the interval of p-value in which we consider a term as over-

represented. However, this would likely lead to the detection of terms not specific to these large modules

and already present in others. Also, the threshold we used to consider a term as relevant in a module

(10%) may be too restrictive. As a consequence, specific terms (only associated with a small set of

nodes), may end up not being detected by the method, as it happened with some specific processes

(multi-organism and developmental processes) in S. cerevisiae. To overcome this problem, a possible

solution would be to adapt the threshold value to the size of the modules. For this, we could test different

values for the threshold in a set of modules with different sizes and see with which values the best

performance is achieved. Then, we could verify if there is a relation between the threshold values and

the size of the modules that would allow us to predict the threshold values for each module considering

its size. Larger modules would have lower threshold values to facilitate the detection of more specific

functions.

Lastly, additional future work is worth exploring. In the study of the results of the algorithms, we

used different parameters to evaluate their performance. As future work, we could consider the creation

of a measure that would allow us to evaluate the functional characterization of the modules. To create

this measure, we could combine the diversity of functionality found in the modules and the proportion of

genes in the modules that are covered by the functions assigned to them. Therefore, modules associated

with functions covering almost all of their genes would be considered as well-classified. Moreover, in

Section 5.2, it would be possible to explore in more detail the conserved structures found across species.

72



For example, since we only look at global processes, an analysis of their sub-processes could reveal

whether or not these modules can encode specific regulatory patterns. Furthermore, we found some

genes in those modules that were not associated with any Gene Ontology terms. We could attempt to

use the functions of the modules in which these genes are to predict their functionality, always taking into

account that we do not have the genetic evidence to confirm the possible predictions for these genes.
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Y. Moreno, “Structure of triadic relations in multiplex networks,” New Journal of Physics, vol. 17,

no. 7, p. 073029, 2015.

[53] R. G. Morris and M. Barthelemy, “Transport on coupled spatial networks,” Physical review letters,

vol. 109, no. 12, p. 128703, 2012.
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