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There is a variety of distributed transactional systems that differ in the
models and mechanisms they employ — how a system writes an object,
which concurrency control mechanisms they use to achieve transactional
properties, and more. Despite the variety of the models among different
transactional systems, most systems are designed with a single transactional
model in mind. Thus, they provide little to no support for updating or
swapping between different models. Additionally, we noticed that for most
transactional systems, there is a common set of steps that need to be executed
in order to begin and end a transaction. Given these two aspects — the lack
of changeability and the shared components — we propose a framework that
can modularize common and mandatory steps of distributed transactional
systems with standard combinable interfaces. This would allow, with the aid
of a configuration file, the user to interchange between different models of
transaction at build time. This framework is targeted at a varied set of existing
transactional systems that are representative of almost all existing different
systems. The VTL framework is ported into a system where we implement
two of its transactional models (pessimistic and optimistic) and evaluate
them. This evaluation procedure revolves around comparing the results of
the system with and without this additional layer. We demonstrate that
the framework behaves exactly as the two distributed transactional models
of the system, in terms of functionalities, despite the split into different
blocks. Although the flexibility and changeability aspects are impressive,
it still translates into a cost of around 60% of the throughput without the
framework.
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1 INTRODUCTION

In computer science there is constant change and evolution, almost
everything is coded in a particular way with the objective of be-
ing easily adaptable and understandable. This aspect is vital for IT
businesses, around 85-90% of its software budgets are spent in code
evolution [16]. However, regarding transactional systems, most of
them are designed with a single model in mind and provide little to
no support for updating or re-configuring it [11; 12; 14; 15; 21; 22].
If the user decides to change a particular aspect of the model being
used, most of the time he will just have to change to another system
instead of changing a parameter on the system currently using. Con-
sider the scenario where a user using Google Spanner [11]. After
an analysis, the user verifies that conflicts are rare in their system,
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and realizes that an optimistic approach would benefit the system’s
performance. Since Google Spanner does not provide an alternative
concurrency control protocol, the user has to change to another
system, for example, Centiman [12] which provides an optimistic
concurrency control protocol. There is a huge variety of systems
where each one of them try to explore different sets of properties
(different levels of consistency, different concurrency control mech-
anisms, and others). System architects can get overwhelmed with
having to choose the most efficient transactional model for their
system. After choosing a model, if they realize that it is not the most
efficient one, it might not even be worth it to swap it, due to all of
the work that it is to use an entire different system. In the context of
academia, researchers, when studying transactional models, might
need to build all of the desired models from the group up, when
often they just want to change smalls parts of a whole. It is hard to
find solutions that offer a simple and quick way to swap between
several different transactional models.

Systems that are distributed into several nodes and use transac-
tions to process and execute user requests, distributed transactional
systems, can differ significantly. They might use different concur-
rency control mechanisms with the intent of guaranteeing the ACID
properties of the transactions. For example, Google Spanner uses
two-phase locking [11] to obtain exclusive access to a transaction’s
data items, Centiman handles an optimistic concurrency control
mechanism [12] to detect concurrent access to transaction’s data
and ecStore adopts a combination of an optimistic concurrency con-
trol with a multiversion mechanism [13] to provide a valid view
of the data to the transaction. Isolation levels are also another as-
pect that systems normally vary. They consist in defining how is
a transaction isolated from others that are executing concurrently.
In the lowest isolation level, transactions can read uncommitted
changes (and other consequences), which it is called dirty reads. At
the highest isolation level, unless they are read-only transactions,
transaction act like they are executed in sequence instead of concur-
rently. This guarantees that no transaction will access changes made
by another one before it has committed. However, the increase of
isolation levels will reduce the throughput of the system. Besides
the concurrency control and the isolation levels, systems also vary
in other aspects, such as in the replication scheme, how transactions
are timestamped (using logical clocks, true time, etc), and more.
Users are responsible for understanding and making a decision of
which system is more suitable for them based on what properties
they value more. If a user is trying to access his bank account details,
he values its robustness and the consistency of its details much more
than the time it takes to complete his order. On the other hand, (less
critical systems, that value speed over consistency) value its avail-
ability or time instead. These types of aspects, that exist in every
transactional system and that might differ depending on what the
user or the service provider want, need to be taken in consideration
in order to build our solution.

It is visible the abundance of distributed transactional models
and how differently they behave. For each different model there
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is almost a distinct way of how an object is written, what to do
after the write of an object, when the transaction commits, waits
or aborts, and several other aspects. However, the steps that each
distributed transactional system goes through are essentially the
same for all systems. For instance, all of them need to replicate
the data, validate the transaction, timestamp the transaction, etc.
What changes between them is, how each step is done, to whom to
replicate, how the replication is done, how is it timestamped, and
more. Given the issues regarding changeability between different
transactional models, and the common mandatory steps needed
to execute transactions for most distributed transactional systems,
we had the idea of creating for each step a generalized library that
distinct protocols implement from and that allow to swap between
different implementations with a simple configuration file or switch
case.

Our goal for this thesis is to develop a framework that can
modularize common and mandatory steps of distributed transac-
tional systems with standard combinable interfaces, that allows
interchanging different models of transaction. With this, system
architects can simply use existing components, and explore how
varied transactional guarantees can be constructed using these stan-
dard building blocks. For instance, assuming our VTL is added to
Google Spanner, in order to change to another concurrency control
mechanism, (to an optimistic locking mechanism) they only have
to change the concurrency control interface, from a 2PL (2-Phase
Locking) to a OCC (Optimistic Concurrency Control). In context of
academia, this is absolutely useful, since most of the times when
you are building a new transactional approach, you have to build
everything from the ground up, when often you just want to change
small parts of a whole. With the aid of our framework, you can sim-
ply do that by changing which interface of a particular module you
want to change. And in case our framework does not yet support a
particular algorithm, you can implement just the algorithm itself
without having to implement the complete system.

2 RELATED WORK
2.1 Steps of a distributed transaction

From a user requesting a transaction to be executed, to the transac-
tion finishing, numerous steps need to occur that are common to
all systems. These steps might have different names, be aggregated
inside other steps, or even done at different times. But they are
mandatory in most distributed transactional systems. We defined
them as:

e Preparation. It consists in preparing the execution of the
transaction. Before a transaction is executed, the system
might need to timestamp the transaction, replicate it to other
nodes, etc. This phase is where all those operations are done.
For example, we will view in section 2.2, that Calvin needs
to timestamp transaction at arrival before they are executed.
We consider that process to belong in the preparation step;

e Execution of all read and write operations requested by that

specific transaction;

Validation. This step consists in approving each operation of

a transaction, in the sense of, guaranteeing that there are not
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other conflict concurrent transactions. In other words, it re-
volves around mutual exclusion. Different algorithms do this
step differently and at different times. Optimistic [12; 24-26]
perform their validation after all operations of a transaction
are executed. Pessimistic protocols [15; 27-30] on the other
hand, do this step while they are executing the transaction.
They guarantee, with the use of mutual exclusion algorithms
(locks, for example), that no other transaction is accessing
or writing that particular object. In both algorithms, the out-
come of the validation selects what is done on the next step.
If their validation is not approved the transaction will abort.
If the validation is valid, the transaction commits;

Commit or Abort step is done after the validation of a trans-
action and it results on the transaction being committed or
aborted. The transaction will commit the changes to the data-
base if it was successfully validated in the previous step - no
conflict was found that negates any property of the system. As
soon as the changes are durable, meaning that in any crash
scenario, the changes done by the transaction will not be
lost, the transaction is ready to finish. Alternatively, if some
conflict invalidates a property defined by the system, the sys-
tem failed to be validated and it is going to abort. Aborting
means that the every modification and access that transaction
made is reverted and discarded. After which, the transaction
is ready to finish. For systems that have automatic retry, they
would just jump to the execution step and retry to execute
the transaction again;

Replication step is essential to propagate the results and
the operations that a given transaction has committed. Some
systems even replicate the transaction’s input to replicas [14];
Finish This step is ran normally after the transaction com-
mitted or aborted. It consists in releasing any resource it still
holds (releasing locks for example).

2.2 Discussion of existing systems

Our aim was to choose a varied set of existing transactional systems
that are representative of a variety of different relevant protocols.
We have chosen systems with optimistic concurrency control, 2-
phase locking, deterministic locking and multiversion. Besides the
concurrency control, we have also chosen systems that differ on
other aspects. Such as, whether the replication is synchronized or
not, does the transaction get timestamped and more. We analysed
Calvin [14], Google Spanner [11], Centiman [12], Granola [15] and
EcStore [13]. By analysing the above mentioned systems, it is vis-
ible that they share a notable amount of components, and that in
some of them different mechanisms are used. Before jumping into
the architecture of our solution, first, we must briefly discuss the
various different components and mechanisms that are shared and
mandatory in the systems.

Considering timestamping, the portion of the systems discussed
timestamp the transaction before it commits [13-15]. Multiversion
approaches also use timestamps in order to identify different object
versions [11; 13]. Calvin [14] uses this timestamp as a concurrency
control by pre-ordering the transactions, and executing them in
that order. On the other hand, Granola [15] uses this timestamp



as a coordination mechanism to provide serializability for single-
repository and independent transactions by propagating timestamp
ordering constrains between repositories. Other systems timestamp
transactions at commit time [11-13]. Google Spanner uses real time
timestamps with Google True Time APIL Centiman timestamps a
transaction right when it is ready to commit to enter the valida-
tion step. EcStore [13] timestamps twice, once at the start of the
transaction and on commit time.

All systems need to replicate their objects. In order to do that,
they also need to know which nodes are present in the system and
where they have to replicate to. Existing systems might want to
replicate to only a set of nodes or to all of them. In Spanner [11],
the applications can choose where to replicate to. In Granola [15],
repositories are replicated using a set of 2f+1 replicas to survive
f crashes. Besides replicating to a different set of nodes, how the
replication is done can also vary. Systems might only support syn-
chronous replication using a consensus protocol like Paxos [11; 15].
In contrast, systems might only support asynchronous replication
[13]. There are systems that even support both synchronous and
asynchronous replication [12; 14].

Another aspect that is present in all distributed transactional
systems is the concurrency control. Various systems use different
concurrency control mechanisms: deterministic locking [14; 15],
two-phased locking [11], optimistic control [12] and even a hybrid
between optimistic and multiversion [13]. All of them perform the
exact same set of operations (read, write, commit, abort, etc) but, as
we can see, they can be done in distinct approaches.

3 ARCHITECTURE

As previously noted, especially in section 2.2, various different sys-
tems possess a variety of common steps.

Most of the systems need to timestamp transactions, replicate
transactions or objects, communicate with other nodes in the net-
work and manage the concurrency control of the transactions. The
route taken to achieve each and every one of these steps can differ
greatly, depending on the protocol the system has implemented.
For example, as we have seen, relating concurrency control, Calvin
[14] uses deterministic locking, while Centiman [12] employs an
optimistic concurrency control. It is essential to note that, even
though it exists high variability in distributed transactional systems,
there are few options to aid changeability. In other words, systems
normally only have one concurrency control protocols implemented
[11; 12; 14; 15; 21; 22; 24; 25]. If we conclude it is more beneficial to
change to another protocol, that would prove itself to be quite the
task — unless we alternate to another system. We realized that the
steps that most systems share can be generalized into white boxes
which we referred to as modules, hereafter.

Since our goal is to implement a generalized modular framework
that is able to represent a wide group of distributed transactional
systems, we had to correspond the mutual phases into different
modules. Each module will be a generalized interface that is always
present and most of the time implemented differently depending on
the system.

Different systems might use different ways to represent the nodes
in the system — ring structures, tree structures, fully connected
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network and more [13; 22; 31] . First and foremost, since this is a
framework for distributed systems, it is important to have a com-
ponent responsible for tracking the existing nodes in the system. It
should also be in charge of initializing the communication between
them. With this in mind, we defined the module group membership
to fulfill these roles. Secondly, we confirmed that timestamping is
crucial and that can be done differently depending on the distributed
transactional system. Additionally, transactions might also be times-
tamped at different times. We have seen that for Calvin [14], they
timestamp the transaction as it arrives which is then executed in
order based on the arrival times. Thus, we defined an order module
to be responsible for timestamping transactions and ordering them.
The next module we found to be essential, is one that is in control of
replicating objects and transactions to a set of nodes. The structure
of the system dictates to which nodes the replication process is
to occur. The process in itself, how it is to be done (passively or
actively), is also dependant on the system, as well as the algorithm.
We designated this module as the replication module. The last mod-
ule we defined tackles the management of the concurrency control
being used by the system. As we have seen, there is an extensive
amount of distinct concurrency controls. However, since most of
them share the same set of operations (all of them have to read
and write operations, commit, abort, release resources, and more),
we can represent them by a single generalized module. This is the
Concurrency Control Manager module

3.1 Data Structures

Regarding data structures, it is crucial to fully grasp the concepts of
transaction, content, node and message.

Transaction is an object which contains the write-set and read-
set of its operations as well as the locks the transaction has detained.
Each time an operation (read or write) of a particular transaction
occurs, it will add to its read-set or write-set respectively. Whenever
a transaction is being replicated, it includes the replication of both
of these sets. This object is also timestamped during the flow of
the execution of a new transaction. Some systems need to store
the timestamp of arrival, but all are required to store when the
transaction commits. Both of these timestamping values are stored
in the object transaction.

Content essentially acts as a key/value store. It has a key and
a value which corresponds to the object being stored. For systems
that do not use key/value store, one has to convert their structure
into a key/value store. To read and write contents, the operations
need to have the content key to access or update the value of the
object.

Node is a simple object which contains the information necessary
to contact a particular node (for example, attributes such as socket
ports, ID and more). It also has a list of contents which indicates
the write operations of that particular node. For instance, suppose
that node 1 executes a transaction with only one write operation.
After the commit of the transaction, the changes to the database
(this write operation) will get replicated. Every node that receives
the replicate message, will add this new modified object to the list
of their node 1, knowing that node 1 updated that particular object.
This proves to be extremely useful if a node crashes, since the nodes
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Fig. 1. System overview - An overview of the system with this layer
implemented.

that received the replicate messages could take the responsibility
of the objects that the failed node had. The Node object also con-
tains a role enumerator which indicates if it is a timestamper or
only a forwarder. Which indicates if a node is allowed to times-
tamp transactions. Timestampers are responsible for timestamping
transactions, while forwarders are incapable of doing so, so they
will instead resend the running transactions to a node that has the
timestamper role. This allows two different timestamping models.
On the one hand, we have a centralized approach where there is
only one timestamper node and every other node needs to contact
it to timestamp it. On the other hand, alternatively, we can opt for a
decentralized approach where every node (or only a particular set
of nodes) are timestampers.

Message is a simple serializable object that is utilized in the com-
munication between different nodes, for example, in the replication
of transactions. It contains the sender and receiver node ids, the
transaction to replicate (and its changes to the database) and finally
a message type. This message type has only two values: Replicate
and Replicate Writes. The first has the purpose of replicating the
transaction to other nodes, making them capable of running that
transaction, if needed. The latter has the intent of replicating the
changes done to the database by that transaction. This message ob-
ject will be sent from one node’s communication object to another
node’s communication object. We will observe in more detail how
the communication is done in section 3.3.

3.2 Framework
The framework has two main objectives:

(1) Function as a gateway between the system and the different
modules, the rest of the architecture.

(2) Establish a proper flow depending on the transactional model
selected.

To fulfil the first objective we have to understand the system we
are porting into, and find where it executes all the relevant methods
to the framework. Then, we must call the respective methods from
the framework. For instance, once we located where a new transac-
tion is created, we had to call the beginTransaction method from
the framework. Additionally, we also had to understand what the
system does once a new transaction arrives, and portray that to the
begin transaction method of the framework. If it timestamps the
transaction once it arrives and replicates it, then our begin transac-
tion needs to also timestamp it and replicate it, in order to comply
with the transactional model displayed by the system. This analysis
was essential for every method of the framework interface. We will
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describe the steps of how to port the framework into a new system
in the next chapter, in section 4.3.

The framework can be seen as a module of the system because
like the modules, it should be specific for every different system
and implement from a generic interface. This occurs due to the
implementations of different systems and especially, its transaction
models. For instance, a begin transaction of a locking model might
not need (depending on the system) to timestamp the transaction
once it arrives. However, in a system like Calvin [14], once the
transaction arrives, it needs to be timestamped and executed in that
arrival order (based on the timestamp).

Having that in mind, the methods we defined for the framework
API were: beingTransaction(txn); read(key,txn), write(key,value,txn),
validate(txn), commit(txn), abort(txn), replicate(txn) and endTransac-
tion(txn).

3.3 Modules

Module: Group Membership - The group membership module
focuses on which nodes participate in the system and the roles they
play. We defined two possible roles: timestamper and forwarder.
Timestampers are responsible for timestamping transactions. In
contrast, forwarders are incapable of doing so, so they will instead
resend the running transactions to a node that fulfills a timestamper
role, in order to timestamp the given transaction. As previously
explained, this allows different types of timestamping models. A
system that needs a centralized timestamper, for example, Google
Spanner [11], only needs one coordinator. This node is solely respon-
sible for timestamping every transaction, thus, every other node
cannot timestamp them. Therefore, you would classify the coordi-
nator as a timestamper and all the other nodes as forwarders. For
leader election systems, leaders are classified as timestampers and
slaves as forwarders. In these two scenarios, it makes sense to have
the system composed by timestampers and forwarders. However, if
you need a fully decentralized system, every node will only have
the role of a timestamper. The methods defined for the group mem-
bership API were: getNode(id), getNodes(), getReplicationTargets()(,
getTimestamper().

Module: Ordering - This module is responsible for ordering
transactions and timestamping them. It might be accessed to times-
tamp transactions at different times. It is normal for systems to
timestamp only on commit. However, some need to timestamp the
transactions on arrival to define an execution queue. In other words,
transactions are ordered and then executed in that sequence [14].
This module has an object clock. This object is an interface and
it depends on which algorithm the clock parameter was instanti-
ated. This means that, the order module is independent of the type
of algorithm the clock is launched with (logical clock, real time,
etc). The methods defined for this module’s API were: timestamp-
Startup(txn), timestampCommit(txn), compareTransaction(txnl, txn2),
lockGet(content) and lockRelease(content).

Module: Replication - The replication module focuses on the
interactions regarding replicating transactions between different
nodes in the system. Some systems might need to replicate the trans-
action once it arrives to other nodes in the network, to guarantee
that the transaction is executed. Basically, the idea is that, when a



transaction first arrives, a node will be responsible for executing it.
We replicate the transaction to other nodes allowing that, if the node
responsible fails, the transaction can be executed by other nodes.
After a transaction commits, systems require that their changes get
replicated to other nodes to guarantee the durability property of that
transaction to the database. This grants a feature in which all nodes
that receive the replication message know the changes done to the
database. Therefore an already existing node can now be responsible
for the objects that the failed node was previously accounted for.
Before executing any of the replication methods, the replication
module first needs to gather the list of nodes to where it should repli-
cate. Different algorithms might have different destination nodes
(replicate to only one node, to all nodes, etc.). Group Membership
module returns this list with getReplicationTargets() method. This
module’s API consists in: replicate(txn, nodes), replicateResult(txn,
nodes).

Module: Concurrency Control Manager - This module is re-
sponsible for managing the resources based on the concurrency
control mechanism. This module is responsible for managing the
resources based on the concurrency control mechanism. By ob-
serving different systems we concluded that, independently of the
concurrency control mechanism, all of them need to initialize their
concurrency control mechanism, execute read and write operations,
validate, commit, abort and finish transactions. If there are several
different concurrency control protocols, we strongly recommend
to have a module for each one of these mechanisms. When creat-
ing/importing the database it is important to initialize all necessary
concurrency control mechanisms for each object in the database.
For example, create the locks for each object in the database. Once
that is done, operations (reads and writes) will get executed by a
transaction, which will call these read and write methods, respec-
tively. For each operation, this module will gather the necessary
resources and release them if the isolation level selected requires to
do so. Besides these methods, the manager will also call any validate,
commit, abort and finish methods. For pessimistic approaches, the
validate method should not be implemented nor called from the
designated framework. All other methods are shared between every
concurrency control protocol. These methods consist of this mod-
ule’s APL: initContent(key, object), write(txn, key, object), read(txn,
key), validate(txn), commit(txn), abort(txn), finish(txn).

3.4 Communication

In a distributed environment it is essential that nodes communicate
with each other. We need this functionality for the replication as-
pect and in case it is desirable to implement fault tolerance (in the
sense of, the transactions that were about to be executed by a node,
are executed by another in case of crash). Different systems will
have the communication done differently, via sockets, via SOAP
web services and other ways. Therefore, we also need to provide
a level of flexibility in the communication interface to allow the
implementation of a variety of different mechanisms. The commu-
nication between the nodes of the system rely on the use of the
object Message previously described in 3.1. It basically contains
a message type which indicates the receiving node what kind of
operation we are doing. Depending on the message type, the node
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receiving the message, will either store a new transaction or store
the writes that transaction did. It is important to remember that,
just like in the modules, if a developer does not want the commu-
nication with sockets and instead desires with SOAP web services,
the developer only needs to implement the methods of the interface
and the algorithm. The communication API used by each node has
the following methods: get(msg), sendMessage(msg, targetCommu-
nicationInterface), initReceiver(nodeld, isClient), initSender(nodeld,
isClient) and recvTransaction().

The initialization of the communication of the nodes (initRe-
ceiver() and initSender()) is done when the Group Membership is
creating every node. Each node will be able to send messages to
every other node and also receive them. For the messages to get
received, there must be a thread that is constantly looming for new
messages.

The flow of the communication between nodes is rather simple.
After they have been initialized with initReceiver() and initSender()
in the group membership module, they are ready to send and re-
ceive messages. To send a message to a node, the node only needs
to call the method sendMessage(msg, targetCommunicationInterface)
through its communication attribute. The destination node has a
running thread that is waiting for messages (method recvIransac-
tion(). Once the message arrives, the thread will execute get(msg)
which will read the type of the message and the messaged will get
processed as intended. (For example, if the message type is to repli-
cate the transaction, the get message will store that transaction).

4 |IMPLEMENTATION

We next justify our procedure of choosing a system to port our
framework into. In addition, we will discuss what scenarios we
discarded for our solution.

4.1  Which systems and What Language

To demonstrate the potential of our solution, we had to choose a
system that has multiple transactional models, different replication
protocols, and so on. The alternative of finding one system that
contains all these desired properties, is to port into two different sys-
tems that together contain what we desire. We value the first option
more, due to the overhead of learning how the system works, before
actually implementing and porting the framework. Besides valuing
these aspects, we also had to take in consideration on what language
the system is coded in and how complex is the code to understand
and port the framework into. For every system we considered, we
located where the relevant aspects of the framework were (where
the replication occurred, how nodes are represented, concurrency
control mechanisms and everything else). Once located, we decided
to attribute a score (0-10) of how complex the system appeared to
be. Although, the results show that Ignite [22] is the system with
lowest score, it only supports multi-version concurrency control.
Thus, we would had to pick an additional system to represent a
different transactional model. The problem was that the other java
systems that we considered, had quite bigger scores comparative to
the others. The second on the list is Deneva [19], which represents
a wide variety of different transactional models, plus, it has a decent
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score difficulty associated. Given these reasons, we decided to port
our framework into Deneva.

4.2 Assumptions

The system we ported our framework into, Deneva [19], has a in-
memory distributed database that is partitioned between the nodes
of the system. For every operation (read or write) being executed
by a transaction, the system needs to contact the partition which
contains that desired object, and execute the operation. Once the
transaction finished executing all its operations, it is ready to commit
or abort and to finish. To do so, the system needs to contact every
partition and commit/abort their changes and release the resources
that they had allocated.

Deneva does not have replication implemented. We had to decide
between implementing replication or adding transaction recovery
to our framework to retrieve a previous state in case of aborts. We
opted for a simple replication implementation. How the replication
is done was explained at the replication module section. By imple-
menting replication we postponed the idea of transaction recovery
in the case of transactions aborting. We know that this feature is
essential in almost every transactional system but yet considered
that replication has a bigger footprint. It is important to remember
that we implemented a naive way of replication and do not wait
for acknowledge messages. We do this so the values of throughput
and latency are not as damaged, allowing us to still compare these
results with the original Deneva.

We do not support node failure. However, the replication archi-
tecture and implementation puts us a step closer to supporting node
failure. Basically, the idea is that, when a transaction first arrives, a
node will be responsible for executing it. We replicate the transac-
tion to other nodes allowing that, if the node responsible fails, the
transaction can be executed by other nodes. Another idea is that,
when a transaction commits, the changes of the database will also
be replicated. This grants a feature that all nodes that receive the
replication message, know the changes done to the database and
therefore an already existing node can now be responsible for the
objects that the failed node was responsible for.

4.3 Porting into a different system

To port the framework to a different system, you need to have the
knowledge of the system and know how a transaction is handled.
Every system behaves differently and handles the transactions dis-
tinctly. The first step is to implement the framework corresponding
to that system which are basically calls to methods of the modules.
For instance, a begin transaction in a system like Calvin, need to
timestamp the transactions at arrival, therefore, in the framework,
it would call the module Order to timestamp the new transaction.
However, in Google Spanner [11], transactions do not need to be
timestamped on arrival, so there will be no call of the module Order
in begin transaction method of the framework. You need to figure
out what happens to a transaction for each of the methods of the
framework interface.
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Fig. 2. Validation of conflicting scenarios in different protocols implemented
by our framework in regard to the original Deneva in a centralized environ-
ment. Two transactions executing concurrently varying which operations
are done, the concurrency algorithm and the isolation levels. We showcase
which transaction commits out of the two, and if the exact same result
occurs in the original Deneva.

Besides knowing how a transaction is handled in that partic-
ular system, you also need to know where does the manipula-
tion of the transaction occurs. In other words, you need to lo-
cate important operations done to a transaction and call the re-
spective methods of the framework. These relevant operations are
declared in the framework interface and consist of: beingTrans-
action(txn); read(key,txn), write(key,value,txn), validate(txn), com-
mit(txn), abort(txn), replicate(txn) and endTransaction(txn).

Additionally, the modules are also likely to be distinct from sys-
tem to system, therefore, it is recommended to implement them
given the target system. For example, the replication module, it
states how and to whom does a transaction need to be replicated to.
For a system it might need to replicate only to a set of nodes, while
in another system, to every node or to no other node. Another im-
portant aspect when importing the framework to a different system,
is if the algorithms it utilizes are already implemented. For example,
the system might need to use logical clocks, which are not yet im-
plemented, in the order module to timestamp the transactions. In
these cases, you have to implement the algorithms in need and call
them in the modules desired. It is important to note that, the frame-
work, each one of the modules and algorithms have an interfaces
that should be implemented and called from, from the respective
modules. This allows to swap between algorithms by changing a
variable on the configuration file. Plus, if there is a change to be
made on the algorithm, everything else is unchanged. However, not
every algorithm/module might fit perfectly with the interface. For
example, the interface for the manager of the concurrency control
has a method of validation, even though the locking mechanism
does not validate the transaction. Once the framework, modules,
necessary algorithms and calls to the framework are implemented,
the only thing remaining is to add to these different alternatives for
to the switch cases in the configuration class.

5 EVALUATION

We will discuss the results of our tests in this section. Since we
ported our variable transactional layer into Deneva, it makes sense
to compare each testing result with it. This means that we had to
execute all the scenarios for the system without the additional layer,
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Fig. 3. Validation of conflicting scenarios in different protocols implemented
by our framework in regard to the original Deneva in a distributed environ-
ment. Two transactions executing concurrently varying which operations
are done, the concurrency algorithm and the isolation levels. We showcase
which transaction commits out of the two, and if the exact same result
occurs in the original Deneva.

as well as, the system with the framework ported into. We will
address Deneva without the framework as the original Deneva.

Firstly, we will discuss the correction tests. These tests try to
showcase that our framework behaves exactly as the original Deneva
in terms of functionalities, despite the split into different blocks. We
focused on the more complicating scenarios, where transactions are
executing concurrently, accessing and writing the same objects. For
different algorithms and isolation levels, we will execute different
operations and make sure our solution and the original Deneva
make the same decisions on which transactions commit and abort.

Secondly, we will evaluate the system with our variable trans-
actional layer in terms of throughput and latency and compare it
with the original Deneva. We will discuss the overhead that our
framework brings in relation with the original implementation. We
will vary the amount of servers and the contention levels for both
transactional models. In our evaluation the YCSB benchmark [20]
will be used.

We deployed the framework on GSD Cluster hosted at IST-DSI.
The amount of nodes will depend on how many clients and servers
were used for each experiment. Each node consists of a CPU of eight
cores with 2.13GHz speed and 40GB of memory. Before each test,
table partitions are loaded on each server. The first 60 seconds is a
warm-up period followed by another 60 seconds of measurements
with a load of 10000 open client connections per server.

5.1 Correction tests

For this scenario of tests, there will be two transactions were ex-
ecuted simultaneously and concurrently. The operations done by
each one are represented into R and W, corresponding into a read
operation and a write operation, respectively. These operations are
performed onto the same 4 objects concurrently. For example, each
transactions will make an operation (Read or Write) to objects with
identifiers of 1, 2, 3 and 4. To guarantee that the transactions are exe-
cuting concurrently, besides being started at approximately the same
time, each one of them will sleep for one second after doing each
operation. This means that each transaction will take at least four
seconds to execute. This disallows a transaction to finish quickly
before the other one even began. It is important to note that,
both transactions are being executed concurrently, but transaction
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0 will always execute the given operation right before transaction
1. In other words, the transaction that gathers the first lock for the
first object, will always gather first the lock of the second object
and so on. For instance, Transaction0 will read object 0 and sleep
for 2 seconds, transactionl will read object0 and sleep for the same
amount (2 seconds). After 2 seconds, transaction0 will read object1
and sleep again, transactionl will read object1, sleep, and so forth.

We have two different transactional models, a pessimistic one and
an optimistic one. On the pessimistic approach, three different isola-
tion levels are implemented. Reads uncommitted, reads committed
and serializability. In the optimistic approach only serializability
is implemented. So we executed two transactions concurrently, ac-
cessing the same four objects and perform different operations on
all of these different isolation levels for both transactional models.
In addition, since this is a distributed partitioned approach, we did
these tests for both a non-distributed system (executing only on one
server) and for a distributed system (multiple servers).

Pessimistic approach - We can observe that in the pessimistic
approach there are three different isolation levels. If the isolation
level is serializability, the highest isolation level, we can view that
if both transactions read the same objects, that both will commit
successfully. Although, for the other three scenarios, one transac-
tion will always abort. In these three scenarios, a transaction can
successfully commit if, and only if, it can gather every lock that it
requires before any other transaction executing concurrently. In
this scenario, we considered that the transaction that gathers the
first lock for the first object, will always gather first the lock of the
second object and so on. In this particular scenario, the transaction
that gathers all the locks first, will successfully commit and the
other transaction will abort.

For read committed we can see the appearance of non-repeatable
reads, meaning that, during the execution of a transaction, reading
the same object could read different values. In this scenario, the locks
that are shared (from read operations) are released right after the
read operation is complete. Observing the table 2, we can continue
to see that both transactions still commit when both execute read
operations. When transaction 0 reads and transaction 1 writes, we
can see that both are allowed to commit. However, when it is the
other way around, only the write is allowed to commit. This occurs
due to the read locks now being released right after the operation
is executed, while the write locks are still only being released on
commit and abort. This means that, once a transaction has acquired a
write lock, no other concurrently executing transaction can execute
any operation on that object.

For the isolation level of read uncommitted, the transaction are
allowed to commit for every scenario. Here, the locks are released
immediately after the operation is executed instead of waiting for
the transaction to finish.

Optimistic approach - For the optimistic approach, only serial-
izability is implemented and observed. Just like in the pessimistic
approach, if both transactions make read-only operations, both
will successfully commit. The rest of the results are quite different
from the other transactional model. Analysing the scenario where
the transaction0 performs read operations and transactionl write
operations, we observe that unlike the pessimistic approach, the
transaction that first accesses the object does not commit. In this
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Fig. 5. Contention - Throughput measurements for each protocol varying
the skew factor on 8 servers.

model, transactions make all the operations freely and validate the
entire transaction at the end. In this case, transaction0 will not get
validated due to another transaction modifying the value that it had
accessed. However, the transaction that modified the value (trans-
actionl), will validate successfully due to other transactions not
conflicting with it. We can briefly say that, for this model, write
operations cause conflict with other transactions accessing the same
object, but read operations do not cause conflict. The same process
happens for transaction0 writing and transaction1 reading, the write
is allowed to commit, while the read is not. Lastly, if both transac-
tions write the same objects, none of of them will commit unlike
the pessimistic model.

é
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Fig. 6. 99th percentile Latency - Latency from a transaction’s first start
to its final commit varying the cluster size.
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5.2 Throughput tests

We now present our evaluation and analysis of the two concur-
rency control protocols, an optimistic concurrency control and a
pessimistic one (wait and die protocol). Just as for the previous
test, we evaluated both the original Deneva and our VTL to then
compare the results of the evaluations to highlight the implications
of having a modular framework added to a system. To accomplish
this, we focused on analysing the same aspects that were observed
and discussed in Deneva’s document. The benchmark used in our
evaluation was YCSB - The Yahoo! Cloud Serving Benchmark [20].
The setup was the same as in the Deneva’s Document, single table
with a primary key and 10 additional columns with 100B of random
characters. The table is partitioned by the primary key using hash
partitioning [19]. Each transaction will access ten records that can
be either read or write operations that occur randomly, following a
Zipfian distribution tuned by a skew parameter.

5.2.1 Contention: We first measured the influence of increasing
the amount of contention in the system by tuning the skew param-
eter. Contention occurs when transactions make operations (read
or write) to the same object. In this experiment, we configured
the operations into 50% writes and 50% reads in a 8 servers (and
8 clients) setup. What is instantaneously noticeable by observing
Figure 5 is that, the throughput clinically declines with the incre-
ment of the skew parameter. Unlike the original document, we can
observe the decline sooner ( 0.2) than what they represented ( 0.6).
At 0.0 contention, it is surprisingly that our solution shows a higher
throughput in both algorithms, comparatively with their respective
original protocols. This occurs due to the latency values which will
be discussed further in the document. At low contention, both OCC
protocols perform worse than the pessimistic protocols due to the
overheads of validation [19]. However, once some the contention
levels increase (at around 0.4) we can see that it overtakes the de-
terministic protocol. At 0.9, when the contention is highest, all of
them reach their minimum throughput, as per expected.

5.2.2  Scalability: The previous experiment was mainly focused
on varying the skew parameter and observing how the systems
behaved regardless of the number of nodes. In contrast, we will
now vary the number of nodes and have fixed workloads to eval-
uate how each protocol scale with more servers. We selected the
same three scenarios as did Deneva: A read-only workload (0% of
write operations) with no contention (skew = 0) - measures the
maximum throughput for each protocols, given that there is no
contention. A read-write workload (50% of write operations) with
medium contention (skew = 0.6) and High contention (skew = 0.6).

No contention: By observing figure 7a, we can see that the pro-
tocols with the addition of VTL, have a big decrease in throughput
in comparison with the original Deneva’s protocols. We can also
observe that, the throughtputs are roughly similar independently
of the protocol. This happens due to transactions only reading and
not having to stop their execution since there is not contention.
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Fig. 7. Scalability - Throughput measurements for each protocol varying the workload and different cluster sizes.

The pessimistic approach having a slight bigger throughput is due
to the OCC protocol having to copy items for reference during its
validation phase.

If we compare these results, while having 8 nodes, with the ones
from the previous graph (figure 5), where there is also no contention,
we can clearly observe that they are not identical. This occured due
to, in figure 5, there was 50% of write operations, while here it
was read-only transactions. If we compare them two, we can see a
tremendously decrease of throughput just by adding writes to the
system, without having any contention whatsoever. For example,
OCC Read-Only has the throughput of 15k transactions per second
while OCC Read-Write has 2k transactions per second.

Medium & High contention: Both the medium and high con-
tention graphs look pretty similar (figures 7b and 7c). Just as it
was seen in the previous graph, for only 1 server, we can see the
overhead of the framework clearly. But, just like it was shown in
the Deneva’s document, the throughput of all the servers decrease
with the increase of servers until a certain point. That point (around
16 servers) we could not showcase due to not having access to so
many nodes in the GSD Cluster. One aspect that i should mention
is that the framework OCC protocol does not have a sudden drop at
4 servers as does the original OCC protocol.

5.2.3 Latency: We will observe and compare the results of the
latency of a transaction’s start to its commit, between the framework
protocols and original Deneva. We will focus on the 99th percentile,
which means that 99% of the requests should be faster than the
given latency (only 1% of the transactions can be slower).

In Figure 6, we observe that the 99th percentile latency increases
with server size as expected. However, it is not expected to have a
noticeable significant gap in latency between the protocols of the
framework and the original Deneva. For example, for 4 servers, while
the original OCC has a latency of 98s and original Pessimistic has
38s, the transactional models implemented by the framework have
a latency of around 10 milliseconds. We realize that the following
results might be incorrect. For the variable transactional layer we
were expecting higher levels of latency than the original Deneva, to

help justify the low throughput of the previous examples. A reason
that might explain these results is that, due to the low throughput
of the framework, transactions take longer to finish. And since we
are experimenting scenarios of 60s of warm up and 60s of testing,
executing transactions that surpass this time period, will not have
their statistics accounted for. With the distribution of the nodes and
the partition of the database, for a transaction to commit, it needs
to contact every node it accesses. We assume that this provokes
the transactions to slow down that cause to surpass the experiment
time. To test this hypothesis, we will do an experiment that only
finishes once a certain amount of transactions are finished.

6 CONCLUSION

This researched aimed at developing a framework that could rep-
resent a wide variety of distributed transactional systems. We re-
searched a variety of distinct distributed transactional systems in
order to determine all the common mandatory steps these systems
have. Knowing what the majority of distributed transactional sys-
tems need, we built an architecture that allows to represent a big
part of these systems. We chose to port our framework into a system
that represents a wide range of transactional protocols, to try to
showcase that we can represent an extent amount of protocols with
our architecture.

We first demonstrate that our framework behaves exactly as the
original Deneva in terms of functionalities, despite the split into
different blocks. Secondly, we observed that, the addition of the
variable transactional layer caused an overhead of around 60% in
all centralized environments, regardless of the contention between
transactions. This overhead is also observed, in a distributed environ-
ment, when there is no contention between transaction (Read-Only
transactions). We also viewed that, when there exists contention,
the increment of servers would result in drops of throughput due to
the latency of a partitioned system. In the original Deneva’s docu-
ment, they showcase that by continuously incrementing the servers,
the throughput would start to increase with the amount of servers.
We seen that the framework appear to have basically no latency
in comparison with original Deneva’s protocols. We justify this by
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the low throughput of the framework protocols. Meaning that, the
transactions take so much time to commit that they surpass the
duration of the test and are not accounted for. We are aware that
60% of throughput decrease is a lot and that it is unacceptable for
commercial uses.

Since there is an abundance of different distributed transactional
models, we believe that having a modular framework that can inter-
change between them is needed. Systems architects can simply use
these existing components and swap between protocols, depend-
ing on what properties they desire at the moment. Otherwise, if
you have the transactional model intertwined with the structure
of the system, switching to a different protocol might just mean
to switch to a complete different system. In context of academia,
this is also useful, since most of the times when you are building
a new transactional approach, you have to build everything from
the ground up, when often you just want to change small parts of a
whole. Although we just implemented two different transactional
models, we trust that our architecture is able to represent much
more protocols.

7 FUTURE WORK

For future work we have four main ideas. First, we think that is
absolutely essential an optimization of the framework to increase
the throughput levels.

Second, we unfortunately had to skip the implementation of trans-
action recovery which is absolutely essential for most distributed
transactional systems. Therefore we think the addition of this fea-
ture would help represent a much bigger number of systems.

Third, since we only represented two different transactional mod-
els, a pessimistic and an optimistic one, we are interested in explor-
ing more protocols such as MVCC [6], timestamped based concur-
rency control [7], and others.

And finally, we also think that it might be interesting to, de-
pending on the workload being processed, change the transactional
protocol being used at runtime to improve the throughput of the
system.
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