
Supporting Posits in Deep Learning Frameworks:
A PyTorch Implementation

Afonso Vieira da Silva Luz

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Doctor Nuno Filipe Valentim Roma
Doctor Pedro Filipe Zeferino Aidos Tomás

Examination Committee

Chairperson: Doctor José Fernando Alves da Silva
Supervisor: Doctor Nuno Filipe Valentim Roma

Member of the Committee: Doctor Gabriel Falcão Paiva Fernandes

November 2021

ii

Acknowledgments

First, I would like to thank my supervisors, Doctor Nuno Roma and Doctor Pedro Tomás, who were

available to provide guidance and support throughout the whole duration of the development of this work.

Their commitment to leading and helping whenever necessary was invaluable to successfully complete

this MSc thesis. I would also like to thank João Vieira for his help in quickly and successfully addressing

any technical issues that arose throughout these months.

I would like to express my gratitude towards my family, who have always cultivated in me the drive

towards knowledge acquisition and mastery. During these months, their support was the safe haven I

needed when difficulties were presented.

To my friends, who have shared experiences, trips and stories during these months, their presence

helped a lot in this endeavour.

Finally, I would like to thank INESC-id for having given me access to their infrastructure, namely their

computing platforms, which helped in the successful testing of this work.

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) under projects UIDB/CEC/50021/2020, PTDC/EEI-HAC/30485/2017 and PCIF/MPG/0051/2018.

iii

iv

Resumo

Reduzir o consumo de energia de implementações de aprendizagem profunda tem vindo a atrair

um interesse crescente nos últimos anos. Isto é particularmente relevante em aplicações onde existem

limitações de energia, como dispositivos espaciais e aéreos. Com esta finalidade, o formato numérico

posit tem mostrado resultados promissores como uma alternativa ao sistema de vı́rgula flutuante IEEE

para cálculos de aprendizagem profunda. Investigação recente sugere que posits de 16 bits atingem

resultados semelhantes a números de vı́rgula flutuante IEEE-754 de 32 bits e que mesmo posits com

menos bits podem ser usados para treinar e avaliar modelos de aprendizagem profunda. No entanto,

para estudar a utilização de posits em aprendizagem profunda, é necessário desenvolver funções es-

pecı́ficas, uma vez que as ferramentas mais populares ainda não suportam este formato numérico.

Este trabalho pretende colmatar essa lacuna, integrando posits de forma nativa no PyTorch, a ferra-

menta mais popular para investigação em aprendizagem profunda. A implementação proposta torna os

posits um tipo de dados base da ferramenta, o que significa que podem ser usados da mesma forma

que qualquer outro tipo de dados já suportado. Para validar a implementação, a rede neuronal con-

volucional LeNet-5 foi treinada e testada utilizando posits nas bases de dados MNIST e FashionMNIST.

Os resultados obtidos com posits de 16 bits foram semelhantes aos de números de vı́rgula flutuante

IEEE-754 de 32 bits, sugerindo que a implementação dos operadores considerados para posits está

correta. Para difundir esta contribuição, o código e documentação produzidos foram disponibilizados

num repositório de GitHub público.

Palavras-chave: Formato numérico posit, aprendizagem profunda, redes neuronais, Py-

Torch

v

vi

Abstract

Reducing the energy consumption of computationally intensive deep learning implementations has

received a growing interest in the last years. This is particularly relevant in applications where there are

strict energy restrictions, such as space and aerial devices. To this end, the posit number format has

shown promising results as a more energy efficient replacement to the standard IEEE-754 floating-point

for deep learning computations. Recent research suggests that 16-bit posits achieve similar results as

32-bit floating-point and even smaller posits can be used to train and evaluate deep learning models.

However, to study the use of posits for deep learning, researchers have to develop customized functions,

since the most popular deep learning frameworks do not yet support posits. This work aims at bridging

this gap, by integrating posits natively in PyTorch, the most popular framework for deep learning re-

search. The proposed implementation makes posits a built-in data type in the framework, which means

that they can be used in the same way as any other data type that the framework already supports.

To validate the implementation, the convolutional neural network LeNet-5 was trained and tested using

posits on the MNIST and FashionMNIST datasets. The obtained results with 16-bit posits were similar

to those with 32-bit floating-point, suggesting that the implementation of the considered posit operators

is correct. To disseminate this contribution, the produced code and documentation was made available

on a public GitHub repository.

Keywords: Posit numerical format, Deep Learning (DL), Neural Networks (NNs), PyTorch

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

Listings . xv

Nomenclature . xvii

Abbreviations . xix

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Thesis Outline . 3

2 Background 5

2.1 Computer Number Formats . 6

2.1.1 Integers . 6

2.1.2 Fixed Point . 6

2.1.3 Floating Point . 7

2.1.4 Posit . 9

2.1.5 Posit Arithmetic Libraries . 12

2.2 Deep Learning - Neural Networks . 13

2.2.1 Overview of Neural Networks . 13

2.2.2 NN Training Procedure . 14

2.2.3 Activation Functions . 16

2.2.4 Types of Layers . 18

2.2.5 Loss functions . 23

2.2.6 Optimizers . 23

2.2.7 Reference Datasets . 25

2.2.8 Benchmark Models . 27

2.2.9 Deep Learning Frameworks . 29

ix

2.3 Related Work . 30

2.4 Summary . 31

3 PyTorch Framework API 33

3.1 Tensors as the base data structure . 34

3.1.1 Tensor Data Types . 35

3.2 Neural Network Design and Training . 36

3.2.1 Layers . 36

3.2.2 Activation functions . 40

3.2.3 Loss functions . 40

3.2.4 Optimizer . 42

3.2.5 Model Training Example . 43

3.3 Summary . 45

4 Supporting Posit in PyTorch 47

4.1 Contributing to PyTorch . 48

4.2 PyTorch’s Internal Structure . 49

4.2.1 Codebase Structure . 49

4.2.2 Tensor Implementation . 49

4.2.3 Dispatcher . 51

4.2.4 Kernels . 52

4.3 Posit Integration in PyTorch . 53

4.3.1 Posit Data Type . 53

4.3.2 Dispatcher for Posit Types . 55

4.3.3 NN Operators for Posits . 56

4.3.4 Posits in PyTorch’s Frontend . 59

4.4 Summary . 60

5 Experimental Evaluation 61

5.1 Coverage Analysis . 62

5.2 Experimental Setup . 64

5.2.1 Dataset reduction . 65

5.3 LeNet-5 Training Evaluation . 66

5.4 Summary . 67

6 Conclusions 69

6.1 Summary . 70

6.2 Future Work . 70

Bibliography 73

x

List of Tables

2.1 Example of regime decoding for a posit with nbits = 5 and es = 2. 10

4.1 Operators that were extended to support Posits in PyTorch. 59

5.1 Supported layers and functions of LeNet-5. 62

5.2 Supported layers and functions of CifarNet. 63

5.3 Supported layers and functions of AlexNet. 63

5.4 Supported layers and functions of ResNet. 63

5.5 Supported loss functions and optimizers. 64

5.6 Configurations for the training of LeNet-5. 64

5.7 Covered datasets, number of samples and number of epochs. 66

xi

xii

List of Figures

2.1 Fixed-point number layout example . 7

2.2 Single precision floats bit division . 8

2.3 Single precision floats decoding example . 8

2.4 Generic posit representation . 10

2.5 Decimal accuracy of 8-bit floats and Posits . 11

2.6 Quire layout according to the most recent Posit Standard 11

2.7 Example of a Neural Network with 2 hidden layers . 13

2.8 Gradient Descent illustrated for a single variable function 15

2.9 Graphic representation of the sigmoid function . 17

2.10 Graphic representation of the TanH function . 17

2.11 Graphic representation of the ReLU function and one possible variant 18

2.12 Neural Network example along with its corresponding block diagram 18

2.13 Graphic representation of kernel and input overlaps to compute convolution. 20

2.14 Samples from the MNIST dataset . 25

2.15 Samples from the Cifar-10 dataset . 26

2.16 Samples from the ImageNet dataset . 26

2.17 LeNet-5 Block Diagram . 27

2.18 CifarNet Block Diagram . 28

2.19 AlexNet Block Diagram . 28

2.20 Unique mentions of PyTorch in scientific articles . 29

4.1 Illustration of a tensor with a strided layout . 50

4.2 Illustration of a dispatcher call . 52

5.1 Architecture of the evaluated LeNet-5 . 64

5.2 Validation accuracy when training LeNet-5 with different portions of the MNIST dataset. . 65

5.3 Comparison of the obtained accuracy of LeNet-5 training with floats and Posits on the

MNIST dataset. 66

5.4 Comparison of the accuracy of LeNet-5 training with 32-bit floats and 16-bit Posits on the

FashionMNIST dataset. 67

xiii

xiv

Listings

3.1 Tensor creation and matrix multiplication example . 35

3.2 Declaring a tensor with the default float datatype . 36

3.3 Importing of the torch and nn modules . 36

3.4 Declaring a linear layer in PyTorch . 37

3.5 Declaring a convolutional layer in PyTorch . 38

3.6 Declaring an average pooling layer in PyTorch . 38

3.7 Declaring a maximum pooling layer in PyTorch . 39

3.8 Declaring a Dropout layer in PyTorch . 39

3.9 Declaring a TanH layer in PyTorch . 40

3.10 Applying the MSE loss function to an input . 40

3.11 Applying the Cross Entropy loss function to an input and computing the gradients 42

3.12 Applying the Adam optimization algorithm to a simple network with 1 hidden layer 43

3.13 Loading the MNIST dataset and wrapping it into a dataloader 44

3.14 Training the LeNet-5 network on the MNIST dataset . 44

4.1 Comparison of the creation of a float tensor with the creation of a posit tensor 48

4.2 Example of usage of the TensorIterator utility . 51

4.3 Registration API to associate function calls to kernel implementations 53

4.4 Conversions from the Universal library functions to those in PyTorch’s namespaces 54

4.5 Supported data types in PyTorch, including posit(16,2) . 54

4.6 Supported data types in PyTorch, including posit(16,2) . 55

4.7 Calling the MSE loss function before it was supported for Posits 56

4.8 Extending the average pooling operator for Posits through the same kernel as for other

data types . 57

4.9 Supporting addition with scaling by calling a separate kernel for Posits 57

4.10 Custom kernel for the softmax activation function for Posits 57

4.11 Posit(16,2) exposure to the Python frontend as posit16es2 59

4.12 Training a LeNet-5 network with Posits . 60

xv

xvi

Nomenclature

Greek symbols

β1, β2 Exponential decay rates for the moments estimates.

ε Smoothing term that prevents division by 0.

η Learning rate.

Roman symbols

a Neuron output after activation function.

b Bias.

C Number of channels.

H Height.

K Kernel size.

L Loss function.

l Layer index.

m First moment (mean).

m̂ Bias-corrected first moment.

N Batch size.

P Padding.

S Stride.

v Velocity/momentum term or second moment (uncentered variance).

v̂ Bias-corrected second moment.

W Width.

w Weight tensor.

x Input sample.

xvii

ŷ Model output.

z Neuron output before activation function.

Subscripts

i, j, k,m Computational indexes.

Superscripts

l layer index.

xviii

Abbreviations

1-D 1-dimensional

2-D 2-dimensional

3-D 3-dimensional

4-D 4-dimensional

Adam Adaptive Moment Estimation

AI Artificial Intelligence

NN Neural Network

ASIC Application-Specific Integrated Circuit

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

es exponent size

FC Fully Connected

FCNN Fully Connected Neural Network

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

IEEE 754 IEEE Standard for Floating-Point Arithmetic

ILSVRC ImageNet Large Scale Visual Recognition Challenge

MSc Master of Science

MSE Mean Squared Error

NaN Not a Number

NaR Not a Real

nbits number of bits

NGA Next Generation Arithmetic

NLL Negative Log Likelihood

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

TanH Hyperbolic Tangent

TPU Tensor Processing Unit

xix

Chapter 1

Introduction

Contents

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Thesis Outline . 3

1

1.1 Motivation

The fascination with building machines capable of mimicking human behaviour has long been one of

the human race, from scientists to science fiction writers. At first, physical machines to perform physical

tasks was the main focus, but the interest quickly turned to the search for synthesizing human-like

intelligence - or even greater.

Interest in forms of machine intelligence was, thus, interdisciplinary, up to 1950, when the Turing

test was introduced [1] and modern Artificial Intelligence (AI) research is considered to have started [2],

leading to its development as an independent field. However, unrealistic hopes were placed on the field,

and, in the 1970s, the unmet expectations led to what is known as the AI Winter [3], staling the field for

many decades.

However, with the increase in the available computing power, some practical successes revived in-

terest in the field [4]. In particular, Deep Learning (DL) was one of the subfields that most grew, currently

benchmarking results in visual recognition, natural language processing, fraud detection, among others

[5].

Deep Learning models are defined as being those with several layers, to represent multiple levels of

abstraction, potentiating the ability to learn features from data and make future predictions [5]. The most

popular model types are Deep Artificial Neural Networks (NNs) [6]. These are comprised of a variable

number of layers, each consisting of neurons holding weights that get updated with the labeled input

data. In complex networks, the number of weights can reach hundreds of millions [7], representing very

high computational demands.

To design and train NNs, there are several available frameworks that abstract the implementation

details from the end user. The most popular are PyTorch [8], developed by Facebook, and TensorFlow

[9], developed by Google. The first is currently the most popular among researchers, while the latter is

the most used in production [10].

Given its computationally intensive nature, there is significant research interest in reducing the mem-

ory footprint and energy consumption of the operations performed by DL models [11]. This is particularly

relevant in domains where there are strict constraints on processing capacity and energy consumption,

such as space applications [12].

One possible approach to reduce this footprint is by searching for alternative formats to the traditional

IEEE-754 32-bit floating-point numbers for computations, such as integers [13] and fixed-point numbers

[14]. The introduction of the posit number format in 2017, with claims that it offers a higher accuracy and

requires simpler hardware and exception handling structures than IEEE-754 floating-point numbers [15],

has led to an increasing interest in using it within DL applications [16–18]. Recent research as shown

that the same accuracy can be achieved with 16-bit posits as with 32-bit floats, and even smaller posit

configurations have achieved state-of-the-art results [19, 20]. This means that, by using less bits, there

is the potential of reducing hardware resources, energy consumption and memory footprint.

The reduction of energy consumption is of great interest for the aforementioned space applications,

where energy requirements tend to be the bottleneck. As an example, Neuraspace [21] is using Machine

2

Learning models to detect and prevent collisions between satellites. Maintaining accuracy while reducing

resources would be of great interest to extend this application.

However, in order to train and test DL models with Posits, researchers have to develop all the func-

tions and operators used for DL computations from scratch [19, 20]. This constitutes a significant over-

head in the research process, which could only be mitigated if the most common DL frameworks sup-

ported the posit number format.

This premise motivated the work presented in this thesis: to introduce support of Posits in the most

widely used DL framework for research, PyTorch. This contribution will not only have the goal of providing

a tool to train NNs with Posits, but also of documenting the necessary steps to add further functionalities

related to Posits. At the time of development of this work, hardware units specific for Posits have already

been proposed [11, 16, 22], but these are not complete enough to be integrated with PyTorch. This way,

this work also aims at providing a tool to test future developments of hardware for Posits with PyTorch.

1.2 Objectives

The main goal of this dissertation is to introduce native support of the posit data type and related

operations in PyTorch. To this end, the fundamental objectives can be summarized as:

• Provide posit support to the main layers and functions of NNs in PyTorch;

• Expose these functions in the Python frontend in the same way as other native PyTorch data types;

• Test the conducted implementation through an end-to-end design and training of a Neural Network;

• Document the process of extending posit support for further operators.

1.3 Thesis Outline

This dissertation is organized in multiple chapters, each addressing a relevant topic of this work.

• Chapter 2 presents the background for this work. It starts by presenting the characteristics of

different computer number formats, namely integers, fixed-point, floating-point and Posit. It also

discusses some of the available arithmetic libraries for Posits. It follows with the presentation of

the main layers and functions of Neural Networks, as well as reference datasets and models, and

the most popular DL frameworks. It finishes with a summary of the most relevant literature and

related work on DL with Posits.

• Chapter 3 aims at describing the frontend API of PyTorch. The tensor data structure is presented,

since it constitutes the core of all data representation within the framework. It follows by presenting

how the concepts introduced in the previous chapter are available in the framework. It finishes with

an end-to-end example of designing and training a Neural Network in PyTorch.

3

• Chapter 4 explores the internal structure of PyTorch and the process of supporting Posits in it. It

starts with a brief description of how to contribute to the codebase of this framework. It follows with

a description of the main concepts that compose the internal structure of the framework. Finally,

the contribution of this work through the creation of a new data type for Posits, the support for the

main NN operators and how Posits are exposed in the frontend is presented.

• Chapter 5 presents the experimental evaluation that was conducted to validate the implementation

of Posits in the framework. It starts by exposing the used experimental setup, explaining the need

to reduce the size of the original dataset. Finally, the results of training the LeNet-5 network with

Posits are presented.

• Chapter 6 summarizes the conclusions of the present work and draws considerations on future

work.

4

Chapter 2

Background

Contents

2.1 Computer Number Formats . 6

2.1.1 Integers . 6

2.1.2 Fixed Point . 6

2.1.3 Floating Point . 7

2.1.4 Posit . 9

2.1.5 Posit Arithmetic Libraries . 12

2.2 Deep Learning - Neural Networks . 13

2.2.1 Overview of Neural Networks . 13

2.2.2 NN Training Procedure . 14

2.2.3 Activation Functions . 16

2.2.4 Types of Layers . 18

2.2.5 Loss functions . 23

2.2.6 Optimizers . 23

2.2.7 Reference Datasets . 25

2.2.8 Benchmark Models . 27

2.2.9 Deep Learning Frameworks . 29

2.3 Related Work . 30

2.4 Summary . 31

5

Given that the purpose of this work is to integrate a novel numerical format into an established Deep

Learning framework, this chapter provides context on its two main topics: computer number formats and

Deep Learning. It starts by exposing different numerical formats used in computers, with emphasis on

the characteristics of the posit number format. It is followed by an overview of the main aspects of Deep

Learning (DL), some of its reference models along with frameworks used for DL applications. It finishes

with a brief survey of previous research into the use of Posits in DL applications, as well as existing

frameworks to build DL models supporting computation with Posits.

2.1 Computer Number Formats

Given the digital nature of modern computers, information is represented in binary form, numbers in

particular. Encoding numbers - be them integer, real, or complex - into a limited amount of bits can be

achieved in different ways, each with advantages and disadvantages regarding not only the range and

granularity, but also the complexity of their handling for calculations.

Because of their vital importance for computer science and, in particular, in the field of Deep Learning

[13, 14, 23], this section exposes some of the most common binary encodings for real numbers.

2.1.1 Integers

Representing unsigned integer numbers in binary is trivial, following the general rule of representing

numbers in any base: each digit multiplies the base to the power of the digit’s index. As an example for

base 2, the number 101102 represents, in base 10, the number 1×24+0×23+1×22+1×21+0×20 =

22. As for signed numbers, the initial approach was to use one bit for the signal and the remaining bits

for its absolute value. This had several inconveniences, such as the double representation of zero, and

the need to perform operations differently depending on the magnitude and sign of the numbers involved

[24].

The introduction of two’s complement encoding [25], where a negative integer number x is encoded

with n bits as 2n+x, solved both of the above problems, becoming the standard after IBM’s System/360

adopted it [26]. As an example, the two’s complement representation of −2 with 3 bits is 1102, since

23 − 2 = 6. However, codifying real numbers in binary is a greater challenge, and different possible

representations have been put forward.

2.1.2 Fixed Point

A given interval [n,m] has finite cardinality for integer numbers, but for real numbers that is no longer

the case. This means that, when encoding real numbers in a finite number of bits, there will need to be

a compromise between range (the amplitude of the interval that can be represented) and precision (the

rounding error when encoding a number).

Fixed point encoding is the simplest representation for non-integer numbers, characterized by having

l bits to the left of the radix point and r bits to the right. The bits to the right of the radix point are given

6

negative weights. Two’s complement is also used to represent signed numbers, as in integer encoding.

Figure 2.1: Example of a fixed point number layout: the radix point is 9 bits to the right of the sign bit
and it has 6 fractional bits, obtained from [27].

This way, to decode a fixed point number, the whole bitset can be regarded as representing an integer

in two’s complement, which, after decoding, is scaled by the power of 2 determined by the number of

bits to the right of the radix point, r:

x = decoded integer× 2−r (2.1)

This resemblance with integers means that operations with fixed point numbers are very similar to

those with integers, hence avoiding the need for specific processing units.

Another way to decode a fixed point number is to consider the sign bit negative, making use of

equation (2.2), thus avoiding taking the two’s complement to decode it [28].

x = −xl−12l−1 +

l−2∑
i=−r

xi2
i (2.2)

From this representation, it can be seen that the difference between two consecutive fixed point

numbers is always the same, 2−r, leading to a rounding error of at most 2−r−1. The range is given by

the bits to the left of the radix point, from −2l−1 to 2l−1 − 1.

For a bitset of size n, moving the radix point to the left (increasing the number of bits to the right of it)

will result in more precision and less range, whereas moving it to the right will have the opposite effect.

The choice will, therefore, depend on the application’s requirements.

2.1.3 Floating Point

The numerical range offered by fixed point encoding is insufficient for many computer applications,

consequently, its use is limited to applications where performance is very important and range and/or

precision can be sacrificed [29].

To increase the obtainable range, floating point formats are regarded as the most appropriate. These

formats are characterized by having the radix point ”float” within the number, that is, there is no fixed

number of bits to the right nor to the left of the radix point. This is achieved by using the same principle

as in scientif notation: a mantissa is multiplied by 2 raised to the power of the exponent.

Several formats could be used to represent a floating point number, but the one used in most com-

puter systems is the IEEE 754 Standard for Floating-Point Arithmetic [30], introduced in 1985. To decode

7

a floating point number encoded through this standard, equation (2.3) should be used.

x = (−1)S ×M × 2E−b (2.3)

S represents the value of the sign bit (the most significant bit); M is the mantissa (where the leading

bit is implicit, 1 for normalized representation and 0 for subnormal); E is the value of the exponent;

b = 2exponentsize−1 − 1 is a bias applied to the exponent in order to have both negative and positive

exponents represented with unsigned integers only, avoiding 2’s complement all together.

From IEEE’s standard, the most commonly used floating-point formats are single precision (32 bits)

and double precision (64 bits). Figure 2.2 shows the bit usage in single precision floats: bits 0 to 22 form

the mantissa, bits 23 to 30 form the exponent, and bit 31 is the sign bit.

Figure 2.2: Single precision floats bit encoding, obtained from [31].

An example of the decoding is provided in Figure 2.3, where the normalized form is used (the implicit

mantissa bit is 1).

Figure 2.3: Example of the decoding of a single precision float, obtained from [31].

IEEE’s standard reserves some bit patterns to represent special numbers, namely:

• ±0: all exponent and mantissa bits set to 0

• ±∞: all exponent bits set to 1 and all mantissa bits set to 0

• NaN (Not a Number): all exponent bits set to 1 and all combinations of mantissa bits (except all

0s)

NaN values are used for undefined or unrepresentable real numbers - the square root of a negative

number, for instance. For single precision floats, there are 224 NaN values, which means that approx-

imately 0.4% of encodings are unusable. For double precision floats this percentage is approximately

0.05%.

The representation range of floating point numbers is determined by the magnitude of the exponent:

[2−2exponent size−1+2, 22exponent size−1

] as opposed to fixed point, where it is the number of bits to the left of

the radix point. For single precision floats (32 bits), the range is approximately [10−38, 1038]. In order

to achieve the same range with fixed point numbers, 128 bits would need to be at the left side of the

8

radix point, which illustrates the power of floating point numbers to store both very small and very large

numbers.

However, this large dynamic range comes at the cost of having unequally spaced numbers: the gap

between two consecutive numbers n and m is approximately m − n = n/107 [31]. This means that

for smaller numbers the gap between consecutive numbers is smaller than for big numbers, which is

desirable since precision is more important when dealing with small quantities.

There are other formats of floating point encodings. Among others, Half floating point and Brain

Floating Point (BFloat16) [32]. Half floating point is defined in IEEE’s standard as having 16 bits, of

which 1 is for the sign, 5 for the exponent and 10 for the mantissa. With less exponent and mantissa

bits, both precision and range are diminished when compared with single precision floats.

BFloat16, developed by Google, is a truncated version of single precision floats, thus having the same

8 exponent bits but only 7 mantissa bits. This means that it has the same range as single precision floats,

with only the precision being affected by the use of a the smaller mantissa. This encoding was developed

with Deep Learning applications in mind, since Neural Networks are more sensitive to exponent size than

that of the mantissa [32].

2.1.4 Posit

Despite the current ubiquity of IEEE’s floating point format in computer systems, it has some prob-

lems and limitations, such as breaking linear algebra laws (e.g. due to the rounding process, (a+ b) +

c 6= a + (b + c)), overflowing to infinity and underflowing to 0, or the complexity of its manipulation,

especially due to the multiple NaN values, leading to complex hardware to support it [33].

From the desire to overcome some of these problems, John L. Gustafson has recently proposed a

set of alternative formats, denoted by Universal numbers (Unums). Firstly, Type I unum [34] introduced

an extra bit to IEEE’s floating point to assert whether the represented number was exact or whether it

represented the lower end of an interval containing that number. With the introduction of Type II unum,

compatibility with IEEE’s standard was broken, in order to have more freedom to make it more hardware

friendly [35].

In 2017, Type III unum - also known as Posit - was introduced, having in mind the complete replace-

ment of IEEE’s floating point. Gustafson states that this new format offers a larger dynamic range, a

higher accuracy and requires simpler hardware and exception handling structures than traditional IEEE-

754 standard floating-point numbers [15].

A posit number is defined by its total number of bits (nbits) and by the size of the exponent field (es).

This way, a posit configuration is usually represented in the form posit(nbits, es). The layout of a posit

number (p) is represented in Figure 2.4, and its decoding is shown in equation (2.4).

x =

0, p = 000...0,

±∞ = NaR, p = 100...0,

(−1)s × useedk × 2e × f, all other p.

(2.4)

9

Figure 2.4: Generic representation of an nbits-bit posit with es exponent bits.

The meaning of the sign bit is similar to other formats: 0 for positive numbers and 1 for negative num-

bers. If the number is negative, the 2’s complement of the other fields must be taken before decoding.

The regime field is characterized by a run of identical bits (r) that is either terminated by an opposite bit

(r̄) or by using up all the nbits− 1 bits. The numerical value (k) of the regime is given by the count of

identical bits in this run. For a run of m bits, all equal to 0, k = −m; if they are 1s then k = m− 1.

As an example, for a posit with nbits = 5 and es = 2 the possible decoding options of the regime

are represented in Table 2.1, after taking the 2’s complement in case of a negative sign bit.

Table 2.1: Example of regime field decoding for a posit with nbits = 5 and es = 2.

Binary s0000 s0001 s001e1 s01e1e2 s10e1e2 s110e1 s1110 s1111

Numerical meaning, k -4 -3 -2 -1 0 1 2 3

Hence, this simple example illustrates how the number of exponent bits varies depending on the

length of the regime. In particular, while for such posits fraction bits might not even exist, for larger posits

their number is also dependent on the length of the regime.

As represented in equation (2.4), the numerical value of the regime, k, represents an additional

exponent, applied over useed = 22es

. Hence, this scale factor is given by useedk. The value encoded

by the exponent bits (e) represents a scaling by 2e. Finally, just as in normalized IEEE’s floats, the value

encoded in the fraction bits (f) has a hidden bit at 1. Therefore, the scale factor is 1.f , as shown in

equation (2.4).

There are two special encodings that represent 0 (all bits at 0) and Not a Real (NaR) or ±∞ (first

bit at 1 followed by all bits at 0). Having only two exception values with simple bit patterns makes their

manipulation at the hardware level easier than the several NaN values of floats [15].

Contrary to IEEE floats, there is no bias for the exponent field, since negative values of k already

lead to negative exponents. The variable size of the fraction field - determined by the size of the regime

- leads to a tapered precision, that is, numbers with magnitude near 1 have more fraction bits therefore

greater precision, whereas very small and very large numbers have smaller precision. This is illustrated

in Figure 2.5 where the decimal accuracy (i.e. how many digits to the right of the decimal point are

correctly represented) is compared for 8-bit fixed point, 8-bit floatint-point and different configurations of

8-bit Posits.

The dynamic range of a positive (nbits, es) posit number is [useednbits−2, useed2−nbits], which

means that, for a given posit size (nbits), the range increases only with the increase of the number of

exponent bits, since useed = 22es

. Just as in floats, increasing the size of the exponent field comes at

10

Figure 2.5: Decimal accuracy of 8-bit fixed-point, 8-bit floating-point and several 8-bit Posits, obtained
from [18].

the cost of decreasing the size of the fraction, hence reducing precision.

Posit Standard and Quire

The previously described posit format is in accordance with the Posit Standard published in 2018,

publicly available at the Posit working group’s web page [36]. Nevertheless, there have been major

updates to this Standard, with the most recent version, as of June 2021, kindly emailed by Dr. Gustafson

[37]. This new version of the Standard establishes a fixed size of the exponent (as 2 bits) for all posit

sizes, with the goal of making casting between posits with different sizes much easier: padding with 0s

will make it larger and removing the least significant bits will make it smaller, thus avoiding the need to

decode before casting.

One of the intended uses of posit numbers is low precision applications (16 or less bits) [15]. Under

this premise, a particular mechanism to decrease the rounding error when doing chained operations,

such as sum of products (in matrix multiplications, for example), was introduced upon the proposal

of posit: the quire. The quire is the posit equivalent of a Kulisch accumulator [38], with each posit

configuration having an associated quire configuration. Upon its introduction, the size of the quire for a

(nbits, es) posit number was nbits2. However, with the new version of the standard, it is now fixed at

16× nbits. Its layout is presented in Figure 2.6.

Figure 2.6: Quire layout according to the most recent Posit Standard, obtained from [37].

Being represented using a fixed-point format, decoding the quire is straightforward: the 2’s comple-

11

ment of the signed integer represented by all bits concatenated is taken and multiplied by 216−8nbits:

q = decoded integer× 216−8nbits. The only exception value is the representation where the sign bit is

equal to 1 and all other fields are set to 0, which represents a NaR.

The quire is particularly useful with small posits, in applications where sums of products are ubiqui-

tous, such as Deep Learning [19], given its potential to minimize rounding errors and thus compensate

the reduced accuracy of small posits.

2.1.5 Posit Arithmetic Libraries

Developing hardware units for posit computations, synthesized either for Field-Programmable Gate

Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs), has been an active topic of research

[11, 16, 17, 39]. Many of these frameworks were developed with Deep Learning applications in mind

[11, 16, 17]. In [22], a tensor unit supporting posit arithmetic to be used in DL applications with Posits

was proposed. However, at the time of the development of this thesis, these hardware implementations

are not complete and flexible enough to be used as the backbone of support for posits in DL frameworks,

such as PyTorch or TensorFlow, as also noted by [19] and [20].

A possible alternative is to use a library that simulates operations with Posits via software. A survey

of the existing libraries, up to mid-2019, was conducted by the Next Generation Arithmetic team (NGA)

[40], of which John L. Gustafson (proposer of the posit format) is a member. In it, the more complete

libraries with posit operations emulated via software are: PySigmoid [41], SoftPosit [42] and Universal

[43].

PySigmoid is a Python library supporting any arbitrary posit configuration, together with math opera-

tions (basic linear algebra, square root, trigonometric functions, etc.) and with an easy to use interface

through a class that represents a posit number with overloaded operators. Nonetheless, it is fully imple-

mented in Python, which makes it difficult to integrate with Pytorch’s C++ backend, and it is no longer

mantained.

SoftPosit is a C library that offers a set of functions to operate on Posits and quire, tested upon its

development. It supports any posit configuration of the form posit(nbits, 2), with nbits = {2, · · · , 32}

along with posit(8, 0) and posit(16, 1), which makes it compliant with the new standard, even if not all

configurations are supported.

Universal is a header only C++ library, supporting any arbitrary configuration of Posits and quire. It

also supports the two other Unum formats (Type-I and Type-II). It has a comprehensive test suite for the

mathematical operations it supports and is frequently maintained, which makes it very reliable.

From the libraries considered at the start of this work, the Universal library was the one chosen,

mainly for its reliability and its easier integration with the C++ backend of PyTorch, where most of the

work was to be developed. It has a comprehensive support for all the main functions and operators

needed to implement DL operations, along with active contributors available to clarify doubts on the

library.

Furthermore, Universal is a header-only library, so there is no need to build it when building PyTorch’s

12

source code, making integration seamless. Moreover, Universal implements Posits and the quire as tem-

plated classes, whose arguments correspond to the nbits and es parameters of posits and capacity

for quires, meaning that adopting it with the different posit configurations is straightforward and involves

minimal alterations to the code.

2.2 Deep Learning - Neural Networks

Deep Learning (DL) is a subfield of Artificial Intelligence characterized by models with multiple layers,

where each layer builds knowledge on top of the previous one [44]. These models are fed with input data

and, by iterating over this data, they update their parameters, effectively learning from experience. The

advantage of DL models over simpler machine learning techniques is their ability to capture complex

non-linear behaviours by decomposing them into simpler tasks addressed by each layer [45].

Currently, the most widespread DL models are Deep Artificial Neural Networks (NNs), inspired by

the connections between neurons in the brain. This section briefly describes how these models are

structured, how they learn from the input and output data, along with some benchmark examples for

image recognition, which is the topic of this work.

2.2.1 Overview of Neural Networks

Drawing inspiration from the synapses that occur between neurons in the human brain, NNs have

weights connecting neurons in consecutive layers. These weights represent the transmission of a signal

between neurons, which, together with an associated bias, pass through a non-linear activation function

to determine if the neuron is ”fired” or not.

Figure 2.7: Example of a Neural Network with 2 hidden layers

Figure 2.7 shows an example NN with 3 layers (the input layer is not counted). In order for a NN to

13

be considered deep, it should have at least 2 hidden layers. The input layer is simply the input fed to the

network: the pixels that constitute an image, for example. The output layer is responsible for connecting

back to the real world problem at hand. If, for example, the problem is that of determining the class of an

input image, each output neuron will represent the probability of the image belonging to a given class,

hence there will be as many output neurons as there are classes of images.

Each circle in Figure 2.7 represents a neuron, and the arrows between them are the connections,

each of them with an associated weight. Each neuron is connected to all the neurons of the previous

layer and to all the neurons of the next layer.

The output value of neuron i in layer l > 0, ali, is given by equation (2.5).

ali = f(zli), with zli = bli +
∑

jεprevious layer

wlija
l−1
j (2.5)

zli is the intermediate output, bli the bias, wlij the weight connecting neuron j of the previous layer

with this neuron and f is a non-linear activation function. For the input layer, a0
i is simply equal to the

the content at index i of the input vector.

The ultimate goal of a NN is to receive an input (an image, for example) and give a meaningful output

(predict if the image is of a dog, a person, etc., in an image classification problem). This process is

called inference. However, in order for the network to be able to make correct predictions, it must first

learn from experience, just as humans do, in a process called training.

2.2.2 NN Training Procedure

Training a NN consists of updating its parameters (weights) in order to obtain a model that can

address as accurately as possible the problem at hand. During the training procedure, the measure that

is used to evaluate whether the model is accurate is a loss function (L). This function compares the

predicted value, ŷ, and the correct label, ytrue, penalizing wrong predictions, L = f(ŷ, ytrue).

Since the predicted value is a function of all the weights of the network, the loss will also be a function

of these weights: L = g(w1
11, w

1
12, ..., w

l
ij−1, w

l
ij, ytrue). Therefore, the goal of the training procedure

is to find the weights that minimize this loss function.

Among the several techniques for NN training, the gradient descent algorithm is the most popular

[46]. The concept of gradient descent is illustrated in Figure 2.8 for the simple case of a single variable

function where, for each step, the weight is updated in the direction opposite to that of the gradient.

Mathematically, this can be formulated as

w(t+ 1) = w(t)− η
∂L

∂w

∣∣∣∣
w(t)

, (2.6)

where t is the step being considered and η is a hyperparameter called the learning rate, used to adjust

the magnitude of the weight updates.

Gradient descent can be applied in three different ways, corresponding to three different variants of

the algorithm [48]:

14

Figure 2.8: Gradient Descent illustrated for a single variable function, obtained from [47]

• Batch gradient descent: The loss is averaged over the entire training dataset before performing

any update to the weights.

• Stochastic (or online) gradient descent (SGD): weights get updated after calculating the loss for

each sample.

• Mini-batch gradient descent: The loss is averaged over a subset of the training dataset, with the

batch size being a tunable hyperparameter.

Batch gradient descent has the disadvantage of needing the whole dataset to be evaluated before

performing an update, which constitutes a problem if the dataset is too big to fit in memory and does not

allow an online update, that is, update the model with the arrival of a new sample. Stochastic gradient

descent circumvents these problems, but since updates are done with high frequency the variance is

high, which can lead to unstable convergence. A compromise solution, mini-batch gradient descent,

combines the advantages of both and is usually the adopted technique [48].

In order to calculate the derivative of the loss with respect to a certain weight, the chain rule is usually

used, following equation (2.5) for the activation of each neuron. For the weights connecting to last layer

neurons, it is computed as:

∂L

∂wlij
=
∂L

∂alj

∂alj

∂zlj

∂zlj

∂wlij
=
∂L

∂alj
f ′(zlj)a

l−1
i . (2.7)

For weights in the middle layers, the influence on the loss is felt through different paths in the network.

Taking as an example Figure 2.7, the weight w2
11 influences the first neuron of the second hidden

layer, which in turn affects both output neurons, effectively affecting the loss in two ways. This way,

the derivative of the loss with respect to this weight will be the sum of these two paths. The general

formulation is, then:

15

∂L
∂wl

ij

= ∂L
∂al

j

∂al
j

∂zl
j

∂zl
j

∂wl
ij

∂L
∂al

j

=
∑

mεnext layer

∂L

∂a
l+1
m

∂al+1
m

∂z
l+1
m

∂zl+1
m

∂al
j

⇒

∂L
∂wl

ij

= ∂L
∂al

j

f ′(zlj)a
l−1
i

∂L
∂al

j

=
∑

mεnext layer

∂L

∂a
l+1
m

f ′(zl+1
m)wl+1

mj .
(2.8)

From equation (2.8), the sum used to calculate ∂L
∂al

j

refers to the next layer, which means that to

calculate the gradients it is more practical to do the computation in reverse: start from the loss in the last

layer, going backwards up to the input layer. As a result, this algorithm is know as backpropagation,

the most commonly used to train NN [49].

In summary, the training of a neural network has 4 main phases:

• forward pass: feeding an input to the network and propagating forward to obtain an output;

• loss calculation: with the predicted output and the true value, calculating the loss according to

the chosen loss function;

• backward pass: calculating the gradients with respect to the weights, starting from the last layer

up to the beginning;

• weight update: following the principle of gradient descent, update the weights to minimize the

loss function.

2.2.3 Activation Functions

As mentioned in section 2.2.1 and expressed by function f in equation (2.5), each neuron goes

through a non-linear activation function. Without this function, the equation for each neuron would only

be the last part of equation (2.5), which is a linear equation, meaning that the network would not be able

to model non-linear data.

Drawing inspiration from the human brain, the first intuition was to use a step function that is zero up

to a certain threshold and 1 after it, representing the ”firing” of the biological neurons. However, given the

non-continuous and non-differentiable nature of this function, it would make it unfit for backpropagation,

since its derivative is needed in the first part of equation (2.8) [50]. Nevertheless, the idea of ”firing” of

neurons was not discarded, and the most common activation functions approximate the behavior of the

step function.

Even though many activation functions exist and current research is still very active in putting forward

alternatives [51], some of the most commonly used include Sigmoid, TanH and ReLU [52].

Sigmoid is a monotonic S-shaped curve that maps any input into the range [0, 1]. This is particularly

useful in cases where the output should be a probability. One of its downsides is the smooth curve,

which implies small derivatives when values are far from 0. This leads to the vanishing gradients prob-

lem, which consists on gradients being too small when applying the chain rule described in equation

(2.8), leading to small or even no weight updates and the training getting stuck. Equation (2.9) defines

16

the sigmoid function and its derivative. One interesting property is the fact that the derivative can be ex-

pressed in terms of the function evaluated at the same point, which can be useful to reduce calculations

during the backward pass. Figure 2.9 is a graphic representation of the sigmoid function.

sigmoid(x) = σ(x) = 1
1+e−x

σ′(x) = e−x

(1+e−x)2
= 1

1+e−x (1− 1
1+e−x) = σ(x)(1− σ(x))

(2.9)

Figure 2.9: Graphic representation of the sigmoid function.

TanH is the hyperbolic tangent function, similar to sigmoid in shape but with output range [−1, 1].

One advantage when compared to sigmoid is that negative inputs are mapped to negative outputs,

so the sign of the input is not lost in the activation. Equation (2.10) defines the tanh function and its

derivative. Figure 2.10 is a graphic representation of the tanh function.

tanh(x) = ex−e−x

ex+e−x = 2σ(2x)− 1

tanh′(x) = (ex+e−x)2−(ex−e−x)2

(ex+e−x)2
= 1− (ex−e−x)2

(ex+e−x)2
= (1− tanh2(x))

(2.10)

Figure 2.10: Graphic representation of the TanH function.

ReLU (Rectified Linear Unit) is one of the most popular activation functions, albeit its simplicity. It

consists in setting negative values to 0 and leaving positive ones unchanged. Even though this function

is non-differentiable at 0, its derivate is usually extended as 0 when evaluated at 0, which is trivial to

implement in software. This function is much less expensive to compute than both sigmoid and TanH,

17

and does not have the vanishing gradient problem for positive input values. For negative inputs, however,

the gradient is always 0, which prevents the weights associated with these neurons from being updated.

Some variants, such as Leaky ReLU, address these problem by having a slight slope for negative values.

Equation (2.11) defines the ReLU function and its derivative. Figure 2.11 is a graphic representation of

the ReLU function.

ReLU(x) = max(0, x)

ReLU′(x) =

0, if x ≤ 0

1, if x > 0

(2.11)

(a) ReLU (b) Leaky ReLU

Figure 2.11: Graphic representation of the ReLU function and one possible variant

2.2.4 Types of Layers

The representation of a Neural Network presented in Figure 2.7 is somewhat misleading, in that

the layers are associated to the neurons, whereas in fact layers are comprised of the weights and the

neurons together. This way, a more accurate representation is presented in Figure 2.12, alongside a

corresponding block diagram used since, for more complex networks, connections between neurons

quickly make the image two dense.

(a) Neural Network example (b) Neural Network block diagram

Figure 2.12: Neural Network example along with its corresponding block diagram

It is also important to note that the input layer represents the input data fed to the network, which

18

means that in the case of image classification, if the input is not flattened, instead of having a single

dimension it could be 2-D or even 3-D, in the case of a coloured image.

There are many different types of layers that can be used when building a neural network, each with

a different purpose to better address the problem at hand. For image classification problems, Linear,

Convolutional and Pooling layers are the most commonly used.

Linear Layer

The linear layer is the one generally represented in Figure 2.7, where all neurons of the previous

layer are connected with the neurons of the next layer, hence its alternative name of fully connected

layer. Saying that the output of this layer is of size m, means that each neuron of the previous layer has

m weights associated with it. This way, if the number of neurons of the previous layer is n, a linear layer

can be mathematically represented with a matrix of size m × n that will multiply the input, and a bias

vector of size m to sum, generalizing equation (2.5) to compute all neurons at once:

outputm×1 =

w11 w12 · · · w1n

w21
. . . w2n

...
. . .

...

wm1 wm2 · · · wmn

in1

in2

...

inn

+

b1

b2
...

bm

 (2.12)

For backpropagation, equation (2.8) can be extended to compute all weight gradients at once with

matrix multiplication, in a similar fashion to what is done in equation (2.12) for the forward pass.

Convolutional Layer

Convolutional layers are responsible for the name of Convolutional Neural Networks (CNNs), the

state-of-the-art networks in image classification problems [53]. These layers perform a convolution op-

eration on the 2-D (or 3-D) data, that consists in sliding a filter (called kernel) through the image in order

to outline certain features. One of the main advantages over a linear layer is that the images don’t need

to be flattened, which means that spatial features can be detected [54].

Mathematically, a convolution operation would require the kernel to be flipped before it is slid over

the image. However, since weights are randomly initialized, sliding the kernel directly produces the

desired results. This way, what in the DL community is called convolution does not correspond to the

mathematical operation of convolution, but to cross-correlation. In this frame, convolution is defined as:

yi2i1 =

Hw∑
k2=1

j2=k2+i2−1

Ww∑
k1=1

j1=k1+i1−1

xj2j1wk2k1 , (2.13)

where yi2i1 is the convolution output at index (i2, i1), Hw is the height of the kernel, Ww is its width,

xj2j1 is the input at index (j2, j1) and wk2k1 is the kernel weight at index (k2, k1). Graphically, the

convolution operation can be visualized in Figure 2.13, for an example where the input is of size 3 × 3

and the kernel is of size 2× 2.

19

(a) y11 (b) y12 (c) y21 (d) y22

Figure 2.13: Graphic representation of kernel and input overlaps to compute convolution.

The representation presented in Figure 2.13 would correspond to 4 matrix multiplications, one for

each position of the kernel over the input matrix. Nonetheless, by flattening the input and considering

a sparse matrix of the weights, the operation can be computed with only one matrix multiplication, as

represented in equation (2.14).

w11 w12 0 w21 w22 0 0 0 0

0 w11 w12 0 w21 w22 0 0 0

0 0 0 w11 w12 0 w21 w22 0

0 0 0 0 w11 w12 0 w21 w22

x11

x12

x13

x21

x22

x23

x31

x32

x33

=

x11w11 + x12w12 + x21w21 + x22w22

x12w11 + x13w12 + x22w21 + x23w22

x21w11 + x22w12 + x31w21 + x32w22

x22w11 + x23w12 + x32w21 + x32w22

(2.14)

Another advantage of having the weights in a single matrix is that the forward propagation is exactly

the same operation as for the linear layer, which means that the weight gradient for backward propagation

can also be computed through equation (2.8).

Besides the kernel size, there are 3 more hyperparameters that characterize a convolutional layer:

stride, padding and dilation. Stride represents the size of the step when the kernel moves over the

input. In Figure 2.13, the kernel is moving with the default stride of 1. Increasing stride represents a

downsampling, which can be useful to decrease computation if the features to be detected allow for

smaller resolution [55].

Without any padding, the borders of the image have less interaction with the kernel than the rest of

the image, since only the left part of the filter is ever at the edge of the image. By starting the kernel slide

outside the image borders, the borders have the same interaction with the kernel as any other part of the

image. Padding represents the number of elements added to the border of an image, which represents

starting the kernel outside the image. The default padding value is 0. Equation (2.15) represents an

input that is padded by 1.

20

x11 x12 x13

x21 x22 x23

x31 x32 x33

 padding = 1−−−−−−→

0 0 0 0 0

0 x11 x12 x13 0

0 x21 x22 x23 0

0 x31 x32 x33 0

0 0 0 0 0

(2.15)

Dilating a kernel is the incorporation of 0s between elements of the kernel. This reduces the size

of the output of the convolution operation, but depending on the application might come at the cost of

loss of accuracy [56]. The value of the dilation corresponds to the spacing between elements of the

kernel, which means that the default value is 1. Graphically, a dilation of 2 applied to a 2 × 2 kernel is

represented in Equation (2.16).

w11 w12

w21 w22

 dilation = 2−−−−−→

w11 0 w12

0 0 0

w21 0 w22

 (2.16)

Taking all the presented hyperparameters into account, the size of the output after a convolution

operation is calculated with equation (2.17). This size is computed for each dimension, since all hyper-

parameters might have different values for the horizontal and vertical dimensions.

output size =
input size + 2× padding− dilation× (kernel size− 1)− 1

stride
+ 1 (2.17)

Pooling Layer

The output of a convolutional layer is a feature map, highlighting features of the input image. Down-

sampling this output leads to the network being more robust to changes in the position of the features in

the input and consequently enables more general predictions [57]. This downsampling can be achieved

by increasing the stride and/or dilation in the convolutional layer, but it is generally more effective to have

a pooling layer after the convolutional layer in the network architecture [57].

The pooling layer does not have weights associated with it. It consists of a kernel that slides over

the input image, performing a pooling operation for each overlap. The pooling layer has the same

hyperparameters as the convolutional: kernel size, stride, padding and dilation; the only difference is

that the default value for the stride is the kernel size. The most common operations are:

• average pooling: the average value of the inputs within each overlap is calculated;

• maximum pooling: the maximum value of the inputs within each overlap is selected.

An average pooling layer can be mathematically expressed as:

yi2i1 =
1

HwWw

Hw+i2×stride∑
j2=i2×stride

Ww+i1×stride∑
j1=i1×stride

xj2j1 . (2.18)

21

Since there are neither weights nor activation function, the derivative for backpropagation in an aver-

age pooling layer simplifies to:

∂L

∂al−1
j

=
∂L

∂ali

∂ali
∂zli

∂zli

∂al−1
j

=
∂L

∂ali

1

HwWw

(2.19)

Graphically, an example of a 4×4 sized input with a kernel of size 2×2 is shown in equation (2.23).

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

average pooling−−−−−−−−→

x11+x12+x21+x22

4
x13+x14+x23+x24

4

x31+x32+x41+x42

4
x33+x34+x43+x44

4

 (2.20)

As for the maximum pooling layer, it can be mathematically expressed as:

yi2i1 = max
j2,j1∈kernel overlap

{xj2j1}. (2.21)

The derivative of a maximum pooling layer is 0 whenever the input was not the maximum and 1 if it

was, so for backpropagation it can be expressed as:

∂L

∂al−1
j

=
∂L

∂ali

∂ali
∂zli

∂zli

∂al−1
j

=

∂L
∂al

i

if j is max of overlap,

0 otherwise.
(2.22)

Graphically, an example of a 4×4 sized input with a kernel of size 2×2 is shown in equation (2.23).

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

maximum pooling−−−−−−−−→

max{x11, x12, x21, x22} max{x13, x14, x23, x24}

max{x31, x32, x41, x42} max{x33, x34, x43, x44}

(2.23)

Droupout

One of the main concerns when training a network is that it generalizes well for unseen data. The

overfitting problem - when a network fits too well the training data and hence performs poorly on new

data - is important to take into account, especially with deep networks. From the notion that combin-

ing the predictions of different models yields better results in testing, dropout layers aim at increasing

redundancy within a network, simulating the effect of having several networks making a prediction [58].

A dropout layer is characterized by a single parameter, p, that represents the probability of a given

node being dropped. This layer receives a tensor and outputs the same tensor with some values set to

0 and the remaining scaled by 1
1−p [59]. It can be applied after the input layer and/or in any hidden layer.

During inference, this layer is simply the identity function, as the network has already been trained and

the goal is to make a prediction using the whole network.

22

The derivative for backpropagation follows the same principle: 0 for nodes zeroed out during the

forward pass and the scale factor 1
1−p otherwise. In each forward pass the nodes to be zeroed out

change, forcing different subsets of the network to train.

2.2.5 Loss functions

As mentioned in section 2.2.2, the metric used during the training of a neural network is a loss

function, that measures the distance between a prediction and the expected target. Several loss func-

tions have been proposed, their choice depends on the type of problem being handled. For regression

problems, the most popular function is the Mean Squared Error, whereas for multi class classification

problems the most commonly used is Cross Entropy Loss [60].

Mean Squared Error (MSE) consists in calculating the mean of the squared difference between the

output and the target, greatly penalizing outliers, as the error is squared. Formally, it can be expressed

by equation:

L(ŷ, ytrue) =

∑
i∈last layer

(ŷi − ytrue)2

output neurons
, (2.24)

where ŷi is the predicted value at neuron i and ytrue is the expected value at neuron i. Its gradient,

used for backpropagation, is proportional to the error:

∂L

∂yi
= 2(ŷ − ytrue). (2.25)

Cross Entropy Loss, used for classification problems, combines the softmax function with the Neg-

ative Log Likelihood function (NLL). The softmax function can be regarded as the predicted probability

for a given class, since its output is between 0 and 1 and the sum for all classes is equal to 1. This way,

NLL can be seen as the log probability of the target class. Mathematically, Cross Entropy Loss can be

expressed as:

S(ŷi) = exp(yi)∑

j∈last layer
exp(yj)

L(ŷ, target) = − log(S(ŷtarget)),

(2.26)

where target represents the index of the expected class. Its gradient can be expressed solely through

the value of the function, which reduces the amount of computation during the backward pass:

∂L

∂yi
= −

1

S(ŷtarget)

∂S(ŷtarget)

∂yi
=

S(ŷtarget)− 1 for i = target,

S(ŷi) otherwise.
(2.27)

2.2.6 Optimizers

After the forward pass, the loss calculation and the backward pass, the weights are updated with the

goal of minimizing the loss function in the next pass. Gradient descent is the algorithm usually used

23

to perform the weight updates. Equation (2.6) represents the most basic optimizer, that depending on

the amount of samples considered will be batch, mini-batch or stochastic gradient descent (SGD), as

exposed in section 2.2.2. This algorithm has some shortcomings, namely [48]:

• The learning rate is the same for all model weights;

• Slowness of conversion;

• The algorithm might get trapped in a local minimum, leading to no more weight updates and a

suboptimal solution.

To improve performance regarding the last two challenges, a momentum term (v) can be added to

the update. It is based on an exponentially weighted average, where the current gradient only constitutes

a fraction of the total term to be added to the weight. This is formally expressed as:

v(t+ 1) = γv(t) + η ∂L
∂w

∣∣
w(t)

w(t+ 1) = w(t)− v(t+ 1),

(2.28)

where γ is the momentum rate, η is the learning rate and w(t) is the weight at time step t.

Nonetheless, even with the introduction of the momentum term, the first shortcoming was not ad-

dressed: not only is the learning rate still the same for all model weights but the momentum rate is also

unique. Adaptive algorithms address this issue, by having hyperparameters that are adaptable to each

weight. The most commonly used is Adam (Adaptive Moment Estimation) [48]. It introduces a second

momentum term, proportional to the gradient squared, that will be used to have an adaptive learning

rate. The two momentum terms, mean (m) and uncentered variance (v), are computed by:

m(t+ 1) = β1m(t) + (1− β1) ∂L
∂w

∣∣
w(t)

v(t+ 1) = β2v(t) + (1− β2)(∂L
∂w

∣∣
w(t)

)2
(2.29)

Since these are exponentially weighted averages (with β1 and β2 determining over how many points

the average is taken), there is a bias towards 0 in the first iterations, so a bias correction term is added:

m̂(t+ 1) = m(t+1)
1−(β1)t+1

v̂(t+ 1) = v(t+1)
1−(β2)t+1 .

(2.30)

Finally, the weight updates are performed with the adaptive learning rate through:

w(t+ 1) = w(t)−
η√

v̂(t+ 1) + ε
m̂(t+ 1), (2.31)

where ε prevents division by 0. Upon the introduction of Adam, the proposed values for the hyperpa-

rameters were β1 = 0.9, β2 = 0.999 and ε = 10−8 [61].

Given that it can be customized through the hyperparameters and that it has two momentum terms

that induce faster convergence, Adam is used in most state-of-the-art NNs [48]. However, despite its

24

slower convergence, SGD has been found to generalize better, so techniques of switching from Adam

to SGD at later stages of training have been explored [62].

2.2.7 Reference Datasets

The previous sections described the main building blocks to construct a neural network, in particular

the layers that constitute Convolutional Neural Networks (CNNs). The possible architectures are end-

less, by choosing which layers to use, their sizes, the tuning of hyperparameters and the depth of the

network. There are competitions for a given DL problem (classification of coloured images into different

classes and subclasses, for instance [63]) where novel architectures are proposed, and winner networks

establish themselves as reference networks.

This section presents some of the reference datasets used in these competitions, which are com-

posed by large sets of labeled images so that different network architectures can be compared on the

same task and input.

MNIST

MNIST is a dataset that consists of 28 × 28 pixel images of handwritten digits in grayscale, divided

into 10 classes (a class per digit) [64]. It is comprised of 60000 images used for training and 10000

images for validation. It was assembled in 1998 from the combination of two existing datasets of hand-

written digits. It is usually the first dataset on which a model is tested, given its simplicity.

Figure 2.14: A few samples from the MNIST dataset, with different classes on different rows, obtained
from [65].

Cifar-10 and Cifar-100

Cifar-10 is a dataset that consists of 32 × 32 pixel coloured images, which means that each image

has 3 channels (red, green and blue). It is divided into 10 classes: airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck. It is comprised of 50000 images for training and 10000 for

validation. Cifar-100 has the same types of images and the same cardinality, but images are classified

into 100 classes that are grouped into 20 superclasses, meaning that the labeling of an image involves

25

2 classifications. Given that classes are more complex than digits and the images are coloured, these

datasets are harder to classify than MNIST.

Figure 2.15: A few samples from the Cifar-10 dataset, with different classes on different rows, obtained
from [66]

ImageNet

ImageNet is a dataset being built with the aim of being the most comprehensible set of labeled

images. Currently it consists of over 14 million images divided into 21841 classes, but the goal is to

expand further to tens of millions of images divided into one hundred thousand classes [63]. The images

are coloured (3 channels) and have varying dimensions. This dataset is the base for the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC), held every year from 2010 to 2017 [63], where different

network architectures would compete to classify images from the dataset with the greatest possible

accuracy.

Figure 2.16: A few samples from the ImageNet dataset, obtained from [63]

26

Several networks have been proposed to address the datasets presented, namely during the 8 years

of the ILSVRC. Some of the most important are presented next, with a description of their architecture

along with the reasons that made them become benchmark models. These are presented in increasing

order of complexity.

2.2.8 Benchmark Models

This section presents some of the CNNs that have won competitions on the datasets presented in the

previous section. These models have become benchmarks for image classification tasks, being used to

compare and validate results on these tasks.

LeNet-5

LeNet-5 is a CNN proposed in 1998, the first to achieve an accuracy above 99% in handwritten

digit recognition [67]. It is a common entry point for CNNs, given its relatively simple architecture and

the many tutorials available for implementation in different DL platforms. It is comprised of 7 layers: 3

convolutional, 2 average pooling and 2 fully connected, adding to a total of about 60 thousand trainable

parameters. A block diagram representing its architecture is presented in Figure 2.17, where the input is

a 32× 32 image (one from the MNIST dataset, for instance), and the output is the probabilities of each

of 10 classes.

Figure 2.17: Block Diagram representing the architecture of the LeNet-5. K stands for kernel, S for stride
and FC for fully connected.

CifarNet

CifarNet was designed to classify the previously presented Cifar-10 dataset with a relatively small

network structure. Its architecture is similar to LeNet-5, the main differences being the introduction of

padding in the convolutional layers and using ReLU instead of TanH for activations. It does not have a

fixed structure, but it is characterized by having 3 convolutional layers and 1 to 3 fully connected layers.

Figure 2.18 presents a block diagram of CifarNet, based on the one used in [68].

27

Figure 2.18: Block Diagram representing the architecture of the CifarNet. K stands for kernel, S for
stride, P for padding and FC for fully connected.

AlexNet

AlexNet was proposed in 2012, winning the ILSVRC with a top-5 test error rate of 15.3% (the correct

class is one of the 5 most probable in the model’s prediction), over 10% better than the second place

[58]. It is a deep network of 13 layers, with a total of 650 thousand neurons and 60 million trainable

parameters, making it one of the largest at that time. AlexNet was among the first to leverage the use

of GPUs to speed-up training, contributing to the generalization of GPUs in DL applications [69]. It

introduced dropout layers and overlapped pooling to reduce overfitting and ReLU activation to increase

training speed [58].

Figure 2.19: Block Diagram representing the architecture of the AlexNet. K stands for kernel, S for stride,
P for padding, p for probability and FC for fully connected.

ResNet

Following AlexNet, even deeper architectures started to be explored, and the ResNet class of net-

works, proposed in 2015, explored up to 1000 layers [70]. This increase in depth led to better perfor-

mance in more complex task, such as object detection, where ResNet won the 2015 Common Objects

in Context Competition (COCO). An architecture with 152 layers also won the ILSVRC in 2015.

Increasing the depth of networks brought other challenges, such as the increase in training time, the

problem of vanishing gradients and the degradation of training accuracy [70]. The vanishing gradient

problem had already been addressed, but ResNet introduced the concept of residual learning - con-

nections that are skipped, the input is passed directly to the next layer - that not only improved training

accuracy but also reduced training time for deeper networks, as some computations are skipped.

28

2.2.9 Deep Learning Frameworks

In order to build, train and perform inference with NNs, one can either implement all the mathematical

operations for the different layers, derivative calculations for backpropagation, etc. from scratch, or

leverage existing frameworks that provide higher level APIs that address these operations. Some of the

most popular frameworks are PyTorch, TensorFlow, Keras (built on top of TensorFlow), Caffe and CNTK.

Among these, PyTorch [8] and TensorFlow [9] are the most established [10]. The first is developed

by Facebook and the second by Google, but both of them are open source with very active communities.

Google’s TensorFlow was released earlier with a stable API. It provided solutions both for server and

mobile and thus became dominant in production. However, given PyTorch’s shallower learning curve

and the easiness to experiment and debug novel architectures, researchers have been switching to

PyTorch, and it has surpassed TensorFlow in popularity, as shown in Figure 2.20.

Figure 2.20: Unique mentions of PyTorch in DL articles that either mention PyTorch or TensorFlow,
obtained from [10].

Both frameworks offer similar functionalities, namely high level Python APIs for all NN layers and as-

sociated functions, along with automatic differentiation, responsible for calculating the gradients needed

for backpropagation. Even though the main API is in Python, PyTorch also has a C++ API and Tensor-

Flow includes an API in C. These are used mainly for speed, avoiding the need of the Python interpreter,

but they do not offer all the functionalities available in the Python API. Nonetheless, given their open

source nature, in both frameworks can be extended with user designed functions, either purely written

in Python or through C/C++ extensions that are translated to Python.

29

2.3 Related Work

The high computational and memory requirements of NN training and inference have led to an in-

creasing interest in using low-precision arithmetic in DL problems. This is observed in the available

tools for model design with smaller sized (less than 32 bits) floating point numbers, such as the hard-

ware support for half floating point (16 bits) and BFloat16 in recent NVIDIA’s GPUs and Google’s Tensor

Processing Units.

Upon the introduction of Posits, with the claim that with less bits they could provide similar accuracy

to IEEE 754 floating-points in DL applications [15], several experiments with different posit configurations

in NN inference and training have been conducted. However, in order to perform these experiments, it

is necessary to develop frameworks that support DL operations with Posits, as existing frameworks do

not have this support.

The first work to address inference with Posits [14] did not actually support any operations with

Posits. It was limited to converting floating-point values to low-precision Posits and back to floats for

computation, in order to evaluate if the smaller precision of Posits resulted in a loss of accuracy in the

network’s predictions. Subsequent works [11, 16, 17] introduced hardware support for multiplication and

addition with Posits, since these are the only operations needed for inference.

The first work to address training with Posits [20] used the PySigmoid library [41], mentioned in

section 2.1.5 as the basis to simulate operations with Posits. Since it consisted on a simple Fully Con-

volutional Neural Network (FCNN), the operations were implemented from scratch, that is, without using

any of the DL frameworks exposed in section 2.2.9.

Later, in [18, 71], CNN were trained for the first time using the posit format. However, there was a pre-

training phase with floats and intermediate calculations were also performed with floats. This removed

the need to build a framework to train with Posits, as PyTorch’s functions were used on floats.

It was in [72] that a module to enable training with Posits was first introduced. It consisted in an

extension of the quantization module QPytorch [73] to support Posits. This module is built on top of

PyTorch, allowing for integration with the framework to be seamless. However, this is a quantization tool,

meaning that all calculations are still performed with floats and only afterwards are the values quantized

to Posit.

In [20], a framework to design and train NN with Posits was proposed. Built on top of Tensorflow,

this framework provided all the functions needed to train and evaluate NN with Posits. However, given

the out-of-tree nature of this framework with respect to TensorFlow, there is a significant overhead in

maintaining it.

More recently, a framework called PositNN was introduced [19]. Based on PyTorch’s C++ frontend,

this framework implements the most common functions used to train and evaluate NNs. It provides the

flexibility to train NNs with Posits of any configuration, and even change configuration for different steps

of training.

Up until now, as far as the author knows, every researcher who wanted to study training of NNs with

Posits has developed a framework from scratch. This means that models firstly developed in PyTorch

30

have to be completely rewritten to make use of the new frameworks. In contrast, this work aims at

providing a tool for researchers to build and test their models in PyTorch without the need to learn a new

tool or build one from scratch. Moreover, with the implementation of the NN operators for Posits, this

work provides the intermediate layer for hardware implementations of posit arithmetic to be integrated in

PyTorch.

2.4 Summary

In this chapter, the background to this work was presented. First, the main computer number formats,

with particular attention to posits and the software libraries available to emulate its operations. Then, the

main DL concepts were briefly described: the process of training a NN, its main layers and functions,

some of the reference datasets and benchmark models as well as the most popular frameworks to build

models. The chapter finishes with an overview of the related work of using Posits for DL applications.

31

32

Chapter 3

PyTorch Framework API

Contents

3.1 Tensors as the base data structure . 34

3.1.1 Tensor Data Types . 35

3.2 Neural Network Design and Training . 36

3.2.1 Layers . 36

3.2.2 Activation functions . 40

3.2.3 Loss functions . 40

3.2.4 Optimizer . 42

3.2.5 Model Training Example . 43

3.3 Summary . 45

33

As mentioned in section 2.2.9, PyTorch is currently one of the most popular frameworks to build

DL models. Its Application Programming Interface (API) provides functions for the most common DL

operations, while abstracting their implementation details from the end user. Developed and owned by

Facebook, it is open-source, meaning that anyone can contribute. These contributions by the external

community are not only accepted and encouraged by the maintainers at Facebook but they have also

influenced major design decisions. [8]

This chapter starts by exposing PyTorch Tensors, as these are the core data structures used for all

data manipulation. It follows with details on how the functions needed to train and evaluate a NN that

were introduced in section 2.2 are exposed in PyTorch’s API. Even though PyTorch has APIs based on

other languages (C++ and Java), the Python interface is the one with more features and the focus of this

work. For these reasons, this chapter is solely focused on the Python API.

3.1 Tensors as the base data structure

From the decription presented in section 2.2, it was observed that most operations either consist

of matrix multiplications or can be represented in such a way. Hence, PyTorch uses Tensors (multi-

dimensional arrays) to represent all data within NNs. In their words, ”PyTorch is an optimized tensor

library for deep learning” [59].

As an example, gray-scale images can be represented by a 2-D array, where each row and column

position maps a pixel in a certain height and width position on the image. If the image is coloured, a

new dimension representing each of the 3 channels is added. If images are grouped (within a batch, for

example), an extra dimension is added, where the index denotes the image’s position in the batch. A

4-D tensor is, thus, the adequate data structure to store a batch of coloured images.

Another example are the weights of a linear layer. Here, the input is a column tensor corresponding

to the neurons of the previous layer with length m and the output is a column tensor with length n. The

weights of the linear layer can then be represented by an m× n tensor. If there is a batch of inputs, an

extra dimension is added whose index represents a certain input.

From these examples, one can see that multi-dimensional arrays are a flexible structure to store

information concerning the computations executed within NNs. However, PyTorch’s Tensor class is

more powerful than a simple container to store data. It stores metadata that is relevant for NN design,

namely:

• dtype: the type of the stored data (32-bit float, 16-bit integer, 64-bit complex, etc);

• device: whether the tensor is allocated on the CPU or on the GPU, and in which core;

• layout: How the tensor’s data is stored in memory (rows concatenated contiguously, a sparse

matrix representation, etc);

• requires grad: if, when integrated in a NN, this tensor will need to have its gradient calculated for

backpropagation.

34

From these, the last attribute is particularly important. It constitutes the main difference between

Tensors dedicated to NNs and multi-dimensional arrays. If this attribute is set to True, PyTorch will

automatically store the gradient of the loss with respect to this tensor. Moreover, if other tensors are

constructed through mathematical operations on a tensor with requires grad=True, these tensors will

also keep track of their gradient. With this, end users do not need to compute gradients, everything is

done in the background once the network’s design is established.

Listing 3.1 shows an example of creating 2 tensors and performing a matrix multiplication. Since

tensor 1 has its require grad attribute set to True, tensor 3 keeps track of the operation from which it

was originated, so that it knows how to calculate its gradient.

1 >>> import torch

2 >>>

3 >>> tensor_1 = torch.tensor ([[1.2 , 3.4], [3.1, 4.2]], dtype=torch.float64 , device="cpu",

requires_grad=True)

4 >>> print(tensor_1)

5 tensor ([[1.2000 , 3.4000] ,

6 [3.1000 , 4.2000]] , dtype=torch.float64 , requires_grad=True)

7 >>>

8 >>> tensor_2 = torch.ones ((2 ,2), dtype=torch.float64)

9 >>> print(tensor_2)

10 tensor ([[1., 1.],

11 [1., 1.]], dtype=torch.float64)

12 >>>

13 >>> tensor_3 = torch.mm(tensor_1 , tensor_2)

14 >>>

15 >>> print(tensor_3)

16 tensor ([[4.6000 , 4.6000] ,

17 [7.3000 , 7.3000]] , dtype=torch.float64 , grad_fn=<MmBackward0 >)

Listing 3.1: Tensor creation and matrix multiplication example

The Tensor class also provides a suite of operators to facilitate the development. These include:

• creation operators (from existing data, filled with zeros, from another tensor, etc.);

• indexing, slicing and joining operators (concatenating tensors, splitting into chunks, reshaping,

etc.);

• pointwise math operators (trignometric functions, exponential, logarithm, etc.);

• basic linear algebra operators (addition after element-wise multiplication of tensors, chained matrix

multiplication, etc.).

3.1.1 Tensor Data Types

As mentioned in the previous section, tensors have a dtype property, that stores the data type of the

tensor in question. The data types that PyTorch supports are:

• IEEE floating-point: 16-bit (half), 32-bit (float) and 64-bit (double);

35

• integers: 8-bit (char), 16-bit (short), 32-bit (int), 64-bit (long) and unsigned integer with 8 bits;

• complex: 16-bit (half), 32-bit (float) and 64-bit (double);

• brain floating point with 16 bits (bfloat16).

Some of these are not supported for some operators in the framework, namely complex and brain

floating point numbers. Whenever the dtype property is not specified, the default data type is 32-bit float-

ing point (float). With this, unless clearly specified otherwise, all computations in PyTorch are performed

with floats.

1 >>> tensor_1 = torch.tensor ([[1.2 , 3.4], [3.1, 4.2]])

2 >>> print(tensor_1.dtype)

3 torch.float32

Listing 3.2: Declaring a tensor with the default float datatype

3.2 Neural Network Design and Training

PyTorch provides functions and operators that allow the concepts presented in section 2.2 to be used

through a simple interface that hides the implementation details from the end user. This section provides

a high level description of how these concepts are exposed in PyTorch’s frontend. All of the mentioned

classes and functions are under the nn module. This way, the two lines shown in listing 3.3 should come

immediately before all the code examples throughout this chapter, to import the modules torch and nn .

Lower level implementation details of these classes and functions are explored later, in Chapter 4.

1 >>> import torch

2 >>> from torch import nn

Listing 3.3: Importing of the torch and nn modules

3.2.1 Layers

Linear Layer

As it was previously described in section 2.2, a linear layer consists of a multiplication of an input by

a matrix of weights and the addition of a bias: y = Ax + b. A is the matrix with the weights, x is the

input, b is the bias and y is the output.

To declare a linear layer in PyTorch, it suffises to specify the dimension of the input and that of the

output. Extra arguments can be passed, such as the device and the data type of the layer. Internally,

it stores two variables: the matrix of weights and the vector of bias. These are learnable parameters,

randomly initialized from a distribution in the range [−
√
k,
√
k], where k = 1

dimension of the input [59].

Listing 3.4 has a minimal example of declaring a linear layer and applying it to an input. In this

example, a batch of 32 inputs is passed to the linear layer, which leads the output to also have 32

batches of dimension 10 each.

36

1 >>> m = nn.Linear (20, 10)

2 >>> input = torch.randn (32, 20)

3 >>> output = m(input)

4 >>> print(output.size())

5 torch.Size ([32, 10])

Listing 3.4: Declaring a linear layer in PyTorch

Convolutional Layer

PyTorch’s 2-D convolutional layer has more features than the convolution operation described in

section 2.2, namely multi-channel output. The main parameters provided upon declaration are:

• in channels: number of input channels;

• out channels: number of channels produced by the convolution;

• kernel size: size of the convolving kernel;

• stride: optional for the stride of the convolution, defaults to 1;

• padding: optional for the padding added to the 4 sides of the input, defaults to 0;

• dilation: optional spacing between kernel elements, defaults to 1;

• bias: optional learnable bias added to the output, defaults to True.

After initialization, the convolutional layer receives a 4-dimensional input, (N,Cin,Hin,Win), where

N represents the number of images in the batch,Cin the channels of each image andHin andWin the

height and width of the image, respectively. The produced output, with shape (N,Cout,Hout,Wout) is

derived from equation:

output(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ∗ input(Ni, k), (3.1)

where ∗ represents the cross-correlation operator (as explained in section 2.2.4, most DL frameworks

implement cross-correlation but call it convolution). From equation (3.1) it can be seen that the weights

have 4 dimensions: 1 for the output channels, 1 for the input channels and 2 that make up the kernel

that slides for the convolution. The bias has only 1 dimension for the output channels. Similarly to the

linear layer, the weights and biases are initialized with random values from a distribution in the range

[−
√
k,
√
k], where k = 1

Cin×kernel size[0]×kernel size[1] . The height (Hout) and width (Wout) of the output

are determined by equation (3.2).

Hout = Hin+2×padding[0]−dilation[0]×(kernel size[0]−1)−1
stride[0] + 1

Wout = Win+2×padding[1]−dilation[1]×(kernel size[1]−1)−1
stride[1] + 1

(3.2)

37

Listing 3.5 presents a minimal example of declaring a convolutional layer and applying it to an in-

put. In this example, unequal stride, padding and dilation are applied, the first element of the tuple

corresponds to the height and the second to the width.

1 >>> m = nn.Conv2d(in_channels =16, out_channels =33, kernel_size =3, stride =(2, 1), padding

=(4, 2), dilation =(3, 1))

2 >>> input = torch.randn (20, 16, 50, 100)

3 >>> output = m(input)

4 >>> print(output.size())

5 torch.Size ([20, 33, 26, 102])

Listing 3.5: Declaring a convolutional layer in PyTorch

Average Pooling Layer

To declare an average pooling layer, the kernel size must be provided, and optionally the stride

(defaults to kernel size) and padding (defaults to 0). Subsequently, this layer receives a 4-dimensional

input, (N,C,Hin,Win), where N represents the number of images in the batch, C the channels of

each image and Hin and Win the height and width of the image, respectively.

The produced output, with shape (N,C,Hout,Wout) is derived from equation:

output(Ni, Cj, h, w) =
1

kH × kW

kH−1∑
m=0

kW−1∑
n=0

input(Ni, Cj, stride[0]× h+m, stride[1]× w + n),

(3.3)

where kH is the kernel height and kW is the kernel width. The height (Hout) and width (Wout) of the

output are determined by equation (3.4).

Hout = Hin+2×padding[0]−kernel size[0]
stride[0] + 1

Wout = Win+2×padding[1]−kernel size[1]
stride[1] + 1

(3.4)

Listing 3.6 presents a minimal example of declaring an average pooling layer and applying it to an

input. This example has a rectangular kernel size, where the first element of the tuple corresponds to

the height of the kernel and the second to the width.

1 >>> m = nn.AvgPool2d ((3, 2), stride =(2, 1))

2 >>> input = torch.randn (20, 16, 50, 32)

3 >>> output = m(input)

4 >>> print(output.size())

5 torch.Size ([20, 16, 24, 31])

Listing 3.6: Declaring an average pooling layer in PyTorch

Maximum Pooling Layer

To declare a maximum pooling layer, the kernel size must be provided, and optionally the stride

(defaults to kernel size), padding (defaults to 0) and dilation (defaults to 1). Subsequently, this layer

38

receives a 4-dimensional input, (N,C,Hin,Win), where N represents the number of images in the

batch, C the channels of each image and Hin and Win the height and width of the image, respectively.

The produced output, with shape (N,C,Hout,Wout) is derived from equation:

output(Ni, Cj, h, w) = max
m=0,...,kH−1

max
m=0,...,kW−1

{input(Ni, Cj, stride[0]×h+m, stride[1]×w+n)},

(3.5)

where kH is the kernel height and kW is the kernel width. The height (Hout) and width (Wout) of the

output are determined by equation (3.6).

Hout = Hin+2×padding[0]−dilation[0]×(kernel size[0]−1)−1
stride[0] + 1

Wout = Win+2×padding[1]−dilation[1]×(kernel size[1]−1)−1
stride[1] + 1

(3.6)

Listing 3.7 presents a minimal example of declaring a maximum pooling layer and applying it to an

input. This example has a rectangular kernel size, the first element of the tuple corresponds to the height

of the kernel and the second to the width.

1 >>> m = nn.MaxPool2d ((3, 2), stride =(2, 1))

2 >>> input = torch.randn (20, 16, 50, 32)

3 >>> output = m(input)

4 >>> print(output.size())

5 torch.Size ([20, 16, 24, 31])

Listing 3.7: Declaring a maximum pooling layer in PyTorch

Dropout Layer

The dropout layer’s interface is fairly simple, since it only zeroes out some inputs with probability p

while the remaining are scaled by 1
1−p . This way, upon initialization it receives the optional parameter p,

that defaults to zero, and can subsequently be applied to an input of arbitrary shape. Listing 3.8 provides

an example of passing a random 4× 4 sized input through a dropout layer.

1 >>> m = nn.Dropout(p=0.2)

2 >>> input = torch.randn(4, 4)

3 >>> print(input)

4 tensor ([[-1.0306 , -0.6194, 0.8334 , -0.3314],

5 [-0.0365 , 1.9288 , 1.0851 , 0.0906] ,

6 [-0.4671 , 1.5090 , 0.1446 , 0.6689] ,

7 [1.1268 , 2.2224 , 2.6797 , 1.3940]])

8 >>> output = m(input)

9 >>> print(output)

10 tensor ([[-1.2883 , -0.0000, 1.0418 , -0.0000],

11 [-0.0457 , 2.4110 , 1.3564 , 0.1133] ,

12 [-0.5838 , 1.8863 , 0.1808 , 0.8361] ,

13 [1.4085 , 2.7780 , 0.0000 , 0.0000]])

Listing 3.8: Declaring a Dropout layer in PyTorch

39

3.2.2 Activation functions

PyTorch has implementations for a plethora of activation functions, among them all of the referred in

2.2.3 (Sigmoid, TanH and ReLU) since these are the most used in NN design [52].

All have the same structure: upon initialization there are no arguments; subsequently, the input is

of shape (N, ∗), where N is the batch size and ∗ represents an arbitrary number of dimensions. The

pointwise function (i.e. to each element of the input) is applied over the input. The output has the same

shape as the input. Listing 3.9 provides an example of applying the TanH function to a 2×2 sized input.

1 >>> m = nn.Tanh()

2 >>> input = torch.tensor ([[1.2 , 0.4], [4.3, 6]])

3 >>> output = m(input)

4 >>> print(output)

5 tensor ([[0.8337 , 0.3799] ,

6 [0.9996 , 1.0000]])

Listing 3.9: Declaring a TanH layer in PyTorch

3.2.3 Loss functions

PyTorch has implementations of the major loss functions, among them the two refered in section

2.2.5: Mean Squared Error and Cross Entropy Loss.

Mean Squared Error (MSE)

The MSE class can compute either the square of the error, the sum of the squares of the error, or

the mean of the squares of the error (default). This is dependent on the optional parameter reduction,

passed upon creation as a string whose default is ’mean’.

The loss without any reduction is given by:

l(x, y) = L = {l1, ..., lN}T , ln = (xn − yn)2, (3.7)

where N is the batch size and xn and yn are tensors of arbitrary shape, with n elements each. If

reduction is not none, the two possibilities are:

l(x, y) =

mean(L), if reduction is ’mean’

sum(L), if reduction is ’sum’
(3.8)

When called, it should receive two parameters: the input and the target, both with shapes (N, ∗),

where N represents the batch size and ∗ any additional number of dimensions. Listing 3.10 provides

an example of applying the MSE loss function to an input.

1 >>> loss_criterion = nn.MSELoss(reduction=’mean’)

2 >>> input = torch.tensor ([[1.2 , 0.4, 2.3], [4.3, 6, -5.1]])

3 >>> target = torch.tensor ([[1.2 , -1.2, 1], [4, 7.2, -5.4]])

4 >>> loss = loss_criterion(input , target)

40

5 >>> print(loss)

6 tensor (0.9783)

Listing 3.10: Applying the MSE loss function to an input

Cross Entropy Loss

Upon initialization, the Cross Entropy Loss class receives two optional arguments: weight and reduc-

tion. Weight is an 1-D tensor with the cardinality equal to the number of classes, C. It is useful when the

training set is unbalanced, with one class being predominant over the others [59]. Similarly to MSE, the

reduction parameter determines whether the losses are unaltered, averaged, or summed over a batch.

When called, it receives two arguments: an input tensor of size (N,C), where N is the batch

size, and a target of size N , where each element is in the range [0, C − 1], representing the index

of the target class. As mentioned in section 2.2.5, Cross Entropy loss is mainly used in classification

problems. PyTorch’s implementation of it is designed with this in mind, hence the target corresponding

to class indexes. Equation (3.9) describes the loss for each element of the input, x, where target is the

index of the target class.

loss(x, target) = − log

(
exp(x[target])∑

j exp(x[j])

)
= −x[target] + log

(∑
j

exp(x[j])
)

(3.9)

In case that the weight argument is specified, equation (3.9) becomes

loss(x, target) = weight[target]
(
− x[target] + log

(∑
j

exp(x[j])
))
. (3.10)

Depending on the value of the reduction parameter, losses are either unaltered, summed or average

over the batch. For the default, average, if the weight argument is specified it becomes a weighted

average, given by equation (3.11).

loss =

∑N
i=1 loss(i, target[i])∑N
i=1weight[target[i]]

(3.11)

Listing 3.11, in the next subsection, provides an example of applying the MSE loss function to an

input.

Automatic Gradient Computation

As mentioned in section 3.1, one of the main features of PyTorch is the automatic gradient calculation.

While the network is being constructed, the trainable weights belonging to any of the layers described

in the current section have the attribute requires grad set to True. This implies that each intermediary

tensor also stores the function that originated it (in the attribute grad fn), as the example in listing 3.1

illustrated.

41

Once the loss function is applied, the backward method can be called to compute the gradients. It

goes over the network in the reverse direction, computing the partial derivate with respect to each weight

(w) of the network, making use of the chain rule. This gradient is stored in the attribute grad of each

weight, through w.grad += ∂loss
∂w

. The gradients should be zeroed before this step, in order to avoid

accumulating with the ones calculated in previous backward passes. Listing 3.11 provides a minimal

example of this calculation. In it, the input is passed through a linear layer to produce the output (NN

with only 1 hidden layer). The output stores the function that originated it so that the chain rule can be

applied in the backward pass. The weights of the linear layer have their attribute grad set to None at

first, and after the call to loss.backward() this attribute holds the derivate of the loss with respect to each

weight.

1 >>> input = torch.tensor ([[1.4 , 5.6, 0.5], [-0.4, 4, 3.4]])

2 >>> m = nn.Linear (3,4)

3 >>> output = m(input)

4 >>> print(output)

5 tensor ([[-1.3677 , -0.7026, 1.7642 , 3.3604] ,

6 [-0.4372 , -0.6408, 0.3862 , 2.4435]] , grad_fn=<AddmmBackward0 >)

7 >>> target = torch.tensor ([2, 1])

8 >>> loss_criterion = nn.CrossEntropyLoss ()

9 >>> loss = loss_criterion(output , target)

10 >>> print(m.weight)

11 Parameter containing:

12 tensor ([[-0.4047 , -0.2056, -0.0437] ,

13 [0.2410 , -0.1743, 0.0747] ,

14 [-0.2235 , 0.3294 , -0.4321] ,

15 [0.4850 , 0.4107 , 0.2115]] , requires_grad=True)

16 >>> print(m.weight.grad)

17

18 >>> loss.backward ()

19 >>> print(m.weight.grad)

20 tensor ([[-0.0041 , 0.1114 , 0.0793] ,

21 [0.2024 , -1.8864, -1.6332],

22 [-0.6053 , -2.1303, -0.0321],

23 [0.4071 , 3.9053 , 1.5860]])

Listing 3.11: Applying the Cross Entropy loss function to an input and computing the gradients

3.2.4 Optimizer

As mentioned in section 2.2.6, after the gradients are computed the weights can be updated through

different algorithms, all based on the principle of updating the weights in the opposite direction of their

gradient - gradient descent.

PyTorch has a class (torch.optim.Optimizer) that serves as the base class for all optimization

algorithms implemented. Both optimization algorithms referred in section 2.2.6 inherit from this class.

Upon initialization, an iterable of the parameters to optimize should be passed. Additionally, each spe-

cialization of the base class has other parameters that can be passed during initialization:

42

• Stochastic Gradient Descent (SGD): learning rate and optional momentum term, as per equation

(2.28).

• Adam: optional learning rate, β1, β2 and ε, as per equation (2.31). These default to the values

proposed in the paper that introduced Adam [61].

As mentioned in the previous section, the gradients should be zeroed before the loss.backward()

function is called, so that they do not accumulate over different forward passes. This is done through

the optimizer’s method zero grad(). After the gradients are backpropagated through loss.backward(), to

perform the update the optimizer’s function step() is used. Listing 3.12 provides an example of using

Adam to update the weights of the simple network proposed in listing 3.11 of the previous section.

1 >>> input = torch.tensor ([[1.4 , 5.6, 0.5], [-0.4, 4, 3.4]])

2 >>> m = nn.Linear (3,4)

3 >>> output = m(input)

4 >>> target = torch.tensor ([2, 1])

5 >>> optimizer = torch.optim.Adam(m.parameters ())

6 >>> loss_criterion = nn.CrossEntropyLoss ()

7 >>> loss = loss_criterion(output , target)

8 >>> optimizer.zero_grad ()

9 >>> loss.backward ()

10 >>> print(m.weight)

11 Parameter containing:

12 tensor ([[-0.2461 , -0.2261, -0.2981] ,

13 [-0.0325 , 0.4279 , 0.3408] ,

14 [0.0308 , -0.4562, 0.1933] ,

15 [-0.1138 , -0.5093, -0.4616]] , requires_grad=True)

16 >>> optimizer.step()

17 >>> print(m.weight)

18 Parameter containing:

19 tensor ([[-0.2471 , -0.2271, -0.2991] ,

20 [-0.0335 , 0.4269 , 0.3398] ,

21 [0.0318 , -0.4552, 0.1943] ,

22 [-0.1148 , -0.5103, -0.4626]] , requires_grad=True)

Listing 3.12: Applying the Adam optimization algorithm to a simple network with 1 hidden layer

3.2.5 Model Training Example

To start the training process, data should be loaded into tensors to serve as input to the network.

Pytorch has a package called torchvision, dedicated to computer vision, that has an utility to download

the most common computer vision datasets. Among others, all of the image datasets mentioned in

section 2.2.7 are available through this utility. Another utility called Dataloader provides a wrapper

around the dataset. With it, iteration in batches and automatic shuffling of the data from one epoch to

the next is abstracted from the end user.

Listing 3.13 provides an example of loading the MNIST dataset and wrapping it into a dataloader that

provides 32 data samples (batch size) per iteration. In order to transform the image into a tensor, the

43

utility transforms from torchvision is used. The resulting input tensor, X, is a 4-D tensor where the first

dimension represents the batch size (32), the second the number of channels of the image (1 since it is

grayscale), and the third and fourth the height and width of the image, respectively.

1 >>> from torchvision import datasets , transforms

2 >>> from torch.utils.data import DataLoader

3 >>> train_dataset = datasets.MNIST(root=’mnist_data ’, train=True , transform=transforms.

ToTensor (), download=True)

4 >>> train_loader = DataLoader(dataset=train_dataset , batch_size =32, shuffle=True)

5 >>> for X, y_true in train_loader:

6 ... print(X.shape)

7 ... break

8 ...

9 torch.Size ([32, 1, 28, 28])

Listing 3.13: Loading the MNIST dataset and wrapping it into a dataloader

PyTorch provides a base class Module from which the class representing the network should be

derived. In the init method of the network’s class, the design of the network should be specified,

through the layers that constitute it. This class should also implement the method forward, responsible

for passing the input through the network’s layers and returning the output.

After the definition of the model, the 4 phases of the training process described in section 2.2.2

(forward pass, loss calculation, backward pass and weight update) are done for each batch of the training

data. After going over the entire training data, an epoch is said to be completed. For a neural network

to achieve a desirable precision on unseen data, the training is repeated for several epochs. However, if

the number of epochs is too large, there is the risk of overfitting the training data and thus perform poorly

on unseen data.

Combining all these concepts, listing 3.14 provides an end-to-end example of training the LeNet-5

network, presented in section 2.2.8, over the MNIST dataset.

1 class LeNet5(nn.Module):

2 def __init__(self , n_classes):

3 super(LeNet5 , self).__init__ ()

4

5 self.feature_extractor = nn.Sequential(

6 nn.Conv2d(in_channels =1, out_channels =6, kernel_size =5, stride =1),

7 nn.Tanh(),

8 nn.AvgPool2d(kernel_size =2),

9 nn.Conv2d(in_channels =6, out_channels =16, kernel_size =5, stride =1),

10 nn.Tanh(),

11 nn.AvgPool2d(kernel_size =2),

12 nn.Conv2d(in_channels =16, out_channels =120, kernel_size =5, stride =1),

13 nn.Tanh()

14)

15 self.classifier = nn.Sequential(

16 nn.Linear(in_features =120, out_features =84),

17 nn.Tanh(),

18 nn.Linear(in_features =84, out_features=n_classes),

44

19)

20

21 def forward(self , x):

22 x = self.feature_extractor(x)

23 x = torch.flatten(x, 1)

24 logits = self.classifier(x)

25 return logits

26

27 model = LeNet5(n_classes =10)

28 optimizer = torch.optim.Adam(model.parameters ())

29 loss_criterion = nn.CrossEntropyLoss ()

30

31 train_dataset = datasets.MNIST(root=’mnist_data ’, train=True , transform=transforms.

ToTensor (), download=True)

32 train_loader = DataLoader(dataset=train_dataset , batch_size =32, shuffle=True)

33

34 for epoch in range(0, epochs):

35 for X, y_true in train_loader:

36 optimizer.zero_grad ()

37 y_hat = model(X)

38 loss = loss_criterion(y_hat , y_true)

39 loss.backward ()

40 optimizer.step()

Listing 3.14: Training the LeNet-5 network on the MNIST dataset

3.3 Summary

This chapter provides an overview of the API of the PyTorch framework. Firstly, the concept and

utilities of Tensors were presented, given that these are the fundamental data structures of PyTorch.

The data types currently supported were also presented, with 32-bit floating point as the default. Then,

the PyTorch interface for the NN layers and functions described in the previous chapter was exposed.

Finally, an example of end-to-end training of a model was showcased.

45

46

Chapter 4

Supporting Posit in PyTorch

Contents

4.1 Contributing to PyTorch . 48

4.2 PyTorch’s Internal Structure . 49

4.2.1 Codebase Structure . 49

4.2.2 Tensor Implementation . 49

4.2.3 Dispatcher . 51

4.2.4 Kernels . 52

4.3 Posit Integration in PyTorch . 53

4.3.1 Posit Data Type . 53

4.3.2 Dispatcher for Posit Types . 55

4.3.3 NN Operators for Posits . 56

4.3.4 Posits in PyTorch’s Frontend . 59

4.4 Summary . 60

47

The previous chapter detailed how PyTorch exposes the main DL layers and functions in a simple

to use interface. This upper level API is fully in Python and most implementation details are abstracted

from the end user. However, the tensor data structure, the CPU and GPU operators and the automatic

differentiation are fully implemented in C++ on the backend to achieve high performance [8]. Therefore,

in order to support posits in PyTorch’s Python frontend, the required modifications must be implemented

within the C++ backend.

This chapter describes the necessary steps to incorporate Posits in the PyTorch backend. It starts

with an overview on how one can contribute to the project. A description of the organization of PyTorch’s

source code follows: the abstraction layers, the architecture, the binding between C++ and Python, etc..

After this introduction to the structure, the introduced contributions that were made to support posits are

presented. Finally, the interface to use Posits in the Python frontend is exposed.

4.1 Contributing to PyTorch

As mentioned in the previous chapter, PyTorch is an open-source framework managed by Facebook.

In practice, this means that developers at Facebook are the maintainers of the code and are the ones

responsible for monitoring and accepting contributions of the wider community. This way, people wishing

to contribute can either go through the issue list and propose a fix, or put forward their feature suggestion

by raising an issue. By the time of writing of this thesis, over 5000 issues were open on GitHub [74].

At the beginning of this work, the author also went through this process, opening an issue stating the

intention to add posit support in PyTorch. From here, three possibilities were considered:

• Create a Python class to represent a posit tensor, similar to the tensor class;

• Create a C++ class that represents a posit tensor and bind it to Python;

• Add a new data type representing posit to the backend and extend the existing classes to support

it.

The first two options had the advantage of being relatively simple to implement, since the class that

would represent the posit tensor would be fully customizable. However, the first option would have the

inconvenient of introducing a significant overhead, since this class would need to be supported by an

existing tensor structure. The second option would also have the inconvenient of leading to two separate

tensor structures, one for the already supported data types of PyTorch and a different one for Posits.

In contrast, the third option implies adding support throughout the whole verticality of PyTorch’s

structure, which means that a thorough understanding of the organization of the codebase is needed.

Nonetheless, this leads to the most desirable user interface, since the network design is exactly the

same as for floats, and Posits are incorporated in the same way as other non-native data types that

PyTorch already supports. Therefore, this was the chosen approach for this work. As an example, listing

4.1 compares the creation of a float tensor and a posit tensor.

1 >>> float_tensor = torch.tensor ([[1.2 , 3.4], [3.1, 4.2]], requires_grad=True)

48

2 >>> posit_tensor = torch.tensor ([[1.2 , 3.4], [3.1, 4.2]], dtype=torch.posit16es2 ,

requires_grad=True)

Listing 4.1: Comparison of the creation of a float tensor with the creation of a posit tensor

4.2 PyTorch’s Internal Structure

In order to understand how Posits were supported in PyTorch as one of the native data types, it

is first important to understand the internal structure of PyTorch’s codebase and the main abstraction

layers in it. Even though the codebase is constantly mutating and has undergone a major design change

throughout 2019 [74], this section addresses its structure at the time of writing of this thesis.

4.2.1 Codebase Structure

At the time of writing of this thesis, the PyTorch codebase had over 8000 files with over 2 million

lines of code. Of this, 60% is C++ code and 35% Python code, the remaining 5% being comprised of

C++ CUDA (gpu specific code) and mostly deprecated C code. [74]. The codebase is divided in 3 main

directories that encompass all the core functionalities of the framework:

• c10: The core library files that are used in every other part of the code, common to both server

and mobile;

• aten: The C++ tensor library, that is, where all the tensor definitions and operators are imple-

mented;

• torch: The translation from C++ code to the Python frontend, with both C++ and Python files.

In order to support Posit, files from all of the 3 directories must be altered: c10 to define the new data

type for Posits; aten to define the operators on tensors with posit data and torch to expose posit tensors

in the Python frontend. From these, aten is the most relevant, since it is where every function actuating

on Posits will be defined. This directory is further subdivided in subdirectories comprising deprecated

code (previous to the major refactor undergone in 2019), and the more recent code under aten/src/ATen.

Within aten/src/ATen there are several subdirectories (for CPU operators, CUDA operators, operators

that use external libraries, etc.) making the code organized in a way that makes it intuitive to navigate.

Besides those 3 core directories, there are others that address the different stages of development

of the codebase: a directory with the scripts for the build process; a directory with the unit tests of the

Python frontend and another dedicated to the tool used for integration of new code.

4.2.2 Tensor Implementation

A tensor consists of a multidimensional array, whose data is stored in memory, usually with each row

contiguous to the previous. Pytorch’s most common storage format for tensors is this, also denoted as

strided layout [8]. This way, the tensor’s metadata should hold not only the size of each dimension, but

49

also the stride associated with it. The stride is what the logical index should be multiplied with in order

to get to the physical index where the element is stored. Moreover, there is an offset, representing the

position in memory where the count starts. Equation (4.1) provides the translation between the logical

indexes and the physical position in memory for a tensor with n dimensions.

memory position = index[n− 1]× stride[n− 1] + · · ·+ index[0]× stride[0] + offset (4.1)

Figure 4.1 provides an example where a 2× 2 sized tensor whose data is stored row after row leads

to a stride of 2 for the first dimension and 1 for the second. With these strides, the logical position [1, 0]

can be translated to the physical position 2 to fetch the data from memory.

Figure 4.1: Illustration of a tensor with a strided layout.

From here, it follows that for each tensor some metadata needs to be stored, namely the sizes and

strides. Besides these, three main parameters are stored as metadata:

• device: represents where the tensor’s physical memory is stored: CPU, GPU, TPU, etc.;

• layout: describes how to logical interpret the physical data. The most common is a strided tensor,

but PyTorch supports other types of memory configurations;

• dtype: corresponds to the type of the tensor’s data: 32-bit floating-point, 64-bit integer, brain

floating-point, etc..

However, the storing of this metadata is divided according to whether it is metadata corresponding

to the logical interpretation of a tensor or to the physical storage of data. This way, tensors have a level

of indirection: the Tensor structure that holds the metadata relative to the logical interpretation (layout,

sizes, strides, offset) and the Storage structure that records the device and data type of the tensor as

well as a pointer to the raw data.

With this level of indirection, PyTorch effectively supports different views of a Tensor, that is, different

logical interpretations of the same underlying data. As an example, a tensor containing the second

50

column of the tensor represented in Figure 4.1 could be based on the same physical data, but with

sizes = [2], strides = [2] and offset = 1. This way, to access the element at index [1] of this tensor,

using equation 4.1, the memory position would be 3.

The number of possible types of tensors comes from the cartesian product of the 3 parameters

presented above: device, layout and dtype. In order to extend tensors to support Posit, it is enough to

add another dtype representing Posit. This is detailed in section 4.3.

Tensor Iterator Utility

A lot of operations involve iterating over all the elements of a tensor (or more than one tensor). This

is the case not only in all point-wise operations, where a certain function is applied to all the elements of

the tensor individually, but also for operations involving two tensors, (e.g. addition). In order to facilitate

these operations, the TensorIterator API offers a standardized way to iterate over elements of a tensor,

automatically parallelizing operations, while abstracting device and data type details.

A TensorIterator should first be built through TensorIteratorConfig, where the input and output tensors

are specified, along with more information such as whether there should be checks on the data types

or dimensions, among other utilities. Once built, it can be iterated over using the for each function, that

can loop over 1 or 2 dimensions at once. There are also built-in kernels that take a TensorIterator as

argument and apply an operation over each element. Listing 4.2 provides an example of building a

TensorIterator with two inputs and using the built-in cpu kernel to perform addition. This implementation

works for all data types (as long as the + operator is overloaded), since the dtype is abstracted in the

TensorIterator.

1 at:: TensorIteratorConfig iter_config;

2 iter_config

3 .add_output(c)

4 .add_input(a)

5 .add_input(b);

6

7 auto iter = iter_config.build();

8 auto datatype = iter.dtype()

9 at:: native :: cpu_kernel(iter , [] (datatype a, datatype b) -> datatype {

10 return a + b;

11 });

Listing 4.2: Example of usage of the TensorIterator utility

4.2.3 Dispatcher

Operators to actuate on tensors need to be different depending on the type of the tensor. The

implementation of matrix multiplication, for instance, is different if tensors are stored on the CPU or the

GPU, if the data type is integers or complex reals, etc.. For this purpose, PyTorch has an abstraction

layer, working similarly to a virtual table, that addresses this issue, called dispatcher.

51

The dispatcher is implemented through a bitset, called DispatchKeySet, where each relevant meta-

data contributes with a key to the set. These keys are ordered in decreasing order of priority. A kernel

is called for the first key of the set, adding that key to the exclude set. In the next pass through the

dispatcher, the next key is used to identify the kernel to be called. With this logic, the same dispatch key

set can be used for multiple calls, which is useful for PyTorch’s automatic differentiation (autograd), for

example.

Figure 4.2 provides an example where an operation is to be performed on 2 tensors, one on the CPU

and the other on the GPU. The key for autograd is excluded from the bitset - since it has already been

handled in a previous dispatch - and the backend select key is the one used to call the kernel that will

address this operation.

Figure 4.2: Illustration of a dispatcher call.

The main advantage of the dispatcher is its decentralized nature. Once the dispatch keys are defined,

all the kernels corresponding to a given operator can be defined independently, without the need for a

centralized if statement.

4.2.4 Kernels

For each dispatch key, there should be a kernel that implements the intended operation. In order to

register these kernels, PyTorch provides the Registration API, which provides 4 endpoints in the form of

C++ macros:

• DECLARE DISPATCH: where the function signature is associated with the name of the dispatch

registry;

• DEFINE DISPATCH: defines a function to be the dispatch registry;

• TORCH IMPL FUNC: calls the dispatch registry function through the function that is exposed to

higher-level APIs;

• REGISTER DISPATCH: associates the dispatch registry function with the kernel that implements

the operation.

52

Even though the API is not intuitive at first and implies changing multiple files, it provides flexibility

and speed when calling dispatched functions [75]. Listing 4.3 provides an example for the add function.

1 // file aten/src/ATen/native/BinaryOps.h

2 DECLARE_DISPATCH(void (*)(TensorIteratorBase&, const Scalar& alpha), add_stub);

3

4 // file aten/src/ATen/native/BinaryOps.cpp

5 DEFINE_DISPATCH(add_stub);

6

7 TORCH_IMPL_FUNC(add_out) (

8 const Tensor& self , const Tensor& other , const Scalar& alpha , const Tensor& result

9) {

10 add_stub(device_type (), *this , alpha);

11 }

12

13 // file aten/src/ATen/native/cpu/BinaryOpsKernel.cpp

14 void add_kernel(TensorIteratorBase& iter , const Scalar& alpha_scalar) {

15 // implementation of the add function on CPU

16 }

17

18 REGISTER_DISPATCH(add_stub , &add_kernel);

19

20 // file aten/src/ATen/native/cuda/BinaryAddSubKernel.cu

21 void add_kernel_cuda(TensorIteratorBase& iter , const Scalar& alpha_scalar) {

22 // implementation of the add function on gpu

23 }

24

25 REGISTER_DISPATCH(add_stub , &add_kernel_cuda);

Listing 4.3: Registration API to associate function calls to kernel implementations

In this example, add stub is the dispatch registry function, add out is the function that is exposed to

higher level API’s, add kernel is the CPU implementation of the add operation and add kernel cuda the

gpu implementation.

4.3 Posit Integration in PyTorch

With an understanding of the main structure of the backend as exposed in the previous section,

adding support for posits must make use of these tools. This section presents the different stages of this

work, starting from adding the posit data type to Pytorch up to the support of the relevant operations on

posit tensors and the exposure in the Python frontend.

4.3.1 Posit Data Type

As mentioned in section 4.1, the adopted strategy to integrate Posits was to add them as one of the

built-in data types supported by PyTorch. This approach has the advantage of exposing Posits in the

frontend as any other data type, avoiding the need for special representations. To emulate the operations

53

with Posits, the Universal library was the one chosen, as mentioned in section 2.1.5. Hence, in order for

the posit manipulation functions to be available in the namespaces of PyTorch, two files were used as

translation: c10/util/Posit16es2.h for the posit declaration and c10/util/Posit16es2-math.h for the math

functions. A snippet of the code in these two files is presented in listing 4.4.

1 // file c10/util/Posit16es2.h

2 #include <universal/number/posit/posit.hpp >

3 namespace c10 {

4 using posit16es2 = sw:: universal ::posit <16,2>;

5 }

6

7 // file c10/util/Posit16es2 -math.h

8 namespace std {

9 inline c10:: posit16es2 tanh(c10:: posit16es2 a) {

10 return sw:: universal ::tanh(a);

11 }

12 }

Listing 4.4: Conversions from the Universal library functions to those in PyTorch’s namespaces

PyTorch implements all the data types in the c10/core directory (since this is the common directory

to the whole project) through the macro AT FORALL SCALAR TYPES WITH COMPLEX AND QINTS.

In it, a data type is associated with an alias (with a number associated), to be used throughout the

codebase for comparison purposes. This file also contains a macro that encompasses all the data types

belonging to a given set (integers, floats, complex, etc.), along with a helper function to determine if a

type belongs to a given set. These were extended for posits with nbits = 16 and es = 2., as listing 4.5

shows.

1 // file c10/core/ScalarType.h

2 #include <c10/util/Posit16es2.h>

3

4 #define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(_) \

5 _(uint8_t , Byte) /* 0 */ \

6 _(int8_t , Char) /* 1 */ \

7 _(int16_t , Short) /* 2 */ \

8 _(int , Int) /* 3 */ \

9 _(int64_t , Long) /* 4 */ \

10 _(at::Half , Half) /* 5 */ \

11 _(float , Float) /* 6 */ \

12 _(double , Double) /* 7 */ \

13 _(c10::complex <c10::Half >, ComplexHalf) /* 8 */ \

14 _(c10::complex <float >, ComplexFloat) /* 9 */ \

15 _(c10::complex <double >, ComplexDouble) /* 10 */ \

16 _(bool , Bool) /* 11 */ \

17 _(c10::qint8 , QInt8) /* 12 */ \

18 _(c10::quint8 , QUInt8) /* 13 */ \

19 _(c10::qint32 , QInt32) /* 14 */ \

20 _(at::BFloat16 , BFloat16) /* 15 */ \

21 _(c10::quint4x2 , QUInt4x2) /* 16 */ \

54

22 _(c10::posit16es2 , Posit16es2) /* 17 */

23

24 #define AT_FORALL_POSIT_TYPES(_) \

25 _(c10::posit16es2 , Posit16es2)

26

27 static inline bool isPositType(ScalarType t) {

28 return t == ScalarType :: Posit16es2;

29 }

Listing 4.5: Supported data types in PyTorch, including posit(16,2)

Since a macro is a pre-processor directive that is only expanded at compile time, it is not possible to

define a generic data type for Posits. Despite the flexibility provided by the templates of the Universal

library to implement Posits, these must be instantiated in the macro at compile time.

As a consequence, only a posit datatype with nbits = 16 and es = 2 was added, since it is the

most used to replace 32-bit floating-point numbers for NN training [19, 20]. Nonetheless, in order to

support more posit configurations, it is enough to add them to the posit macros exposed throughout this

section. After that, all operations will be automatically supported.

4.3.2 Dispatcher for Posit Types

As presented in section 4.2.3, PyTorch implements a cascading dispatcher system for operations on

tensors. As such, it was necessary to define a dispatcher for the posit data types.

This dispatcher receives 3 arguments:

• TYPE: the type of the tensor;

• NAME: the name of the function being called;

• a C++ lambda function for the operation in question.

The dispatcher stores the type of the data, gets its alias and calls the passed function with the correct

data type. Listing 4.6 shows the code for the newly created posit(16,2) datatype. To support more posit

types, they should be added to the switch statement.

The amount of indirection levels is due to PyTorch’s structure, where the usage of macros is max-

imised to increase the execution speed [76]. This comes at the cost of readability of the code and

increase in complexity and build times when altering these core files.

1 #define AT_DISPATCH_POSIT_TYPES(TYPE , NAME , ...) \

2 [&] { \

3 const auto& the_type = TYPE; \

4

5 at:: ScalarType _st = :: detail :: scalar_type(the_type); \

6 RECORD_KERNEL_FUNCTION_DTYPE(NAME , _st); \

7 switch (_st) {

\

8 AT_PRIVATE_CASE_TYPE(NAME , at:: ScalarType ::Posit16es2 , c10:: posit16es2 , __VA_ARGS__

) \

55

9 default: \

10 AT_ERROR (#NAME , " not implemented for ’", toString(TYPE), "’"); \

11 } \

12 }()

Listing 4.6: Supported data types in PyTorch, including posit(16,2)

The next section will present the operations that were extended to support Posit. In all of them, this

dispatcher is used, given the structure of the indirection levels of PyTorch.

4.3.3 NN Operators for Posits

PyTorch contains thousands of operators, and supporting all of them for a new data type results in

a workload that is above the scope of this thesis. This is evidenced by the two years taken to have full

support for complex tensors in PyTorch [74]. As a result, the followed approach consisted of supporting

the subset of operators needed to train a NN solely with Posits. To achieve this objective, all the functions

and layers mentioned in the previous chapter were to be supported.

The binding from a C++ operator implementation and the corresponding Python frontend functions

is mostly done by auto-generated code. Adding this to the size of the codebase, it is not recommended

to navigate the stack trace to find the C++ function that needs to be extended for the new data type [76].

The most efficient way to locate the relevant function is to call it, record the error message and search

through the codebase for that message. Listing 4.7 provides an example for the MSE loss function,

where the error message ”mse cpu” not implemented for ’Posit16es2’ can be searched through the

codebase to find the kernel that implements this operation.

1 >>> loss = nn.MSELoss ()

2 >>> input = torch.tensor ([[1.2 , 0.4, 2.3], [4.3, 6, -5.1]], dtype=torch.posit16es2)

3 >>> target = torch.tensor ([[1.2 , -1.2, 1], [4, 7.2, -5.4]], dtype=torch.posit16es2)

4 >>> output = loss(input , target)

5 Traceback (most recent call last):

6 File "<stdin >", line 1, in <module >

7 File "/home/afonsoluz/pytorch/torch/nn/modules/module.py", line 1102, in _call_impl

8 return forward_call (*input , ** kwargs)

9 File "/home/afonsoluz/pytorch/torch/nn/modules/loss.py", line 520, in forward

10 return F.mse_loss(input , target , reduction=self.reduction)

11 File "/home/afonsoluz/pytorch/torch/nn/functional.py", line 3112, in mse_loss

12 return torch._C._nn.mse_loss(expanded_input , expanded_target , _Reduction.get_enum(

reduction))

13 RuntimeError: "mse_cpu" not implemented for ’Posit16es2 ’

Listing 4.7: Calling the MSE loss function before it was supported for Posits

Once the kernel is located, extending it for Posits can either consist of simply using the code that

is being used for other dtypes or writing a specific kernel. The second happens when the implemen-

tation for other data types is making use of hardware optimizations not available for Posits, such as

vectorization through the AVX2 instruction set [77].

56

Listing 4.8 provides an example of supporting the average pooling kernel through the same operation

that was being done for the other data types. Since the kernel cpu avg pool only performs operations

that are supported by the Universal library (and hence work with the posit datatype), it is enough to add

it to the dispatcher that was already being used for the other data types. This is done by adding the alias

for the posit(16,2) type at::ScalarType::Posit16es2 as an argument to the dispatcher.

1 AT_DISPATCH_FLOATING_TYPES_AND2(at:: ScalarType ::Long , at:: ScalarType ::Posit16es2 , input.

scalar_type (), "avg_pool2d", [&] {

2 cpu_avg_pool <scalar_t >(output , input , kW, kH, dW, dH , padW , padH ,

count_include_pad , divisor_override);

3 });

Listing 4.8: Extending the average pooling operator for Posits through the same kernel as for other data

types

Listing 4.9 provides an example of supporting the addition with scaling operation, where a different

kernel should be used. Here, the TensorIterator API is explored, by using the cpu kernel, which takes

an iterator with two input tensors and applies the lambda function passed to them. This is an example

of the case where for the other data types an hardware optimization was being used.

1 if (isPositType(dtype)) {

2 AT_DISPATCH_POSIT_TYPES(dtype , "addcmul_cpu_out", [&] {

3 scalar_t scalar_val = value.to<scalar_t >();

4 cpu_kernel(

5 iter ,

6 [=](scalar_t self_val , scalar_t t1_val , scalar_t t2_val) -> scalar_t {

7 return self_val + scalar_val * t1_val * t2_val;

8 }

9);

10 });

11 }

Listing 4.9: Supporting addition with scaling by calling a separate kernel for Posits

There are also cases where the TensorIterator API cannot be used. In these cases, the iterations

through the tensor to perform the operation should be written extensively. Until the point of the writing

of this thesis, this only happened for the softmax activation function, used for the cross entropy loss

function. The code for the kernel is presented in listing 4.10. This code implements equation (4.2), a

variation of equation (2.26), where the maximum element of the last dimension (dim) is subtracted to

each element so that the exponential is more numerically stable. Moreover, it is templated to work for

any posit type, which means that if more posit types are added the softmax function will automatically

be supported.

S(ŷi) =
exp(yi −maxk∈last dim{ŷk})∑

j∈last dim
exp(yj −maxk∈last dim{ŷk})

(4.2)

1 template <typename posit_type >

57

2 inline void _softmax_lastdim_posit(

3 const Tensor& output ,

4 const Tensor& input) {

5

6 int64_t outer_size = 1;

7 int64_t dim_size = input.size(input.ndimension () - 1);

8

9 for (int64_t i = 0; i < input.ndimension () - 1; ++i)

10 outer_size *= input.size(i);

11

12 posit_type* input_data_base = input.data_ptr <posit_type >();

13 posit_type* output_data_base = output.data_ptr <posit_type >();

14

15 int64_t grain_size = internal :: GRAIN_SIZE / (16 * dim_size);

16 if (grain_size < 1)

17 grain_size = 1;

18

19 parallel_for(

20 0,

21 outer_size ,

22 grain_size ,

23 [&](int64_t begin , int64_t end) {

24 for (int64_t i = begin; i < end; i++) {

25 posit_type* input_data = input_data_base + i * dim_size;

26 posit_type* output_data = output_data_base + i * dim_size;

27 posit_type max_input = 0;

28

29 max_input = std:: accumulate(input_data , input_data + dim_size , max_input , [&](

posit_type max_input , posit_type elem) { return (max_input > elem ? max_input : elem)

; });

30

31 std:: transform(input_data , input_data + dim_size , output_data , [&](posit_type elem) {

return std::exp(elem - max_input); });

32

33 posit_type tmp_sum = 0;

34

35 tmp_sum = std:: accumulate(output_data , output_data + dim_size , tmp_sum);

36 tmp_sum = 1 / tmp_sum;

37

38 std:: transform(output_data , output_data + dim_size , output_data , [&](posit_type elem)

{ return elem * tmp_sum; });

39

40 }

41 });

42 }

Listing 4.10: Custom kernel for the softmax activation function for Posits

Table 4.1 lists all the operators whose support for Posits was implemented in the scope of this thesis.

It presents the name of the operator, its role and whether the extension was using the existing kernel

58

for other data types or through a custom kernel for Posits. In the latter case, the TensorIterator API

was used, except for the softmax functions, as previously mentioned. Operators that call others on this

table, such as the cross entropy loss function (combination of the log softmax function and the NLL loss

function), are automatically supported.

Table 4.1: Operators that were extended to support Posits, along with their role and the type of extension.

Name of the operator Role Extension type

scalar fill Tensor Implementation Same Kernel
local scalar dense Tensor Implementation Same Kernel
copy Tensor Implementation Specific Kernel
uniform Tensor Implementation Same Kernel
fill Tensor Implementation Specific Kernel
add Addition Specific Kernel
sub Subtraction Specific Kernel
sum Reduction addition Specific Kernel
max Maximum Tensor Value Specific Kernel
sqrt Square Root Specific Kernel
add mm Matrix Multiplication Same Kernel
addcmul Multiplication and Addition Scaling Specific Kernel
addcdiv Division and Addition Specific Kernel
unfolded2d acc Convolution Same Kernel
avg pool2d Average Pooling Same Kernel
avg pool2d backward Gradient Computation Same Kernel
tanh Activation function Specific Kernel
tanh backward Gradient Computation Specific Kernel
softmax Activation Function Specific Kernel
softmax backward Gradient Computation Specific Kernel
log softmax Activation Function Specific Kernel
log softmax backward Gradient Computation Specific Kernel
nll loss Loss Function Same Kernel
nll loss backward Gradient Computation Same Kernel
mse Loss Function Specific Kernel

4.3.4 Posits in PyTorch’s Frontend

As mentioned in the previous section, most of the code that binds the C++ operators to the Python

frontend functions is auto-generated. Moreover, as it was referred in section 4.1, the approach followed

to support Posits was such that in the frontend it can be used just as any other data type. This way, the

only code related to the frontend was the connection of the C++ posit(16,2) to a PyTorch dtype. The

chosen name was posit16es2, since it represents a posit with nbits = 16 and es = 2. This is shown

in Listing 4.11.

1 case at:: ScalarType :: Posit16es2:

2 return std:: make_pair("posit16es2", "");

Listing 4.11: Posit(16,2) exposure to the Python frontend as posit16es2

59

After this, any tensor can be converted to posit. Furthermore, PyTorch also provides an utility to

convert all of a network’s parameters to a different data type. Hence, a NN model can be designed in

the exact same way as it would be for floats. Upon training, it is also possible to convert all its parameters

to Posit. This is shown in Listing 4.12, where the code previously shown in Listing 3.14 to train a LeNet-5

with floats is altered to train it with Posits.

1 model = LeNet5(n_classes =10).type(torch.posit16es2)

2 optimizer = torch.optim.Adam(model.parameters ())

3 loss_criterion = nn.CrossEntropyLoss ()

4

5 train_dataset = datasets.MNIST(root=’mnist_data ’, train=True , transform=transforms.

ToTensor (), download=True)

6 train_loader = DataLoader(dataset=train_dataset , batch_size =32, shuffle=True)

7

8 for epoch in range(0, epochs):

9 for X, y_true in train_loader:

10 X.type(torch.posit16es2)

11 optimizer.zero_grad ()

12 y_hat = model(X)

13 loss = criterion(y_hat , y_true)

14 loss.backward ()

15 optimizer.step()

Listing 4.12: Training a LeNet-5 network with Posits

4.4 Summary

In this chapter, the internals of PyTorch were explored. Firstly, the procedure to contribute to the

source code of PyTorch was briefly described, along with the different possibilities considered to incor-

porate posit in the framework. To this end, it is important to understand the structure of the codebase,

along with the main concepts and APIs useful for development of the codebase. With this knowledge in

mind, the last section of the chapter details the incorporation of Posits, from the declaration of the new

data type to the operator support and frontend exposure, showcasing how to train a model using Posits.

60

Chapter 5

Experimental Evaluation

Contents

5.1 Coverage Analysis . 62

5.2 Experimental Setup . 64

5.2.1 Dataset reduction . 65

5.3 LeNet-5 Training Evaluation . 66

5.4 Summary . 67

61

In the previous chapter, the process of integrating of Posit operators in PyTorch was described. It

finished with the exposure of the developed interface to design and train NN models using Posits. This

chapter starts with a description of the benchmark models that are covered by this work. It is followed

with the experimental evaluation conducted to validate the implementation of the operators presented in

the previous chapter.

5.1 Coverage Analysis

With the support of the operators presented in Table 4.1, most of the building blocks that constitute

the benchmark models presented in section 2.2.8 are supported. This section presents, for each of

those models, the layers that are currently supported and whether the model is fully supported as a

result of this work.

LeNet-5

LeNet-5 was the first CNN to achieve an accuracy above 99% in handwritten digit recognition, which

led to it becoming a benchmark model. It is also a common entry point for CNNs given its relatively

simple architecture and the many tutorials available for implementation in different DL platforms. It uses

convolutional layers, average pooling layers, fully connected layers and TanH as the activation function.

All of these elements are supported by this work, as is summarized in table 5.1.

Table 5.1: Supported layers and functions of LeNet-5.

Operator Name Operator Type Support

Convolution Layer Supported
Average Pooling Layer Supported
Fully Connected Layer Supported
TanH Activation Function Supported

CifarNet

CifarNet was designed to classify the Cifar-10 dataset, presented in section 2.2.7, with a relatively

small network structure. Its architecture is similar to LeNet-5, the main differences being the introduction

of padding in the convolutional layers, using ReLU instead of TanH for activations, using maximum

pooling layers and using the softmax activation function in the output layer. All of its building blocks are

supported by this work, as table 5.2 summarizes.

AlexNet

AlexNet, with 13 layers, was one of the largest networks at the time of its proposal in 2012, winning

the ILSVRC. To the elements that constitute the previous models it adds dropout layers and overlapped

62

Table 5.2: Supported layers and functions of CifarNet.

Operator Name Operator Type Support

Padded Convolution Layer Supported
Average Pooling Layer Supported
Maximum Pooling Layer Supported
Fully Connected Layer Supported
ReLU Activation Function Supported
Softmax Activation Function Supported

pooling, which are also supported by the present work. This way, AlexNet is also fully supported, as

table 5.3 summarizes.

Table 5.3: Supported layers and functions of AlexNet.

Operator Name Operator Type Support

Convolution Layer Supported
Overlapped Average Pooling Layer Supported
Overlapped Maximum Pooling Layer Supported
Fully Connected Layer Supported
Dropout Layer Supported
ReLU Activation Function Supported
Softmax Activation Function Supported

ResNet

Following AlexNet, even deeper architectures started to be explored, and the ResNet class of net-

works, proposed in 2015, explored up to 1000 layers. Of these layers, most are convolutional and pooling

layers, but batch normalization layers are also present. These are not supported at the time of writing of

this thesis. Table 5.4 summarizes the supported layers and functions.

Table 5.4: Supported layers and functions of ResNet.

Operator Name Operator Type Support

Convolution Layer Supported
Average Pooling Layer Supported
Maximum Pooling Layer Supported
Fully Connected Layer Supported
Batch Normalization Layer Not Supported
ReLU Activation Function Supported
Softmax Activation Function Supported

63

Loss Functions and Optimizers

The building blocks of each of the models presented are sufficient to design and infere with those

architectures. However, in order to train a NN, a loss function and an optimizer algorithm are needed.

Table 5.5 presents the loss functions and optimizers supported at the time of writing of this thesis.

Table 5.5: Supported loss functions and optimizers.

Function Name Function Type

Mean Squared Error (MSE) Loss Function
Cross Entropy Loss Loss Function
Adam Optimizer

5.2 Experimental Setup

To validate the implementation of the developed operators for Posits within PyTorch, the CNN LeNet-

5 was trained with Posits with both the MNIST dataset and the more complex Fashion MNIST dataset.

A block diagram representing the layers and parameters of the network is presented in Figure 5.1.

Figure 5.1: Block Diagram representing the architecture of the evaluated LeNet-5. K stands for kernel,
S for stride and FC for fully connected.

In addition to the architecture of the network, it was necessary to define the loss function and the

optimizer algorithm. The chosen loss function was the Cross Entropy Loss, since it is one of the most

commonly used for multi-class classification problems [60]. The same reasoning was followed when

chosing the Adam optimizer for the weight updates [48]. The hyperparameters of Adam (learning rate,

β1, β2 and ε), described upon the presentation of the algorithm in section 2.2.6, were set as the default

values. Table 5.6 summarizes the configurations of the various hyperparameters used for training of the

CNN LeNet-5.

Table 5.6: Hyperparameter configurations for the training of LeNet-5.

Loss Function Optimizer Learning Rate β1 β2 ε Batch Size

Cross Entropy Adam 0.001 0.9 0.999 1 ×10−8 32

64

The training was conducted in a system with an Intel Xeon E312xx CPU with 8 cores, operating at

2.4GHz and with 32 GB of RAM.

5.2.1 Dataset reduction

As expected, given the overhead introduced by the emulation of Posits with software, the time taken

to train the network significantly increased, reaching weeks per epoch for the whole dataset. This way,

there was the need to substantially reduce the training time, in order to adjust it to the available time for

the development of this thesis. The goal was to reduce it as much as possible and still draw a meaningful

comparison between training with floats and Posits.

Naturally, the training time increases linearly with the number of training samples, since the training

process consists of iterating through each batch of data and performing the same operations. This way,

reducing the training dataset, whose initial size was 60000 samples, was the first solution adopted to

reduce the training time.

To this end, a first evaluation of the model accuracy with decreasing portions of the dataset was done

using floats. The results are presented in Figure 5.2, where the accuracy is the percentage of correct

predictions.

Figure 5.2: Validation accuracy when training LeNet-5 with different portions of the MNIST dataset.

As it can be observed, with the reduction of the number of samples used for training, the accuracy

decrease is significant. Nonetheless, the accuracy still improves for each epoch, which means that the

training is still being successful, even for the reduced number of samples. Given that the purpose of

these experiments is to validate the implementation of Posits in PyTorch, the reduction in accuracy is ac-

ceptable, provided that the accuracy achieved with training based on Posits does not differ significantly.

The number of epochs also linearly affects the training time, since each epoch consists of a pass

over the training dataset. As it can be observed in Figure 5.2, for the first 7 epochs the increase in

accuracy is steady, which illustrates a successful training process. This way, 7 epochs was considered

65

sufficient to evaluate the training with Posits.

Table 5.7 summarizes the covered reduced datasets, the number of samples and the number of

epochs used for training.

Table 5.7: Covered datasets, number of samples and number of epochs.

Model Dataset Number of Samples Number of Epochs

LeNet-5 MNIST 5000 7
LeNet-5 FashionMNIST 2500 7

5.3 LeNet-5 Training Evaluation

As mentioned in the previous section, the implemented CNN LeNet-5 model was trained on both

the MNIST and FashionMNIST reduced datasets, using Posits with nbits = 16 and es = 2. The

sample images of both datasets were normalized to 32×32 pixels. The training samples were shuffled,

since the randomness is beneficial for model convergence and reduction of overfitting. Moreover, each

experiment was repeated 2 times and the results averaged, given the randomness of the initialization of

the weights of the network and the shuffling of the training data.

Figure 5.3 shows the evolution of the accuracy after each epoch for 32-bit floats and 16-bit posits on

the MNIST dataset.

Figure 5.3: Comparison of the obtained accuracy of LeNet-5 training with floats and Posits on the MNIST
dataset.

As it can be observed, the obtained accuracy with 16-bit Posits is similar to that of 32-bit floats, with

a difference of around 1% after 7 epochs. This is in line with the results obtained in other works that

evaluate training with small precision Posits [19, 20].

Figure 5.4 shows the evolution of the obtained accuracy after the execution of the same experiment

on the FashionMNIST dataset.

66

Figure 5.4: Comparison of the accuracy of LeNet-5 training with 32-bit floats and 16-bit Posits on the
FashionMNIST dataset.

The FashionMNIST dataset is more complex, as it consists of clothes’ items rather than digits. This

leads to poorer performances, which is evidenced by the lower accuracy attained with 32-bit floats after

7 epochs of around 76%, contrasting with the 97% obtained when evaluating MNIST. Nonetheless, with

Posits with nbits = 16 and es = 2 the attained accuracy of around 72% is 4% smaller than that of

floats. This gap is likely due to the reduced number of samples used for training, which prevents the

network from generalizing adequately.

5.4 Summary

This chapter presents the experimental evaluation that was conducted to validate the implementa-

tion of operations with Posits in PyTorch proposed in the previous chapter. It starts with exposing the

experimental setup used, along with the need to reduce the number of samples used for training given

the long execution times that operations with Posits take. Finally, it presents the results of evaluating the

CNN LeNet-5 on both the MNIST and FashioMNIST datasets.

67

68

Chapter 6

Conclusions

Contents

6.1 Summary . 70

6.2 Future Work . 70

69

6.1 Summary

Upon the introduction of the Posit number format (in 2017) as an alternative to traditional IEEE stan-

dard floating-point numbers, there has been an increasing interest in exploring its use in DL applications.

To this end, researchers have developed their own platforms to design and train NNs using Posits. This

has the disadvantage of not leveraging powerful and established DL frameworks, thus introducing an

overhead. Of these frameworks, PyTorch is the most popular among researchers, given its shallow

learning curve and flexibility.

Under these premises, the objective of this dissertation consisted of supporting Posits in PyTorch,

in order to create a tool for further research with Posits in DL applications. The first step was to get

acquainted with the framework by exploring its user facing API and understanding its internal structure.

From here, three approaches were considered to extend the framework to support Posits: to create

a Python class that would represent a Posit tensor; to create a C++ class that would represent a Posit

tensor and bind it to Python; to add Posits as a native type of PyTorch’s tensors. The last option was

followed, given that it represented the most complete integration and provided a seamless frontend API

to design and train NNs with Posits.

Once the approach was established, the contribution was conducted on a bottom-up fashion. It

started with the Posit data type and Tensor definition, followed by the support of the main NN operators

for Posit Tensors. Finally, these tensors were exposed to the Python frontend. Given the internal struc-

ture of PyTorch, data types cannot be templated, which means that each Posit configuration has to be

declared as an individual data type. This way, the Posit configuration with nbits = 16 and es = 2 was

the one that was implemented, but other configurations can be seamlessly added by altering the core

files.

In order to validate the implementation, the CNN LeNet-5 was trained and evaluated on both the

MNIST and FashionMNIST datasets with Posits. There was the need to reduce the size of the datasets,

since the software emulated nature of the Posit computations introduced a significant overhead. Training

with Posits led to similar accuracies as with floats on MNIST. On FashionMNIST, the accuracies were

smaller than floats, likely due to the reduced number of samples used for the network training.

The produced code is publicly available on GitHub [78] as a fork of the PyTorch repository. It contains

documentation on the process of extending this work for more operators and more Posit data types,

contribution that is also present in this dissertation.

6.2 Future Work

The presented work was naturally limited by the time available to develop a MSc thesis. Therefore,

optimizations to the developed work and improvements to provide more complete support of Posits in

PyTorch can be considered, namely:

• Including more Posit configurations to perform mixed precision training and evaluation of NN mod-

els. The process of extending the present work for more Posit configurations is detailed in this

70

dissertation and publicly available on GitHub.

• Supporting a quire for accumulations of sums of products. Even though its inclusion is not as

direct as other extensions, it is a compelling topic given the potential of the quire when performing

computations with low-precision Posits.

• Integrating hardware dedicated to Posits in the framework. At the present date, this work is built on

top of a software library that emulates Posit computations. However, given its modular nature, the

implemented software layer could be replaced by a library based on hardware dedicated to Posits,

with the potential of accelerating computations significantly.

Furthermore, the main objective of this work was to build a general tool to design and train DL models

with Posits in a familiar and popular framework. Therefore, any research with Posits in the context of DL

can be performed following this work, by making use of the publicly available tool.

71

72

Bibliography

[1] A. M. TURING. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236):433–460,

10 1950. doi:10.1093/mind/LIX.236.433.

[2] B. G. Buchanan. A (very) brief history of artificial intelligence. AI Magazine, 26(4):53, Dec. 2005.

doi:10.1609/aimag.v26i4.1848.

[3] J. Hendler. Avoiding another ai winter. IEEE Intelligent Systems, 23(02):2–4, 2008.

[4] A. Holzinger, P. Kieseberg, E. Weippl, and A. M. Tjoa. Current advances, trends and chal-

lenges of machine learning and knowledge extraction: From machine learning to explainable ai.

In A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl, editors, Machine Learning and Knowledge

Extraction, pages 1–8, Cham, 2018. Springer International Publishing.

[5] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

doi:10.1038/nature14539.

[6] A. Mosavi, S. Ardabili, and A. Varkonyi-Koczy. List of deep learning models. In Engineering for

Sustainable Future, pages 202–214. Springer International Publishing, 01 2020. doi:10.1007/978-

3-030-36841-8 20.

[7] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso. The computational limits of deep

learning, 2020. arXiv:2007.05558.

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep

learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.

Curran Associates, Inc., 2019.

[9] TensorFlow. tensorflow/tensorflow: An open source machine learning framework for every-

one - github, v2.4.3, 2021. URL https://github.com/tensorflow/tensorflow. Accessed on

06/10/2021.

[10] H. He. The state of machine learning frameworks in 2019, 2019. URL https://thegradient.pub/

state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/.

Accessed on 06/10/2021.

73

https://github.com/tensorflow/tensorflow
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

[11] J. Johnson. Rethinking floating point for deep learning. CoRR, abs/1811.01721, 2018.

[12] A. Mcgovern and K. Wagstaff. Machine learning in space: Extending our reach. Machine Learning,

84:335–340, 09 2011. doi: 10.1007/s10994-011-5249-4.

[13] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers in deep neural networks,

2018. arXiv:1802.04680.

[14] S. H. Fatemi Langroudi, T. Pandit, and D. Kudithipudi. Deep learning inference on em-

bedded devices: Fixed-point vs posit. In 2018 1st Workshop on Energy Efficient Machine

Learning and Cognitive Computing for Embedded Applications (EMC2), pages 19–23, 2018.

doi:10.1109/EMC2.2018.00012.

[15] J. L. Gustafson and I. Yonemoto. Beating floating point at its own game: Posit arithmetic. Super-

computing Frontiers and Innovations, 4(2), 2017. doi: 10.14529/jsfi170206.

[16] H. F. Langroudi, Z. Carmichael, J. L. Gustafson, and D. Kudithipudi. Positnn framework: Tapered

precision deep learning inference for the edge. In 2019 IEEE Space Computing Conference (SCC),

pages 53–59, 2019. doi: 10.1109/SpaceComp.2019.00011.

[17] Z. Carmichael, S. H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Kudithipudi. Deep

positron: A deep neural network using the posit number system. 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE), pages 1421–1426, 2019.

[18] J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang. Evaluations on deep neural networks training using

posit number system. IEEE Transactions on Computers, 70(2):174–187, 2021. doi: 10.1109/TC.

2020.2985971.

[19] G. E. C. Raposo, P. Tomás, and N. Roma. Positnn: Training deep neural networks with mixed

low-precision posit. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP2021). IEEE, June 2021.

[20] R. Murillo, A. A. Del Barrio, and G. Botella. Deep pensieve: A deep learning framework based

on the posit number system. Digital Signal Processing, 102:102762, 2020. ISSN 1051-2004.

doi: https://doi.org/10.1016/j.dsp.2020.102762. URL https://www.sciencedirect.com/science/

article/pii/S105120042030107X.

[21] Neuraspace, 2021. URL https://www.neuraspace.com/. Accessed on 05/12/2021.

[22] N. Neves, P. Tomás, and N. Roma. Reconfigurable stream-based tensor unit with variable-precision

posit arithmetic. In 2020 IEEE 31st International Conference on Application-specific Systems, Ar-

chitectures and Processors (ASAP), pages 149–156, 2020. doi: 10.1109/ASAP49362.2020.00033.

[23] A. Y. Romanov, A. L. Stempkovsky, I. V. Lariushkin, G. E. Novoselov, R. A. Solovyev,

V. A. Starykh, I. I. Romanova, D. V. Telpukhov, and I. A. Mkrtchan. Analysis of posit and

bfloat arithmetic of real numbers for machine learning. IEEE Access, 9:82318–82324, 2021.

doi:10.1109/ACCESS.2021.3086669.

74

https://www.sciencedirect.com/science/article/pii/S105120042030107X
https://www.sciencedirect.com/science/article/pii/S105120042030107X
https://www.neuraspace.com/

[24] G. Arroz, J. Monteiro, and A. Oliveira. Arquitectura de Computadores: Dos Sistemas Digitais aos

Microprocessadores. IST Press, 3 edition, 2014. ISBN: 978-972-8469-54-2.

[25] J. von Neumann. First draft of a report on the edvac. IEEE Annals of the History of Computing, 15

(4):27–75, 1993. doi:10.1109/85.238389.

[26] A. Padegs. System/360 and beyond. IBM Journal of Research and Development, 25(5):377–390,

1981. doi:10.1147/rd.255.0377.

[27] L. Pyeatt and W. Ughetta. Non-integral mathematics, pages 239–292. 01 2020. ISBN

9780128192214. doi: 10.1016/B978-0-12-819221-4.00015-8.

[28] B. Parhami. Number representation and computer arithmetic. In H. Bidgoli, editor, Encyclopedia

of Information Systems, pages 317–333. Elsevier, New York, 2003. ISBN 978-0-12-227240-0. doi:

https://doi.org/10.1016/B0-12-227240-4/00122-2.

[29] H. So. Introduction to fixed point number representation. University of Berkeley, CS61c Spring 2006,

2006. URL https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html. Accessed

on 14/09/2021.

[30] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages

1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[31] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing, chapter 4. California

Technical Publishing, USA, 1997. ISBN 0966017633.

[32] S. Wang and P. Kanwar. Bfloat16: The secret to high performance on cloud

tpus, August 2019. URL https://cloud.google.com/blog/products/ai-machine-learning/

bfloat16-the-secret-to-high-performance-on-cloud-tpus. Accessed on 17/09/2021.

[33] J. L. Gustafson. Beyond floating point: Next generation computer arithmetic. stanford seminar,

2016. URL https://www.youtube.com/watch?v=aP0Y1uAA-2Y&ab_channel=stanfordonline. Ac-

cessed on 20/09/2021.

[34] J. L. Gustafson. The End of Error, Unum Computing. Chapman and Hall/CRC, 2 edition, 2015.

ISBN: 9781482239867.

[35] W. Tichy. Unums 2.0: An interview with john l. gustafson. Ubiquity, September 2016. doi: 10.1145/

3001758.

[36] Posit Working Group. Posit standard documentation, release 3.2-draft, 2018. URL https:

//posithub.org/docs/posit_standard.pdf. Accessed on 25/09/2021.

[37] Posit Working Group. Posit standard documentation, release 4.11-draft, May 2018. Emailed by Dr.

John Gustafson on 21/06/2021.

[38] U. Kulisch. Computer Arithmetic and Validity: Theory, Implementation, and Applications. De

Gruyter, 2013. ISBN 9783110301793. doi: doi:10.1515/9783110301793.

75

https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://www.youtube.com/watch?v=aP0Y1uAA-2Y&ab_channel=stanfordonline
https://posithub.org/docs/posit_standard.pdf
https://posithub.org/docs/posit_standard.pdf

[39] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar, K. Niyogi, F. Merchant, and

R. Leupers. Parameterized posit arithmetic hardware generator. In 2018 IEEE 36th International

Conference on Computer Design (ICCD), pages 334–341, 2018. doi: 10.1109/ICCD.2018.00057.

[40] N. Team. Unum & posit- next generation arithmetic., 2019. URL https://posithub.org/. Ac-

cessed on 08/10/2021.

[41] K. Mercado. mightymercado/pysigmoid: A python implementation of posits and quires (dropin

replacement for ieee floats) - github. URL https://github.com/mightymercado/PySigmoid. Ac-

cessed on 08/10/2021.

[42] S. H. Leong. Softposit, v0.4.2 - gitlab. URL https://gitlab.com/cerlane/SoftPosit/-/tree/

master. Accessed on 08/10/2021.

[43] Stillwater Supercomputing, Inc. stillwater-sc/universal: Universal number arithmetic - github,

v3.41.1. URL https://github.com/stillwater-sc/universal. Accessed on 08/10/2021.

[44] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[45] A. Shokry and A. Espuña. The ordinary kriging in multivariate dynamic modelling and multistep-

ahead prediction. In 28th European Symposium on Computer Aided Process Engineering, vol-

ume 43 of Computer Aided Chemical Engineering, pages 265–270. Elsevier, 2018. doi: https:

//doi.org/10.1016/B978-0-444-64235-6.50047-4.

[46] L. Bottou and Y. LeCun. Large scale online learning. In Advances in Neural Information Processing

Systems, volume 16. MIT Press, 2004.

[47] S. Raschka. Fitting a model via closed-form equations vs. gradient descent

vs stochastic gradient descent vs mini-batch learning. what is the difference?,

2021. URL https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html#

fitting-a-model-via-closed-form-equations-vs-gradient-descent-vs. Accessed on

27/09/2021.

[48] S. Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747, 2016.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature, 323:533 – 536, 1986. doi: 10.1038/323533a0.

[50] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions: Comparison of trends

in practice and research for deep learning. CoRR, abs/1811.03378, 2018.

[51] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. CoRR,

abs/1710.05941, 2017.

[52] S. Sharma and S. Sharma. Activation functions in neural networks. Towards Data Science, 6(12):

310–316, 2017.

76

https://posithub.org/
https://github.com/mightymercado/PySigmoid
https://gitlab.com/cerlane/SoftPosit/-/tree/master
https://gitlab.com/cerlane/SoftPosit/-/tree/master
https://github.com/stillwater-sc/universal
https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html#fitting-a-model-via-closed-form-equations-vs-gradient-descent-vs
https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html#fitting-a-model-via-closed-form-equations-vs-gradient-descent-vs

[53] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network.

In 2017 International Conference on Engineering and Technology (ICET), pages 1–6, 2017. doi:

10.1109/ICEngTechnol.2017.8308186.

[54] J. Brownlee. How to visualize filters and feature maps in convolu-

tional neural networks, 2019. URL https://machinelearningmastery.com/

how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/. Ac-

cessed on 03/10/2021.

[55] J. Brownlee. A gentle introduction to padding and stride for convolu-

tional neural networks, 2019. URL https://machinelearningmastery.com/

padding-and-stride-for-convolutional-neural-networks/. Accessed on 03/10/2021.

[56] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,

abs/1511.07122, 2016.

[57] J. Brownlee. A gentle introduction to pooling layers for convolu-

tional neural networks, 2019. URL https://machinelearningmastery.com/

pooling-layers-for-convolutional-neural-networks/. Accessed on 04/10/2021.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems, volume 25. Curran Associates,

Inc., 2012.

[59] PyTorch. Pytorch documentation, 2021. URL https://pytorch.org/docs/master/index.html.

Accessed on 06/10/2021.

[60] Q. Wang, Y. Ma, K. Zhao, and Y. Tian. A comprehensive survey of loss functions in machine

learning. Annals of Data Science, 2020. doi: 10.1007/s40745-020-00253-5.

[61] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.

[62] N. S. Keskar and R. Socher. Improving generalization performance by switching from adam to

SGD. CoRR, abs/1712.07628, 2017.

[63] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recogni-

tion Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:

10.1007/s11263-015-0816-y.

[64] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits. URL http:

//yann.lecun.com/exdb/mnist/. Accessed on 05/10/2021.

[65] J. Steppan. File:mnistexamples.png - wikimedia commons, 2017. URL https://commons.

wikimedia.org/wiki/File:MnistExamples.png. Accessed on 05/10/2021.

77

https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/padding-and-stride-for-convolutional-neural-networks/
https://machinelearningmastery.com/padding-and-stride-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://pytorch.org/docs/master/index.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://commons.wikimedia.org/wiki/File:MnistExamples.png

[66] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 and cifar-100 datasets, 2009. URL https://www.

cs.toronto.edu/~kriz/cifar.html. Accessed on 05/10/2021.

[67] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[68] J. H. Hosang, M. Omran, R. Benenson, and B. Schiele. Taking a deeper look at pedestrians. CoRR,

abs/1501.05790, 2015.

[69] T. Dettmers. Deep learning in a nutshell: History and training, 2015. URL https://developer.

nvidia.com/blog/deep-learning-nutshell-history-training/. Accessed on 06/10/2021.

[70] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015.

[71] J. Lu, S. Lu, Z. Wang, C. Fang, J. Lin, Z. Wang, and L. Du. Training deep neural networks using

posit number system. 2019 32nd IEEE International System-on-Chip Conference (SOCC), pages

62–67, 2019.

[72] N.-M. Ho, D. T. Nguyen, H. D. Silva, J. L. Gustafson, W.-F. Wong, and I. J. Chang. Posit arithmetic

for the training and deployment of generative adversarial networks. 2021 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1350–1355, 2021.

[73] T. Zhang, Z. Lin, G. Yang, and C. D. Sa. Qpytorch: A low-precision arithmetic simulation framework.

2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS

Edition (EMC2-NIPS), pages 10–13, 2019.

[74] PyTorch. pytorch/pytorch: Tensors and dynamic neural networks in python with strong gpu accelera-

tion - github, v1.9.1, 2021. URL https://github.com/pytorch/pytorch. Accessed on 14/10/2021.

[75] E. Yang. Let’s talk about the pytorch dispatcher, 2020. URL http://blog.ezyang.com/2020/09/

lets-talk-about-the-pytorch-dispatcher/. Accessed on 19/10/2021.

[76] E. Yang. Pytorch internals, 2019. URL http://blog.ezyang.com/2019/05/pytorch-internals/.

Accessed on 18/10/2021.

[77] Intel. Optimizing performance with intel advanced vector extensions - white paper, 2014.

URL https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf. Accessed on 21/10/2021.

[78] A. Luz. Afonso-2403/pytorch: Tensors and dynamic neural networks in python with strong gpu

acceleration - posit support, 2021. URL https://github.com/Afonso-2403/pytorch. Accessed

on 25/10/2021.

78

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://github.com/pytorch/pytorch
http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/
http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/
http://blog.ezyang.com/2019/05/pytorch-internals/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://github.com/Afonso-2403/pytorch

79

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Listings
	Nomenclature
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Background
	2.1 Computer Number Formats
	2.1.1 Integers
	2.1.2 Fixed Point
	2.1.3 Floating Point
	2.1.4 Posit
	2.1.5 Posit Arithmetic Libraries

	2.2 Deep Learning - Neural Networks
	2.2.1 Overview of Neural Networks
	2.2.2 NN Training Procedure
	2.2.3 Activation Functions
	2.2.4 Types of Layers
	2.2.5 Loss functions
	2.2.6 Optimizers
	2.2.7 Reference Datasets
	2.2.8 Benchmark Models
	2.2.9 Deep Learning Frameworks

	2.3 Related Work
	2.4 Summary

	3 PyTorch Framework API
	3.1 Tensors as the base data structure
	3.1.1 Tensor Data Types

	3.2 Neural Network Design and Training
	3.2.1 Layers
	3.2.2 Activation functions
	3.2.3 Loss functions
	3.2.4 Optimizer
	3.2.5 Model Training Example

	3.3 Summary

	4 Supporting Posit in PyTorch
	4.1 Contributing to PyTorch
	4.2 PyTorch's Internal Structure
	4.2.1 Codebase Structure
	4.2.2 Tensor Implementation
	4.2.3 Dispatcher
	4.2.4 Kernels

	4.3 Posit Integration in PyTorch
	4.3.1 Posit Data Type
	4.3.2 Dispatcher for Posit Types
	4.3.3 NN Operators for Posits
	4.3.4 Posits in PyTorch's Frontend

	4.4 Summary

	5 Experimental Evaluation
	5.1 Coverage Analysis
	5.2 Experimental Setup
	5.2.1 Dataset reduction

	5.3 LeNet-5 Training Evaluation
	5.4 Summary

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	Bibliography

