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Abstract

This dissertation aims to implement a semi-automatic edge contouring method capable of segmenting

high resolution cryosections of a cadaver available at the Visible Human Project, with minimal necessary

user input. Initially, di↵erent image segmentation algorithms were explored, however, the use of graph

cut based algorithms was the preferred method. An algorithm was then developed on top of OpenCV’s

Grabcut, which receives a manually drawn contour, corrects the segmentation and propagates it across

an interval of slices. Pre and post processing methods were developed in order to improve computation

time and segmentation performance. The contours were then saved in order to perform a reconstruction

of the anatomical structure.

The results obtained were promising, total reconstruction of the femur was possible, along with other

structures, such as the aorta and the liver. The time it took to achieve a full reconstruction depends on

the size of the structure, computing around four slices per second for the aorta and one slice per two

seconds for the liver. The resulting contours could be improved, as the color di↵erentiation between some

tissues is minimal. Some solutions were suggested that could enhance the contrast such as the using the

additional radiological images available in the data set.

Keywords: Visible Human Project, OpenCv GrabCut, Python, Edge Contouring Algorithm, Computer

Vision, Medical Imaging
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Resumo

Esta tese propõe e implementa um algoritmo semi-automático de delineação de contornos, capaz de

segmentar criosecções de um cadáver dispońıvel através do projecto Visible Human Project, minimizando

o input necessário. Inicialmente, diferentes métodos de segmentação de imagem foram explorados e

avaliados, no entanto, o uso de graph cuts foi o método escolhido. Um algoŕıtmo foi desenvolvido sobre o

GrabCut da biblioteca OpenCV, que recebe um contorno desenhado manualmente pelo utilizador, corrige-

o, e propaga-o ao longo de um conjunto de fatias. De maneira a melhorar a segmentação e o tempo de

computação, foram desenvolvidos métodos de pré e pós processamento de imagem. Os contornos foram

gravados de maneira a ser posśıvel uma reconstrução da estrutura anatómica.

Os resultados obtidos foram adequados, foi posśıvel uma reconstrução total do fémur, e de outras

estruturas, como o f́ıgado e a aorta. A duração de uma reconstrução total varia com o tamanho da

estrutura, sendo que foram processadas quatro fatias por segundo para a aorta e uma fatia a cada dois

segundos para o f́ıgado. Os contornos obtidos podem ser melhorados, visto que a diferença na coloração

entre alguns tecidos é mı́nima. Foram sugeridas algumas soluções que visam melhorar o contraste entre

tecidos usando as imagens radiológicas dispońıveis no Visible Human Project.

Palavras-Chave: Visible Human Project, OpenCV GrabCut, Python, Algoŕıtmo de Delineação de

Contornos, Visão Computacional, Imagiologia Médica
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CHAPTER

1

INTRODUCTION

The use of human bodies for anatomical classes has been present in Europe since Late Middle Ages, and

relied on jails and poorhouses as a source for bodies. Only later, in the 1960s, did body donation with

informed consent became an alternative and has since been the primary method used for teaching gross

anatomy to medical students[1]. It is still considered one of the most important methods of delivering

fundamental anatomical knowledge to students in order to ensure safe clinical practice and also to cultivate

humanistic values among the students. Nearly all clinicians still remember their first dissection of a human

cadaver [2].

However, the whole process can be quite expensive, cadavers require a large laboratory and usually

have short shelf lives if not prepared correctly. Body parts are hard to find and are often destroyed in the

process. Not only that, but there has also been a shortage in cadavers for medical study due to higher

demand. The number of medical programs is growing, organs are being used for transplants, and some

bodies may end up in pharmaceutical companies or exhibits. Not only that, but also with the evolution

of communication there are fewer unclaimed bodies for use [3][4].

As such, there has been a shift toward other teaching methods recently, such as the use of Virtual

Reality. New tools are being developed that allow students to learn anatomy in new innovative ways, with

3D Reconstructions from anatomical slices (3DRAS). This has been made possible due to the large data

sets being available, which allow for a total reconstruction of the body[5]. This brings many advantages,

such as multiple viewpoints of anatomical structures and re-usability of the model, which were limitations

from using real cadavers[6].
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1.1 Current Tools

There are already a wide variety of anatomy dissection platforms available and others under development.

1.1.1 Insight Toolkit (ITK)

The ITK is an open software toolkit implemented in C++ for registration and segmentation of images,

which is mainly used for medical images. This segmentation can be done in two or more dimensions and

consists of identifying and classifying data found. It then establishes correspondence between images,

and combines their information. This is usually done with MRI and CT scans[7]. Initially, this was done

either manually or fully automated, but recent researches have invested in semi-automatic segmentation

and created the ITK-Snap, an application used to segment 3D images that uses active contours. The

software assigns an integer value to each voxel in the image in order to create di↵erent labels for the

objects being segmented. These labels are seen as transparent layers in di↵erent colors. The user input

are polygons or a mask created with the paintbrush tool, which has an adaptive setting that includes

neighbor voxels with similar intensity. There are also tools for 3D input.

Figure 1.1: Snapshot of the software in action during segmentation of a brain tumor from a multi
modality MRI data set. The segmentation illustrated was done using the semi-automatic algorithm in
about 15 minutes. The tumor image data is from the Medical Image Computing and Computer Assisted
Intervention 2013 Multimodal Brain Tumor Segmentation (BRATS), available in the software’s website
(http://www.itksnap.org).
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The segmentation algorithm consists of a two stage pipeline. The first stage is to compute the

probabilities of the object being a structure of interest (foreground) or background. The second stage

involves using active contour segmentation. These two stages are then repeated for di↵erent structures.

This software is e↵ective, and it is not tissue specific. It manages to segment any type of tissue in

the images provided. However it takes some time to compute, with the average segmentation for a brain

tumor being around 10-15 minutes. Not only that, but it also focuses on radiological images. [8].

1.1.2 Interactive Brain Atlas

A prototype of a brain atlas was developed using the Visual Human Project data set[9] to demonstrate

the techniques and processes that will be later used to develop a complete atlas. The user interface allows

for multiple image display, 2D and 3D representations of the brain and volume visualization tools[10].

In this project, only the green channel from anatomical cryosections was used for segmentation, since

it provided high contrast between the brain and the skull. The process of segmentation of the brain

consisted of manual tracing and semi-automated morphological tools (dilation and erosion). Initially the

data went by a threshold in order to have the best representation of the brain with binary data. Then, the

image was eroded and dilated until the brain was separated from the background. Manual tracing was

used to create the intracranial cavity of the skull. The 3D render was made with an internally-developed

tool (Figure 1.2) [10].

Even though the results obtained were accurate, this tool relied heavily on user input.

1.1.3 3D Slicer

3D Slicer is a free segmentation tool available for almost all operating systems. It supports various image

modalities, such as CT, PET and MRI scans and allows for visualization in up to four dimensions. The

software has modules designed to serve a specific task, with segmentation being one of them. The available

module supports automatic and interactive segmentation and uses a wide range of contouring methods

(region-based statistical models, level sets, active learning and Expectation-Maximization multi-channel

segmentation). The algorithms available can be selected depending the tissue and anatomical site, level

of interaction, speed/accuracy trade-o↵ and purpose[11].
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Figure 1.2: 3-D images from the atlas prototype created from the Visual Human Project data set. Four
views are shown: side (a), front (b), top (c) and bottom (d)[10].

Figure 1.3: Segmentation of T1, FLAIR and ADC maps using the grow-cut segmentation module. On the
left, the enhancing region is delineated on a post-contrast T1 image, while in the center and abnormality
in the FLAIR is identified. On the right, a vasogenic edema is segmented[11].
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1.1.4 Medical Image Processing Analysis and Visualization

The Medical Image Processing Analysis and Visualization, also known as MIPAV, makes use of Java’s

object oriented features to process and visualize images. It also works in modules, with the algorithms

module having over 20 image processing and analysis tools. It supports di↵erent data sets, such as mi-

croscopy, MRI, CT scans and PET. The image segmentation process used is quite di↵erent, connected re-

gions are identified and delineated by Volume of Interest. This process can be automatic, semi-automatic

or fully manual. However, automatic segmentations often require correction or the aid of other edge

detection algorithms. MIVAP has had a primary focus on radiological images, but is quickly evolving

and getting more and more features.

Figure 1.4: Semiautomatic segmentation with MIPAV applied for volume calculation of the left ventricle:
In this example, VOIs were defined with a level set contour tool on the left ventricle of some slices of the
2D FLAIR sequence, then extracted in order to calculate the total volume[12].
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1.2 Motivation

As stated above, several tools are available that allow the user to manually segment data sets and provide

the reconstructed object in 3D. Some use automatic/semi-automatic segmentation with edge contouring

algorithms or artificial intelligence, by building and training machines that can perform the segmentation,

while others rely heavily on manual delineation. The rising availability of cadaver data sets, such as the

Visible Human Project, has also provided important resources for research on image segmentation.

Most user-oriented methods require heavy user interaction. However, pure manual contouring of the

structures in a series of images is very time consuming. Moreover, user interfaces to interact with these

models are still precarious and often in 2D. Lastly, the results obtained so far can have segmentation

inaccuracies and are still not considered good enough to be used as a reliable tool in medical environments.

Therefore, there is still a gap in the market for a reliable contouring algorithm that can be used with

ease.

In this dissertation, existing segmentation methods are explored and an edge contouring algorithm is

implemented in order to facilitate this interaction between the user and the model, removing the need

to manually contour every slice of a data set. The algorithm takes a contour and propagates it across

cryosections of the Visual Human Project, rebuilding the structure with little input from the user.

1.3 Objectives

This dissertation aims to evaluate existing methods of edge contouring and produce an algorithm capable

of reducing the amount of user input needed for a total reconstruction. The algorithm will then be used

in Anatomy Studio, a project being developed by INESC-ID in partnership with the Unesco Chair of

Digital Anatomy. Anatomy Studio consists of a collaborative Mixed Reality tool for virtual dissection

that combines tablets with styli and see-through head-mounted displays to assist anatomists by easing

manual tracing and exploring cryosection images.

The goal was to develop an algorithm that was able to take a slice from the Visible Human Project

data set, along with a rough contour drawn on the platform and produce an adjusted segmentation of

the image. The algorithm should then be able to take this contour and propagate it across a set of slices

in order to gather information for a full reconstruction of the anatomical structure.

The developed algorithm should maximize the output with minimal input in order to reduce the

amount of interactions required from the user. Several pre processing and post processing techniques

were evaluated and applied to the algorithm to achieve better performance and e�ciency. The user

should be able to have a fully reconstructed object within minutes.

Lastly, since the algorithm will be incorporated in a platform that is under development, several

adjustments should be made to accommodate the implementation in the platform.

6



1.4 Achievements

In conclusion, several di↵erent approaches to edge contouring were explored, with some of them not being

able to solve the problem at hand.

An edge contouring and propagation algorithm was implemented in Python. This was achieved with

the help of OpenCv, a Python library with a wide variety of tools for image manipulation and computer

vision.

The adjusting of the contours was done with GrabCut, an algorithm that extracts the foreground of

an image using a bounding box or a mask. Several tweaks had to be made in order to transform the

inputs and outputs for the project.

First of all, a small algorithm was developed to transform user input into a mask that could be read

by GrabCut. Secondly, this contour was propagated across the slices using dilation and erosion tools,

along with GrabCut. Lastly, the contour was extracted from the output and saved in a pointcloud for

visualization.

The final algorithm was enhanced in order to reduce the computation time and to smooth the final

contours, with pre and post processing methods. Finally, parameterization levels were created in order

to reduce the amount of input needed from the user.

1.5 Document Organization

Chapter 2 describes the content available in the Visible Human Project, which consist of cryosections

and CT and MRI scans of a cadaver. It goes over the process taken to obtain these images and how they

were prepared for segmentation with the developed algorithm.

Chapter 3 provides an overview some of the existing segmentation algorithms available, with a focus

on techniques used during the execution of this dissertation.

Chapter 4 is divided into two main parts. The first part goes over the OpenCV GrabCut and how it

operates. It describes its main functionalities and features. The second part explains the implementation

and methods used to build the segmentation algorithm.

Chapter 5 divulges the results obtained from the algorithm described in Chapter 4, when segmenting

images from the data set. It presents a comparison of di↵erent methods and how the algorithm performed

on di↵erent tissues.

Chapter 6 concludes with an overview of the dissertation and limitations of the algorithm. It provides

a description of what is missing in terms of performance, and what can be done to further improve

segmentation.
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CHAPTER

2

THE VISIBLE HUMAN PROJECT

The data set used in this dissertation was gathered from The Visible Human Project, available at the

National Library of Medicine of the USA. The data set had its origin in 1986 as the need for electronically

represented medical images in research grew. It took approximately two and a half years to find suitable

cadavers. Currently, two cadavers are available (Figure 2.1), the male cadaver is from 39-year-old Joseph

Paul Jernigan who was executed in 1993 by lethal injection and had agreed to donate his body for medical

use, whereas the female cadaver is from an unknown donor, who was obese, lived in Maryland, and died

of heart disease at the age of 59. A third female cadaver has been donated but has not yet been made

available. For consistency purposes only the female body was used, which is also more complete than the

male counterpart[13].

The processing of the corpses was done at the University of Colorado Health Sciences Center (UCHSC),

in order to obtain the MRI and CT scans before the corpse was frozen. The body was placed in a

containment box filled with rapidly hardening foam for stability (Figure 2.2). After the CT images

were captured, the entire box was frozen and stored. The cutting process was done with a special

cryomacrotome with a large range of motion to be able to cut the whole block. Initially, the cadaver was

cut into 4 blocks. These blocks were then isolated, the foam was partially removed and they were set in

a 3% gelatin solution. The blocks were then frozen again at -70ºC[14].

When cutting, the block was placed in a larger chamber with blocks of dry ice to prevent defrosting

during the process (Figure 2.3). The surface of the block went into a photography chamber, the image

was captured, and the block was moved back and raised by the desired interval in the z axis and cut

again.

8



This process was then repeated for the four blocks. During the photographic process, the block

was flushed with compressed air and examined for defects. Cavities were filled with foam and uncut

fragments, such as tendons and fascia, were trimmed. Lastly, the surface was sprayed with absolute

alcohol, surrounded with a black mask, slice number and grey scale.

Digital and photographic images were taken with a Leaf camera and examined to assure the quality

necessary for film acquisition. The images were then compressed and aligned. The cameras used for the

film images were 35mm and 70mm Rollieflex cameras, while the surface of the block was illuminated

with Polarized Strobe lights. An aluminium tray with dry ice was then placed over the block to keep the

surface frozen between cycles. This process was very long, taking almost a year to complete[14].

Figure 2.1: Coronal reconstructions of the blocks from the transverse slices (1,878 male and5,189 female)
of the Visible Human Data set. The discontinuities indicate block interfaces[14].
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Figure 2.2: The cadaver cocooned in a containment box filled with foam. The laser is indicating the
optimal block interface location determined from the CT survey images[14].

Figure 2.3: The cocoon cadaver was kept in the box with blocks of dry ice to prevent frosting, while
segmentation into blocks was done with a backsaw. The blade of the saw was positioned in the marks
identified with the laser[14].
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2.1 Radiological Images

The radiological images consist of CT and MRI scans. The CT data are axial scans of the body, taken

at 1mm intervals with a resolution of 512 by 512 pixels with 12 BITS of grey tone. The MRI data are

also axial scans of the head and neck, and longitudinal sections of the rest of the body, but taken at

4mm intervals with 256 by 256 pixel resolution and 12 bits of grey tone. The CT images are formatted

in GE 16 BITS (Compressed), while the MRI images are split into 3 formats each representing the three

di↵erent sequences used: T1-weighted, T2-weighted and Proton Density weighted (PD), which allow for

di↵erent contrasts between tissues. Sample images of radiological scans of the head can be seen in Figure

2.4.

(a) CT Scan (b) T1-Weighted MRI

(c) T2-Weighted MRI (d) PD-Weighted MRI

Figure 2.4: Sample images of the CT and MRI scans available on the data set.
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2.2 Cryosections

The cryosections come in di↵erent formats, 2K PNG, 4K TIFF and RAW (RGB 24 BIT non interleaved,

compressed). There are a total of 5 189 slices, obtained at 0.33 mm intervals in order to match the sizing

of the X-Y plane, making it easier to work with voxels. The images are available at a pixel resolution of

2048 pixels by 1216 pixels and 4096 pixels by 2700 pixels[9].

Initially, the original data set was used, but after the algorithm was developed it was used to remove

the ice in the background along with other unwanted objects, as seen in Figure 2.5. It is also important

to note that some slices were damaged by the cryo-procedure (Figure 2.6) along with others where parts

of the body disappear, such as the fingers and/or toes, and the nose cartilage (Figure 2.7). The cadaver

also contains several pathologies, including cardiovascular disease and diverticulitis. The damaged slices

were not used. The slice numbers from the filenames do not match the numbers on the image. Since the

background was removed, when referencing the number of the slice, the filename was used.

(a) Original Slice 2660 (b) Masked Slice 2660

(c) Original Slice 4616 (d) Masked Slice 4616

Figure 2.5: Slices 2660 and 4616 before and after background removal using the developed algorithm
from this dissertation.
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(a) Damaged Slice 2468 (b) Damaged Slice 2491

(c) Damaged Slice 3929 (d) Damaged Slice 3937

Figure 2.6: Examples of damaged slices in the dataset. The upper torso in (a) and (b) and the upper
legs in (c) and (d) are badly damaged making the structures harder to identify.

(a) Slice 3515 (b) Slice 3516

(c) Slice 6133 (d) Slice 6134

Figure 2.7: Examples of missing appendages in the dataset. From (a) to (b) two phalanges are missing
and from (c) to (d) part of the foot’s sole is also missing
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CHAPTER

3

EXISTING EDGE DETECTION

ALGORITHMS

3.1 Localized Histograms & Region Merging

In this technique, the segmentation is done based on pixel feature values. Clusters are formed with

peak-valley analysis of an histogram of pixel intensity. It can also be coupled with region merging to

further enhance the segmentation. This has many advantages, such as not being a purely local nor

global algorithm, taking all variability into account. This is very important, since some images have huge

amounts of features, such as textures, color, shadows, highlights and even fine geometric structures[15].

These systems are usually composed of two algorithms, a localized histogram-segmentation and a region-

merging algorithm, as seen in Figure 3.1.

3.1.1 Local Histogram Region-Segmentation Algorithm

This algorithm consists of five phases. The first step is pre-processing the image with edge-preserving

smoothing and scaling. Then, the image is divided into sectors, and histograms of pixel feature values are

created. The dimension of the histograms is usually 16x16 pixels or 32x32 depending on the sharpness of

the image. The sectors are usually expanded to include the boundary and overlap the neighbor sectors.
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Figure 3.1: Primary components of the segmentation system. First di↵erent features of an image (typi-
cally color)are independently segmented using local histogram segmentation. Then a new segmentation
is created by taking the union of all the resulting edges. Finally, this highly fragmented segmentation is
refined by a region-merging phase[15].

Clusters are defined by a histogram peak and its two neighboring valleys, and are created for each

sector based on peak-valley analysis of the histograms. First, all peaks are marked, using local maxima.

Then, the minimum valley between each peak is a classified as a valley. The clusters are then created and

named according to the grey level of their peak, as seen in Figure 3.2. The clusters are evaluated according

to their significance using a variety of measures: peak height, peak-valley ratio and peak distance. The

user provides thresholds for these values in order to select clusters.

Pixels are labeled according to the cluster they belong to and are segmented. Subsequently, missing

clusters are added, which might have been missed due to being in adjacent sectors, obscured by a larger

cluster, for example. The method used to find these clusters was peak addition, by Kohler [16]. Lastly,

the artificial sector boundaries are removed and in post-processing the one- and two-pixel regions are

removed. All adjacent regions at a sector boundary are compared using a merge-score:

merge� score =
kµa � µbk

max(�a + �b, 1)
(3.1)

where µ is the mean and � the standard deviation. This measure is used to evaluate local (pixels at

a fixed distance) and global (all pixels in the respective regions) similarity. The regions are only merged

if the score is below a pre-defined threshold.
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Figure 3.2: Cluster selection example illustrating the clusters selected using a specific set of cluster-
filtering parameters. Peaks are noted with an asterisk[15].

3.1.2 Region Merging

This algorithm receives as input a set of fragmented regions, This strategy is a iterative process that also

uses the merge-score as measure. Regions with minimal scores are identified, the regions are merged,

and the process is repeated until all merge-scores are larger than the global threshold. However, in this

algorithm it is also taken into account that similar regions should be merged, larger regions are preferred

and regions that have a common boundary should not be merged. There is a merge-score for each of

these factor that are combined into a final score.

One of the factors used is spectral similarity. using the following measure:

Ssim(a, b) =
kµa � µbk

max(1,�a + �b)
(3.2)

where µ is the mean and � the standard deviation. The ideal value would be 0, as this means that

the mean values for the two regions are equal. If there are multiple features, such as color, the measure

can be extended:

Ssim(a, b) =
maxkkµak � µbkk
max(1,�a + �b)

(3.3)

Size is also taken into account, by encouraging small regions to merge and discouraging large ones.

The measure has a limit at 2.0 so that it does not override other measures.
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Ssize(a, b) = min(2.0,
min(c(a), c(b))

k
) (3.4)

where

c(x) ⌘ the number of pixels in region x

k ⌘ target number of pixels in a region, user-specified

The last measure used is connectivity, which reflects how large the boundary between regions is.

Should the boundary be small, it is less likely that the two regions should be merged. This measure is

also bounded between 0.5 and 2.0 to avoid overpowering the other measures. It is defined as follows:

= c(a, b) if 0.5  c(a, b  2.0

Sconn(a, b) = 0.5 if c(a, b) < 0.5

= 2.0 otherwise

where

c(a, b) ⌘ min(l(a), l(b))

4⇥ lS(a, b)
(3.5)

ls(a, b) ⌘ the length of the shared boundary between regions a and b

l(x) ⌘ the circumference of region x

The final merge-score is the product of these three features. The size-score has a weight of 0.5 as it

is less important to the score overall. These formulas were obtained through experimentation and have

proved to be e↵ective on a wide variety of images.

Other methods were taken into account, such as similarity of standard deviation, local contrast across

the boundary, maximum allowed standard deviation, and mixed pixel region suppression. Even though

these added features proved e↵ective in certain cases, the excess in computation was not worth it.

3.1.3 Combining The Algorithms

The junction of these two algorithms counteract the disadvantages of using each of them by themselves.

The local-histogram segmentation is very accurate at detecting homogeneous areas. However, it tends to

create too much small regions in textured parts of the image. Even though the parameterization can be

changed to tackle this problem, significant image boundaries are lost in the process.

On the other hand, the region-merging algorithm is not as global, it is more sensitive to local image

characteristics. It only merges regions, it cannot create new boundaries. Therefore, these two algorithms

work very well together, where the local-histogram segmentation creates a good starting segmentation

and the region merging corrects the posprocess fragmented areas.
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3.1.4 Integrating Multiple Color Features

In this algorithm, the use of multiple features is also explored, which is known to improve segmentation

quality. Regions that are not found in one feature might be found in others, as seen in Figure 3.3[17][18].

Each feature is independently segmented at high sensitivity, and the result is joined to create a new

segmentation, called multispectral-union. Pixels that are separated in one of the colors are also separated

in the union. The region merging algorithm is then applied to this oversegmented image.

Figure 3.3: Color data for a road scene. (a) Instensity, (b) red, (c) green, and (d) blue components. [15].
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Figure 3.4: Segmentation of the individual color components. High-sensitivity segmentation of the (a)
intensity, (b) red, (c) green, and (d) blue data for the road scene shown in Figure 3.3. [15].

3.1.5 Parameterization

Each operation is controlled with a variety of parameters that need to be chosen appropriatly in order to

have a successful segmentation. The size of parameter space for all functions is rather large, creating a

problem of parameterization for each new image. In order to tackle this problem, the goal was to collapse

the parameter space into a much smaller one, so that the algortihm is e↵ective across a variety of image

types. The only parameter needed for the localized histogram segmentation is sensitivity (very-low, low,

medium, high, and very-high). [15].
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Figure 3.5: Illustration of the three-color-union segmentation at high sensitivity by taking the boundaries
between regions in each of the three color segmentations shown in Figure 3.4. [15].

For cluster selection, the parameters (minimum-peak-distance, minimum-peak-height and minimum-

peak-valley ratio) are measured using the average height as a reference and a, less complicated, user

input. Like the previous parameterizations, the user chooses a sensitivity, where low sensitivity performs

a two-class threshold on the image while a high sensitivity setting indentifies each individual peak as a

cluster. [15].

Lastly, in order to remove the boundaries, three settings are used: weak, normal and strong sector-

boundary removal. A local maximum merge-score threshold of 2.5 is used on all three, while the global

maximum varies accordingly from 0.6 to 1.1 and 1.7.
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3.2 Gradient Based Algorithms

3.2.1 Canny Edge Detection Based Algorithms

The Canny Edge Detector is widely used to extract structural information in computer vision, reducing

the data load that needs to be processed. This algorithm was developed by John F. Canny in 1986 and

has since been used due to its good detection, localization and single response to an edge. [19]. It starts

by receiving an image and outputs the computed edges of the entire image.

The algorithm consists of a few simple steps. Firstly, some pre-processing is applied to the image, to

reduce noise and undesired image details, usually a 2D Gaussian filter.

G(x, y) = exp[�(x2 + y2)/2�2]/2⇡�2 (3.6)

Secondly, the gradient magnitude and direction is calculated for each pixel. The first order partial

derivatives are obtained with the following formulas:

Ex[i, j] = (I[i+ 1, j]� I[i, j] + I[i+ 1, j + 1]� I[i, j + 1])/2 (3.7)

Ex[i, j] = (I[i, j + 1]� I[i, j] + I[i+ 1, j + 1]� I[i+ 1, j])/2 (3.8)

The magnitude and direction can then be calculated:

kM(i, j)k =
q

Ex[i, j]2 + Ey[i, j]2 (3.9)

✓(i, j) = arctan(Ey[i, j]/Ex[i, j]) (3.10)

Should the gradient magnitude be larger than its two neighbor pixels, the pixel is marked as an edge.

Otherwise, it is marked as background. Lastly, the weak and undesired edges are removed using the

hysteresis thresholding[20].

Even though the Canny Method is the most accurately defined, it is rather simple and often misses

simple edges, as seen in Figure 3.6[19]. It cannot detect branching edges and, when the gradient slopes

are very small, the computed direction might not be the normal direction to the contour which leads to

missing edges[19].

In order to tackle these problems, several adjustments have been developed to try and improve this

method, mainly changing the third step of the algorithm - where the pixel is marked as an edge or

background.

One approach is to create a new category that consists of pixels whose gradient magnitude is larger

than their neighbors, but not necessarily in the gradient direction.
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Then, these pixels can be used to connect and fill missing edges. Some extra steps are taken to prevent

false loops. This revision adds the following steps: If the gradient magnitude at a pixel is bigger than its

neighbors in the gradient direction, then it is marked as a major edge. If this happens in any direction, it

is marked as a minor edge. Otherwise, it is marked as background. Then, the minor edges are partitioned

at the branch points and all branches which do not contain major edges are removed. The minor edges

that are delimited by major edges are then remarked as major edges, and are combined with the previous

edges.

Figure 3.6: (a) An image with four well-defined homogeneous regions. (b) Image after smoothing with
a Gaussian kernel of standard deviation 11 pixels. (c) Gradient magnitudes of (b). (d) Edges of (a)
determined by the Canny edge detector with a Gaussian smoother of standard deviation 11 pixels. These
are the major edges. (e) The minor edges. (f) Edges obtained by the revised Canny edge detector[19].

Overall, the results are promising and fix the main problem with the Canny Method, which is the miss-

ing edges. Even though this problem can be fixed with the zero-crossings of the Laplacian of Gaussian[21],

they can sometimes create phantom-edges between objects.

Other approaches seek to tackle the inaccurate localization of the Canny Method and the implication

that the optimal edge detector would be infinitely wide - which leads to interference from other edges[22].

Some also change the way the gradient is calculated in order to reduce noise sensitivity, using other

methods, such as gravitational edge detection[20].
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3.2.2 Edge detection using normal direction

Segmentation of CT scans is quite important and is sometimes done using gradient based algorithms,

since contrast in these images is high for some tissues, such as bone. This algorithm is based on the

fact that the variation of the intensity of pixels near the edge is greater along the normal direction when

compared to the tangent direction. The estimation is usually done using the first derivative of the 2-D

symmetrical Gaussian as it estimates the normal direction and also reduces noise at the same time.

Gn =
@G

@n
= n ·�G (3.11)

G(x) = exp(� ||x||2

2�2
) (3.12)

where x 2 R2,� is the estimate of the variance of the noise. The normal direction can be estimated

as

n(x0) =
�(G(x� x0) ⇤ I)

||�(G(x� x0) ⇤ I)||
(3.13)

where * is the convolution and I is the image. It is assumed that � can be estimated and that the

normal direction will not change after a coordinate system rotation, as it is calculated on the original

coordinate system. The noise variation can be estimated using an auto correlation function, but it is

extremely inaccurate and the estimated normal directions can be very di↵erent if the system rotates even

slightly[23].

There have been many attempts to solve this problem, such as estimating the edge strength in ro-

tated coordinate systems, but it is costly to compute[24]. Another approach is to use the geometrical

information available to improve the results obtained. If the edge being contoured is C2continuous and

smooth, which is often the case, then the true edge location of point i + 1 and its normal direction can

be computed with the detected edge points.

When the contour is a circle, the di↵erence between the angles spanned by two consequential pairs of

neighbouring pixels should be 0.

�✓2i = �✓i ��✓i�1 = 0 (3.14)

where ✓i is the angle spanned by the normal direction at pixel i and the horizontal coordinate and

�✓i is the angle spanned by the normal directions at two neighbouring pixels i � 1 and i. This is not

always true, since the contours are not always circles. Therefore, the di↵erence is instead assumed to be

a random variable ⇠ around zero, h⇠i = 0. Even though the expected value is zero, the variance, on the

other hand, can be quite large. Estimation errors can cause a large variance of ⇠, so an adjustment was

made to correct this:

✓̄i = qi✓i + (1� qi)(✓̄i�1 +�✓̄i�1) (3.15)
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where qi 2 [0, 1] is the adjustment/balancing factor, ✓i is the normal direction obtained from equation

3.13, and ✓̄i�1 +�✓̄i�1 is the normal direction but estimated through the edge smoothness assumption.

Therefore, qi acts as a way to determine the reliability of these two estimates.

In order to calculate qi, the reliability of the computed normal direction across di↵erent levels of noise

is used:

qi =
�i
u � �i

l

�max � �min
(3.16)

where �i
u  �max and �i

l � �min are the upper and lower bounds of � where the discrepancy of the

normal direction at pixel i are less than or equal to a defined tolerance, which controls the sensitivity of

the estimate. However, the value of qi relies too much on the tolerance defined, so some adjustments can

also be made. A re-scaling factor � can be added to the equation:

✓̄i = �qi✓i + (1� �qi)(✓̄i�1 +�✓̄i�1) (3.17)

The results from this algorithm are promising (Figures 3.7 and 3.8) and when in comparison with other

methods, the results are quite accurate, however require a set of tissue-specific parameters beforehand

for the segmentation to be ideal[25].

(a) Wrist CT Scan (b) Segmented CT Scan

Figure 3.7: CT scan of a human wrist from patients who volunteered in a study approved by the Research
Ethics Board of Queen’s University and Kingston General Hospital. In (a) is the original CT scan and
in (b) is the edge map computed with the normal direction algorithm[25].
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Figure 3.8: CT scan of a human pelvis from patients who volunteered in a study approved by the Research
Ethics Board of Queen’s University and Kingston General Hospital. In (a) is the original CT scan, in (b)
is the manual segmentation of the pelvis, in (c) is the edge map computed by the algorithm, and in (d)
is the di↵erence between the two[25]

3.2.3 Active Contouring/Snakes

Active contours, also known as snakes, are widely used in shape recognition, segmentation and edge

detection. This method requires previous knowledge of the contour, needing an input. It is very useful

when the initial seed is close to the desired edge, resulting almost always in convergence[26].

A snake is defined by a list of points vi. The deformations of the snake are made according to an

internal energy term, Einternal, and the fitting of the contour to the edge is controlled by an external

energy term, Eexternal, which is a combination of the image forces, Eimage, and constraint forces, Econ,

implied by the user. The energy function of the snake is therefore a sum of these two:

E⇤
snake =

Z 0

1
Esnake(v(s))ds =

Z 0

1
(Einternal(v(s)) + Eimage(v(s)) + Econ(v(s)))ds (3.18)

The internal energy is defined by the continuity Econt and smoothness Ecurv of the contour:

Einternal = Econt + Ecurv =
1

2
(↵(s)|vs(s)|2) +

1

2
(�(s)|vss(s)|2)

=
1

2
(↵(s)||dv̄

ds
(s)||2 + �(s)||d

2v̄

ds2
(s)||2)

(3.19)
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where ↵(s) and �(s) are user defined weights which control, respectively, the stretch and curvature of

the snake.

The image energy consists of a weighted combination of three energy functionals - lines, edges and

terminators. Naturally, higher weights mean these features have a larger contribution to the image force.

Eimage = wlineEline + wedgeEedge + wtermEterm (3.20)

The line energy is the intensity of the image, represented by:

Eline = I(x, y) (3.21)

Smoothing/Noise reduction filters are usually applied in this step. The edge functional is based on

the gradient of the image:

Eedge = �|G✓ ·r2I|2, (3.22)

where G✓ is a Gaussian with standard deviation ✓ in order to prevent convergence to local minima.

The level lines in a smoothed image can be used to find terminators and corners across the image:

Eterm =
@✓

@n?
=

@2C/@n2
?

@C/@n
=

CyyC2
x � 2CxyCxCy + CxxC2

y

(C2
x + C2

y)
3/2

, (3.23)

where C(x, y) = G✓ · I(x, y) is the smoothed image, ✓ = arctan(Cy/Cx) is the gradient angle, n =

(cos✓, sin✓) are the unit vectors along the gradient direction and n? = (�sin✓, cos✓) are the unit vectors

perpendicular to the gradient direction.

The gradient descent method is used in order to optimize the energy minimization process and to

help find local minima:

v̄i  v̄i + Fsnake(v̄i) (3.24)

Fsnake(v̄i) = �rEsnake(v̄i) (3.25)

Images have finite resolution. Therefore, they can only be integrated over discrete time steps.

E⇤
snake ⇡

nX

1

Esnake(v̄i) (3.26)

Also, in order to prevent oscillations around minima or converging to a di↵erent one, the step size

should never be bigger than one pixel due to the image forces[26].

Compared to traditional methods, snakes have many advantages, such as tracking of dynamic objects,

the ability to adaptively search for the minimal state and scale sensitivity to the Gaussian smoothing in

the energy function. However, the method is very sensitive to local minima, small details on the image

are often ignored and the accuracy depends on the convergence policy.
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As such, there are many variations of this model that try to solve its limitations, but each of them

have their own trade-o↵s.

GVF Snake Model: This model replaces the default external force. It uses the gradient vectors’

di↵usion of a gray-level or binary edge map obtained from the image (Figure 3.9). It solves the poor

convergence for concave edges and initilizations far from the minimum. However, this causes rounding

of the edges of the contour[27].

Geometric Active Contours: GAC takes inspiration from Euclidean curve shortening and level

sets to create a model where contours can split and merge as objects are detected on the image.

Active contours can handle changes in topology during the gradient descent evolution. This model

has been used in medical imaging (Figure 3.10) and can be extended to 3D. [28].

Knowledge-guided Robust Active Contours: This segmentation technique combines a knowl-

edge based segmentation system with the active contours. The knowledge system is built using

probability density functions using location, size and image intensity as parameters. However, it is

only used for low-level segmentation (Figure 3.11)[29].

Figure 3.9: Magnetic resonance image of the left ventricle of a human heart (a), the corresponding edge-
map (b), the GVF (c) and the initial and intermediate contours (gray) and final contour (white) of the
GVF snake (d)[25].
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Figure 3.10: Tumor detection using GAC. The tumor in the image is a acousticus neurinoma. In (a) is
the original MRI image and in (b) is the segmentation obtained. [28].

Figure 3.11: Results of using the Knowledge-guided Robust Active Contours on a chest CT scan. Regions
are automatically identified without user input. In (a) is the segmented chest wall, in (b) the airspace,
in (c) the mediastinal region and in (d) areas of increased attenuation within the airspace[29]
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3.3 Graph Cut Based Algorithms

This method is quite di↵erent from the ones described above. It was initially developed by Boykov and

Jolly in 2001 using a monochromatic image. The segmentation started with a trimap T and an array of

grey values, then histograms were built using the respective trimap regions for background and foreground

in order to calculate the opacity values and models.

First, let’s focus on the concept of graph cut. A graph is defined as G =< V,E >, where V are the

vertices of the graph and E is the graph edge that connects every pair of neighbor pixels. There can be

two di↵erent kinds of nodes, there are neighborhood nodes which are the pixels, and terminal nodes (s

(source) and t (sink)). In this graph, also called an s� t graph, the s is used to represent the object and

t is used to denote the background. There can also be two di↵erent types of edges. The first type are

the n-links which connect the neighboring pixels within the image, and the second type are the t-links,

which connect the terminal nodes with the neighborhood nodes. Each edge is assigned a non-negative

weight we, called cost. A cut, which is a subset of edges E, can be denoted as C, C ⇢ E. The cost of a

cut is the sum of the weight of the edges:

|C| =
X

e2C

we (3.27)

A min-cut is a cut that has the least cost and can be achieved by finding the max flow[30] With this

cut, the graph is divided and the nodes separated into two subsets S and T, where s 2 S, t 2 T and

S [ T = V . The subsets represent the foreground and background, respectively[31].

With this method, to segment an image is to label the pixels as either background or foreground. In

order to achieve this, the energy-function is minimized through minimum graph cut. The energy function

should be minimum at the projected boundary. The energy function is defined by:

E(L) = ↵R(L) +B(L), (3.28)

where L = l1, l2, l3, ..., lp are the labels, p is the number of pixels in image, li 2 0, 1, R(L) is the

regional term, B(L)| is the boundary term and ↵ is the relative importance factor. The regional term is

defined as:

R(L) =
X

p2P

Rp(lp), (3.29)

where Rp(|lp) is the penalty for using the label lp to pixel p. This weight can be calculated by

comparing the histograms of the foreground and background with the pixels’ intensity.

Rp(0) = �lnP (Ip|0fg0) (3.30)

Rp(1) = �lnP (Ip|0bg0) (3.31)
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Therefore, when a pixel is likely to be in the foreground, the penalty for assigning the foreground

label is smaller which in turn reduces the energy in eq. (3.28) If two neighboring pixels have the same

label, then the penalty is zero.

On the other hand, the boundary term is defied as:

B(L) =
X

p,q2N

B<p,q> · �(lp, lq), (3.32)

where p, q are the neighbor pixels and:

�(lp, lq) =

8
><

>:

1 if lp = lq

0 if lp 6= lq

(3.33)

When the intensity of two neighbor pixels is the same, the penalty is high, and if it the intensity of

the pixels is very di↵erent, then the penalty is low. This way, the energy function is minimum at the

foreground edge. [31].

The weight in the s � t graph is very important, since its value a↵ects the segmentation result. In

Boykov and Jolly’s method, the weight is defined as:

weight =

8
>>>><

>>>>:

B<p,q> p, q 2 Neighboring pixel

↵ ·Rp(0) for edgep, S

↵ ·Rp(1) for edgep, T

(3.34)

When the intensity of the pixel is close to the foreground, the weight between this pixel and the s-node

will be larger, meaning that the cut will occur at the edge with smaller weight. When two pixels have

the same intensity, the weight is very big, therefore, they are not likely to be separated[31].

Figure 3.12: In (a) is the illustration of a s-t graph, where the pixels correspond to the neighbor nodes
in the graph, the solid lines are n-links and the dotted lines are t-links. In (b) is the illustration of the
cut corresponding to the minimal energy[31].
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3.4 Comparison

The Canny Edge Detection algorithms while e↵ective, are heavy in computation, rely heavily on proper

parameterization and do not use global information. This last aspect is also true for other gradient-based

algorithms. These algorithms are best suited for images with high contrast, such as CT and MRI scans.

Localized Histograms and Region Merging make use of global information to detect edges, which is

an improvement, and there are multi-feature implementations to segment images of color. However, the

results obtained are not always closed contours and the process is fully automatic, which is not what is

needed for this project.

As for methods using graph cut, the fact that they can detect boundaries even when the color separa-

tion between foreground and background is not very clear makes it very useful to segment the cryosections

available in the data set. The main problem with this method is the heavy user interaction needed to

produce an image, however, this can be solved with a few bridges between the user and the algorithm.

Out of all the methods presented above, Graph Cut stands out, as later iterations of the algorithm

start using RGB color space, the histograms are no longer used and Gaussian Mixture Models have been

implemented. Also, based on the results from the other algorithms, the use of Graph Cut is the most

suited for the objective of this dissertation.
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CHAPTER

4

METHODOLOGY

4.1 OpenCV Grabcut

Initially, the algorithm was being built from scratch. However, this idea was rapidly given up on as there

were already plenty of good existing algorithms that use graph cuts to work on top of. One of those was

Grabcut.

GrabCut was designed by Carsten Rother, Vladimir Kolmogorov and Andrew Blake from Microsoft

Research Cambridge, UK. The motivation was the same, an algorithm was needed to extract the fore-

ground of an image with minimal input.

The segmentation of the image, z, is an array of opacity values ↵ at each pixel, between 0 and 1, where

0 is background and 1 is foreground. A parameter, ✓, is used, that describes the grey-level distribution

using histograms from the trimap regions TB, TF , as seen below:

✓ = {h(z; a),↵ = 0, 1} (4.1)

In order to segment the image, a ”Gibbs” energy function is used:

E(↵, ✓, z) = U(↵, ✓, z) + V (↵, z) (4.2)

A good segmentation occurs when the energy is minimum, which means that that it was guided by

both grey-level histograms and the opacity is coherent. The term U evaluates the fit of the opacity

distribution to the data, given the histogram model:
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U(↵, ✓, z) =
X
� log h(zn;↵n) (4.3)

As for the smoothness term, it can be written as:

V (↵, z) = �
X

(m,n)2C

dis(m,n)�1[↵n 6= ↵m]exp� �(zm � zn)
2 (4.4)

where C represents the pair of neighboring pixels and dis the Euclidean distance. Pixels are defined

as neighbors if they are adjacent horizontally, vertically or diagonally. This term measures how smooth

the label is between these neighbor pixels. The constant � is defined to be:

� = (2h(zm � zn)
2i)�1 (4.5)

where hi denotes expectation over an image sample. This ensures that the smoothness term oscilates

between high and low contrast appropriatly. The constant � was defined as 50, as this value optimized

performance over the training set used.

The segmentation can now be estimated by minimisation:

↵ = argmin↵E(↵, ✓) (4.6)

By finding the global minimum the segmentation is estimated[32].

4.1.1 Colour Data Modelling

The original algorithm was made for monochromatic images, with the use of grey-scale histograms. By

replacing this step with a Gaussian Mixture Model, GMM, the image can now be in the RGB color

space. Two GMMs are needed, one for the background and another for the foreground, and each one

of them consists of a full-covariance Gaussian mixture with K components. A unique GMM component

is assigned to each pixel, either from the background or the foreground model. An additional vector is

needed to implement this, vector k = {k1, . . . , kn, . . . , kN} with kn 2 {1, . . . ,K}.

With this implementation, the Gibbs energy is now:

E(↵, k, ✓, z) = U(↵, k, ✓, z) + V (↵, z) (4.7)

The data term is now changed to take into account the colour GMM models:

U(↵, k, ✓, z) =
X

n

D(↵n, kn, ✓, zn) (4.8)
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with

D(↵n, kn, ✓, zn) = � log h(zn|↵n, kn, ✓)� log ⇡(↵n, kn), (4.9)

where p() is the Gaussian probability distribution, and ⇡() are mixture weighting coe�cients. There-

fore, the parameters of the model are:

✓ = {⇡(↵, k), µ(↵, k),⌃(↵, k),↵ = 0, 1, k = 1 . . .K} (4.10)

The weights ⇡, means µ and co-variances ⌃ of the 2K Gaussian components for the foreground and

background are now used. The only change to the smoothness term is the contrast term, that is now

calculated using the Euclidean distance in colour space:

V (↵, z) = �
X

(m,n)2C

dis(m,n)�1[↵n 6= ↵m]exp� �||zm � zn||2 (4.11)

4.1.2 Iterative Energy Minimization

The one-shot minimum cut estimation algorithm was also replaced with a more powerful and e↵ective

iterative method. This brings many advantages, such as allowing automatic refinement of the opacities

↵ as new pixels from the TU region are labelled and used to refine the colour GMM parameters.

In the first step, the GMM components are assigned. Then the GMM parameters are learned from

the data z. The segmentation is estimated using min cut and the process is repeated until convergence

is found.

This reduces the amount of user interaction needed to segment an image by allowing the use of

incomplete trimaps. The user can now only select the background region, leaving the foreground region

empty. The iterative minimization applies provisional labels on pixels in the empty region which can

then be retracted[32].

4.1.3 Transparency and Border Matting

Another useful implementation is the use of matting tools to produce continuous alpha values. Border

matting starts with a contour C, obtained by fitting the hard segmentation from the previous section to

the segmentation boundary. A new trimap is computed where TU is a window of width ±w around C.

An index t(n) is assigned to each pixel n 2 TU and the ↵-profile is calculated as a step-function:

↵n = g(rn;�t(n),�t(n)) (4.12)

where rn is the distance from the pixel n to the contour C. Parameters � and � represent the centre

and width of the transition from 0 to 1 in the ↵-profile. These values are estimated by minimising the

following energy function over t:
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E =
X

n2TU

D̂n(↵n) +
TX

t=1

V̂ (�t,�t,�t+1,�t+1) (4.13)

where V̂ is a smoothing regulizer:

V̂ (�,�,�0,�0) = �1(���0)2 +�2(� � �0)2 (4.14)

The purpose of this regulizer is to let ↵-values to vary smoothly as t increases, along the contour[32].

4.2 Implementation

In order to implement the algorithm in Python, the OpenCV-Python library was used. This library was

developed to solve computer vision problems and supports a wide variety of algorithms, such as the Canny

Edge Detection and the Watershed Segmentation Algorithm, along with tools for image processing and

manipulation[33].

The GrabCut algorithm works by accepting an image and one of two user inputs: a bounding box with

the desired foreground object inside or a mask with the approximated segmentation. Then it iteratively

goes through the GMM estimation, the Markov field and the Graph Cut optimization. It receives the

following parameters:

• img: The input 8-bit, 3-channel image

• mask: The input/output mask that can be initialized with the bounding box or by the user, where

the values 0,1,2 and 3 are used to represent sure background, sure foreground, probable background

and probable foreground respectively. It should be a single channel 8-bit image

• rect: The bounding box that contains the foreground region to segment, only used if the mode is

set to bounding box initialization (cv2.GC INIT WITH RECT)

• bgModel: Array used to model the background

• fgModel: Array used to model the foreground

• iterCount: The number of iterations the algorithm will perform to generate the background and

foreground models.

• mode: The initialization method, that is either with a bounding box (cv2.GC INIT WITH RECT)

or with a mask (cv2.GC INIT WITH MASK)

The output consists of the modified mask, along with the bgModel and fgModel. The mask is marked

with the same flags specified above (0,1,2 or 3) representing the background/foreground. Some adjust-

ments are needed to perform the segmentation: all 0-pixels and 2-pixels are changed to 0 (ie. background

pixels) and all 1-pixels and 3-pixels are changed to 1 (ie. foreground pixels). It can then be applied to the

initial image to perform the segmentation. The results of the GrabCut algorithm are presented in Figure
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Algorithm 1 OpenCV-Python GrabCut

1: grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) !
2: mask, bgdModel, fgdModel
3: segmented img = mask * img

4.1. The segmentation worked very well, and the desired object (the football player) was full separated

from the background.

Figure 4.1: On the left is the input image with a bounding box in blue and then touch-ups in white
(denoting foreground) and in black (denoting background). The result obtained is on the left.

4.3 Input

Even though the algorithm already has user input functionalities, they do not coincide with the input

that will be used. Despite the fact that the algorithm accepts a mask, it needs to be generated in advance.

At first, di↵erent forms of input were explored 4.2, such as the using polygons and free-hand drawing

to label the background and foreground. Since the users will be able to give input through a tablet or

in Virtual Reality, which allows for precise drawing, it was decided that a closed contour of the desired

edge was the most appropriate for the problem at hand. A small algorithm was developed to solve this,

presented below (2):
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Algorithm 2 Create mask from closed contour

1: for every point in closed contour do
2: add circle of 3-pixels (probable foreground) around point
3: end for
4: fill inside of generated contour with 1-pixels (sure foreground)
5: fill outside of generated contour with 0-pixels (sure background)

The output is a mask with three di↵erent pixel labels that can then be used with the OpenCV GrabCut

algorithm. Represented in Figure 4.3, the red, yellow and green areas represent the sure background,

the probable foreground and the sure foreground respectively. The width of the drawn contour can be

adjusted in order to change the size of the yellow area (probable foreground). This allows for less specific

inputs to be drawn, as long as the desired edge is inside the yellow zone.

Figure 4.2: Examples of the first inputs explored for the algorithm 2 represented in (a) and (b). The
object being contoured is the left ventricle of the heart of slice number 2292. The colors red and green
represent sure background and sure foreground respectively.

(a) User Input (b) Adjusted User Input (c) Mask obtained

Figure 4.3: Illustration of the process in Algorithm 2 that starts with a 1-pixel contour in green (a),
transforms it into a larger path in green (b) and the final mask obtained (c). In (c), the colors red, yellow
and green represent sure background, probable foreground and sure foreground respectively. The object
being contoured is the Left Ventricle of the Heart of slice number 2292.
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4.4 Editing and Multiple Contours

After obtaining the mask, it may not have converged to the desired edge or contain the entirety of the

foreground. Also, some structures might have multiple surfaces, such as hollow objects, where more than

one edge is present. As such, some editing tools were added to the algorithm.

Firstly, the ability to directly edit the mask was added. This is done by using two input colors, where

the user can draw over the undesired parts in black and unrecognized parts in white. A mask is then

created from the input, where white points correspond to sure foreground pixels, and black points to

sure background pixels. This mask is used in GrabCut and a new image is produced. The cycle can

be repeated until the user is satisfied with the output. This process is represented in Algorithm 3. The

illustration of the algorithm can be seen in Figure 4.4, where the left ventricle of the heart was not fully

labeled as sure foreground by Grabcut. With the new editing tool, the user can now remove unwanted

pixels and make sure the entire object is labeled as foreground.

Algorithm 3 Edit mask

1: while editing do
2: open input window
3: edit mask[0 where black input]
4: edit mask[1 where white input]
5: grabCut(segmented img, edit mask, bgdModel, fgdModel, iterCount, mode)
6: end while

Secondly, the ability to add multiple contours was implemented. In order to accomplish this, part of

the code was redone to save more than one contour instead. When the user wants to add a new surface,

a new window is opened and the process is the same. The user draws the new contour, the algorithm

runs and a new mask is computed. Now, the user specifies whether the new object is to be subtracted

or added to the original mask. For example, in order to build a hollow bone, the user first draws the

entire bone and then the bone marrow, in subtraction mode, as seen in Figure 4.5. On the other hand,

if the object the user is contouring splits into two, for example, the user can contour the new structure,

in addition mode, represented in Figure 4.6.

Algorithm 4 Adding multiple surfaces

1: open input window
2: grabCut(img, new mask, bgdModel, fgdModel, iterCount, mode)
3: if mode == add then
4: add(mask, new mask)
5: else
6: subtract(mask, new mask)
7: end if
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(a) Output Image (b) Masked Output Image

(c) Input (d) Result

Figure 4.4: Illustration of the process in Algorithm 3 that starts with a sub-optimal result, where only
part of the left ventricle of the heart in slice 2292 was masked (a)(b). The editing process receives as
input white and black strokes (c), that stand for sure foreground and sure background respectively. The
input is then processes and the mask is adjusted (d).
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(a) First Input (b) First Segmentation

(c) Second Input (d) Second Segmentation

Figure 4.5: Illustration of the process in Algorithm 4 of incorporating multiple contours, using subtraction.
The objective is to segment the cortical bone of the humerus in slice number 2132. Firstly, the entire
bone is contoured by the user (a) and then segmented by the algorithm (b). Then, the internal cavity is
contoured (c), the algorithm computes it and the internal cavity mask is subtracted to the entire bone
(d). The user input is in blue, the computed foreground is in color and the computed background in
black and white.
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(a) First Input (b) First Segmentation

(c) Second Input (d) Second Segmentation

Figure 4.6: Illustration of the process in Algorithm 4 of incorporating multiple contours, using addition.
The objective is to segment both ulna and radius of the left arm of slice number 2729. Firstly, the radius
is contoured by the user (a) and then segmented by the algorithm (b). Then, the ulna is contoured
(c), the algorithm computes it and both masks are added (d). The user input is in blue, the computed
foreground is in color and the computed background in black and white.
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4.5 Propagation

The main purpose of the algorithm is to reconstruct the entire object from a single contour. In order to

do this, the algorithm is applied to an interval of slices, using the output from a slice and converting it

into input for the next. This process consists of creating a dilated mask and a eroded mask. The area

between the dilated and eroded masks is the read as probable foreground, the eroded mask is read as

sure foreground and anything outside the dilated mask is sure background, as seen in Figure 4.7.

Algorithm 5 Propagate Contour across an interval of slices

1: input: mask, slice interval
2: initiate bgdModel and fgdModel
3: for slice in slice interval do
4: dilated mask = dilate(mask, threshold)
5: eroded mask = erode(mask, threshold)
6: new mask = np.zeros
7: new mask[dilated mask == 1] = 3
8: new mask[eroded mask == 1] = 1
9: grabCut(img, new mask, bgdModel, fgdModel, iterCount, mode)

10: end for
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(a) Mask After Erosion (b) Mask After Dilation

(c) Original Mask (d) Propagation Input

Figure 4.7: Illustration of the process in Algorithm 5 of propagating a contour to the adjacent slices.
First, the original mask (a) is dilated (b) and then eroded (c) using a user defined threshold. Then, using
these two masks, the input for propagation is created (d). In (a), (b) and (c), the blue area represents
the mask, and in (d), the red, yellow and green areas represent, respectively, sure background, probable
foreground and sure foreground.
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4.6 Output

In an attempt to visualize the reconstructed object, the contours were saved. Even though the recon-

struction will be done later using the triangulation method (when implemented in the server), during

development, the contours were saved in point clouds to create the object in 3D. This was done using the

Open3D Python library, which creates files in the Polygon File Format. This format saves a description

of the object as a list of flat polygons. Other properties such as color and transparency can also be stored.

This was used to create two point clouds, one with the contours and another one with the whole object,

as seen in Figure 4.8. This makes it easier to evaluate the e�cacy and performance of the algorithm.

Algorithm 6 Use output

1: zz = 0
2: for slice in slice interval do
3: grabCut(img, new mask, bgdModel, fgdModel, iterCount, mode) !
4: mask, bgdModel, fgdModel
5: countours = extract contours(mask)
6: save contour(contourss, zz)
7: zz += slice thickness
8: end for

(a) 3D Foreground Reconstruction (b) 3D Contour Reconstruction

Figure 4.8: 3D Reconstruction of the generated contours. The example used is a set of contours generated
from the Left Humerus from slices 2000 to 2400.
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4.7 Improving Segmentation

The next step is to enhance the segmentation of the algorithm. One of the most visible problems is that

the contours generated are rough. Also, the time it takes to compute the propagation of the contour

along the slice interval is quite long and has room for improvement.

4.7.1 Preprocessing

The first obvious step in preprocessing is to reduce the noise in the original image. There are a wide

variety of filters that can achieve this: convolving the image using a normalized box filter, Median Blur,

bilateral filtering and Gaussian Blur. Each of them are good at removing a special type of noise, and

some are faster than others. The most promising filters are Bilateral and Gaussian Blur, which remove

gaussian noise. The main di↵erence between the two is edge preservation, because both use Gaussian

filtering. While the Gaussian Blur finds the weighted average of the neighbouring pixels and does not take

into consideration if the pixel is and edge pixel or not, the Bilateral filter uses an additional multiplicative

Gaussian filter applied in the intensity domain that ensures that only pixels with similar intensities are

used to the blur the intensity value, therefore preserving the edges. This comparison is done below, in

Figure 4.9.

The chosen filter was Bilateral, which enhanced the smoothness of the final contour obtained from the

algorithm while keeping the edges mostly intact. The original image was convolved using the OpenCV

Bilateral Filter.

When comparing the segmentation with and without the Blur the di↵erence is slightly noticeable, the

contours are now smoother and have less spikes.

(a) Original Image (b) Gaussian Blur (c) Bilateral Blur

Figure 4.9: Illustration of the di↵erences between the blurring filters used.
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4.7.2 Postprocessing

On the other hand, the post processing implemented was to reduce the number of points in the contour.

The reason behind this was not only to reduce the memory needed to store all the contours but also to

reduce the complexity of the contour and in turn make it smoother.

The simplest way to achieve this is to reduce the number of points by a factor and using the mean to

compute the substitution. This can be done with a few lines of code, using numpy functionalities. The

reshape function transforms the list into an array where the number of columns is the factor of reduction.

Then, the mean function flattens the array back into a smaller list using the mean of each line. The

results can be seen below, in Figure 4.10

Algorithm 7 Reducing number of points using the Mean

1: input: PointList[], factor
2: xx = PointList[x coordinates]
3: yy = PointList[y coordinates]
4: xx.reshape(-1, factor).mean(axis = 1)
5: yy.reshape(-1, factor).mean(axis = 1)
6: ResultList[] = combine(xx,yy)
7: return: ResultList[]
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Algorithm 8 Implementeation of the Ramer–Douglas–Peucker algorithm

1: input: PointList[], ✏
2: dmax = 0
3: index = 0
4: end = length(PointList)
5: for i = 2 to (end - 1) do
6: d = perpendicularDistance(PointList[i], Line(PointList[1], PointList[end]))
7: if d > dmax then
8: index = i
9: dmax = d

10: end if
11: end for
12: ResultList[] = empty
13: if dmax > ✏ then
14: recResults1[] = DouglasPeucker(PointList[1...index], ✏)
15: recResults2[] = DouglasPeucker(PointList[index...end], ✏)
16: ResultList[] = recResults1[1...length(recResults1) - 1], recResults2[1...length(recResults2)]
17: else
18: ResultList[] = PointList[1], PointList[end]
19: end if
20: return: ResultList[]

Another way to achieve this is using the Ramer–Douglas–Peucker algorithm developed for cartographic

generalization. Its main purpose is to recursively reduce the number of points of a polyline using the

maximum distance between the original curve and the simplified one as criteria. The first and last point

are kept, and then it finds the farthest point from the line between the start and end. If the distance

is smaller than epsilon, then any points that aren’t marked can be discarded. On the other hand, if the

distance is bigger, the point is kept. The algorithm then repeats with the first point and farthest point,

and the farthest point and the end point. The result is a simplified line consisting only of points that

were marked. To use this algorithm in Python, the shapely library was used. The results can be seen in

Figure 4.10

The chosen method was the simpler version, Algorithm 7, as using the Ramer–Douglas–Peucker

algorithm caused a significant increase in the computation time, not compensating the improved output.
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(a) Original (b) RDP (c) Median

(d) Original (e) RDP (f) Median

Figure 4.10: Illustration of the di↵erences between the blurring filters used.
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4.7.3 E�ciency

After the algorithm was more robust and was producing good results, there was still one problem at

hand. The images in the data set have a large resolution and the algorithm takes a long time to compute.

At this state, the algorithm would compute around 5 slices per minute.

One of the steps that takes a lot of time is using GrabCut. When propagating the contour, the entire

image does not need to be read. The image can be cut around the contour and only include the area

where the mask has foreground pixels (Figure 4.11) by defining a region of interest. The only thing

to take into account is to make sure that when propagated, the window always contains the necessary

information. A new window is computed with every cycle using the limits of the contour. This managed

to drastically reduce the time it takes to perform a full segmentation of small structures. However, if the

tissue/organ being segmented covers a big part of the slice, then the time reduction is less noticeable.

(a) Original (b) Computed Window

Figure 4.11: Comparison of the original images being computed and the cropped image when segmenting
the humerus. The original image is 4096 by 2700 pixels whereas the cropped image is 265 by 250 pixels.
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4.7.4 Parallel Programming

There are di↵erent techniques that make better use of the CPU cores. Python has some tools that allow

the use of parallel programming - multi-threading and multiprocessing. However, they are very di↵erent

and have di↵erent areas of application.

Threads are a unit of execution within a process. Multiple threads can run inside a process and they

use and share its memory space, which makes it easier, faster and safer to share data. Python has a Global

Interpreter Lock that prevents threads from running simultaneously, in order to prevent racing, where

the system’s behaviour is dependent on the sequence and timing of events. This is where multi-threading

comes into play. Multi-Threading allows for multiple threads to do di↵erent tasks simultaneously, one

after the other. This gives the illusion that the program is running in parallel when it is really running

concurrently. This is useful for intensive I/O tasks, that rely on input from the user or from another

system. If the system is experiencing a bottleneck not in execution, but in a third-party call, this method

manages to speed-up the running time. The algorithm at hand does not have any bottlenecks related to

I/O tasks or GUI yet, so this might not be the approach to be taken.

On the other hand, processes have their own memory space and are loaded along with all the resources

they need to function. They are independent and run in a processor core, and are scheduled by the

operating system. True parallelism can only be achieved using multiprocessing. This implies that two or

more jobs are being executed simultaneously. This technique makes use of multiple CPU cores, that do

not share resources among them. Each of this processes have their own threads running in the memory

space and their own instance of Python interpreter executing the instructions. Independent operations

can be divided into separate tasks as long as their data is di↵erent. The number of processes running in

parallel should be the same as the amount of cores in the system. The Visual Human consists of massive

amounts of data that is loaded in memory and processed. Multiprocessing will considerably speed-up the

algorithm and prevent bottlenecks in time and resources.

There are di↵erent approaches that can be taken to implement multiprocessing in the algorithm.

When propagating the contour through the slices, the interval can be split into di↵erent processes. The

three methods used were:

Alternative A: first, the algorithm runs through the interval with a step of 30 slices and then the

spaces between are computed by the processes

Alternative B: one process works on the even slices and the other on the odd ones

Alternative C: one process for each direction of propagation

Each of these methods have their downsides. Since the propagation relies on moving from slice to

slice, using a system of blocks can lead to discontinuities between them. The algorithm may not converge

the same way in each block.
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This does not happen when alternating slices in the processes. Even though the processes run com-

pletely independent of one another, since they run through similar sets of slices, they tend to converge

the same way. The only downside of this method is that it can only be used if the interval step is of one

slice. The bigger the step, bigger disparity between the sets of slices and a higher risk of the processes

converging in di↵erent ways.

Lastly, using one process for each direction of propagation does not encounter problems of convergence.

The two processes work on independent sets of slices and the data between the two does not cross. The

only disadvantage is that this only allows the user to reconstruct an object from the middle outwards.

The method implemented was Alternative B, since it had good results and works in more scenarios,

not being limited to two-way propagation. After implementing parallel programming into the algorithm,

the running time went down by almost a half. For example, when contouring the humerus, before parallel

programming, the process took 260 seconds, whereas after implementation it was reduced to 140 seconds.

(a) (b)

(c)

Figure 4.12: Illustration of the di↵erent approaches of multiprocessing considered. Alternatives A, B and
C are represented in (a), (b), and (c) respectively. The grey slice represents the user input, and red,
green and blue represent slices computed by di↵erent processes.
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4.7.5 Parameters

The last thing to be taken into consideration is the parameters of the algorithm. So far, there are 6

parameters:

width: the width of the input contour, used in Algorithm 2

step: used in propagation, defines the jump between slices

window: defines the distance between the edge of the mask and the window created in propagation

threshold: threshold is used in Algorithm 5 and dictates how the area to compute enlarges between

propagation cycles

gaussian: the size of the kernel when applying the Gaussian filter

smoothing: defines the parameter for the smoothing algorithm

iterations: number of iterations of GrabCut in each cycle

Each of these parameters a↵ect the algorithm in their own way.

Lower width is used when the input contour is similar to the desired edge, leaving less area for the

algorithm to compute. Naturally, this reduces computation time, but is only used on the first cycle. A

larger width is useful for less accurate input but might in turn not converge to the desired edge.

The step size a↵ects the propagation and dictates how many slices are skipped. Naturally, a high

step size drastically decreases running time, however, this only works if the structure being contoured is

homogeneous and does not change too much between slices.

The window also a↵ects the propagation as it defines the area of the image that is read. A smaller

window means less running time but if the structure increases a lot in size between slices then the window

might not contain it entirely.

The threshold is the most important parameter for the propagation to work. It cannot be too low or

the algorithm will not be able to track the structure through the slices, but at the same time it cannot

be too high or the contour will diverge into other structures. The optimal interval for the threshold is

between 5-50 pixels.

The number of iterations does not a↵ect the algorithm too much, as by the end the propagation the

color models are well defined. However, the number should not be high otherwise it will increase the

running time. The number of iterations used varies from 3-7.

Lastly, the Gaussian and Smoothing parameters do not a↵ect the running time, but they do a↵ect the

output. The Bilateral filter was optimal at a gaussian kernel size of around 15 pixels, while the smoothing

depends on the structure itself and what the user wants to obtain.

There are too many parameters for the user to calibrate. Width is defined at the moment of input,

and so is step and smoothing. These two should be easily changed as they rely on the users’ intention.

As for the rest, levels were defined in order to make the process easier and more user-friendly. They are

defined below:
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level window threshold iterations

1 20 20 3
2 30 35 5
3 50 50 7

Table 4.1: Parameters for each of the defined levels.

The levels stand for di↵erent sensitivities which directly a↵ect the running time of the algorithm.

The lower levels have a smaller threshold and are less sensitive to changes in structure, while the higher

levels have a bigger threshold in order to track rapidly changing structures. The di↵erence between each

level can be seen in Figure 4.13. Each level has a di↵erent computation time. For the reconstructions in

Figure 4.13, the first level took 140 seconds, the second level took 175 seconds and level three 227 seconds.

This change is mainly due to the di↵erent window used, bigger window means more data to read. The

biggest changes seen in the 3D models are due to the di↵erent threshold used. Larger threshold causes the

algorithm to label more pixels as probable foreground which in turn a↵ects the color models generated.

Naturally, there is more risk of pixels from neighbor tissues being carried into the segmentation.

(a) (b) (c)

(d) (e) (f)

Figure 4.13: 3D reconstructions of part of the femur with di↵erent levels of parameters. In the first row
are the reconstructed contours and on the second row are the 3D masked slices. In (a) and (d) the level
1 was used, in (b) and (e) level 2, and in (c) and (f) level 3.
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4.8 Experimental Results

In order to evaluate the results, segmentation of di↵erent structures was attempted.

First of all, the whole data set was segmented in order to the remove the ice background (Figure 2.5,

as mentioned in chapter 2). The whole process took some time to compute (around 6 hours), since the

full resolution (4096 x 2700 pixels) images needed to be processed. The whole body was segmented with

only one input on slice 1023. However, some body parts were missing due to the discontinuities on the

data set, which were then segmented and incorporated.

Secondly, a complete segmentation of the femur was achieved (Figure 4.15). The femur spans across

an interval of 1248 slices, from slice 3477 to slice 4725. A total of 9 inputs were provided during the

process, at slices 3477, 3481, 3557, 3571, 3601, 3669, 3839, 4449 and 4577. The whole process took

around 12 minutes to compute. The most problematic areas, which required additional user input, were

the extremities, and the break on the data set between slices 3924 and 3942. An additional contour was

also added in slice 3550, as both the femur’s head and greater trochanter were separated in some slices.

As seen in Figure 4.14, the knee area is hard to segment due to the lack of clear borders between the

bone and the surrounding tissue.

Di↵erent levels of parameters were used. For the shaft, level 1 was used, since the structure is

cylindrical, does not change drastically across the slices, and to prevent propagation to the brachial

fascia, the membranous sheath of the arms’ muscles. As for the proximal and distal epiphysis, level 2

was used in order to better track the variation in form.

Part of the aorta was also segmented, but since it is very homogeneous, it was successfully segmented

in one go. The interval of slices computed was from slice to slice 2035 to slice 2650 and it took around

160 seconds to achieve the final result, which can be seen in Figure 4.16.
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(a) Slice 3534 (b) Slice 3550

(c) Slice 4473 (d) Slice 4701

Figure 4.14: Some of the slices that required additional input in order to completely segment the femur.
Images (a), (b), (c), and (d) correspond, respectively, to the femurs’ proximal epiphysis, head and greater
trochanter, shaft and distal epiphysis.

Figure 4.15: Side view of the reconstruction of the femur using the developed algorithm. The discontinuity
in the bone is due to the damaged slices present in the data set that were ignored.
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(a) (b)

Figure 4.16: 3D reconstruction of part of the aorta. The discontinuity in the structure is due to the
damaged slices present in the data set that were ignored. The top view is represented in (a) and a side
view in (b).

Lastly, a partial reconstruction of the liver was made from a single input. This structure is more

heterogeneous and has multiple arteries and veins connected. The algorithm ran for 13 minutes in order

to propagate the contour through 400 slices (from slice 2400 to slice 2800) with a window of around 1

500 by 1 000 pixels. The final 3D model can be seen in Figure 4.17.

(a) (b)

Figure 4.17: 3D reconstruction of part of the liver. The discontinuity in the structure is due to the
damaged slices present in the data set that were ignored. The side view is represented in (a) and a top
view in (b).
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4.9 Discussion

Overall, the algorithm performs well when segmenting structures that are well defined and very di↵erent

in color from the surrounding tissue, as expected.

As seen in Figure 4.15, the femur was fully reconstructed and the result is quite good. The bone is

identifiable and both epiphysis are complete. The running time was adequate and the number of inputs

was minimal. However, the contours could still be perfected. In some areas of the bone, where the color

di↵erentiation from the surrounding tissue is not big enough, which caused unwanted pixels to be present

in the segmentation. As seen in Figure 4.18, in slices 3550 and 4701, the contour included part of the

surrounding tissue, and in slice 3534 the computed contour is ambiguous.

(a) Slice 3534 (b) Slice 3550

(c) Slice 4473 (d) Slice 4701

Figure 4.18: Propagated contours in green from the femur reconstruction at slices 3534, 3550, 4473 and
4701.

As for the aorta, the computed time was around 160 seconds for an interval of 630 slices, which is

around 4 slices per second. This is possible due to the aorta being small in size, close to 200 by 200 pixels.

The performed segmentation converged and managed to track the aorta with only one input, which is

to be expected. However, the generated contours did not fully adapt to the rapid changes in the aortic

wall, as seen in Figure 4.19.
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(a) Slice 2323 (b) Slice 2339

Figure 4.19: Propagated contours in green from the aorta reconstruction at slices 2323 and 2339.

Last of all, the liver reconstruction looks promising, since the algorithm managed to contour most of

the liver’s ramifications from only one input, at the first slice. However, the model is sub-optimal, some

veins were not included, as seen in Figure 4.20, and sections of the liver were left out. The liver itself is

a di�cult structure to contour automatically as it changes a lot from slice to slice, so one solution would

be to provide more input across slices. It is also important to note that the propagation took 13 minutes

to compute, around two seconds per slice, which is substantially longer than other structures.

(a) Slice 2760 (b) Slice 2522

(c) Slice 2608 (d) Slice 2658

Figure 4.20: Propagated contours in green from the liver reconstruction at slices 2760, 2522, 2608 and
2658.
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CHAPTER

5

CONCLUSIONS

The availability of reliable 3D visualization and segmentation tools is currently a major goal in the medical

field, not only for surgical planning but also for teaching anatomy. With the rise of anatomical data sets

of cadavers, more information has been available for researchers to investigate and use.

In this dissertation, current existing segmentation platforms were evaluated. While there is a wide

variety of tools already available, most of them are focused on black and white radiological scans, and

are quite time consuming.

In order to create a new algorithm capable of segmenting cryosections of the Visible Human Project

Female data, a study of edge contouring methods was made, such as the canny edge detector, localized

histograms and region merging and gradient and graph cut based algorithms. After careful evaluation of

the methods, the latter was chosen as it was best suited to segment images of color with the desired user

input.

Python code was written to create a semi-automatic segmentation algorithm, which was built on top

of the OpenCV GrabCut. First of all, a method was developed to transform user drawn contours into a

mask to be received by GrabCut, along with tools to edit the generated image. Moreover, the ability to

add multiple contours was integrated in order to allow reconstruction of structures with multiple surfaces

or ramifications. Secondly, a function was written to convert the output of GrabCut as input for and the

adjacent slices, so that the contour can be propagated. Lastly, a small script was created to reconstruct

the contours and resulting structure in three dimensions in order to provide the needed visualization of

the model created.

After the reconstruction was done, the segmentation obtained took a long time to compute and the

results were not optimal. Therefore, parallel programming was implemented to speed up the computation,
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and only the area containing the structure was read from each slice. A Bilateral filter was also applied

to images before processing to reduce noise and to smooth unwanted color di↵erences on tissues. Lastly,

the contours obtained went through a smoothing process.

The final algorithm was implemented, which was capable of fully removing the background from the

whole set of slices. Lastly, a full reconstruction of the femur, the aorta and part of the liver was made in

order to evaluate performance.

5.1 Limitations and Future Work

Current limitations of the algorithm are tied to the lack of contrast between some tissues and the use

of high resolution images. GrabCut relies on its color models to segment an image, when the segmented

tissue and the background overlap in color-space, the propagation can diverge. This was observed in

some structures, such as the lungs, where the segmentation would not converge after propagation.

One solution could be to use of the CT images and MRI for added contrast. MRI images are partic-

ularly useful for this, as there are three di↵erent MRI sequences available in the data set: T1-weighted,

T2-weighted and Proton Density (PD) weighted. T1, T2 and PD are tissue characteristics and if it is

di�cult to distinguish two tissues with one characteristic, it is probable that that di↵erence will be visible

by using an image from another characteristic. While in PD Images the signal intensity is determined by

proton content of the tissue, in T1 Images and T2 images it is determined by the longitudinal relaxation

time and transverse relaxation time of the tissue. These di↵erences are very noticeable on the brain, as

seen in Figure 2.4. On the other hand, in CT scans, image contrast depends on the di↵erential X-Ray

attenuation of tissues due to absorption and scattering. Bone tissue and internal organs are easier to

segment in these images.

This is can be done with Image Fusion, which is a process that combines two or more images. There

has been a lot of research done on this method in medical imaging recently, using di↵erent techniques.

These include convolutional neural networks (CNN)[34], stacked autoencoders [35], pixel-level fusion,

convolutional sparse representation[36], and many others. The results from these methods look promising,

and could be a solution to the segmentation problem.

The only setback when applying this to the algorithm is the fact that the scans were taken at di↵erent

intervals, the cryosections were done with 0.33mm intervals, the CT scans with 1mm and the MRI scans

with 4mm. Also, the axial MRI data is only available for the head and neck, however, these can be

reconstructed for the rest of the body using the longitudinal scans.

Another way to improve segmentation quality would be to implement another edge segmentation

algorithm. SnakeCut is a technique that integrates the output of both active contours and GrabCut

and uses a probabilistic model to integrate both results[38]. Another technique that takes GrabCut one

step further is the integration of multi-scale decomposition to extract features and integrate into the

segmentation process [39]. However, these methods make the computation time longer, which is not

ideal.
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Figure 5.1: Examples of medical image fusion using di↵erent modalities resulting in improved visibility
and contrast of tissues[37].

Additionally, the algorithm lacks sensitivity to small structures, such as veins and arteries that can be

found on the data set. A second algorithm could be used as a separate tool for detailed segmentations.

Also, if the data set used is always the same, then a deep learning machine could be implemented to

learn features and improve segmentation.

Lastly, the computation time still has room to improve. Even though the algorithm is computing

around 2 slices per second for small structures, when contouring large organs (such as muscles or skin)

the velocity can decrease drastically. One solution could be a trade-o↵ between quality and velocity,

scaling down the images in order to speed up the process.
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