
Deep QL-APF: An Automated Playtesting Framework for Unreal
Engine

Gabriel Fernandes
Instituto Superior Técnico, Porto Salvo
gabriel.fernandes@tecnico.ulisboa.pt

ABSTRACT
We introduce an approach to automate part of the playtesting pro-
cess in games made with Unreal Engine 4, with the objective of
speeding up and reducing the costs associated with manual playtest-
ing. We use the Unreal Automation System to integrate the Deep
QL-APF framework with the Unreal Engine in order to perform au-
tomated gameplay tests. We propose a Deep Q-Learning method for
the agent to travel to a destination and achieve a well-defined game
objective by trial and error, using feedback from its own actions
and experiences. To validate the solution we use a single case study
provided by Funcom ZPX1. Three experimental procedures were
executed to assess the approach. We obtained results regarding two
different agents learning performance and a visual representation
of the path they performed. One agent is responsible for reaching
the goal as quickly as possible while the other wants to reach the
goal while moving close to the map constituents. The agents can
also identify problems in the game environment while they explore
it. From the results we confirm that Reinforcement Learning agents
are capable of learning how to achieve a game objective and find
problematic areas in a Unreal Engine environment. We also found
that the agents performed the behaviours we wanted them to, but,
crafting different agents to perform the same test and achieve the
same game objective with different behaviours was complex and
hard to come up with for us. We compared the problems found by
agents with the ones found during manual playtesting and con-
cluded that these automated agents can replace human testers when
performing these type of exploratory test.

KEYWORDS
Automated Playtesting, Artificial Agent, Reinforcement Learning,
Deep Q-Learning, Neural Networks, Unreal Engine, Unreal Automa-
tion System, Functional Tests, Actor, Actor Component, TensorFlow,
Plugin, Exploratory Testing

1 INTRODUCTION
Performing playtesting sessions is a very intricate process with
numerous iterations where game developers expose their games to
the target audience to obtain information about the current state of
the game, and where level designers are capable of understanding if
the environmental elements that were carefully combined are able
to provide the game experience they were designed for, identifying
potential design flaws and collecting feedback.

The game industry is looking for ways to increase the level of
maturity and efficiency of Quality Assurance and testing while
1Funcom ZPX: https://www.funcom.com/funcom-zpx/

Master’s Degree Thesis,
2021.

reducing the costs associated with it, using test automation as one
possible approach. The idea behind Automated Playtesting is to use
artificial agents that can play the game and achieve the objectives
in order to provide meaningful information about the game condi-
tion to the designers and developers. King2, the creators of CCS3,
researched the advantages of artificial intelligence over human-
based playtesting[4], using CCS as the case study. By allowing the
designers to obtain feedback about the current state of the game
before diving into playtesting with human players, they improve
their content production pipeline by offering better quality content
and more thorough and controlled playtesting.

The existence of success cases in the games industry regard-
ing the usage of automation tests to increase the overall quality
of playtesting sessions, drives Funcom ZPX to search for ways to
automate and improve their playtesting. When developing a 3D
adventure and exploration video game, Funcom ZPX finds impor-
tant to verify if the player can navigate between two points in the
game environment. By automating this type of test, we may be
able to ease the amount of work that humans perform in testing
and quality assurance. Therefore, we are motivated in developing
artificial agents capable of exploring the game environment and
reach a chosen position in it. As a case study for this thesis, Funcom
ZPX provides an early-stage prototype of a 3D adventure and ex-
ploration video game made in Unreal Engine 4 to test the solution
provided during this thesis work.

With the objective to ease at least some costs such as time and
human resources, our intention is to use automation tests to verify
if the player can navigate through each map module (game en-
vironment) and achieve the game objective. In addition to verify
traversability, we also find important to understand what problems
the player may encounter while exploring the game environment
to achieve the game objective (at destination). We aim to develop
methods capable of detecting if something wrong happened while
exploring the game environment. These methods should detect
if there are locations in the game environment where the player
gets stuck or exits the map boundaries. Besides this, the machine
learning approach must be capable of learning how to achieve the
objective in the best possible way, and also find other solutions
with interesting parametrizations scenarios, in order to provide
information about distinct ways of achieving that goal.

We intend to use Reinforcement Learning, specifically Deep Q-
Learning, a machine learning algorithm that employs trial and error
to come up with a solution and achieve a specific objective. We
hypothesize that by creating a Deep Q-Learning algorithm that can
find a solution for the agents to proceed, reach the destination and
complete the objective, we can contribute to automatically test a

2King Ltd: https://www.king.com/
3Candy Crush Saga Game: https://king.com/game/candycrush



Master’s Degree Thesis, Gabriel Fernandes

game level made in Unreal Engine. By handcrafting different types
of agents that perform different tests on the game environment,
we will understand if they can find different ways of achieving a
well-defined game objective. The agents will differ from each other
regarding the path performed to achieve the objective. We want to
deliver Unreal Engine plugin providing the scientific contributions
of the Deep QL-APF Automated Playtesting Framework. It uses
an open-source library to help the development and training of
machine learning models. This plugin contains collections of code
and data that developers can easily enable within the Editor on a
per-project basis to perform automated tests. We will use Unreal
Automation System to prepare the objectified automated playtest-
ing tests for the case study previously introduced. To improve the
framework usability in different contexts, our objective is to allow
designers and developers to access and customize the functionali-
ties of the framework through the Blueprint Visual Scripting system
in UE4.

2 BACKGROUND
Rare [1, 9] provides information about the type of tests used dur-
ing the development phase of an AAA game, and therefore we
understand where to contribute with automated tests. In addition,
it shows that it is possible to perform automatic tests in Unreal En-
gine and that these automatic tests can reduce costs of playtesting
sessions, such as the time to create/verify a build and the number
of manual testers. This work also shows that the Unreal Automa-
tion System is a very useful tool to create and perform automated
tests for Unreal Engine game, with P.Negrão work [11] ensuring
us that it is possible to create a library and use its code logic to
perform automated tests together with the Unreal Automation Sys-
tem. The Unreal Automation System allows the creation of a type
of test called Functional Test. These tests are created by spawning
an Actor that can be scripted to perform a variety of verifications,
and Unreal Automation System recognizes it automatically when
associated with a Map Level test.

Several studies such as [3, 8, 10, 13], show that deep reinforce-
ment learning can be successfully used to create agents that explore
complex game environments to achieve goals. [3, 8] demonstrate
that it is possible to create a reinforcement learning algorithm that
uses neural networks to train an agent into maximizing some score
and win the game. Their results comprehensively demonstrate that
a pure reinforcement learning approach is fully feasible, without
human examples or guidance, and given no knowledge of the do-
main beyond basic rules. The work that uses Doom as a case study
[8], shows that it is possible to use Deep Q-Networks in 3D environ-
ments and that we can train the network to explore the game map.
This study also demonstrated the potential generalizability of their
neural networks to unknown maps. OpenAI [3] reveals how their
reward model was implemented and how they defined the possible
actions in a 3D game environment. Some of the game mechanics
were controlled by hand-scripted logic rather than the network
policy. The information described in these papers gives us possible
directions for putting in practice a Deep Q-Learning method to
explore a 3D game environment and achieve well defined goals.

C. Holmgård et al. [5] demonstrate that Q-learning is capable of
incorporating the concept of a utility function through the reward

model, and A.Soares work [14] reveals that we are able to create
limitations at the level of observations and actions used in Deep
Q-Learning. With this information we know that we can model
the observations, actions and rewards passed to the network and
therefore we can perform different types of tests depending on the
information we want to obtain.

To cover the space of solutions, we present papers onCuriosity[12]
and Novelty[6] search that allow the agent to explore novel states
in an automated way. Results demonstrate that novelty search over
action sequences is an effective source of selection pressure for
innovation that can be integrated into existing evolutionary algo-
rithms for deep reinforcement learning, and that curiosity helps an
agent to explore its environment in the quest for new knowledge.
As we first need to integrate the framework, train artificial neural
networks for the agent to move in the environment from a starting
point to an end point and create tests that use these networks, we
leave these methods open, being possible directions for the future.

The Unreal Engine plugin for TensorFlow, tensorflow-ue4[7],
is a precious tool that we can use to establish a communication
channel between the Deep Q-Learning system and the Unreal En-
gine Actor that controls the agent in game, because TensorFlow
provides the library needed to deliver neural networks and the
Q-Learning Algorithm. M. Bakhmadov [2] shows that it is indeed
possible to make this connection using the Unreal Engine plugin
for TensorFlow and use outsource neural networks and Q-Learning
algorithm4 coded for TensorFlow and based on the implementation
of Deep Q-learning with experience replay made for “Playing Atari
with Deep Reinforcement Learnin”[10]. This last work marked a
starting point in the implementation of the work reported in this
dissertation, being a role model that we followed during it. We
want the Deep Q-Learning system to control the agent in a Un-
real Engine 3D game and M. Bakhmadov [2] showed us how to
do it. However, our system is focused in performing tests on the
traversability and environmental issues of the map, rather than a
race mode where agents compete to reach an objective (as shown
during M. Bakhmadov work). The actions of our agent must be
similar to the actions players can use in game, because our objective
is to explore the environment and find issues that we are not expect-
ing players to randomly find. There is a deep necessity of crafting
a reward system, per Unreal Project, that matches the game and
the tests we want to perform in it. There’s enough information to
assume that using a plugin to introduce a Deep Q-Learning testing
platform to a Unreal Project is feasible and contributes to a modular
architecture with the advantage that users can use it in different
projects.

3 PROPOSED SOLUTION FOR THE DEEP
QL-APF

The playtesting framework produced in the context of this thesis is
a plugin that can be easily added to every Unreal Engine project.
The solution is set around the tensorflow-ue4[7] plugin since it
offers the connection between the two elements needed to deploy a
reinforcement learning agent in the case study game environment.

4Arushir implementation of Deep Q-learning with experience replay:
https://github.com/arushir/dqn



Deep QL-APF: An Automated Playtesting Framework for Unreal Engine Master’s Degree Thesis,

3.1 Deep QL-APF Model
In figure 1 we present an overview of the Deep QL-APF playtesting
framework main modules and the information that flows between
them. The framework main modules are distinguished by colors.

Figure 1: Model showing the Deep QL-APF main constituents
and the information that is shared between them.

Following the Deep Q-Learning architecture by V.Mnih et al.[10],
the green states represent the procedures a normal Deep Q-Network
implementation with handpicked observations and actions would
take. A training experience containing the reward and observation
for the chosen action is passed to a memory that regulates the
storage of experiences, limiting the set of experiences the agent can
save and sample through its experience replay. Multiple experiences
are compiled together in a sample and used to tweak the gradients
of the neural network during the training session. The blue nodes
represent the constituents that Unreal Engine offers to perform
actions in the game environment. The agent is composed by the
AI Controller and the Pawn5, which is the 3D character model that
moves in the Unreal Engine 3D game environment. It executes ac-
tions in-game and receives observations from a handpicked values
that characterize the surrounding environment.

At the center of the model, and identified by the orange color,
we represent the constituents that tensorflow-ue4 plugin[7] offers
to setup a flow control with the machine learning library, receiving
actions from the neural networks and performing them on the
environment. The PythonAPI forwards to the Engine an action
the neural network chose to be executed in the environment. It
is also responsible for making the agent experiences flow from
the Engine to the Deep Q-Learning algorithm. The TensorFlow
component is added as a special sub-object to the AI Controller to
allow information to flow to and from the reinforcement learning
PythonAPI, allowing neural networks to execute the chosen action
at each step in the environment. This solution lets us train the
agents and then use them to achieve a well-defined objective.

3.2 Machine Learning Integration with Unreal
Engine 4

TheDeepQ-Learning components are represented as green in figure
1. The PythonAPI is responsible for creating the python object
that sets up the architecture for the Deep Q-Learning system. The
Deep Q-Learning object is the main code file in the reinforcement
learning architecture. It contains the Q-Learning algorithm and
creates the neural networks and the prioritized experience replay
memory needed for the Deep Q-Learning system. It uses both of
5Pawn is the base class of all actors that can be possessed by players or AI. They are
the physical representations of players and creatures in a level.

these objects to train the agent based on its experiences, being also
responsible for sending the best action to execute in the current
state back to the PythonAPI.

The Blueprint API is set in the form of an Actor Component, a
special type of object that can be added as a sub-object of an Actor.
Described in figure 1 as an orange state, the TensorFlow Compo-
nent can be used to load the PythonAPI module presented above.
Represented as a blue state in Figure 1 we present the playtesting
AIController, a special type of actor that Unreal Engine offers to con-
trol non-playable characters in-game. Controllers are non-physical
actors that can be attached to a pawn to control its actions, man-
aging its artificial intelligence. This AIController is responsible for
using the features offered by the Tensorflow Component and send
at the game start all the information needed by the PythonAPI to
start up the Deep Q-Learning system. The Tensorflow Component
allows the AIController to receive callbacks on the game-thread
in order to execute the action selected by the algorithm. It also of-
fers the possibility to run functions in the PythonAPI, for instance,
running a iteration of the algorithm or save the neural networks
model.

3.3 Unreal Automation System
The Unreal Automation System is a test framework that comes
with Unreal Engine 4 as a plugin that developers can enable to
perform automated tests. This automation system is built on top of
the Functional Testing Framework, which is the overall system in
which the tests will be automated. The functional testing framework
enables developers to run automation tests on any other devices
that are connected to their machine or are on their local network.
Running tests in the editor is as simple as going to the automation
tab and selecting the tests to execute. In addition, the tests can
be set to run on built executables or remotely by a build system.
A standalone tool can be created to allow running the tests from
outside the editor. This means that developers often don’t need to
run the game at all to see if their latest code iteration had broken
anything, as the tests run automatically and give them fast feedback
on their changes. This point is very important because it enables
agents to be trained automatically in a recent build, erasing the
need for developers to interact at all with the Unreal Automation
System to train or test with the trained agent. Tests are implemented
in the game/engine code for each project and Unreal Engine 4
offers an object named Gauntlet6 which is an automation tool
in Unreal Engine. It is a C# program which can install and run
game builds on devices. Gauntlet will also gather any test artifacts
(logs, crash reports, etc), and package it nicely for the user. This
framework allows developers to run tests outside the editor, erasing
the developers need of training the neural networks and running
the tests by themselves.

Setting up a test is done by placing a Functional Test Actor in a
Map Level. This Actor is scripted to run a set of tests that can be built
into the Functional Test itself (as a child code class or Blueprint), or
assembled directly in the Level Blueprint. We recommend watching
this video7 demonstrating an example on how to create, execute

6Gauntlet Automation Framework: https://docs.unrealengine.com/4.27/en-US/
TestingAndOptimization/Automation/Gauntlet/
7Functional Tests setup video: https://www.youtube.com/watch?v=HscEt4As0_g

https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/Gauntlet/
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/Gauntlet/
https://www.youtube.com/watch?v=HscEt4As0_g


Master’s Degree Thesis, Gabriel Fernandes

and check the results of a Functional Test. Functional tests are
created as maps in the Unreal editor. In the context of this thesis,
each map test uses specific handcrafted agents in a fixed scenario
and the test reports its results as a pass or fail, based on whether
the behavior is the one expected or not. Constructive and valuable
feedback is sent to the message log during the execution of the
functional test, such as time spent on each map module, time to
achieve the game objective and number of times that the agent got
stuck or left the map boundaries.

4 DEEP QL-APF IMPLEMENTATION
During the development of this thesis there was a special focus on
implementing two different solutions: a method for connecting the
three modules presented in the Deep QL-APF model presented in
Figure 1, so that we can deploy reinforcement learning in Unreal
Engine 4, as well as a specific implementation for the types of tests
Funcom ZPX wants to execute on the game environment. Different
Unreal Engine Actors must be crafted depending on the type of test
the developer wants to execute and the information that should be
obtained during that particular test. The agent rewards system and
observations must be specific on how the agent should behave and
it must be rewarded to achieve an well-defined objective. Besides
this, tests must be created to automatically collect any feedback
that may be valuable to the designer during the development of the
game.

4.1 Algorithm Specifications
The Deep QL-APF playtesting framework provides agents that use
a reinforcement learning algorithm to test the game environment.
Being able to create reinforcement learning agents is part of the
general architecture for this thesis solution. The algorithm imple-
mentation is offered by A. Raghuvanshi8 and it was implemented
similarly to the model presented in V. Mnih et al. work[10]. This
code implements state-of-the art deep reinforcement learning algo-
rithms in Python and is integrated with the TensorFlow machine
learning library. This solution is convenient since tensorflow-ue4[7]
Plugin uses this machine learning library in specific.

A. Raghuvanshi uses a simple fully-connected network with
2 hidden layers and an output layer instead of the convolutional
neural networks described in the paper [10]. A feed-forward neural
network consists of a number of simple neuron-like processing
units, organized in layers and every unit in a layer is connected
with all the units in the previous layer. Not all of these connections
are equal, as each connection may have a different strength or
weight. The weights on these connections encode the knowledge
of a network. Figure 2 presents a structure similar to the neural
network used as models for the agents offered in the context of this
thesis.

8A. Raghuvanshi RL alogrithm implementation: https://gist.github.com/arushir/
a955f15ab8c5d641f45d8a32bba4f931

Figure 3: Deep Q-Learning algorithm pseudocode.

Figure 2: Architecture of the feed-forward neural network
used in the Deep Q-Learning system.

The Deep Q-Learning algorithm updates the parameters of the
neural network that estimate the value function, while this function
objective is to maximize the sum of rewards over time. It happens
through samples of experiences drawn from the algorithm’s inter-
actions with the environment. This algorithm utilizes a technique
known as experience replaywhere the agents experiences are stored
at each time-step in a data-set, pooled over many episodes into a
replay memory. During the inner loop of the algorithm, Q-learning
updates, or mini-batch updates, are applied to samples of experience
drawn at random from a pool of stored samples. After performing
experience replay, the agent selects and executes an action accord-
ing to an E-greedy policy. The full algorithm, which is called Deep
Q-learning, is presented in Figure 3 below.

It is straightforward to follow the algorithm logic, correlate it
with how it is implemented by A. Raghuvanshi and adapt it to work
in the context of this thesis.

4.2 Algorithm Preliminary Assessment
Before scaling it to the case study and use the Deep Q-Learning sys-
tem to perform tests on the game environment, the general solution
must be validated to understand its feasibility in the context of this
thesis. The agent is trained and the sum of rewards is logged over
the period of time it is running. After training the neural networks,
the developer should be able to import the neural networks model

https://gist.github.com/arushir/a955f15ab8c5d641f45d8a32bba4f931
https://gist.github.com/arushir/a955f15ab8c5d641f45d8a32bba4f931


Deep QL-APF: An Automated Playtesting Framework for Unreal Engine Master’s Degree Thesis,

Figure 4: Table presenting the hyperparameters used by sim-
ilar agents that executed the algorithm preliminary assess-
ment. One agent is using a target network and the other is
not.

and use it to perform tests, therefore the functionality of importing
the module must work perfectly.

An overview of the neural networks architecture is presented
in Figure 2. The input layer is the agent observation at each step
and consists of nine different inputs, one providing the pathfinding
distance from the current position to the objective location and 8
other line traces cast around the character to get the distance from
the agent current position to the other actors that the line traces
collide with. The actions are 4 and correspond to the basic general
movement: forward, backwards, left and right. Since we use a frame
skipping technique, the neural network isn’t continuously sending
inputs to the agent, and the Unreal Engine 4 Move to Location9
function was used to move the character in each direction during
the frames that are skipped. During the algorithm assessment, the
rewards were calculated linearly based on the distance to the ob-
jective. When the agent is closer to the initial position, the reward
it gets is smaller but when closer to the objective the reward is
more significant. M. Bakhmadov [2] implemented perception of
the game environment is similar to the one we hypothesized in
our approach and use in the algorithm assessment, but the reward
system is totally different. We don’t train the agents for the same
tasks that M. Bakhmadov [2] did, but we take the structure and test
it to perform exploratory tests on the game environment.

While testing the algorithm, we let some hyperparameters stay
constant while varying others during the different runs made on
the game environment. Hyperparameters are used to control the
learning process. The hyperparameters that remain unchanged
during the different runs are the learning rate, the gamma and
regularization. The epsilon is a hyperparameter that defines the
probability of selecting a random action at each step. During the
run, the value decreases from 1.0 to 0.1 to oblige the agent to explore
as many new states as possible during the training. We conducted
an assessment prior to the results shown in this subsection to find
the amount of nodes the neural network must have in each hidden
layer, the optimal mini-batch size and the number of frames that
should be skipped. During the training of these different agents
it was found that 64 nodes for each neural network hidden layer
wielded the best results in this game environment, while the mini-
batch size with best results was 32. To find out howmany frames the
algorithm should skip we compare the results obtained by agents
skipping 4, 8 and 16 frames, finding out that agents that skip 8
9Makes AI go towards specified destination location, providing the possibility of using
pathfinding and projecting the destination to navmesh.

frames between each algorithm iteration are the ones that yielded
the best results because there are smaller fluctuations if compared
with other frameskip assessment results. In Figure 4 we present
the hyperparameters used in the results of the two different agents
presented as algorithm assessment for this thesis.

The results presented in Figure 5 display the rewards sum over
time for the agents that got the best results during all of the prelim-
inary assessments previously executed. The results demonstrate
that during the agents training they were able to reach the objective
location regularly. They also manage to reach the goal regularly
when the trained neural network model is imported. According to
the state of art, a target network is used to make the learning more
stable, however, by comparing both agents results we can’t observe
a big improvement regarding learning stability

Figure 5: Graph showing the evolution of the rewards sum
over time for 2 similar agents.

As a final remark, we can conclude that the algorithm is capable
of training agents to achieve a well-defined objective in an Unreal
Engine game environment, therefore it delivers what we need in our
solution and can be used in the context of this thesis. The algorithm
needs 6 hours of training in this simple game environment to reach
a state where the agents achieve the best results and maintain
themmaximized. It is expected that training reinforcement learning
agents in the case study will take longer.

4.3 Unreal Engine Actor
During this thesis a base AIController was implemented which will
be called from now on Deep QL-APF Playtesting AIController
and integrates the TensorFlow Component as a sub-object. The
tensorflow-ue4[7] offers to the base AIController features to ini-
tialize everything needed to start running the Deep Q-Learning
algorithm. These features are passed down to the derived AICon-
trollers that need to be implemented per each type of test performed
in the environment. All the logic implemented for the AIControllers
was done using the Blueprint visual scripting system.

The first mission of the Deep QL-APF Playtesting AIController
is to use the TensorFlow Component to call an initialize function
in the PythonAPI, in order to setup the Deep Q-Learning algorithm
using the TensorFlow library. It sends at the game start a tuple
containing ordered variables needed to create the main loop of the
algorithm presented in Figure 3. It is also responsible for trigger-
ing two different looping events in the Deep QL-APF Playtesting
AIController to control the algorithm loop. There’s an event for sav-
ing the neural network model each minute of the Engine runtime



Master’s Degree Thesis, Gabriel Fernandes

through a TensorFlow library method, and another that retrieves
the experience from the derived AIController that is controlling
the agent every 8 frames. This experience is sent to the function
that runs the reinforcement learning algorithm epoch, returning an
action to the derived AIController that’s attached to the Character
in-game. The actions, rewards and observations must be crafted
depending on the type of test the developer wants the agent to
perform in the game environment.

The observations and rewards system must be set depending on
the objective the agent should achieve and how the developer wants
it to behave during the algorithm runs. This implementation must
be created in the classes that derive from the Base Deep QL-APF
Playtesting AIController. We offer two different AIControllers that
can be used to train and test the case study game environment,
which are named Pathway Exploration AI Controller andWall
Exploration AI Controller. Both of the derived AIControllers use
the same actions for the different tests they perform, however, the
reward system and the observations differentiate themselves. The
purpose of Pathway Exploration test is to find the best route to the
objective location. It is one simple test that guarantees that there is
an available path for the player to advance in a linear game level.
The intention of the Wall Exploration test is to find an available
path to the objective while moving close to the environment walls.
This test was made to demonstrate, in the context of this thesis, that
it is indeed possible to create various tests with agents that behave
differently while executing them. We also hypothesized that this
test will be able to find more problems related with getting stuck,
leaving the map boundaries and actor mesh problems.

For the Pathway Exploration AI Controller, the observations
consist on the distance from the character to the objective using
the pathfinding distance. It is calculated using the navigation mesh
and the A* pathfinding algorithm offered by Unreal Engine 4. It
also uses 32 line traces that calculate the distance to the other map
constituents it collides with. The reward system is crafted in a way
that rewards the agent depending on if the action executed got the
Unreal Engine character closer to the objective or not. This means
that we must verify the previous distance to the objective and check
if it is higher than the current distance. There’s a divisible value
that controls the amount of reward that is calculated at each step.
The agent always receives -0.1 reward to prevent it from getting
stuck and avoid those places again. The reward value is normalized
between -1 and 1. The Wall Exploration AI Controller introduces
one new input to the neural network that informs the agent if there
are any line traces colliding with other map constituents. The line
traces are shorter than the Pathway Exploration AIController and
the reward system was modified to push the agent to move closer
to the environmental walls. The reward given at each timestep
depends on the same reward system created for the Pathway Explo-
ration agent, but comprehended between -0.7 and 0.7, depending
on if the agent is moving towards the objective or not. It also incor-
porates another reward signal calculated from the line trace that
found the shorter distance to other Actor in the game environment.
This reward value varies from -0.1 to 0.4. The negative reward is
offered when there are not any line traces hitting an environmental
wall. We hypothesize that this way the agent will tend to move
closer to the boundaries of the map since the rewards are higher
there. These agents present two different behaviours that players

may perform while playing the game, and therefore, there may be
valuable feedback to be obtained from these two agents procedures.

While training the agents in the case study game environment
we spotted different types of problems. The main problem was the
agent getting stuck using only the directional movement, which
was solved by simulating the jump action to release the charac-
ter, a behaviour that players tend to execute while trying to free
themselves from this type of situations. It worked effectively for
most of the cases, but sometimes the agent stayed stuck. On those
cases, the location where the agent got stuck was saved in a log file
and the training was restarted. All of these places ended up being
confirmed as problematic locations for the player. The agent was
also capable of discovering a place where it could leave the playable
area, which is a problem in the game environment and precious
feedback to the developer. Therefore when the character leaves the
playable area and falls out of the game world, these locations are
also saved on the testing log.

When the agent is exploring the environment, it may fall directly
into other map modules, meaning that it can’t achieve the objective
that was set to be attained in the last map module. Figure 6 demon-
strate an example of this occurrence, where the player can jump
off the bridge directly into the initial area.

Figure 6: Visual Representation of player going from one
map module to another. The red arrow represents the player
movement.

While taking this into consideration, we crafted a way to detect
when that happens to reset the current objective and set the next
respawn point. It was created a Modular system for testing the
agent, separating each map module. The developer is obliged to
place them in the environment and explicitly tell the module order
for the path that the agent must execute. The modular system
consists of an Unreal Engine Actor that contains as a sub-object a
Trigger Collider10. When the agent starts colliding with this trigger,
the objective and respawn point of the agent is updated through
the Actor. All of these systems were really important in order to
execute the tests presented in the next subsection. This means
that developers can reuse the Deep QL Automated Playtesting
Framework to create RL agents, more precisely the Deep QL-APF
Playtesting AIController, but they still must implement different
solutions for problems that may appear from using the framework
to perform specific types of tests in different game environments.

In the course of the implementation of this thesis, it was obvious
that the agent could find issues during training, and therefore the
agent training also became a possible way to obtain feedback. The
training of the agent must be ran jointly with the Functional Tests
10Triggers are Actors that are used to cause an event to occur when they are interacted
with by some other object in the level



Deep QL-APF: An Automated Playtesting Framework for Unreal Engine Master’s Degree Thesis,

that are placed in the map, and therefore a derived AI controller
must be associated with one specific Functional Test. When the
Functional Test is used for training the agent, the Test always passes
without a time limit, and prints out the feedback the test is expected
to deliver in themessage log. This way, while the agent is learning to
explore the environment and reach an objective it is also looking for
problems in the game environment. The idea is that the training can
occur off working hours, i.e night time or weekends, and the trained
agents are always available for testing the environment duringwork
days. If the test doesn’t pass within the time limit, it means that the
agent is incapable of achieving the game objective. The Gauntlet
Automation System takes the build and runs the specified tests
automatically. It can be used to verify certain features of the golden
path, for instance, if the path is traversable and the player doesn’t
get stuck in any environment constituents (for instance, rocks and
vegetation). This way, agents can be trained automatically without
humans preparing and running the test. The file system is capable
of training the agents from time to time. If there are any problems,
test engineers can take a look at it and solve the problems in order
to get it back working automatically again.

5 RESULTS AND ANALYSIS
5.1 Experimental Procedures
The experimental procedures will be conducted in the case study
offered by Funcom ZPX to test the Deep QL-APF playtesting frame-
work. We want to use the Pathway Exploratory Functional Test
and Wall Exploration Functional Test to assess if the agents learn
how to maximize the sum of rewards in the long run and achieve a
certain position on the map (objective) consecutively. This proce-
dure will let us know if the Deep Q-Learning algorithm is working
as expected and can be used in the context of this thesis to control
a character in-game, train the agent to achieve an objective and
perform a specific test using that same agent.

The second experimental procedure will be performed by com-
paring the behaviours of the agent trained during the Pathway
Exploratory test with the agent trained during the Wall Exploration
test. We argue that by changing the agent perception and reward
system, we can craft agents that present different ways of exploring
the environment. The assessment will be done by visually com-
paring both agents after they are trained and their neural network
model is imported. The agent will leave a line trace while moving
in the game environment so that its possible to compare the paths
they perform to reach the gate fortress (game objective).

Last but not least, the final procedure is focused on understand-
ing if the Deep QL-APF playtesting framework is capable of re-
ducing human and time resources needed to perform this type of
exploratory tests manually. When the agent is training and testing,
their main task is to find an available path to the objective location
while looking for problems such as getting stuck and leaving the
playable area.Wewant to compare the problems that the agents find
in the case study with the problems that human players performing
an exploratory playtesting in the same game environment find.
We draw conclusions by analysing the playtesting questionnaire11

11Questionnaire that was handed to human players after the manual playtesting:
https://forms.gle/P4QLkci5ogTBDKZFA

given after the playtesting session and comparing the results rela-
tive to the problems players found in the game environment. During
the following subsections the testing scenarios are explained in
detail.

5.2 Experimental Scenarios
The first experimental scenario consists in the player character
being possessed by one of the derived AI Controllers created for the
available tests and the reinforcement learning agent is placed in the
game environment. We start the game by running the functional
tests in the session front end and leave the agents training during
10 hours. In figure 7 it is presented the hyperparameters for both
agents.

Figure 7: Hyperparameters used for the agents that perform
the Pathway and Wall Exploration tests.

With this experimental scenario we want to understand if the
crafted agents are both capable of being trained by the proposed
Deep Q-Learning algorithm to find one available path to specific
locations in the game environment. The rewards sum should reach
an high value and maintain it when the agent is constantly reaching
the objective. We will analyze the reward sum line chart and draw
conclusions for both agents learning performance.

The second experimental scnenario consists in using the two
agents trained during the previous experiment and comparing the
path they took to reach the objective position in the game environ-
ment. The Pathway Exploratory testing agent is trying to find the
best path to the objective, while the Wall Exploration testing agent
has its rewards system modified to maximize the rewards when the
agent is near an environmental constituent while moving towards
the objective. The two agents behaviours are compared by a visual
representation of the path done by both agents to the objective
location. Both agents neural network model is imported after the
training session and the agents are set to run until they reach the
final objective (fortress gate location). With this experiment we
can understand if it is possible to create different behaviours for
reinforcement learning agents that want to achieve the same game
objective. We will also assess the number of times each agent gets
stuck or leaves the playable area, in order to compare both agents
ability to find problems in the game environment.

Last but not least, during the last experimental scenario we are
going to compare the reinforcement learning agents ability to find
problems in the game environment with the problems that human
testers performing manual playtesting find. The human testers are
asked to play the game for 30 minutes and their objective is to check
if there’s an available path to the fortress gate (objective) while
looking for problems in the game environment constituents. The
manual testers are asked to go from the beginning of the level until
the end, repeatedly, during 30 minutes and point out the problems

https://forms.gle/P4QLkci5ogTBDKZFA


Master’s Degree Thesis, Gabriel Fernandes

they find. They are asked to find problems in the environment
constituents that may ruin the players experience while exploring
the environment. We don’t explicitly tell the problems they are
expected to find, such as getting stuck or leaving the playable
area. The actions available are the same as the ones the agents
use, which are the directional movement and the jump action. The
case study was modified to introduce the 5 problematic locations
displayed in Appendix B of the thesis document. We want to check
if the manual testers or the agents are capable of finding these
problems. The results obtained by the manual testers are then
compared with the agents results so that we can conclude if the
agents are suitable for performing exploratory testing. If we can
observe similar behaviours between the agents and the human
testers, and if the number of problems found is similar, then we
can confirm that this framework can replace the human testers
and therefore reduce the resources needed to perform this types
of exploratory tests. The human playtesting will be observed so
that it is possible to compare the human behaviour with the agents
behaviour. We will deliver the questionnaire after playtesting in
order to assess the problems players found and how they felt while
performing this type of exploratory test.

5.3 Automated Playtesting Framework Test
Results and Analysis

The agents were trained in a single run that took around 10 hours.
The system specifications are the same for all the agents that were
trained in the context of this thesis. The CPU is a AMD Ryzen 7
3800X 8-Core Processor with base clock of 3.89 GHz. The installed
RAM has a memory size of 64GB.

During the first experiment we found out that the Pathway
Exploratory agent is indeed capable of learning how to reach a
specific location in the game environment consistently, but the
Wall Exploration agent struggles with learning how to achieve
the objective repeatedly while walking close to the environment
walls. It takes way longer for this last agent to achieve the objective
and its movement is irregular, moving randomly while close to the
environment walls until it achieves the objective. In figure 8 and 9
we present the charts that display the variation of the rewards sum
during the training of each agent.

Figure 8: Chart that represents the variation of the reward
sum during the training of Pathway Exploratory testing
agent.

Figure 9: Chart that represents the variation of the reward
sum during the training of Wall Exploration testing agent.

From observing the results we can easily see that the Pathway
Exploratory agent rewards sum is growing steadily during the 10
hours of training and it seems to start stabilizing after that period of
time, maintaining the same reward sum for some time. This means
that the agent is learning what actions maximize the reward value
at each time step and therefore we can conclude that it is learning
how to achieve a specific objective in the game environment by
trial and error, using the solution proposed. Although the Wall
Exploration agent is capable of learning the behaviour we want it
to execute, which is to walk close to the environment walls and
eventually reach the objective, the learning chart represents an
irregular reward sum line that grows slightly over time. We also
found that this agent took over 10 hours to stabilize the rewards
sum, meaning that its training is not efficient. For us, it is obvious
that the Wall Exploration agent is capable of reaching the objective,
but not in an efficient way, meaning that this agent doesn’t find the
objective location repeatedly in each map module while moving
close to the environment walls. Taking into account the results, we
state that the Pathway Exploratory agent utility function is well
crafted and that the agent is capable of learning the exact behaviour
we want it to perform. Comparing the two agents reward sum
growth, we can confirm that the Wall Exploration agent doesn’t
show the positive results the Pathway Exploration agent does, since
its chart doesn’t grow over time to a point where it stays relatively
constant. This means that the reinforcement learning policy is not
getting well defined by the agent and therefore we conclude that
it is not easy to craft a very specific behaviour for the agent to
execute that complements two different objectives, walking close
to the environment walls and reach the objective. After importing
the trained agents neural networks models and execute both agents
in the environment, we found out that the Pathway Exploratory
agent takes around 7 seconds to reach the objective, while the Wall
Exploration agent time to reach to objective is very irregular, taking
between 1 minute to an undetermined amount of time to reach the
fortress gate.

During the experiment described in experimental scenario 2
we were focused on understanding if it’s possible to handcraft
agents that execute different behaviours while performing tests
in the game environment. We focused on tests that explore the
game environment and find an available path to each map module
objective location while checking for problematic areas in the case
study. In Figure 10 and 11 it is visually described the path that the
Pathway Exploratory agent and theWall Exploration agent perform
in the first map module while executing the functional test with



Deep QL-APF: An Automated Playtesting Framework for Unreal Engine Master’s Degree Thesis,

Figure 10: The black line trace in the figure shows the path
performed by the Pathway Exploratory agent to achieve the
first map module objective.

Figure 11: The black line trace in the figure shows the path
performed by the Wall Exploration agent to achieve the first
map module objective.

the previously trained reinforcement learning agents. In Appendix
C of the thesis document, it is presented the path performed by
both agents in all of the map modules.

From observing both pictures, we can see that both agents path
is totally different. The Wall Exploration agent behaviour is erratic
and struggles to find an available path from the starting location
to the fortress gate, while the Pathway Exploratory agent moves
directly to the objective in the best possible way. However, the Wall
Exploration agent still tries to move closer to the Actors that the
line traces hit, while the Pathway Exploratory agent doesn’t. This
results prove that it is possible to handcraft agents that produce
different behaviours, but we consider to be difficult to craft two
agents that achieve the same objective efficiently while behaving
differently. The reward systemwe preparedmight not be the best for
this type of agent, since it seemed confused about what actions to
execute, not understanding how to maximize the rewards sum over
time consistently. During this experiment we were also interested
in assessing which agent found most of the problems introduced
in the environment, while training to achieve the game objective.
Normally, agents don’t find these problematic locations after they
are trained to achieve the objective, since they are not trained
to find issues in the environment. The Wall Exploration agent is
the only one that can find problems after being trained, however,
it always finds the same problems as it did during training. The
agents found most of the introduced problematic areas because
they are exploring the environment during a considerable amount
of time while training. During training, both agents together find
all of the problematic locations shown in Appendix B of the thesis
document. After this experiment, we can conclude that we are
capable of creating two agents that behave differently from each
other and both are capable of finding almost all of the problems
introduced in the game environment. However, only the Pathway
Exploratory agent can efficiently find a path to the objective after

being trained and their neural network model loaded to perform
the test. We conclude that both agents are suitable for performing
exploratory tests to find the type of problems introduced in the
game environment while training, while the Pathway Exploratory
agent can be used to find an available path for the objective.

Figure 12: Table demonstrating the number and type of tests
found by each player that performed the playtesting session.

During the 3rd experimental procedure we want to compare
the problems found by performing tests with RL agents, with the
issues that humans found in the game environment during man-
ual playtesting. Since we already collected information about the
number and type of problems found by each agent, we had to per-
form a playtesting session with human players to collect results
for comparison. I inquired multiple people, at random, to perform
this manual playtesting session and 5 people that regularly play
videogames were submitted to a 30 minutes playtesting session that
we attended and observed closely, asking the players to explore the
game environment and report any problems found on it. They are
asked to progress on the level until they reach the objective location.
Results show that every player is capable of reaching the fortress
gate and the problems each one found is presented in Figure 12.

The questionnaire results show that players found most of the
problems introduced in the game environment but can’t find all
of them by themselves. The 5 playtesting sessions ended up being
enough to find all of the problems in the game environment, finding
the same problems that agents did. Although human testers have
shown good results regarding finding these problems, they felt re-
ally frustrated in performing this type of test. Most of them, after 10
minutes of gameplay felt that there wasn’t anything more to do in
the game environment and wanted to stop the playtesting session.
Only one human tester (Player 5) performed the playtesting during
the 30 minutes and, not surprisingly, was the one that found most
problems. When asked how they felt while performing the playtest-
ing, their answer was mostly that they were pretty bored due to the
fact that there aren’t any game features besides the climbing me-
chanic. Their opinion is that finding problems in the environment
is not something they are willing to do because it doesn’t imply
exploiting a game feature to find bugs, a task they say that would
be more fun for them. While observing the playtesting, we found
that players moved closer to the environment walls in order to find
the environmental problems. That was a great discovery, since we
tried to create a agent with similar behaviour. Last but not least, we
found that people are not effective nor efficient to perform this type
of test because it is a repetitive procedure without any meaningful
reward. They show that their attention span while performing the
playtesting is short, and most of them decided to stop playtesting.

6 CONCLUSION
This thesis work began with the intent of understanding if it was
possible to offer an automated playtesting framework capable of



Master’s Degree Thesis, Gabriel Fernandes

automating certain types of tests that could reduce resources, such
as the time and human resources needed to assess the quality of the
game environment during the development of games made in Un-
real Engine. We created two different agents that execute different
behaviours when trying to find a path between the initial location
and the game objective (fortress gate). The Pathway Exploration
agent is tasked to find one of the most efficient paths to the game
environment, while the Wall Exploration agent is tasked to find an
available path through each game environment while moving close
to the environmental walls.

During the presentation of results, we show that Pathway Ex-
ploratory agent is able to learn how to find one of the most efficient
paths to reach the game objective. We also provide results showing
that both agents can find problems in the environment while they
are training. Although the Wall Exploration agent is capable of
performing a different behaviour apart from the Pathway Explo-
ration agent, we found that it isn’t capable of achieving the game
environment efficiently. However, it is clear that it can still explore
the environment while trying to achieve the game objective, and
results show that they find a similar amount of problems in the
game environment constituents. Comparing the results of the prob-
lems found by manual testers with the problems found by agents,
we can conclude that reinforcement learning agents can be used
to replace humans performing this type of tests. Also, by assessing
the questionnaire done in the context of this thesis, we conclude
that human players are not interested in performing this type of
test on the game environment, explicitly saying that automated
tests should be used in these cases.

In light of what have been said above, we have achieved the
contributions proposed during this thesis proposal. We can also
state that the platform needs an update before being used in a
game environment, including the improvements suggested in the
future work. However, taking into account the results, we can
say that reinforcement learning has the potential of being used to
test game environments. Given the state of the art, reinforcement
learning proves to be versatile enough to perform different types
of testing, such as a test that checks how many resources a player
can obtain in a specific game environment. Our test automation
platform demonstrates this potential, but, it was difficult to create
different behaviors to achieve a specific goal. In the next section
we offer possible improvements to the playtesting framework.

7 FUTUREWORK
Webelieve that there are still some aspects that need to be addressed,
and for that reason we intend to explore them on future work.

One of the topics to address is the generalization of neural net-
works to similar game environments. Agents can be trained without
overfitting to the game environment in which they were trained,
and this makes them available for solving multiple reinfrocement
learning problems as 1 test for several similar game environments.

Curiosity/Novelty Search was not used in the context of this the-
sis because the idea of this thesis is to lay down the foundations for
using reinforcement learning to perform functional tests in Unreal
Engine games. However, it is something interesting to deepen and
explore in the future. It opens the opportunity for generating differ-
ent behavior policies automatically while removing the necessity

of handcrafting agents, a task that was proven to be difficult for
complex tasks.

As a way of adding value to the framework capacity of creating
different types of RL tests, there should be an assessment on how
new mechanics could also be trained and added to the agent be-
haviour. The climbing mechanic is crucial for progressing through
the environment, and should be developed further in time since
it would make the test automation platform more complete. In
conclusion, we believe it is possible to improve the framework in
conjunction with a tests automation team in order to deploy a deep
reinforcement learning playtesting framework for the production
of a game such as the one Funcom ZPX is currently producing.

REFERENCES
[1] J. Baker. 2019. “Automated Testing of Gameplay Features in Sea of Thieves”.

https://www.youtube.com/watch?v=KmaGxprTUfI
[2] M. Bakhmadov. 2020. “IAP”. url:https://github.com/magomedb/IAP
[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys-

law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Christopher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pa-
chocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman,
Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. 2019. Dota 2 with Large Scale
Deep Reinforcement Learning. CoRR abs/1912.06680 (2019). arXiv:1912.06680
http://arxiv.org/abs/1912.06680

[4] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Pur-
monen, Bartlomiej Kozakowski, Richard Meurling, and Lele Cao. 2018. Human-
Like Playtesting with Deep Learning. In 2018 IEEE Conference on Computational
Intelligence and Games, CIG 2018, Maastricht, The Netherlands, August 14-17, 2018.
IEEE, 1–8. https://doi.org/10.1109/CIG.2018.8490442

[5] Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N. Yan-
nakakis. 2014. Generative agents for player decision modeling in games. In Pro-
ceedings of the 9th International Conference on the Foundations of Digital Games,
FDG 2014, Liberty of the Seas, Caribbean, April 3-7, 2014, Michael Mateas, Tiffany
Barnes, and Ian Bogost (Eds.). Society for the Advancement of the Science of
Digital Games. http://www.fdg2014.org/papers/fdg2014_poster_05.pdf

[6] Ethan C. Jackson and Mark Daley. 2019. Novelty search for deep reinforcement
learning policy network weights by action sequence edit metric distance. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019, Manuel López-Ibáñez,
Anne Auger, and Thomas Stützle (Eds.). ACM, 173–174. https://doi.org/10.1145/
3319619.3321956

[7] J. Kaniewski. 2019. “tensorflow-ue4”. https://github.com/getnamo/
tensorflow-ue4

[8] Guillaume Lample and Devendra Singh Chaplot. 2017. Playing FPS Games
with Deep Reinforcement Learning. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, Satinder P. Singh and Shaul Markovitch (Eds.). AAAI Press, 2140–2146.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456

[9] R. Masella. 2018. “Automated Testing of Gameplay Features
in Sea of Thieves”. https://www.gdcvault.com/play/1026366/
Automated-Testing-of-Gameplay-Features

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[11] P. Negrão. 2020. “Automated Playtesting In Videogames”.
[12] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.

Curiosity-driven Exploration by Self-supervised Prediction. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning Research),
Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 2778–2787. http:
//proceedings.mlr.press/v70/pathak17a.html

[13] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game
of Go without human knowledge. Nat. 550, 7676 (2017), 354–359. https:
//doi.org/10.1038/nature24270

[14] A. Soares. 2019. “Modelling Human Player Sensorial and Actuation Limitations
in Artificial Players”.

https://www.youtube.com/watch?v=KmaGxprTUfI
url: https://github.com/magomedb/IAP
http://arxiv.org/abs/1912.06680
https://doi.org/10.1109/CIG.2018.8490442
http://www.fdg2014.org/papers/fdg2014_poster_05.pdf
https://doi.org/10.1145/3319619.3321956
https://doi.org/10.1145/3319619.3321956
https://github.com/getnamo/tensorflow-ue4
https://github.com/getnamo/tensorflow-ue4
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
https://www.gdcvault.com/play/1026366/Automated-Testing-of-Gameplay-Features
https://www.gdcvault.com/play/1026366/Automated-Testing-of-Gameplay-Features
http://arxiv.org/abs/1312.5602
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

	Abstract
	1 Introduction
	2 Background
	3 Proposed Solution for the Deep QL-APF
	3.1 Deep QL-APF Model
	3.2 Machine Learning Integration with Unreal Engine 4
	3.3 Unreal Automation System

	4 Deep QL-APF Implementation
	4.1 Algorithm Specifications
	4.2 Algorithm Preliminary Assessment
	4.3 Unreal Engine Actor

	5 Results and Analysis
	5.1 Experimental Procedures
	5.2 Experimental Scenarios
	5.3 Automated Playtesting Framework Test Results and Analysis

	6 Conclusion
	7 Future Work
	References

