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Abstract

The model-based reinforcement learning (MBRL) paradigm, which uses planning algorithms, has re-

cently achieved unprecedented results in the area of deep reinforcement learning (DRL). These agents

are quite complex and involve multiple components, factors that can create challenges for research. In

this work, we propose a modular software architecture 1 suited for these types of agents, which makes

possible the implementation of different algorithms and for each component to be easily configured (such

as different exploration policies, search algorithms...). We illustrate the use of this architecture by imple-

menting several algorithms and experimenting with agents created using different combinations of these.

We also suggest a new simple search algorithm called averaged minimax that achieved good results in

this work. Our experiments also show that the best algorithm combination is problem-dependent.

Keywords

Deep Reinforcement Learning, Model-Based Reinforcement Learning, Neural Network, Architecture,

Implementation.

1Our implementation can be found in https://github.com/GaspTO/Modular_MBRL
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Resumo

O paradigma de aprendizagem por reforço com base em modelo, que utiliza algoritmos de planea-

mento, atingiu recentemente resultados sem precedentes na área de aprendizagem por reforço pro-

funda. Estes agentes são bastante complexos e envolvem vários componentes, fatores que podem

criar desafios para a investigação. Neste trabalho, propomos uma arquitetura de software modular 2

apropriada para este tipo de agentes, que torna possı́vel que diferentes algoritmos sejam implementa-

dos e que cada componente possa ser facilmente configurado (como, por exemplo, diferentes polı́ticas

de exploração, estratégias de planeamento...). Demonstramos o uso desta através da implementação

de vários algoritmos e experimentando com agentes resultantes de várias combinações destes. Sug-

erimos também um novo algoritmo de procura simples chamado minimax médio que conseguiu bons

resultados neste trabalho. As nossas experiências também mostram que a melhor combinação de

algoritmos é dependente de cada problema.

Palavras Chave

Aprendizagem Profunda por Reforço, Aprendizagem por Reforço baseada em Modelo, Rede Neuronal,

Arquitetura, Implementação.

2A nossa implementação encontra-se em https://github.com/GaspTO/Modular_MBRL
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In artificial intelligence (AI), machine learning concerns itself with making machines learn from data.

One of its learning methods is called reinforcement learning (RL) and it does so by trial and error, a

method human beings are very familiar with. We can see RL as a method where an agent interacts

with a problem and, while doing so, learns how to predict the outcome of its own actions. It then uses

these predictions to be as successful in a task as possible. Out of the many ways it is possible to

learn these predictions, the most recent trend in research has been to employ deep learning methods.

Deep learning is yet another area of machine learning and it involves all computational learning that is

done using neural networks with high number of layers and parameters. Deep neural networks have

made impressive breakthroughs in recent years. Their capacity to adapt easily to data has made them

excellent models to solve complex tasks. Due to their success, these models have been applied in

reinforcement learning, resulting in an area called deep reinforcement learning (DRL) [1].

Two recent accomplishments attracted the interest in this area. The first, in 2015, was the creation

of Deep Q-networks [2], which were able to achieve human-level play in Atari games. The techniques

used became standard in the area and opened the door for successive advancements after that. The

second, in 2016, was when a program called AlphaGo [3] beat a Go world champion for the first time.

Go was seen as the new milestone of AI since the defeat of the chess world champion, Gary Kasparov,

in 1997 by DeepBlue [4] and it was finally beaten using reinforcement learning, neural networks and a

search algorithm. Following that achievement, an even more powerful program called AlphaGo Zero [5]

was created, learning without any human knowledge, indicating the strong potential of DRL.

It is not that any of those elements brought anything completely new to the field, but it was the first

time they were assembled together and achieved outstanding results. The search component allowed

deep reinforcement learning to reach a completely new level. Following this line of algorithms, two other

very successful agents were created: AlphaZero, a generalized version of AlphaGo Zero, that became

the best player in chess, shogi and Go; and MuZero, a program that achieved the same outstanding

results, but it was not given the rules of the game, having to learn them as it played - a very promising

line of research, since most of the world does not have a clear set of rules that can be explained to a

computer beforehand.

1.1 Motivation

Despite all of this, there remains an overwhelming barrier concerning these algorithms. The hardware

resources used to train these models were much higher than what is usually available to researchers

(AlphaZero used more than 5000 first-generation Tensor Processing Units1). It is only normal that, after

their success, the research on these algorithms has been increasing, trying to make them more practical

1https://cloud.google.com/tpu/docs/tpus
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to use [6–10].

State of the art RL algorithms, especially these new model-based algorithms that use search, are

considerably complex and involve multiple parts. Implementing these algorithms can be very time con-

suming, one of the reasons being deep learning’s proclivity to fail silently due to its adaptable nature,

which often leads to a large amount of time spent debugging and verifying code. It is not practical, every

time one wants to try and study different ideas, to have to refactor and heavily recode the implementa-

tion. And, even though there has been a recent effort to publish open source implementations, these do

not usually take their possible extensions into account.

1.2 Contributions

Our work attempts to help with these problems by introducing a modular software architecture for model-

based reinforcement learning. Its objective is to separate the agent into distinctive components and allow

the implementation of new strategies (the algorithms in each one of them), that can be added without

having to modify the other components. The architecture should enable us to construct multiple agents

easily by choosing different strategy combinations.

We provide a particular implementation of this architecture, using some common strategies in re-

inforcement learning and suggesting some new ones, namely a new simple search algorithm called

averaged minimax. In the end, we make a comparative study of agents created by different strategies

and show that the best agent is problem specific.

4
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This section explains concepts of reinforcement learning necessary to understand our work, men-

tioning some of the most important parts in a RL agent.

2.1 Reinforcement learning

In reinforcement learning, an agent interacts with an environment. We assume it to be described as a

Markov decision process (MDP). At each time step t, the agent will decide the next action, at, to take.

The environment will receive this action and transition its state, st, to the next one, st+1, giving back a

reward, rt, associated. The agent continues to interact with the environment until the episode reaches

a terminal state, originating a sequence of transitions, called trajectory, s0, a0, r0, s1, a1, r1, s2...

These environments hold the Markov property, meaning that the result of an action (next state and

reward) depends solely on the current state and not on the prior history of the current episode. In a

MDP, there is a state space S, an action space A, a probability function, p(s′|s, a), that calculates the

likelihood of the agent ending in state s′ if action a is chosen in state s, and a reward function, r(s, a, s′),

that gives the reward associated with this transition. These two functions describe the dynamics of the

environment, for all s′, s ∈ S and a ∈ A.

There are also certain environments that hold the Markov property but the states are not com-

pletely visible to the agent (for example, a cards game where the agent does not know the cards of

the opponents). These environments are formulated as a partially observable markov decision pro-

cess (POMDP). In these, an agent has to act under the uncertainty of its current state, only having

access to an observation. MDPs are just specializations of POMDPs.

The agent attempts to maximize the expected (discounted) reward observed in each episode,

Gt =
∑
j=0

γjrt+j , (2.1)

and the purpose of RL is to teach the agent how to maximize this objective through successive interac-

tions with the environment.

To simplify, we will assume MDPs for the rest of this section since their observations reflect perfectly

the environment’s inner state. The next subsections are described based on the notion of state.

2.2 Policy and Value function

A policy defines which action an agent should take in each state, π(a|s), and it does not need to be

deterministic, in which case it defines a probability distribution over the action space. A value function,

vπ(s), defines the expected return of an agent if it follows a policy π. The problem of estimating this

7



function is called the prediction problem. MDPs can be better understood using the Bellman’s equations:

vπ(s) =
∑
a

π(a|s)
∑
s′

p(s′|s, a) · [r(s, a, s′) + γvπ(s
′)] (2.2)

and

qπ(s, a) =
∑
s′

p(s′|s, a) · [r(s, a, s′) + γ
∑
a′

π(a′|s′)qπ(s′, a′)]. (2.3)

The state-value function can be recovered from the action-value function,

vπ(s) = max
a

qπ(s, a). (2.4)

The optimal policy, π∗, is the one that maximizes the state-value and action-value functions,

v∗(s) = max
π

vπ(s) (2.5)

and

q∗(s, a) = max
π

qπ(s, a). (2.6)

The problem of finding this policy is called the control problem.

2.3 Dynamic Programming

Given a perfect model of the environment, it is theoretically possible to use dynamic programming tech-

niques to estimate the optimal policy. We assume an array function, V , with one entry for every state. In

dynamic programming, the value estimation for a state is updated based on the estimations of the pos-

sible next states - this process is called bootstrapping. The algorithms used in dynamic programming

fall into either value iteration or policy iteration.

Policy iteration

Policy iteration algorithms iterate over two steps alternately. The first, called policy evaluation, attempts

to find the state-value function for the current policy using an iterative version of equation 2.2,

V (s)←
∑
a

π(a|s)
∑
s′

p(s′|s, a) · [r(s, a, s′) + γV (s′)]. (2.7)

The second step, called policy improvement, uses the result of the first one to come up with a better

policy. A deterministic policy can then be extracted by taking the action that leads to the highest expected
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value according to the estimated value function,

π(s) = argmax
a

∑
s′,r

p(s′|s, a)[r(s, a, s′) + γV (s′)]. (2.8)

The process repeats until some stopping condition is met, for instance, the convergence of V .

Value iteration

Policy iteration can be slow due to these two steps. Value iteration methods attempt to find the optimal

value function first, using the following update rule until convergence:

V (s)← max
a

∑
s′

p(s′|s, a)[r(s, a, s′) + γV (s′)] (2.9)

and only in the end deriving a policy from this function.

Final remarks

These techniques are unpractical, especially for large states or for environments without a known model,

but they are of extreme importance to understand the reasoning behind reinforcement learning methods,

since these attempt to get the same results as those of dynamic programming. Next, we review Monte

Carlo and temporal difference methods which are more practical and useful for reinforcement learning.

2.4 Monte Carlo Methods

Monte Carlo methods do not require the environment model to be learned, but sampled episodes to be

used. They can provide an alternative to the policy evaluation step (eq. 2.7) by estimating the value

function for a policy using a large number of sampled episodes. They calculate, for each state, the

discounted cumulative reward (eq. 2.1) seen during the episode and update the agent based on it. Even

without knowing the model, if we run a very large number of episodes, following a certain policy, and

update the value function based on the empirical mean of the cumulative rewards observed in them, it

should tend to approximate the true value function of the policy (eq 2.2). After completing an episode,

we can adjust the value of a state, st, using the following update rule:

V (st)← V (st) + α[Gt − V (st)]. (2.10)

These methods have the obvious disadvantage of having to run full episodes before starting to conduct

updates, which can take too long.
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2.5 Temporal Difference

Temporal difference (TD), uses the idea of value bootstrapping to update the value of the states, just like

in dynamic programming, but uses environment experience to do so, without making use of the model

of the environment. A simple TD algorithm, called TD(0) [11], calculates an approximation of the value

function for each state by conducting 1-step bootstrap updates in the trajectory,

V (st)← V (st) + α[rt + γV (st+1)− V (st)], (2.11)

where α ∈ R and γ ∈ [0, 1]. The quantity rt + γV (st+1) − V (st) is called TD error. This idea can

be generalized to take into account, not just one time step difference between the states, but several,

leading to the general idea of n-step temporal difference,

V (st)← V (st) + α[

( n−1∑
j=0

γjrt+j

)
+ γnV (st+n)− V (st)]. (2.12)

The idea of using multiple transitions to bootstrap is called multi-step bootstrapping. We can see that,

for infinite steps, the algorithm becomes a Monte Carlo method (we assume that V (st) = 0 when t is

superior to the trajectory’s size).

Two other very popular but simple algorithms that learn using 1-step bootstrapped values are Q-

learning [12] and Sarsa [13], with the respective update rules:

Q(st, at)← Q(st, at) + α[rt + γmax
a′

Q(st+1, a
′)−Q(st, at)] (2.13)

and

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]. (2.14)

The difference between the two is that Q-learning updates its function off-policy, while SARSA updates

on-policy (see subsection 2.6).

TD(λ)

We mentioned an algorithm called TD(0) and talked about a method to mediate between this algorithm

and Monte Carlo algorithms by choosing to get boostrapped values using more than 1 step. There is

another idea that allows us to mediate between these two. It relies on using multiple n-step returns to

update the value of a state, instead of just one. For instance, we can use the average between a 1-step
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and a 2-step return to conduct a temporal difference update,

V (st)← V (st) + α
1

2

(
[rt + γV (st+1)− V (st)] + [rt + γrt+1 + γ2V (st+2)− V (st)]

)
. (2.15)

If we denote a n-step return as

Gt:t+n =

n∑
j=0

γjrt+j + γnV (st+n), (2.16)

then we can generalize the previous idea for infinite steps and define the λ-return as

Gλt = (1− λ)
∞∑
n=1

λn−1Gt:t+n , (2.17)

which is a weighted average of all the n-step returns. The weights are given by λn−1 for a n-step return,

where λ ∈ [0, 1]. To make sure they sum to 1, we multiply them by (1 − λ). After t + n has surpassed

the episode’s size, Gt:t+n becomes the conventional return, Gt, defined in eq. 2.1. If we rewrite this

expression for a finite episode, we get

Gλt = (1− λ)
T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt , (2.18)

where T is the episode length. The λ-return gives more importance to n-step returns with fewer steps.

The lower the value of λ, the less important longer n-step returns become. If λ is 0, we get a 1-step

return and, if it is 1, the algorithm is a normal Monte Carlo update. If we wait until the end of the episode

to update the value function based on a λ-return, the algorithm is called offline λ-return.

However, we do not need to wait until the end of the episode. The λ-return is a sum of different

n-step terms. Some can be calculated sooner than others. If our agent is currently in a state st, once

we reach the state st+1, we can update it using the 1-step return, Gt:t+1 term. When we reach st+2, we

can update it a second time, but now using the 2-step return, Gt:t+2. We repeat this for every new state

reached during the episode. In this way, we do not need to wait until the end of the episode. This is the

idea behind an algorithm called TD(λ), which is described more formally in algorithm 2.1. When λ is 0,

we get the TD(0) algorithm previously mentioned.

2.6 Learning on-policy vs off-policy

We can use the two algorithms introduced in section 2.5, SARSA and Q-learning, to introduce a very

important notion in reinforcement learning. The value function learned by an agent does not need to

correspond to the policy that generated the data used. The difference between SARSA and Q-learning
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Algorithm 2.1 Tabular TD(λ)
Input Value function array V and policy π to evaluate
Parameters step size α > 0 and trace decay rate λ ∈ [0, 1]

1: loop
2: Set e(s) = 0 for every state s
3: Initialize s as the initial state
4: while s not terminal do
5: Choose a π(.|s)
6: Take action a, observe r,s′

7: δ ← r + γV (s′)− V (s)
8: e(s)← e(s) + 1
9: for s in all states do

10: V (s)← V (s) + αδe(s)
11: e(s)← γλe(s)
12: end for
13: s← s′

14: end while
15: end loop

has to do with this. They both generate data following some policy, but, when updating their value

function, SARSA learns a value function for the policy that generated the data, while Q-learning tries

to learn the optimal value function. Algorithms like SARSA are said to be on-policy and algorithms like

Q-learning are called off-policy. The former tend to be simpler, faster to learn and more stable. The latter

tends to have higher variance, but can lead to better results since it is not bounded by the quality of the

policy that generated the data.

2.7 Model Based Algorithms

Monte Carlo and temporal difference algorithms do not necessarily need to understand anything about

the dynamics of the environment they act on. But, as seen, that is not the case for dynamic programming

techniques, which needs a model of the environment. Learning algorithms that require some information

about the dynamics of the environment are called model-based reinforcement learning (MBRL) and

those that do not are called model-free algorithms. For MBRL, the model can be given or can be learned

by the agent through experience. Model based agents can apply state-space planning algorithms to

their model and choose better actions, generating more insightful episodes. They can also learn using

simulated experience derived from the model, which is especially useful when the environment dynamics

are not known and the interactions with it are expensive or impossible (for example, when the agent

is learning from previously gathered experience and can not acquire more, a problem called offline

reinforcement learning).
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2.8 Function Approximation

So far, we have not paid much attention to how these functions are are implemented in practice and

simply assumed the values of these functions to be stored in an array with an entree for every state or

state-action pair. For instance, if there are 1000 states and each state has 5 actions, we would need

5000 entrees in a table to store an action-value function. Obviously, this is not practical for several

reasons. There are some environments that have a continuous space of states and actions. Others,

although discrete, have a very large state-space (for example, the state-space complexity of chess is

1043, go’s is 10172 [14]). Besides, even if we could store a whole function in memory, we would still be

neglecting the fact that some states share patterns between themselves. By generalizing and learning

how to make decisions based on common patterns found, the agent can improve on multiple states at

the same time, being able, in theory, to achieve good performances in states never seen. Out of all the

function approximators, in this work, we use neural networks [1] to learn these functions. For example,

the update rule for TD(0), using a neural network to approximate v with parameters θ is given by

θ ← θ + α[rt + γvθ(st+1)− vθ(st, θ)]∇θvθ(st). (2.19)

In other words, we update the weights against the gradient of the temporal error, rt+ γvθ(st+1)− vθ(st),

in order to minimize it.

2.9 Policy Gradient

When using function approximation, it is possible to improve the policy directly without having to estimate

a value function first. If we have a policy approximated by a neural network, we can update it to increase

the probability of the actions that lead to better results according to the agent’s experience. One of the

biggest advantages of policy optimization methods is allowing stochastic policies very easily.

If the quality of the policy is defined by

J(πθ) = Eτ∼πθ [G(τ)], (2.20)

where τ is a trajectory sampled from the policy and G(τ) is the total discounted reward of the trajectory.

It can be show [11] that

∇θJ(πθ) ∝ Eτ∼πθ [
∑
t=0

∇θ log πθ(at|st)G(τ)]. (2.21)

To increase J , we follow its gradient,

θ ← θ + α∇θ log πθ(at|st)G(τ). (2.22)
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The lower the probability of the action taken, πθ(a|s), and the higher the total reward seen in the tra-

jectory, the bigger the update step in equation 2.22. There are plenty of variations to this update rule.

For instance, by using G(τ) in the gradient, we are updating the policy of future steps based on rewards

received in the past. A more sensible idea would be to only use the total rewards seen after each state,

originating a formula known as reward-to-go policy gradient,

θ ← θ + α∇θ log πθ(at|st)
∑
k

rt+k . (2.23)

It is also possible to replace the sum of rewards to go by an estimated value,

θ ← θ + α∇θ log πθ(at|st)qω(st, at). (2.24)

There are many other variations, all using the idea of following the gradient of J(πθ).

2.10 Exploration and Exploitation

Agents need to explore unseen states in order to find trajectories with higher rewards and improve the

current policy. At the same time, they need to exploit in order to increase the results of their interaction

with the environment. This leads to the known exploitation and exploration dilemma that studies how

to balance between the two. Arguably, the most popular method is the ε-greedy algorithm that, in each

state, chooses the best action according to the policy with 1-ε probability and a random action other-

wise. Another simple exploration method for stochastic policies is to sample an action according to the

probability distribution given by them.

A different but popular class of exploration-exploitation techniques is called count-based methods.

They increase the exploration according to the number of times a certain action has been taken in some

state. Obviously, this is not practical for very large domains, but it is especially useful when using search

algorithms for planning. The search algorithm called upper confidence bound in trees (UCT) [15], is

such example. In each node of the tree, the next action chosen is the one that maximizes the sum of two

components: an exploitation part, that calculates the total reward expected if such action is taken, and

an exploration component, that decreases with the number of times that action has been chosen in that

state. We refer to the famous multi-armed bandit problem for more information about this dilemma [16].

2.11 Replay Buffers

One of the most important achievements in deep reinforcement learning was the creation of Deep Q-

Networks [2], which were successful in achieving professional human performance in Atari games using
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deep neural networks, only receiving image pixels and scores as input. To address the infamous RL

instability problem, a replay buffer that sampled previously seen transitions uniformly was introduced.

Experience replay has several advantages. First, for off-policy methods, they allow to sample transitions

instead of full games, which breaks the correlation between the data used in each batch. Second, they

help to prevent a phenomenon called catastrophic forgetting [17,18], where an agent based on approx-

imated functions forgets how to act in the simpler parts of the environment because it has not visited

them for a long time. It also allows for better sample efficiency, decreasing the need for environment

interactions.

A significant subsequent improvement was the idea of sampling transitions according to their impor-

tance - a method called prioritized experience replay (PER) [19]. Although PER is a general method, in

the original work, the priority was given by the temporal difference error,

p = rt + γmax
a

qθ(st+1, a)− qθ(st, at). (2.25)

The sampling probability of the transition number i was given using the priorities by

Pr(i) =
pαi∑
j p

α
j

, (2.26)

where α balances the prioritization of each transition. The use of replay buffers are now standard

practice in DRL and multiple relevant works have been published recently about them [20,21].

2.12 Search algorithms

As explained in section 2.7, model-based algorithms can plan using the a model of the environment

for their benefit. The type of planning that interests us here is the application of search algorithms to

look-ahead into the hypothetical future of the agent.

We consider state-space algorithms, where a node contains a state and can be linked to other nodes,

referred to as successors. This linkage represents the concept of transitioning from a state to another,

after the execution of an action. The node with the previous state is called the parent of the node with

the current. The one without a parent is called root and stores the current environment state the agent

is in. We refer to a structure with all the nodes linked as search tree. The kind of algorithms that will

be discussed have the objective of estimating more accurate state-values , V (s), using the successor

subtrees. For the remainder of this subsection, we assume the environment to be deterministic and the

model to be known. We define the action-value, Q(s, a), as

Q(s, a) = r(s, a, s′) + V (s′), (2.27)
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Some environments are multi-agent and adversarial, for instance a 2-player board game, in which case,

if the player of the successor nodes is an opponent, the action-value then becomes

Q(s, a) = r(s, a, s′)− V (s′). (2.28)

We will now discuss some planning strategies that will be relevant for our work.

Pure Monte Carlo Search

A very simple method to choose between a set of actions is to conduct several random rollouts starting at

each successor node of the root. A random rollout is the choice of random actions until a terminal state

and its value is the total reward accumulated. We can then set the state-value of each root successor to

the average value of their rollouts. The larger the number of them, the more precise the state estimation,

but the longer the search will take. The agent then chooses the action associated with the highest

action-value.

Minimax

The algorithm recursively assigns values to nodes given their best successor (algorithm 2.2). The idea

is that each node updates its state-value to match their highest action-value. If the tree is adversarial,

this algorithm is called minimax, but, for simplicity, this name will be used even if it is not.

Algorithm 2.2 recursive minimax evaluation

1: function MINIMAX EVALUATE(n)
2: if n is not Terminal then
3: for n′ in n.successors do
4: Minimax Evaluate(n′)
5: end for
6: s← n′.s . get state of node
7: V (s)← argmaxaQ(s, a)
8: else
9: V (s)← 0

10: end if
11: end function

In practice, the whole tree is not evaluated, at least for very large domains. Usually, a maximum

depth is defined and the values of the leaf nodes are estimated, either by rollouts or by an heuristic

function. Only then those values are propagated backwards until the root (figure 2.1). In minimax, the

principal variation is the path that starts in the root and ends in the leaf that propagated its value all the

way to the top.
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Figure 2.1: A minimax evaluation example. The circle and square nodes represent two adversaries. The leaf
nodes, in this example, are all terminal nodes and have a value of 0 by definition. Its edges have a
reward corresponding to the respective state transition. The other unlabeled edges have a reward of 0
in the example. The bolder ones show which nodes propagated their value to their parent. The bold
path, that we can trace from the root to a leaf, is called the principal variation

Best First Minimax Search

Best first minimax search (BFMMS) [22] is a type of best first algorithm. These types of algorithms

can be understood through the concept of iteration. The best leaf node in the tree (according to some

criteria) is expanded in each iteration - its successors are added to the tree and usually some other

operations, such as estimating their value, are done.

Each iteration in BFMMS descends the tree from the root until the leaf in the principal variation path,

choosing always the best action-value. It then expands the leaf found, estimating the value of the new

successors and propagating the maximum towards the root, just like normal minimax. The process is

repeated for as many iterations as desired.

Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is also a best first algorithm and it is one of the most popular game

tree search algorithms in artificial intelligence. The algorithm became so popular that many successful

variations ended up being implemented [23]. We describe the most common one, but the overall idea

is preserved among the others. In each iteration, the algorithm descends in a best first manner until

encountering an unexpanded node. Then, it generates one successor and, to estimate its initial value, it

plays one or more random rollouts starting from it. Next, this value is propagated backwards and sums

to the total value seen in each node of that iteration’s path. The value of each node is the average of all

the propagated values that passed through them during the multiple iterations of the algorithm.

A straightforward variation, just as described in the previous algorithm, is to use a heuristic function

instead of rollouts. Another is to generate all successors at once. All these variations preserve the basic

idea of descending through a best first path and adding an estimated value to every node in the path.
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Notes on Best First Algorithms

In best first algorithms, and as briefly mentioned before, it is possible to add exploration terms to their

best first equation. The UCT, mentioned earlier, is the MCTS algorithm with an exploration component

added when descending the tree. The main difference between BFMMS and MCTS is the philosophy

behind the value of each node. In the first, the value is optimistic and it is the best possible value

reached through that node. In the latter, the value is more prudent and it averages over all the best

paths seen through that node. The latter escapes outliers more easily, but might require more iterations

to be reliable, since it relies on the empirical mean of values. It is also worth noting that UCT has been

shown to theoretically converge to a perfect minimax tree, for a infinite number of iterations [23].

18



3
Related Work

Contents

3.1 AlphaGo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 AlphaGo Zero and AlphaZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Muzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Other Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

19



20



In this section, we review the work done regarding the AlphaGo family - AlphaGo, AlphaGo Zero,

AlphaZero and MuZero. Then, some other relevant, but less impactful, work regarding model-based

algorithms is discussed.

3.1 AlphaGo

AlphaGo [3] was the first computer program to beat the world champion in Go. Its algorithm is composed

by three major steps. The first is to train two networks that parameterize a policy, pσ and pπ, in a super-

vised manner on a dataset of expert moves. The difference between the two is the network complexity.

The network parameterizing the policy pπ is shorter (and therefore faster, but less accurate) than pσ. The

second step is to instantiate pρ by copying pσ and improve it by playing games against different (older)

versions of itself. The third step is to train the evaluation network, vθ, which is done by predicting the re-

sults in a game dataset generated by self-play using pρ. The true results are either +1 or −1, depending

on whether the player won or loss, respectively. When playing the game, at test time, a Monte Carlo tree

search algorithm is combined with the previous neural networks to provide considerably better moves.

In their version of MCTS, each edge in the tree stores an action-value Q(s, a), number of visits N(s, a),

initial probabilities P (s, a). In each iteration, the algorithm will descend, choosing actions according to a

variation of the PUCT formula [24],

argmax
a

Q(s, a) + cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)
, (3.1)

where cpuct is a constant that mediates the balance between exploration and exploitation. When a

leaf node with some state sl is found, the probabilities P (sl, a) associated with each of its successor

edges are initialized using the the policy network pσ (the policy pρ did not perform better at this stage as

compared to pσ, being only used to train vθ). Then, the value of this leaf node is estimated using both

the value network, vθ, and a fast rollout using the policy network pπ, according to

V (sl)← (1− λ)vθ(sl) + λzl λ ∈ [0, 1], (3.2)

where zl is the result of the rollout in the perspective of the player associated with sl. Next, this leaf’s

evaluation is propagated backwards through the path until the tree root, updating Q. For every edge,

(s,a), in the iteration path, we update both the action value,

Q(s, a)← N(s, a)Q(s, a) + V (sl)

N(s, a) + 1
, (3.3)
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and the visit count,

N(s, a)← N(s, a) + 1 . (3.4)

We add the negative of V (sl) if the player of s is different from the player of the leaf. After all the iterations

have been ran, the real action chosen by the agent is the one associated with the node with highest visit

count.

3.2 AlphaGo Zero and AlphaZero

After its success, the team that developed AlphaGo released a more powerful algorithm, AlphaGo Zero

[5], that could learn how to play Go without any prior knowledge, only by playing against itself. In 2017,

an even more general version than AlphaGo Zero, called AlphaZero [25], was introduced. This version

is pretty much the same as the previous, except certain details that were tuned specifically to the game

of go were removed, in order for it to work in more board games. AlphaZero needs only the rules

of the game to be given and it can learn how to play in any deterministic and completely observable

environment. It became the strongest of all the programs, gaining the world champion title in chess,

shogi and go.

We now describe the general idea behind the AlphaZero algorithm. Just like AlphaGo, it uses a policy

and state-value function, pω and vθ. The tree search algorithm is pretty much the same, descending the

tree according to equation 3.1 until finding a leaf with some state sl, only diverging with AlphaGo in the

way that node is expanded. In AlphaGo Zero and AlphaZero, the initial value given to the node only uses

the state-value function, becoming

V (sl)← vθ(s
l). (3.5)

This state-value then gets propagated backwards as in equation 3.3 and the number of visits in each

edge gets incremented, as in AlphaGo. In the end of all iterations, the root node describes an improved

search policy vector, πππ, where each component is given by

π(a|s) = N(s, a)1/τ∑
bN(s, b)1/τ

, (3.6)

where τ is a temperature parameter that controls the amount of exploration. Invalid moves have a policy

value of 0.

After a game ends, it is broken into tuples containing: a state in the trajectory, the result of the game

in that player’s perspective, z (-1,1 or 0, depending on whether it lost, won or tied, respectively), and

the improved search policy, πππ. These tuples are randomly sampled from the replay buffer and used to
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update the neural networks through the following loss function:

l(θ) = (z − vθ(s))2 − πππ · log pω(s) + c||θ||2, (3.7)

where the last term is the L2 regularization to prevent overfitting and c is the constant that controls it.

A final detail worth mentioning, in these two papers, the value and policy function are calculated with

a double-headed network. This means their first layers are shared.

3.3 Muzero

The last algorithm released in the AlphaGo series was called Muzero [26] and, as it has been the trend

in each new one, it it is even more versatile than the previous. For all the other algorithms, the model

of the environment needs to be given. For Muzero, on the other hand, not even that much is required.

The model is learned as the agent interacts with the environment. It is similar to AlphaGo Zero and

AlphaZero in the overall idea. It will use a Monte Carlo tree search to play better moves and then update

itself using the generated trajectories.

The algorithm does not learn to predict the environment states, but, instead, it learns hidden states

that do not hold an explicit well-defined semantics. Unlike the previous algorithms, we do not assume the

environment’s observations to completely describe the inner state of the environment. We distinguish

between observations, ot+k, and the Muzero states, skt , used during planning. In the notation1, we use

a superscript, k, to differentiate a time step, t, in the real trajectory, from a planning step during search.

The state skt corresponds to looking k steps ahead of observation ot. Semantically, skt corresponds to

observation ot+k. We omit the subscript t when the context so allows it. Unlike the previous algorithms

that were made for board games, where there is only a final reward indicating who won, this algorithm

assumes the existence of a reward in every transition. There are 3 functions used and learned through-

out training. The first is called representation function hθ and converts the current observation into an

initial hidden state, st = hθ(ot). The second is called dynamics function, gθ, and receives a hidden state

and an action and returns both the next predicted reward and state, rθ(sk, ak), sk+1 = gθ(s
k, ak). The

last one is the function that was common in the previous algorithm, called prediction function fθ, and it

receives a hidden state and calculates both the policy and value functions, pθ(sk), vθ(sk) = fθ(s
k).

So, upon getting an observation from the environment, Muzero will start the planning by converting

the current observation, ot, to a hidden state, s0t . In every iteration after that, the search will descend

the tree, choosing the next action using a slightly improved version of equation 3.1, until a leaf node

has been reached. Then, just like in the last two algorithms, it runs the prediction function, fθ, and it

initializes the state-value and initial probabilities in the leaf node. The backpropagation idea is similar as
1we use a similar notation as the original paper [26]
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Figure 3.1: A Muzero MCTS iteration. The squares represent the game trajectory so far and the circles represent
the tree nodes with their respective hidden states. Muzero is planning in the second observation. The
arrows show the descending path taken in this iteration. The gray dashed ones were added in previous
iterations.

before, but, now, as the leaf value backtracks and passes through the transitions, it accumulates their

predicted rewards along the path. For example, to update the statistics of the kth node in the iteration

path, the following update rule is used:

Q(sk, ak)← N(sk, ak)Q(sk, ak) +Gk

N(sk, ak) + 1
, (3.8)

where Gk is the sum of the new estimated value of the leaf state, sl, plus the total reward between the

kth node we are updating and the leaf node. Formally, Gk is given by

Gk =

l−k−1∑
i=0

γirθ(s
k+i, ak+i) + γl−kvθ(s

l). (3.9)

Lastly, we increment the visit count in each node. Figure 3.1 shows a search iteration.

Muzero’s learned model assumes that every action is legal and terminal states do not exist. In other

words, during search, the tree never reaches terminal states and maintains a constant branching factor.

This means that, when all the iterations are complete, some iterations might have chosen illegal states,

so the improved search policy, πππ (eq. 3.6), needs to be masked to only allow non-zero values for legal

actions.

Regarding training, once a game has been played, it is stored. With each observation ot, we also

store the improved policy πππt and an n-step bootstrapped value, zt, given by

zt =

n−1∑
i=0

rt+i + V (s0t+n), (3.10)
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Absorbing
states

Figure 3.2: Muzero’s unrolling process during training. An observation, o2, from a game was sampled for training.
The corresponding game is show in squares. The representation function hθ is applied to this observa-
tion to get the initial hidden state. Then, the same action sequence that was used to play the game is
applied when unrolling the hidden states, for e.g. the action used in the dynamics function gθ to gener-
ate s32 from s22 is the action applied in the environment that led to observation o52 from o42. The unrolling
happens for K = 5 steps. Random actions are used when the hidden state sequence surpasses the
game as it is the case for the transition from s32 to s42 and from this to s52. These two last states that do
not align with the game are called absorbing states.

where V (s0t+n) is the improved state-value stored in the root node of the tree at time step t+n, resulting

from all the backups. This improved value is the average of all the propagated values until the root during

search. The training part consists in sampling an observation of some stored game and unrolling it for

K steps, as explained in more detail in Figure 3.2. The overall loss is

lt(θ) = c||θ||2 +
K∑
k=0

[
lp(πππt+k, pθ(s

k
t )) + lv(zt+k, vθ(s

k
t )) + lr(rt+k, rθ(s

k
t , a

k
t )

]
, (3.11)

where lp,lv,lr are the specific loss functions for policy, value and reward, respectively. The hidden states

that go beyond the terminal observation, during the unrolling, are called absorbing states and the target

rewards, rt+k, and return, zt+k, are 0. This makes the search avoid going beyond these states while

planning. Regarding illegal moves, because the predicted policy will be updated to mimic the improved

policy vector, where the illegal actions have a value of 0, the MCTS will tend to avoid exploring them.

3.4 Other Works

Value Prediction Networks

Value prediction networks (VPNs) [27] are, arguably, the predecessor of MuZero. This work introduced

the idea of learning an abstract state model and using a planning algorithm with it. Both agents use a

function that transforms observations into hidden states. However, VPNs do not use a policy function,

but only a value function, and have one network to predict the reward and a completely different one to

predict the next hidden state. The planning algorithm used is also different from MuZero’s. VPNs uses a

similar search algorithm to minimax, that descends through the best b nodes at each depth, pruning the
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rest of the branches.

SAVE

A similar idea to AlphaZero is called search with amortized value estimates (SAVE) [9]. The algorithm,

when expanding a node, initializes all its successors with an action-value function, qθ(s, a), instead of

using a policy function. The maximum action-value of the successors is then propagated backwards.

This action-value function is updated based on two losses. The first is similar to AlphaZero and consists

in using a trajectory to find a target value based on either a Monte Carlo or a bootstrapped value. The

second fits the action-values predicted by the neural network with the improved action-values, Q, stored

in the root successors after the planning step. In other words, the action-value function, qθ, is updated

using the real trajectory and the planning tree.

Alternative Planning Algorithms

In a recent paper [7], the algorithms Monte Carlo tree search, best first minimax search and minimax

were compared for multiple games using a similar algorithm to AlphaZero (with a given model), showing

that MCTS is not always the best.

Besides this, the paper also investigated the usage of the simulated data in learning. The previously

seen algorithms discard most of the planning tree used. This work compared the usage of only trajec-

tories with a strategy called game tree bootstrapping [28], that uses all the states of the planning tree

and their backed up values to update its model. In their results, best first minimax was superior when

combined with tree bootstrapping to MCTS using only trajectories.
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The architecture we propose is designed for MBRL agents. We conduct an overview of it and its

separate elements. The architecture has the objective of allowing changes and extensions in each key

component, without being too complex to use or understand.

A RL agent iterates repeatedly over two major steps. The first generates data by interacting with an

environment and the second uses that data to update its functions, which provides for more accurate

estimations. The way to do each of these steps can vary immensely according to each algorithm. The

reasoning behind our work is to identify key steps in MBRL and implement each of these parts as

independently as possible, delegating the responsibility to the user to assemble each block consistently,

according to the intended agent. The interactions and dependencies between different blocks should be

kept to a minimum and well defined.

A module conceptualizes an important component of the agent that we generalize. The architecture

we propose has six: Environment, Loss, Model, Planning, Policy and Data. We consider every one of

these except the Environment to constitute the concept of agent. The Loss, Model, Planning and Policy

modules are part of the behavior of the agent, while the Data module concerns itself with the storage of

data to be used between them. The purpose of each module is to have different algorithms that can be

chosen to accomplish the module’s objective. It should be easy to add a new algorithm to each module

without changing the others. A simple scheme summarizing the structure of the architecture can be

seen in figure 4.1.

PlanningPolicyEnvironment

Model

Loss

Data

Game

Node

Figure 4.1: Basic architecture overview. The arrows show dependencies between modules. For instance, the Policy
depends on the Environment and on the Planning.
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4.1 Environment

A RL agent interacts with a problem, which we call environment. The different ways an agent can

interact with an environment are called actions. After every action, there is some information given to

the agent so that it can decide its next one, and so on until solving the problem. Its interface should,

at least, provide for a mechanism to step through the episode given an action sequence and should

return some information indicating its performance. The environment is completely independent from

the agent - the latter should know how to interact with the first, but not vice-versa. These classes can

implement themselves the problem we are trying to solve or simply serve as the intermediate between

the agent and the concrete way to interact with the problem. For example, for a real world robot agent,

this implemented class might receive the data from the sensors and structure it into observations (in

case of a POMDP) and convert the agent’s actions to the specific commands required to interact with

the robot.

4.2 Model

This module’s objective is to model, not only the environment, but also all the other functions required by

the Planning module. How they are calculated concerns only each model. Different search algorithms

might need new functions, so it is important for this component’s implementation to be efficient and

easily extendable. In this module, for the functions we want to learn, we assume them to be computed

using neural networks, but do not make assumptions about the particular structure of these networks.

The architecture should support both MBRL agents that learn the environment’s model and those that

receive a perfect one. If this module is queried for a next state, if it knows the environment’s dynamics,

it can return the true next state. If it does not, it returns an estimation.

4.3 Data

The Data module is used to store and transport information between modules. We divide this one into

two submodules. The first, the Node submodule, stores information about the planning done in each step

of the episode. A node coincides with an environment state and it is created by the planning algorithm.

The second is the Game submodule and it stores data returned by the environment and planning during

the episode.
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4.4 Planning

Just as in Sutton and Barto [11], in this work we consider state-space planning algorithms (as opposed to

plan-space planning [29]). In these, actions mediate transitions between two states. In traditional deep

reinforcement learning algorithms, in each step, the agent estimates the quality of the possible actions

available using a neural network. The objective of the Planning module is to provide enough information

about each action, in a given step of the episode, so the policy can choose the best possible action.

However, it does this differently from traditional DRL algorithms. Instead of using a neural network

alone to estimate the quality of each action, it uses a search algorithm in conjunction with the functions

available in the model passed. The reasoning behind using a search algorithm is to look ahead into

the space of (hypothetical) states to provide more accurate quality estimations about each action. It is

important to notice that this module does not come up with a plan to use during the actual interaction

with the environment. In fact, this module should not even be aware of the existence of an episode. It

simply makes estimations just like a normal neural model would in DRL without planning. The root node,

which represents the current state of the environment, will be returned to the policy and it will be used

to make a decision about the next action to take.

Lastly, as mentioned, the planning class should receive a model. How the model works internally is

irrelevant to the planning algorithm. As long as it can calculate all the required functions, it should work.

4.5 Policy

The Policy module has two responsibilities. It decides the action to take in every step of the episode and

it needs to store the relevant data coming from the environment and planning in the Data module.

The policy iterates through the whole environment episode, balancing between exploration and ex-

ploitation. In every step, it calls a search algorithm, which returns a node with enough information about

each action. Then chooses which one to take, according to its own algorithm (for instance, it might want

to choose a random action with ε probability and the best one otherwise). It is also responsible for storing

the whole episode information in a game instance, including the root node returned from the planning

algorithm.

Each policy should receive the instance of the planning class to use. As long as the node returned

by it has the interface needed by the policy, every planning algorithm should work. For instance, if the

policy wants to use the number of times an action has been chosen, then any search algorithm that

returns a node with this information (which is usually associated with best-first algorithms) should work.

In the end, after completing an episode, it will save in a game instance all the information returned

by the environment and the nodes given by the planning.
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4.6 Loss

After interacting with the environment, the model should be updated to be more accurate and insightful.

This can be done using the experience stored with the Data module to calculate a loss value. This value

is the result of a computational graph that is calculated using the neural networks in the model. It can

then be used to update the parameters of the networks [30]. In general, the loss can be calculated using

the trajectory stored or the nodes returned by the planning. Just like the policy, the loss class needs to

know the node class passed and, just like the planning, it accepts any model as long as it can calculate

the necessary functions needed to compute the loss value.

4.7 Summary and Final Notes

Our architecture provides these blocks, but assembling them together (in other words, creating the actual

agent) is the responsibility of the user. In general, the user only needs to deal directly with the policy

and loss interfaces. Regarding the other ones, the environment and planning should be instantiated and

handled by the policy. The model is created and passed to the loss and planning classes. Lastly, the

data ones are instantiated internally by the planning and policy, which are then returned by them.

In summary, the agent will ask the policy to generate data, which it does by interacting with the envi-

ronment internally, using a planning algorithm to create a trajectory and saving the relevant information

received from the environment and planning in a data class. This data is then returned by the policy to

the agent. It can then be used by a loss algorithm to calculate a loss value in order to update the model.
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In this section, we explain in detail our implementation. We describe it from the perspective of

someone interested in using our code, without over fitting to code details. The whole idea behind the

implementation lies in module interactions, so we will explain these using the concept of a module’s

interface, the set of methods and properties that are visible to the other ones. Appendix A shows the

class diagrams associated with each module.

Our implementation was done using Python 31, using Pytorch [30] to handle the tensors responsible

for the machine learning part. Python is an interpreted language, which allows easily for code to be

changed, without worrying too much about the program structure (as opposed to the usual compiled

languages). As long as the one using the language is aware of the inner details of the code, python is

extremely versatile. However, this advantage of the language can easily become its biggest problem. As

implementations grow, it becomes unfeasible to simply trust the user to be aware of those many details

in order to guarantee consistency. Deep learning code is notoriously known for being hard to debug,

since, due to its adaptability nature, it can still produce satisfiable results while in the presence of errors.

These problems can be managed if we apply good structural principles in our implementation.

5.1 Environment

The environment interface we use is similar to the openAI Gym environment [31]. These are modeled

as POMDPs, which means they are episodic and start in an initial state, changing to the next one upon

receiving an action by the agent. The observation does not necessarily reflect the complete internal state

of the environment and the next state depends only on the action given and the current state, not on

the previous environment history (Markov property). The first method that should be called is reset, that

restarts the internal state of the environment. The step method receives the action number and returns

three elements: an array corresponding to the next observation, the value of the reward associated

with that transition and a boolean value about whether or not the episode has reached a terminal state.

The action numbers start at zero and are sequentially numbered. Unlike the gym environments, our

interface allows for the existence of multiple player games. At each step, the number of the current

player can be found by calling get current player. The reward value is always given in the prespective

of the player who just acted. Traditional problems with only one agent are conceptualized as a one-

player problem, returning always the first player (number zero). Yet another extension from the gym

interface is the existence of illegal actions. For instance, if we’re playing tictactoe and choose to put a

piece in a non empty bracket. There are two methods that can be called to know which are the available

actions: get legal actions, that outputs a list with the actions’ numbers, and get action mask that returns

a vector with the action size where the zeros correspond to illegal actions and ones correspond to legal

1https://docs.python.org/3.0/
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Figure 5.1: The cartpole image given by the gym environment when the method render is called after calling reset.

ones. The other useful methods that should be implemented in each environment are get action size,

get num of players and get input shape.

We implemented 3 environments: Cartpole, Minigrid and Tictactoe.

CartPole

Cartpole is one of the most well known environments from the openAI gym. It was described by Barto,

Sutton and Anderson [32]. The idea is to balance a pole, which has one extremity fixated on a moving

cart, by applying forces to the left and right of it (fig. 5.1). If the forces are applied correctly, the movement

of the cart can balance the pole. The episode terminates when the pole is more than 12 degrees from

its original position or the cart is further than 2.4 units from the center. The observation is an array with

four values: cart position, velocity, pole angle and angular velocity. A reward of 1 is offered in each step,

so the objective is to maximize the duration of each episode. We did not implement it from scratch. Our

class simply adapts the original implementation, by calling it internally. We do have to complement it

with the information about the action size (which is two), legal actions (both of them, except when the

environment reached a terminal state) and players (only one player, the player number zero). In this

way, because our interface is so close to the gym one, it is extremely easy to reuse gym environments

without much effort.

MiniGrid

The minigrid environment2 is a NxN grid. The agent starts in one of the squares and the objective

is to reach a square goal (figure 5.2). Besides a position, at each moment, the agent has a direction

it is pointing at. In our environment, the goal square is fixed, but we can optionally decide where the

agent starts or choose for it to start in a random square each time it resets. This environment is partially

observable, being possible to observe a grid of 7x7 in each step. The observations are given in 7x7x3

2https://github.com/maximecb/gym-minigrid
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Figure 5.2: Rendered image of the initial state of a 4x4 grid world. The agent is currently on the top left corner and
the goal is in the bottom right.

arrays. The rewards are 0 unless the goal is reached, in which case it is 1. There are three actions:

turn left, turn right and move forward, in order. All the actions are always legal and when the agent

tries to continue past a wall, it simply does not move. Upon initializing this environment we can limit the

maximum number of steps and choose the value of N .

Tictactoe

Tictactoe is played in a 3x3 grid by two players. The two take turns filling an empty position in the grid.

The first to fill three spaces in a row (horizontally, vertically or diagonally) wins. The observation is a

numpy array with shape (2,3,3) - in other words, the observation is composed by two 3x3 arrays. The

first has 1 in the positions where the current player has played and 0 otherwise, while the second has

1 in the positions the adversary has played and 0 otherwise. When initializing the environment, we can

decide whether we want to play against an expert agent (in which case the environment has only one

player) or we want to do self-play, meaning that the user of the environment chooses the actions for

both players. The expert agent has three levels. The level 0 plays randomly. The next will play randomly

except if it sees moves that will block the third opponent piece in a row. In level 2, it also recognizes

immediate winning moves. In self-play, the reward is always 0, except for a play that leads to victory,

which is 1. In single agent mode, the reward is 1 for an action that wins, -1 for an agent that allows the

agent to win and 0 otherwise.

Final Remarks

Often, some algorithms and implementations need to change the structure of the environments in spe-

cific ways. For instance, Alphazero adds a stack of previous observations to the current one as input.

It is also common to change the structure of rewards by scaling it by some factor or adding a stronger
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penalty per step in the environments with sparse rewards. It is already customary in the openAI gym

to use environment wrappers that perform these operations. In our implementation, we follow the same

reasoning and assume these types of particular changes, to the outputs of the environment, to be the

responsibility of this module, freeing the others from these details.

Something else worth asking is why is it that the openAI gym does not need action masks and ours

does. The gym environments circumvent this need by, whenever an agent takes an illegal action, the

internal state does not change and, sometimes, a negative reward can be given to disincentivize these

actions. This solution can be applied to environments under our interface and, in fact, it is the one used

with minigrid. However, the problem starts when we have more than one player. In tictactoe, players

play in an alternating order. If the first player chooses a non-empty position on the board, under this

solution, the player would still be the same in the next turn, which would break the consistency between

player turns and force the planning algorithms to learn how to predict the next player.

5.2 Base Agent

Before advancing to the specific implemented details of the agent’s modules, we explain here the reason-

ing behind the algorithms implemented. The purpose of the architecture is to be extendable. Obviously,

we did not implement everything that it is possible. Strictly speaking, we can not say we implemented an

agent, since each module has several alternatives that can compose different ones. However, there is a

base idea for the algorithms in each module and that is what we explain here. To simplify, we denote by

this idea by base agent. This agent is designed to operate in environments with unknown models.

In AlphaZero and MuZero, there are two relevant functions that impact the descending of the tree in

the planning algortihms: the policy and the state-value function. For every node, its policy is calculated

when that node’s parent is expanded and the state-value is only calculated afterwards, when the tree

descends to this node and expands it. In MuZero, the policy value, that mediates exploration, is set to

zero for invalid actions, so the problem of expanding an invalid node does not exist. But what about

algorithms that are not best first search, like minimax, and can not use a policy function to identify

the invalid actions? Even if we consider best first search algorithms, recent proposed ones inspired

in AlphaZero, that use planning [7, 9], have used best-first functions to descend the tree that, instead

of estimating the state-value of the expanded node, they estimate its successors’. Meaning that, for

invalid nodes, even if the policy is zero, if the estimated value is not, the algorithm might still choose to

descend to these (see eq. 3.1). Since we are interested in a versatile base agent that works for diverse

components, we propose a solution that, not only allows for the latter types of best-first search, but for

non-best first algorithms like minimax. Our base agent uses a much simpler idea. It predicts and uses a

mask vector or, in other words, it predicts directly which actions are legal and which are illegal.
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Regarding other properties of the base agent, all the search algorithms we implemented estimate

the state-value of the successor nodes, instead of the expanded ones, and do not use a policy function.

Like MuZero, they predict the rewards received after taking each action and also use an encoded state

without explicit semantics. We let the specific MuZero implementation as an extension for future work.

5.3 Model

The model has the most challenging interface to design due to its very demanding requirements. This

module needs to be as efficient as possible, since it is used intensively in the Planning and Loss mod-

ules. Its internal structure (the neural network architectures) needs to be able to vary without constraint.

The most demanding problem, however, is its need to accommodate any combination of functions, being

easy to add new ones, in case a new search algorithm requires it. As an example of the problems that

might arise, consider two arbitrary functions (for instance, the state-value and policy functions). If we

want to use a double headed architecture [5], which means that both these functions share intermediate

calculations, we might have a single method that returns both these results while, inside, reusing the

common calculations, guaranteeing maximum efficiency. But what if we only require one of these oper-

ations later? With only a single method, we would be inefficiently calculating both functions when only

one is necessary. To solve this, it might be tempting to create one method that returns both functions,

and one method for each of the two alone, resulting in all possible combinations. But what if we want

to extend and add another function to the model? Now, we would have to add four methods (for a total

of seven). If we have four functions, 15 methods are needed. We can do better than this combinatorial

demand.

The solution implemented separates conceptually each different function into different classes that

we call operations. A specific model class should inherit all the operations corresponding to the functions

it can calculate. In this way, any other module can verify if the model passed is capable of calculating all

the functions necessary to its functioning (which also turns the code considerably more understandable).

In order to allow each model to have complete control over the way these functions are calculated, these

operations will share the same method. This method receives the information about which functions it

should calculate as an argument, returning all the required results. We can see this as performing a

query to the model: we tell it what to calculate and, internally, this method does so for the requested

functions as it sees fit. In practice, however, we do not have only one method in every model, but one

per type of input. So, for example, operations that require a hidden state to be passed share the same

method between themselves but do not share it with those that require a state and an action as input.

To maintain all of this logic structurally organized, there is a hierarchical class structure used with four

inheritance levels. On top, there is the abstract class of all the operations. Inheriting from this one,
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there are the classes that are associated with each particular type of input and define the interface of

the query method associated with it. The next layer corresponds to operation classes that correspond

semantically to a particular function. These have an attribute key that should be passed to the query

method when the corresponding functions need to be calculated. Lastly, we have the specific class

models that implement the operations it inherits from.

There are five specific functions used by our base agent. The first, representation function, hθ,

receives an observation and returns an encoded hidden state. The next two, state-value function, vθ,

and mask function, mθ, receive an encoded state and return, respectively, the estimated value for that

state and a predicted mask vector for its successors. Each index in the mask represents whether we

estimate the action to be legal or illegal, respectively giving it values closer to 1 or to 0. The last two,

reward, rθ, and next state, gθ, functions receive an encoded state and an action; and return, respectively,

the predicted reward associated with that transition and the next predicted state. In practice, to be more

efficient, the operations that calculate these functions receive a batch of arguments to allow the model

to take advantage of the parallelism of tensor operations. Details, for instance, maximum batch size

allowed, shape of the encoded state, vector normalization... should be left to the inner implementation

of each model and their constructor.

Designing good neural networks is a typical deep learning problem and it is usually task specific, so

it is not our focus here. We implement one model class (called Disjoint multilayer perceptron) that is

general enough for our base agent and supports the previously described five functions. Each one of

them is internally computed by an independent multi-layer perceptron. The structure of our implemented

class is shown in figure 5.3 and an example describing (in pseudo code) its behavior is given in algorithm

5.1.

Algorithm 5.1 example of a function that receives an observation and an action, and returns the pre-
dicted reward and value of the state that results from the transition. In line nº4 we want both the reward
and next state, so we pass both keys. In line nº5, if besides the value, we wanted to predict the mask,
we would have to add the key corresponding to the mask.

1: function TRANSITION REWARD VALUE(o,a)
2: model = DisjointMLP(args)
3: s← model.representation query(o,RepresentationOp.KEY)
4: r, s′ ← model.dynamic query(s,a,RewardOp.KEY,NextStateOp.KEY)
5: v ← model.prediction query(s′,StateValueOp.KEY)

return r, v
6: end function
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Figure 5.3: Class diagram of the implemented model, showing the operation classes it inherits from. The Dis-
jointMLP model is therefore the combination of these 5 operations. When calling one of these methods,
we have to pass the keys of the operations we want to calculate. How they are calculated is a respon-
sibility of this model.
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5.4 Data

The Game submodule is implemented as a single class. Since the goal of this submodule is to group

the whole episode and planning information, and the data received by the environment is well defined,

a simple class that saves the sequence of observations, rewards, nodes and relevant properties about

the environment (array shape of the observation, number of actions, number of players) should suffice.

Regarding the Node submodule, its purpose is to be able to store properties and values necessary

to the planning algorithm. There are three implemented. A basic node, the parent class of every other,

that is associated to an hypothetical state of the problem, which is represented by a encoded tensor

state s. The properties that can be retrieved by the basic node are a state-value, V (s), that predicts

the expected accumulated reward after that state, a mask vector that holds the validity value, M(s, a),

associated with an action a, the successor state of each transition, S(s, a), the state’s player, Pl(s) and

the reward stored per transition, R(s, a). The second node class implemented is an extension of the

first. It is supposed to be used by best first algorithms and, additionally, it stores the number of times

each node has been visited by the algorithm, N(s). The last node is yet an extension of the best first

node and it is designed to be used only by a Monte Carlo tree search. It stores a sum of state-value

estimations, T (s), and it redefines the calculation of the value estimation to be the average of them,

V (s) =
T (s)

N(s)
. (5.1)

The specific way these nodes are used can be better understood in the next section.

5.5 Planning

Our planning algorithms have a simple interface only composed by one method, plan, that receives the

environment’s current observation, player and mask. They support environments that are either single

player or two players playing alternatively. After the search is done, it will return a (root) node associated

with the current state of the environment. A tree structure resulting from the search algorithm is attached

to this node, recursively through node successors. The general idea of these algorithms is to find more

accurate estimations of a node’s state-value by using the values of its successors. When the context

allows it, we will use interchangeably the term node and state (since the properties stored in the node

refer to its state).

We implemented four search algorithms. They all use the five functions discussed before. An en-

coded state and a mask vector is predicted for every state in the tree. We define the action-value of a

node to be

Q(sk, a) =

{
R(sk, a) + V (sk+1) if Pl(sk) = Pl(sk+1)
R(sk, a)− V (sk+1) otherwise , (5.2)
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where sk+1 = S(sk, a). When relevant, for clarity, we use a superscript k to denote that the state sk

was created looking ahead k steps3, we can think of it as depth of the state in a planned trajectory. The

action-value can be seen as a 1-step bootstrapped value.

We will also define the notion of masked action-value, used when considering actions,

QM (s, a) =M(s, a) ·Q(s, a) +
(
1−M(s, a)

)
· cpenalty. (5.3)

For a perfect mask, we see that if the state is valid then the masked action-value is equal to the sim-

ple action-value, otherwise it is equal to the penalty constant, cpenalty, which penalizes state invalidity.

Without the penalty, an invalid successor will have the value of zero, which might still be better than the

alternative valid successors. An invalid state should never be chosen so, in theory, the constant cpenalty

should be minus infinity. However, in practice, the predicted masks are not perfect so we have to choose

a milder value, for instance a lower bound of the environment’s reward function. The penalty term should

only be used to choose an action, not to estimate the value of a state.

The four algorithms implemented start equally. They begin by creating the root node and the first

encoded state using the representation function, hθ, based on the observation passed as argument.

They also save the player and mask passed in this node. After this, the algorithms start differing.

Breadth First

There are two breadth first algorithms: minimax and a variation of our own that we call averaged minimax

(it resembles the expectiminimax algorithm [33]). Both incrementally build a tree until depth d. In each

iteration, they gather all the current leaf states and expand them until reaching the maximum depth,

one depth level at a time (in a breadth first manner). During a node’s expansion, the expanded state’s

mask, the successor’s encoded state and respective transition reward are predicted. If the environment

has two players, the new nodes will be instantiated with the opposite player. The nodes at maximum

depth have, in addition, their state-value also predicted. After the whole tree has been generated, it is

time to propagate the leaves’ state-values backwards until the root. The difference between these two

algorithms is in the backup rule. For some state s, the backed up value in the averaged minimax is given

by

V (s)←
∑
a∈AM(s, a) ·Q(s, a)∑

a∈AM(s, a)
. (5.4)

For a perfect mask, we can see that the value of each state becomes the average of all the legal action-

values. On the other hand, in minimax, the best successor is the one that maximizes the masked

action-value, but, when updating the actual state-value, we assume the successor to be completely

3The same notation as in MuZero, described in the Related Work section
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valid,

V (s)← Q(s, argmax
a

QM (s, a)). (5.5)

Best First

The other two implemented algorithms are of type best first: best first minimax search and Monte Carlo

tree search, both using a variation of the upper confidence bound (UCB) formula (used in the UCT

algorithm) to take into account the mask, resulting in what we call masked upper confidence bound

(MUCB),

argmax
a

(
QM (s, a) + cmucb ·

√
log(N(s))

N(S(s, a)) + 1
·M(s, a)

)
, (5.6)

where cmucb is a constant that mediates the intensity of the exploration.

In an iteration, when expanding a leaf node, instead of estimating this state’s value using the model,

the value of the successor states are the ones estimated. Besides the value; the mask, the next encoded

states and rewards are predicted. The difference between MCTS and BFMMS is also in the back

propagation part. In the BFMMS, the update rule is the same as in minimax (equation 5.5). In the

MCTS, similar to the traditional algorithm, the back propagation will add to each node at depth k, seen

during this iteration, a path value Gk. For the leaf, this value is given by

Gk =

∑
a∈AM(sk, a) ·Q(sk, a)∑

a∈AM(sk, a)
. (5.7)

In other words, the masked average of the leaf’s newly created successors is added to it. For every

node in shallower depths after that, the added quantity is recursively given by

Gk =

{
R(sk, ak) +Gk+1 if Pl(sk) = Pl(sk+1)
R(sk, ak)−Gk+1 otherwise , (5.8)

where 0 ≤ k < d. In simpler words, G accumulates the rewards as it backtracks. This path value is

added to each node and its improved state-value is now given by the average of all these path values,

V (sk)←
∑N(sk)
i=0 Gki
N(sk)

. (5.9)

Mask limitations

Finally, it is worth noticing that the mask is not useful when conducting updates when the algorithms are

past terminal nodes and every successor is invalid. In these cases, the BFMMS and minimax will still

choose an invalid successor and the MCTS and averaged minimax will still conduct an average over the

values of invalid states. This is however not a problem, since, as we will see, for the specific case where
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states are invalid because they are past a terminal node, the loss algorithms will teach the model to set

their values to zero.

5.6 Policy

The policy classes receive an environment and have an interface with one method, play game, that

returns a played episode, by interacting with the environment. The common behavior of the policies

implemented is to, in each step of the environment, make use of a planning algorithm to decide on the

next action. As the interactions with the environment happen, the relevant information (observations,

rewards, actions, nodes returned by the planning algorithm) is stored in an instance of the Game class

and then returned. They differ in how they use the node given by the planning algorithm to decide the

next action.

We implemented three specific policies: The first is an ε-value greedy. After calling the planning

algorithm and receiving the root node, it will choose with 1-ε probability the action with the highest

action-value and choose a random one otherwise. The second and third policies are only applicable to

best first algorithms since they base their action choice on the number of times a node has been visited.

The second policy is ε-visit greedy, which does the same as the first policy, but instead of judging based

on the highest action-value, it uses the highest number of visits. The third and last policy is the one used

by AlphaZero and MuZero. The policy, π, is based on a visit count distribution described by

π(a|s) = N(S(s, a))1/τ

N(s)1/τ
, (5.10)

τ is a temperature parameter, influencing the exploration/exploitation trade-off. The lower it is, the

greedier the policy becomes.

5.7 Loss

In this module, a loss value should be calculated given a node. Because tensor operations can be

easily parallelizable, the module’s interface receives a list of nodes in the method get loss and returns

a single loss value, which might result, for instance, from the averaging of the losses of all the nodes in

the list. Each node has access to its game instance, which means it also has access to all the actions,

observations, masks, players, rewards and nodes of its episode. We chose the unit of learning to be

the node and not the game since, when one node is a passed, only one game is also passed, while the

opposite is not true.

We have implemented three loss classes. All of them calculate the loss values associated with
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the state-value, mask and reward predictions, using a similiar unrolling process as MuZero and value

prediction networks (figure 3.2). The state of the respective node is unrolled for k steps (the next k states

are predicted using the actions taken during the real episode). The masks and transition rewards are

predicted for the unrolled simulated trajectory and a loss measuring the difference between the predicted

and real masks and rewards is calculated. Regarding the state-value prediction, the target value of the

absorbing states, those past the terminal one, is 0. For non-absorbing, it depends on which loss class

we choose. We implemented three different ones: Monte Carlo loss, Offline Temporal Difference and

Online Temporal Difference.

In the Monte Carlo loss, the target value, for a specific state is the (discounted) sum of rewards from

that state until the end of the trajectory. In both the offline and online temporal difference, the target

is a n-step bootstrapped value. The difference between the two is where this value comes from. The

offline TD is the one used in Muzero, where this value is the one stored in the root node returned by the

planning algorithm. However, if we are using a replay buffer and reusing the same nodes to calculate our

losses, this value stored in the node can easily become outdated - in fact, there is a version of MuZero

described in the original paper [26] called MuZero reanalyze that periodically redoes the planning of

some previous nodes, in order to update this stored value. We experiment with a simpler idea and

bootstrap using a value re-estimated every time we calculate the loss. This is done by applying the

representation funtion, hθ, to the bootstrapped observation, followed by applying the value function, vθ,

to the resulting encoded state, obtaining a new value estimation for it. We call this idea Online Temporal

Difference and a it is illustrated in figure 5.4.

Figure 5.4: Online temporal difference loss with a 2-step bootstrapped target. The value of state s02 is updated
based on the target value r2 + r3 + vθ(s

0
4).

Each loss class does not need to work for every node class. In fact, if we want to extend our

implementation to use a policy function (as in AlphaZero and MuZero), a class responsible to calculate

the loss for the policy would only work with best first nodes, since these are the ones that store the

number of visits. This is simply a reflection on the fact that the Loss module might update the model

using specific planning information, which is different according to the search algorithm used.
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5.8 Summary and Final Notes

We create the components, but the user is the one who has to assemble these blocks according to the

desired logic. An example of the logic of how to assemble these blocks in order to create a simple agent

is shown in algorithm 5.2.

Algorithm 5.2 Pseudo code showing how to assemble the architecture blocks to create a simple agent
that runs for N iterations.

1: function SIMPLE AGENT(N)
2: env = Environment()
3: model = Model()
4: planning = Planning(model)
5: policy = Policy(env,planning)
6: loss = Loss(model)
7: optimizer = SGD(model) . Pytorch optimizer
8: for i in 0...N do
9: game = policy.play game()

10: loss value = loss.get loss(game.nodes)
11: optimizer.zero grad()
12: loss value.backward() . tensor operation
13: optimizer.step() . optimizer update
14: end for
15: end function

In practice, the get loss method returns, besides the loss value, a dictionary with relevant information

that is class specific. It should pass intermediate steps that might be useful for logging or reusing.

There are other classes implemented that are not strictly necessary for the architecture to work, but

are useful. We implemented two replay buffers: one that samples nodes uniformly and another that

samples according to a priority associated to each node [19]. Also, to facilitate the optimization, we

implemented an optimizer class that is capable of clipping the gradient norm, which is particularly useful

to avoid exploding or vanishing gradients [1].
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5.9 Example

We now show how to instantiate a simple agent using our code. In this example, our agent will act in

cartpole using minimax and a ε-value greedy policy. First, we instantiate the environment and limit it to

a maximum of 500 steps (lst. 5.1).

Listing 5.1: Instantiating the cartpole environment.

1 environment = CartPole(500)

In our model, we use two layers with 80 neurons, each, for the value function and one layer with 100

neurons for the rest (lst. 5.2).

Listing 5.2: Instantiating the implemented model, DisjointMLP.

2 model = Disjoint MLP(
3 observation shape = environment.get input shape(),
4 action space size = environment.get action size(),
5 encoding shape = (8,),
6 fc reward layers = [100],
7 fc value layers = [80,80],
8 fc representation layers = [100],
9 fc dynamics layers = [100],

10 fc mask layers = [100]
11 )

For planning, we use a minimax with a maximum depth of 3 and an invalid penalty of −1 (lst. 5.3).

Listing 5.3: Instantiating a 3-depth minimax planning algorithm.

12 action size = environment.get action size()
13 num of players = environment.get num of players()
14 max depth = 3
15 invalid penalty=-1
16 planning = Minimax( model,
17 action size ,
18 num of players ,
19 max depth ,
20 invalid penalty)

A ε-value greedy policy is used with 5% exploration. The reduction argument serves to indicate to

the policy that is has to prune the node structure returned by planning (only keeping the root node), in

order to save memory (lst. 5.4).
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Listing 5.4: Instantiating an 5%-value greedy strategy policy.

21 epsilon = 0.05
22 reduction = ' root '
23 policy = EpsilonGreedyValue(environment ,
24 planning ,
25 epsilon,
26 reduction)

We use a Monte Carlo loss with 5 unroll steps and a γ discount of 0.99 (lst. 5.5).

Listing 5.5: Instantiating a Monte Carlo loss with 5 unroll steps.

27 unroll steps=5
28 gamma discount=0.99
29 loss module = MonteCarloMVR(model,unroll steps ,gamma discount)

Lastly, we instantiate two auxiliary classes. The first is a uniform replay buffer (lst. 5.6).

Listing 5.6: Instantiating a uniform replay buffer

30 max buffer size = 1000
31 storage = UniformBuffer(max buffer size)

and the second is an optimizer that will clip the norm after it surpassed the value of 20. We put a default

optimizer and scheduler in the DisjointMLP model that we pass to the optimizer, but any other would

work as well (lst. 5.7).

Listing 5.7: Instantiating an optimizer

32 max grad norm = 20
33 optimizer = SimpleOptimizer(model.parameters(),
34 model.get optimizers(),
35 model.get schedulers(),
36 max grad norm)

Now that we have instantiated all the necessary blocks, we have to assembled them to create the

agent’s logic. We will use the same logic as the algorithm 5.1 and update for 1000 episodes with 10

updates in each one and a batch size of 128 (lst. 5.8).

Listing 5.8: Assembling the instances of each module in order to create a simple training logic.

37 episodes = 1000
38 updates per episode = 10
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39 batch size = 128
40 scores = []
41 for ep in range(episodes):
42 game = policy.play game()
43

44 score = sum(game.rewards)
45 print("episode:"+str(ep)+ " score:"+str(score))
46

47 storage.add(game.nodes)
48

49 for lep in range(updates per episode):
50 nodes = storage.sample(batch size)
51 loss, info = loss module.get loss(nodes)
52 optimizer.optimize(loss)
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In this section, we experiment our implementation using the three environments implemented (cart-

pole, minigrid, tictactoe). For every environment, we will try to find good agents - good combination of

algorithms for each component. We will not try every single combination of algorithms. Instead, we

run three different progressive experiments per environment. The first compares planning algorithms.

The best one is then used in the second experiment to compare loss algorithms. The chosen planning

algorithm with the best loss is then used to find the best policy, leading to the final agent.

For every environment, we play a full episode, store it, then conduct 10 updates, each with a batch

size of 128 nodes. We show the results as a function of training steps, which are the number of updates

done. In each experiment, the selection criterion is the algorithm with the highest average in the final

step.

As default, the loss used is the Monte Carlo one and the policy used is ε-value greedy, whose

parameters can be seen in each environment’s second and third experiment, respectively.

6.1 Cartpole

For cartpole, we limit each episode to a maximum of 500 transitions and report the results for each

episode as the average of the last 100. We use our Disjoint MLP with one layer of 80 neurons in every

operation. The encoded state used has size 12. We use a uniform replay buffer with a maximum capacity

of 105 transitions. Cartpole does not have illegal actions, our masked penalty used here is 0 as default.

We ran every experiment for 1000 episodes (or 10000 training steps). Each is repeated 10 times and

averaged. The summary of this experiment can be seen in table 6.1.

Planning

Cartpole has a branching factor of 2. In every planning algorithm we will expand 16 nodes. In the

breadth first algorithms this corresponds to exploring a tree of depth 4. The results can be seen in figure

6.1. The best algorithm was the averaged minimax, which is used in the next experiments.

Loss

For the loss algorithms, 10 unroll steps and a gamma discount of 0.95 are used. For the temporal

difference losses, the bootstrapping step is 10. The results can be seen in figure 6.2. The best loss

algorithm was the offline temporal difference.
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Figure 6.1: Comparison between planning algorithms for averaged minimax in cartpole
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Figure 6.2: Comparison between loss algorithms for averaged minimax in cartpole

Policy

There is only one policy that is compatible with breadth first algorithms. In order to compare different

policies, we picked MCTS, which was the best best-first search algorithm in the first experiment, ran

the loss experiment to find the best loss for it and compared different policies. The loss experiment with
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Results for Cartpole
Search Loss Policy Max Min Mean Median
Avg. Minimax MC loss ε-value greedy 463.0 188.6 377.4 407.8
Avg. Minimax ON TD ε-value greedy 393.3 255.5 334.4 334.4
Avg. Minimax OFF TD ε-value greedy 476.5 318.7 429.6 459.6
BFMMS MC loss ε-value greedy 450.7 119.5 231.6 227.6
Minimax MC loss ε-value greedy 401.6 258.0 331.1 335.7
MCTS MC loss ε-value greedy 473.1 142.6 311.5 335.2
MCTS ON TD ε-value greedy 471.3 160.4 370.7 375.6
MCTS OFF TD ε-value greedy 496.1 202.8 392.8 468.1
MCTS OFF TD ε-visit greedy 476.2 138.6 360.7 410.9
MCTS OFF TD Visit distribution 494.0 139.6 303.0 303.3

Table 6.1: Summary of the final results of the agents tested for cartpole

MCTS is given in figure 6.3. The three loss algorithms have similar results, but the offline TD was slightly

better in the final result.

For the policy experiment, we use 5% exploration for the ε-greedy strategies and a temperature of 1

for the visit distribution policy. The results can be seen in figure 6.4. The final best agent found, according

to the maximum mean, was the averaged minimax with offline temporal difference and ε-value greedy.
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Figure 6.3: Comparison between loss algorithms for Monte Carlo tree search in cartpole
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Figure 6.4: Comparison between MCTS policies and the best averaged minimax agent in cartpole

6.2 Minigrid

We instantiate the minigrid environment with a 6x6 grid. Each episode starts at a random position and

is limited to a maximum of 15 transitions. Regarding our agent’s parameters, our Disjoint MLP has one

layer of 100 neurons in every operation. The hidden state has size 15. We use a prioritized replay buffer

with a maximum capacity of 25000 transitions. Minigrid does not have illegal actions, so our masked

penalty used here is the default value of 0. We ran every experiment for 2000 episodes (20000 training

steps). Each is repeated 10 times and averaged. The results are given as the average of the last 100

episodes. The summary of this experiment can be seen in table 6.2.

Planning

Minigrid has a branching factor of 3. In every planning algorithm we will expand 27 nodes. In the breadth

first algorithms, this corresponds to exploring a tree until a maximum depth of 3. The results can be seen

in figure 6.5. The best algorithm here was Monte Carlo tree search.

Loss

We use 7 unroll steps and a gamma discount of 0.99 in every loss algorithm. For the temporal difference

losses, we use a bootstrapping step of 1. The results can be seen in figure 6.6. The best loss was the

Monte Carlo loss.
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Figure 6.5: Comparison between different planning algorithms in minigrid
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Figure 6.6: Comparison between different loss algorithms in minigrid

Policy

For the policies, we use 5% exploration for the ε-greedy strategies and a temperature of 1 for the visit

distribution policy. The best agent found was Monte Carlo tree search with Monte Carlo loss and ε-value

greedy for all measurements seen in table 6.2.
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Figure 6.7: Comparison between different policy algorithms in minigrid

Results for Minigrid
Search Loss Policy Max Min Mean Median
Avg. Minimax MC loss ε-value greedy 0.90 0.60 0.76 0.75
BFMMS MC loss ε-value greedy 0.63 0.41 0.54 0.56
MINIMAX MC loss ε-value greedy 0.91 0.71 0.79 0.78
MCTS MC loss ε-value greedy 0.99 0.76 0.87 0.87
MCTS MC loss ε-visit greedy 0.87 0.00 0.62 0.76
MCTS MC loss Visit distribution 0.33 0.22 0.26 0.24
MCTS OFF TD ε-value greedy 0.91 0.63 0.73 0.73
MCTS ON TD ε-value greedy 0.86 0.52 0.73 0.75

Table 6.2: Summary of the final results of the agents tested for minigrid

6.3 Tictactoe

For tictactoe, we learn using self-play. To test our agents, we play 100 games against an expert agent

(level 1 in our tictactoe implementation) after every 500 self-play games (or 5000 training steps), and

report the mean score. When playing against the expert we remove exploration from the policy. Our

Disjoint MLP has one layer of 100 neurons in every operation, except in the operation that returns the

next encoded state, which has 200. The hidden state has a size of 32. We use a prioritized replay buffer

with a maximum capacity of 25 · 103 transitions. Tictactoe has illegal actions, we use a masked penalty

of −1 which is a lower bound of the reward function. This environment is considerably more challenging

than the previous, especially because we train it using self-play, so we run it for 104 episodes (105 training

steps). Each experiment is repeated 5 times. The summary of this experiment can be seen in table 6.3.
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Planning

Tictactoe has a branching factor of 9. In this experiment, we expand different amounts of nodes de-

pending on whether it is a breadth first or best first algorithm. In the first, we explore the tree until a

depth of 2, which corresponds to 81 nodes. However, tictactoe, unlike the previous environments, has

illegal actions. Best first algorithms can easily avoid illegal actions. The breadth first ones could also

avoid these if the model was given. To compensate, we use less expansions in the best first algorithms

based on a simple heuristic: for trajectories that would end in a draw, there are 9 boards. Each one has

one less legal move than the previous, so the minimax trees of depth 2 in each board would evaluate

9 ∗ 8, 8 ∗ 7 ... leaf nodes. The average is then given by
∑9
i=1(i(i − 1)/9 = 26.6. We will use a rounder

number and expand 25 nodes in each best first algorithm. The results can be seen in figure 6.8. The

best algorithm was the best first minimax search.
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Figure 6.8: Comparison between different planning algorithms in tictactoe

Loss

We use 5 unroll steps and a gamma discount of 0.99. For the temporal difference losses, we use a

bootstrapping step of 1. The results can be seen in figure 6.9. The offline temporal difference achieved

a better mean score in the end.
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Figure 6.9: Comparison between different loss algorithms in tictactoe

Results for Tictactoe
Search Loss Policy Max Min Mean Median
Avg. Minimax MC loss ε-value greedy 0.28 0.01 0.14 0.12
BFMMS MC loss ε-value greedy 0.48 -0.02 0.29 0.34
BFMMS OFF TD ε-value greedy 0.54 0.39 0.48 0.49
BFMMS OFF TD ε-visit greedy 0.41 0.14 0.30 0.31
BFMMS OFF TD Visit distribution 0.53 0.45 0.48 0.48
BFMMS ON TD ε-value greedy 0.38 0.23 0.29 0.30
Minimax MC loss ε-value greedy 0.21 0.12 0.14 0.13
MCTS MC loss ε-value greedy 0.35 0.02 0.25 0.28

Table 6.3: Summary of the final results of the agents tested for tictactoe

Policy

For the policies, we use 5% exploration for the ε-greedy strategies and a temperature of 1 for the visit

distribution policy, when training and choose always the best action when testing against the expert.

The results can be seen in figure 6.10. There is a tie between two agents, which use best first minimax

search and offline temporal difference, but differ in policy. One uses the ε-value greedy and the other

uses the visit distribution. Both have pretty much the same median and mean (table 6.3), but the agent

that uses the visit distribution is consistently better throughout the experiment as seen in fig. 6.10, so

we will consider this one to be the best agent.
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Figure 6.10: Comparison between different policy algorithms in tictactoe

6.4 Discussion

Every problem is different and the results captured for these do not automatically guarantee the same

for any other. However, these have distinctive characteristics of their own, making them good testbeds

to see if our implementation works. Cartpole has a strong reward signal, but is very long; as opposed to

minigrid, which has a sparse reward signal but short episodes. These last two do not have illegal actions,

which make them suitable to see if our implementation works in common environments. Tictactoe, on the

other hand, can be seen as the final challenge, since it requires a good use of the mask learned and due

to the self-play used during training, a technique known to be challenging in RL. In all of these, the best

agents found achieved very good results, reaching almost the maximum score in cartpole and minigrid.

For tictactoe, the expert is good at defending against obvious plays and it is not good at attacking, so

it is expected that a very good agent will win frequently when it starts and tie when the opponent does,

leading to a score near 0.5. Our best agent gets very close to this value. The idea of predicting a mask

directly and the algorithm adaptations described in this thesis seem to work well.

The most surprising result is the best planning algorithm in cartpole being the averaged minimax.

This algorithm was created by us in this work based on the very naive idea of averaging over all suc-

cessors in each node. Out of all four algorithms, it is the only one that does not theoretically converge

to the minimax function. Still, it was better than all the others in cartpole; achieved a better result than

BFMMS in minigrid and had the same result as minimax in tictactoe.

Regarding our other idea, the online temporal difference, it was not particularly better than the other
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two, but it was still fairly consistent, achieving better results than Monte Carlo loss in some experiments.

The most important observation, however, is that, for each component, different algorithms were

better according to the environment. For example, the BFMMS, that was the worst in cartpole and

minigrid, was the best in tictactoe. Similarly, the visit distribution policy that was bad in the initial two,

was very good in the third environment. This motivates the existence of works like ours that facilitate

the variation of different agent combinations. It also suggests the possibility of improving state of the art

MBRL agents, like Muzero, in certain environments, by modifying their components and finding more

suitable algorithm combinations.
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7.1 Conclusions

In this thesis we presented a modular architecture that identifies separate relevant components for MBRL

agents that use planning algorithms. Then we provided our own specific implementation of this architec-

ture, capable of searching in domains with a variable set of actions in each state, by learning an action

mask directly. We implemented several search algorithms, adapting them to the mask. One of them,

called averaged minimax, was proposed in this work and yielded surprisingly good results. Different loss

methods, policies and environments were also implemented. Lastly, we experimented this implemen-

tation, demonstrating that it works and achieves good results for the environments implemented. The

experimentation done seemed to indicate that the best algorithm combination in an agent is problem

dependent, motivating the need for tools that facilitate the implementation and variation of the different

parts of an agent, like the ones introduced in this thesis.

7.2 Future Work

This work was motivated by the need for tools that allow extension, so it is only natural that we have

some suggestions about how to extend our work.

The most obvious suggestion is to implement AlphaZero and MuZero and study if, by varying some

of their parts, it is possible to bring the hardware requirements down. If the hardware resources so allow

it, a comparison, using more challenging environments, between these agents and the one proposed in

this thesis might be interesting.

Some other ideas are, for instance, teaching the model to predict the observations exactly as they are

given by the environment; using every node in the search tree as data [28]; add loss methods based on

the TD(λ) algorithm; implement our base agent for the case of non-deterministic environments (which is

also a suggestion described in the paper of Muzero [26]); add search algorithms like A* [34], K-BFS [35],

IDA* [36], B* [37], among others.

We do not expect our work to allow every single idea regarding MBRL algorithms, as that would

be a very ambitious objective, but to simply be able to accommodate a diverse range of them that are

common in research.
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A
Diagrams

This appendix section shows the class diagrams associated with the particular implementation pro-

posed.
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Figure A.1: Class diagram of the implemented environment module

Figure A.2: A simplified class diagram of the implemented Data module. In practice, the Node’s interface is slightly
longer, contained other auxiliary methods, and the attributes are only accessible through methods.
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Figure A.3: Class diagram of the implemented loss module

Figure A.4: Class diagram of the implemented model module
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Figure A.5: Class diagram of the implemented planning module

Figure A.6: Class diagram of the implemented policy module
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