Distributed Ledger Technology to Enable Secure
Management of IT Infrastructures

Development and evaluation of a Proof-of-concept tool using Hyperledger Fabric

Miguel Oliveira
Department of Computer Science and Engineering
Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal
moreira.oliveira@tecnico.ulisboa.pt

Abstract—IT Infrastructures have grown in both size and
complexity. To help administrators to manage their infrastruc-
ture, several Infrastructure Management Tools have been created.
However, none of them implements a secure a traceable log of
changes that can bring accountability to the management of such
infrastructures. On the other hand, recent research and devel-
opment in blockchain technologies have allowed for the creation
of Distributed Ledgers that can, in theory, solve the problem by
providing a secure, immutable and traceable ledger that can store
the changes that the infrastructure management tools apply to de
infrastructure. In this Thesis, we develop a proof-of-concept solu-
tion that incorporates a Distributed Ledger, Hyperledger Fabric,
and infrastructure management tools, Ansible and Terraform, to
prove the suitability of the usage of a distributed ledger to provide
a secure inventory and log of changes in a manner that enables
for traceability and accountability for all modifications to the
infrastructure, while also providing user identity management.

Index Terms—Infrastructure Management; Blockchain; Dis-
tributed Ledger Technology; Software Defined Infrastructure;
Provisioning; Ansible; Terraform; Hyperledger Fabric; Trace-
ability; Accountability;

I. INTRODUCTION

Currently, due to the continuous development of new and
more complex software systems, tools, and applications, em-
ploying new development methods like Continuous Integration
(CD[1]] and Continuous Delivery (CD)[2]], the IT Infrastruc-
tures have grown in size and complexity, both in large data-
centers, typically of services providers, and in smaller ones
of private businesses that still maintain their own physical
infrastructures. These changes were needed to ensure the
necessary adaptability and versatility of the Infrastructures
to enable them to be constantly changing on a logical level
with minimal physical level changes. To enable these changes,
new technologies, such as virtualization, containerization and
Software Defined Networking (SDN) were employed, aiming
to separate the underlying hardware from the software running
in those infrastructures|3|].

By combining the benefits of software defined computing
infrastructure, using virtualization and containerization tech-
nologies, and the SDN concept, was possible to create large
infrastructures that can be controlled and managed from one
point (with the necessary redundancies) and that enable users
to have a limited access to a part of the computing and storage
resources of the infrastructure.

To manage these software stacks, several tools were created.
These tools usually accept as input plans or scrips, written
in a declarative language that may or not be specific for
the tool (instead of being specific for the hardware and
software running in the infrastructure). The tools are capable
of converting these plans into actions that are executed against
the several components of the infrastructure, and then can
detect all errors and misconfigurations, allowing for the easy
monitoring of the changes being applied and enable for the
easy detection of inconsistencies across the several assets in
the infrastructure.

However, since different tools have different objectives, it is
common practice for the administrators of the infrastructures
to to use different tools of their preference to completely cover
the lifecycle of the resources. This can lead to inconsistencies
(for example, trying to configure a resource that has not been
provisioned), lack of awareness about the global state of the
infrastructure, and also lack of a trusted environment where
auditability and traceability are ensured. Furthermore, since
little or no history of changes is kept, it is very difficult to
trace back individual actions, consequently being very difficult
to revert them or investigate who executed some change and
when[3].

Some of these problems can be solved by using an orches-
trator, able to monitor and control the activity of each tool and
to keep a resource inventory of the Logical and Physical Infras-
tructure status, with information about the available resources,
currently allocated resources and their ownership, and even
some knowledge base related with those resources. Although,
at first, the idea of a database to keep a resource inventory can
appear to solve all problems described, it does not. A database
can be very good to provide information on the current state
of the infrastructure. However, this type of solution does not
ensure the traceability of the all the actions that brought the
infrastructure to the current state (i.e., the actual state stored
in the database) and does not ensure an immutable historic
record of previous actions over the infrastructure or over the
database (for example, it is possible for someone to delete
information from the inventory, allowing for the cover up of
malicious activities without leaving a trace)[3]].

From a security and traceability perspective, as the infras-
tructures grow larger and more valuable services are run on
them, the need for ensuring the security of the infrastructure

increases. At the same time, as more people need to integrate
the management teams, it is increasingly important to ensure
everyone can know what has been done, what is pending and
how to revert changes. This can be solved by introducing
access control to the management tools and by keeping a log
of all the changes that have been commited|3].

It is also important to ensure that the generated logs are im-
mutable to prevent malicious users from deleting or changing
the logs. The use of Distributed Ledger Technology (DLT) and
a Distributed Ledger (DL) can help to ensure these security
constraints while also taking an active role in the verification
of the state of the infrastructure and verification of business
logic, for example, dependency verification when modifying
assets. This behaviour is ensured by using chaincode, or smart
contracts, that are in fact general purpose code that the ledger
executes in order to register or modify new entries in the state
database, while also building the logs of actions[3].

Our objective with this work is to evaluate the suitability
of a Blockchain-based DL to provide a secure log storage
and inventory (state database) of the infrastructure, while also
harnessing its chaincode capabilities to ensure business logic
verification automatically, such as ensuring that new actions do
not break dependencies between different infrastructure assets.

To make this evaluation a Proof-of-Concept tool that acts
as infrastructure status tracker will be developed, employing
a DL to maintain a log of changes as well as a secure
inventory that represents the state of the infrastructure. In
order to track changes being applied, it will also act as an
orchestrator between the different infrastructure management
tools, allowing the user to have a single point of contact to
manage the entire infrastructure.

The DL will also be programmed with proof-of-concept
chaincode to evaluate all the actions taken over the infrastruc-
ture, ensuring their correctness, verification of permissions and
dependency tracking between assets.

In the following, Section [[I] explores the current state of
the art, and related works, Section describes the chosen
architecture, the requirements for implementation and the main
aspects of the implementation of the tool, Section |IV|provides
explanations for several design choices, Section [V] presents the
proposed methodology for the evaluation of the work, and its
evaluation, and Section presents a summary of the whole
document.

II. STATE OF THE ART

To develop this tool, it is important to understand the current
state of the art in the related areas. Firstly, we will discuss
the existence of similar tools and systems that enable a
centralized management and logging point for an infras-
tructure. Secondly, as it is the main area of analysis of this
project, it is needed to understand the DLT, the DLs and, more
specifically, the workings and capabilities of the DL that will
be used in this proof of concept, while also comparing it to
some other relevant DLs. We will also present some examples
from the literature of the usage of DLs, in areas different
from IT Infrastructure Management, but at the same time with
similarities to the work we present on this project. Thirdly, we

will evaluate, compare and discuss different Infrastructure
Management Tools, since they ensure the connection between
this tool and the physical infrastructure, and will be present
in this proof-of-concept tool as an example of the adaptability
of this tool.

A. Similar Tools and Solutions

There are several similar tools and toolsets that aim to
centralize an infrastructure management and provide a cen-
tral logging database with authentication and access control
capabilities. However, we could not find any that was either
open sourced or free, since most of them are commercial
solutions with high costs and developed by companies that
use them as a source of profit. Although by being closed
sourced and payware the available information is sparse and
not technical, avoiding a meaningful comparison with the
proposed project, this shows that there is a need for tools
with these objectives in the industry. Additionally, from our
research, none of those tools harness the capabilities of DLT's
to improve their functionality or security, instead relying on
traditional technologies such as normal database systems. In
general, these frameworks, similarly to the one proposed in
this project, work as a middle layer between the users and the
tools that manage the hardware and software.

B. Distributed Ledger Technology

The DLT ensures the logging of information in a highly
available, append-only database by using physically distributed
storage and computing devices, even in an untrustworthy
environment. There are many implementations of this technol-
ogy, with different objectives and employing different designs,
based on Blockchains or Directed Acyclic Graphs (DAGs)[4].
In general, DLs are tools and applications based on DLT, i.e,
delivering highly available, append-only distributed databases
working on untrustworthy environments, where Byzantine
failures can happen, such as crashed or unreachable nodes,
occurrence of significant network delays, and even malicious
behavior of nodes. DLs are comprised of separate Nodes that
work together to maintain a consistent state of the replicated
ledger across all the nodes [4]. Some comparative studies
about DLs are presented in [4], [S]], and [6]]. We will focus our
work on the Blockchain based DLs because of the blockchain
capacity for ensuring that only exists one concurrent state on
the ledger, opposed to DAGs, where many concurrent states
can coexist. A Blockchain is a distributed and decentralized
data structure that works as chain of data nodes where each
node ensures the integrity of the previous one using crypto-
graphic functions5], [[7]. This structure ensures, by design, the
requirement for immutability of the stored logs. Additionally,
the Blockchain implementation in the DLs is a private one.
This means that access to the blockchain and the information
stored in it is controlled, for both reading and writing by code
external to the chain, the Ledger itself. This design, opposing
to the Public blockchains, does not require any algorithm to
regulate the addition of new blocks such as proof-of-work, as
used on many public blockchain implementations like Bitcoin
or Etherium(7]], relying just on consensus algorithms to decide

on the order of the blocks added to the blockchain across
network nodes|8]].

1) Smart Contracts: Smart contacts, also called Chaincode,
are programs that are executed in order to change the state of
the ledger[9]. While in a traditional database it is usual to
simply commit information to the database, in a DL all the
changes to the state database are committed via smart con-
tracts. These smart contracts are coded in some programming
language, being it general purpose or not, depending on the
specific implementation of the DL[9], [[10]]. This software layer
enables custom processing of all the actions submitted to the
ledger, enabling both fine grained access control such as a Role
Based Access Control, or Attribute Based Access Control,
and the verification of business logic, for example, verification
of constraints for the deletion or modification of assets based
on the state of the ledger or even external factors[9], [11]], [12].
It is important to note that all transactions, both write or read,
must be implemented as functions in a smart contract, and, to
be executed, must be executed by calling the corresponding
function on the smart contract[]].

2) Hyperledger Fabric: Hyperledger Fabric is a “modular
and extensible open-source system for deploying and oper-
ating permissioned blockchains”[8]]. Since it is intended to
be used as a part of bigger solutions and systems, it is
very configurable, modular, and offers complete Application
Programming Interfaces (APIs) in Golang, Java, Javascript and
Typescript that enable it to be controlled from other systems.
From an architecture perspective, Fabric has two types of
nodes, Peers and Orderers, responsible for the execution of
smart contracts and maintaining the state database, and for the
maintaining of the blockchain, ordering the blocks that are to
be added, respectively|8].

Another important component of any Fabric deployment is
the Identity Management. Each user and machine connection
to the deployment has to have an identity, in a form of
a cryptographic key pair, together with a Certificate signed
by a trusted Certificate Authority (CA). These files are then
organized in an Membership Service Provider (MSP), that
is a folder structure that identifies some identity (user or
machine). The Hyperledger Fabric project provides an imple-
mentation of a CA that is customized to automatically produce
the cryptographic material in the format required by Fabric
(MSP), although any CA can be used. All identities in Fabric
are organized in organizations, that can be implemented to
reflect different real life organizations/companies, or simply to
provide some separation and organization in the logical Fabric
Network|[8]].

As explained in detail in [8]], the main difference in Hy-
perledger Fabric in comparison to other DLs is the workflow
for any given transaction. Instead of the traditional Order -
Execute flow, Hyperledger Fabric uses a Execute - Order -
Validate flow that increases throughput and reduces execution
times for the transactions. It also helps mitigating some issues
with smart contracts such as non-termination.

3) Using Distributed Ledger Technology: As explained in
[9], since DLs can provide a trusted environment in untrusted
and opaque environments, it can be used as a base for the
processing of inter-organizational business processes. These

processes can be fully represented in smart contracts, since
they are programmed with general purpose programming
languages that can execute logic and conditions. Since the
translation from the business process’s logic to the smart
contracts can be modeled, the inverse translation is also
possible, enabling the monitoring of the processes by people
that do not need to understand the logic behind a DL, by
presenting them with a Graphical User Interface (GUI). Since
the management of IT Infrastructures can be also represented
as business models, a similar process can be employed to
enable monitoring of IT infrastructures using a DL and smart
contracts.

It is also possible to use Hyperledger Fabric and its smart
to contracts to enable user authentication and Attribute-Based
access control. As the authors in [13] demonstrate, this
technology can ensure the required auditability for Access
Control Systems. Using a blockchain as base technology, this
system also ensures a high level of transparency. The study
also provides an experimental performance evaluation that
shows this system can process large numbers of requests. This
indicates that it should be possible to use Hyperledger Fabric’s
technology in this project in order to enable user authorization
and authentication with acceptable performance and fulfilling
the goals.

The work presented in [[11]] also focus on the benefits of
integrating blockchain a based solution into already exist-
ing systems. In this paper, the Hyperledger Fabric, one of
the major Blockchain based Distributed Ledger Projects, is
presented as a tool to enable supply chain management. The
possibility of running code integrated with the blockchain, the
so called chaincode or smart contract, enables the verification
and execution of business logic and supply chain specific
conditions in order to automate most of the tasks related to
the management of the products. The introduction of smart
contracts to manage assets is also considered in our proposed
solution, since it enables automatic verification of inventory
conditions to accept or abort some new inventory changing
operations.

The authors in [[12] demonstrate the advantages of using
a Distributed Ledger, based on blockchain, as a foundation
for a platform for Pharmaceutical Cold Chain Management.
In that paper, the authors provide an example of how the
smart contract technology can be used to verify real world
conditions. The proposed platform uses the blockchain as a
ledger for the tracking of products and also smart contracts that
verify the packaging conditions of the products. By reading
information from sensors close to the package, the platform
can automatically flag the package and abort the tracking
process

C. Infrastructure Management Tools

The infrastructure management tools aim to create, via an
abstraction layer, a common format in which the infrastructure
operator can specify the changes to be made in a standardized
language, that the tool will then translate in the specific
commands and API calls exposed by the systems.

Must be noted that there are two different types of tools.
Provisioning tools have as objective the provisioning of new

resources, being them virtual machines, containers, networks,
etc. Configuration Management tools are developed to help
in the configuration of those resources, by executing actions
in the virtual resources themselves (e.g., installing software,
deploying configurations). This further confirms the need of
more than one tool to fully manage the complete infrastructure
(e.g., using Terraform to provision the resources and Ansible
to configure them).

There are also differences between the tools in regards to
human interaction. While all of them use configuration files as
input, they can use different languages, and different logical
approaches (Declarative or Procedural).

For the Configuration Management tools, it is important to
note the necessity of a client agent for some of the tools.
Since the tool cannot manage a resource that does not have
the client agent installed, it is necessary to install that agent
before the use of the tool. This must be done manually or with
some other automatized method. As such, agent-less tools are
easier to deploy, by only needing to be installed in the control
host.

III. SOLUTION ARCHITECTURE

A. Approach

Our goal is to to develop a solution that harnesses the
security and data storage benefits of a DL, by using it to
store the inventory database for the infrastructure and make
the necessary verifications to approve or deny infrastructure
changes and inventory read operations (write/read operations)
based on constraints expressed in smart contracts that will
verify both user permissions and business constraints. Since
the presented solution is a proof-of-concept, the aim will be
to implement and present key features that will be proven or
disproven as viable, and, if viable, will indicate the viability
of more complex features that are the evolution and more
tight specifications of the ones implemented in this proof-of-
concept. The main features to explore, are:

« Attribute based access control - In our proof of concept
only two roles will be implemented (user and admin)
but this will show the possibility to implement a much
larger array of attributes, and with attribute hierarchy (i.e.,
admin is a "member” of the users);

« Dependency creation and checking - In this prototype,
only direct hardware dependencies will be implemented
(i.e., a Virtual Machine (VM) will depend on its Host).
However this will prove the possibility of implementation
of a more advanced dependency detection algorithm,
more tightly related to the tools used and the infrastruc-
ture;

e Only one DL will be supported and implemented. How-
ever, since the APIs will be generic, any similar DL can
be possibly used;

o Similarly, only two infrastructure management tools
will be incorporated: Ansible and Terraform, but, as
the Tools API will also be generic, any tool can be
incorporated, even different types of tools, such as SDN
controllers;

B. General Architecture

In order to satisfy the requirements for adaptability and
modularity, a general architecture for the solution was de-
signed. As shown on Figure 1| there are three main types of
modules: Broker, Ledger and Tool. Each of these modules
has a specific function, and the communication between them
is, as specified in the diagram, done via REST APIs.

4

User Interface REST API

Broker
Module

Ledger REST API| Tool REST API

=

Ledger REST API Tool REST API

Ledger Module Tool module

Hyperledger API IT Infra. Mgt. Tools

! }

Distributed
Ledger

Inventory
Database

Fig. 1. General Solution Architecture

1) Broker Module: The Broker module acts as a central
routing module for information. It handles the user interface,
and relays the requests and information to the corresponding
modules. The processing done in this module is to be kept
at a minimum to keep it as generalized as possible, to enable
it to accept connections to different tools and ledgers.

2) Ledger Module: The ledger module is responsible for
the implementation of the DL API, and to convert all
requests and information sent by the Broker module to the
specific Ledger requests. The processing done here should
also be kept as a minimum, as only related to the conversion
between request types. It is important to note that the logic
implemented in chaincode is part of the Ledger itself, and
it is not present in this module.

3) Tool Module: The Tool module is the one that will make
all processing that is tool specific. This module will receive
requests from the broker module using the common tool
API, process those requests and execute the tools to fulfill
them. The module will then also parse the tool’s response
and convert it back to the common types present in the Tool’s
API, to be sent back to the Broker.

It is important to be noted that there may be more than
one tool modules in the same deployment of this tool, as
each tool module implementation only connects to one tool,
and the implementation of the module is tool dependant.

C. General Data Flow

To ensure the modularity of this solution, specification of the
interactions between the different modules is necessary. There
are three main types of interactions between the user and the
tool: Login, Tool Execution, Read/Write information from
the Ledger.

1) Login: Since the tool supports Session based access, a
Login functionality is needed. To login itself, the user will
send its credentials to the broker module, that will send them
to the ledger module, where they will be sent to the Ledger,
running a specific login function on a Smart Contract that
makes the necessary verifications to authenticate the user
and provide a Session Identifier (ID). That Session ID is
then returned to both the Broker Module and the user for
subsequent connections.

2) Read/Write to the Ledger: One of the Infrastructure
Management actions that the user can make is to directly
read or write to the ledger. This can happen if the user
wants to check the status of some asset (read) or register
manual interactions that were not made with a Infrastructure
Management Tool connected to our tool, or manually made
(i.e., installing a new physical server). In this case, the user
has to already have a Session ID that will accompany all
its requests in order to authenticate and authorize itself. The
user will make the request to the broker, that will redirect the
request to the Ledger module that will run the corresponding
Smart Contract functions in order to fulfill the request. The
Smart Contract Function’s return value will then be redirected
back, through the broker module, to the user.

3) Tool execution: The most important feature of our tool is
to automate the invocation of Infrastructure Management
tools, while keeping all the actions taken registered and
verified by the ledger. Also in this case, the user already
has to have a Session ID that will accompany all its requests
in order to authenticate and authorize itself. The user will
make a request to invoke the tool, this request will include
the necessary plan files to the tool execution. The request
will then be verified for a valid session ID by the broker
and sent to the Tool module to execute a dry-run, where
the tool will verify the validity of the plans and return an
estimation of the changes that will be made. Those changes
are then sent to the ledger, by the broker module, that will
verify if they are possible and valid using the business logic
present in the smart contracts. It will also register the actions
as being planned but not executed. The results of both the
dry-run of the tool and the ledger return will then be sent to
the user for final confirmation. If the user confirms the intent
to execute said tasks/plans, the broker will then command the
tool module to execute the Infrastructure management tool,
this time committing changes to the infrastructure. The return
values from the tool will then be processed by the broker and
sent to the ledger for registration in the Ledger and Inventory.
In the end, the user will get a summary of the changes. It is
important to note that all modifications to the infrastructure
are always verified and written in the Ledger before being
executed over the infrastructure.

Due to the immense variety of solutions in existence, it
was needed to make choices about three main aspects in

this solution: Programming Language, DL implementation
and integrated infrastructure management tools. In the next
sections we will present the reasoning for the choices taken
for each aspect.

D. Infrastructure Management Tools

There are many solutions and tools that aim to streamline
and uniformize the process of management of the infrastruc-
ture. For this proof-of-concept tool, we chose to focus on the
general purpose tools of provisioning and configuration
management since they represent the management of most
part of the infrastructure. This choice leaves behind container-
specific tools, SDN controllers and other more specific man-
agement tools since they are less used in a general computing
infrastructure and can always be implemented as new modules
since our proposed tool will be generalized to be able to
process requests from any type of tool.

Since there exists several general purpose tools, we choose
to select one tool for each branch of operations: Provisioning
and Configuration Management.

1) Provisioning: As an example of a provisioning tool, we
chose Terraforlrﬂ due to its high popularity and ease of use.
Due to its high popularity and usage in the industry, devel-
opment for this tool is fast, with thousands of contributors to
its public repository, while being maintained by HashiCor[ﬂ
a well known and established company in the infrastructure
business.

From a technical perspective, Terraform, due to its high
popularity, already implements APIs to connect and provision
resources in the major providers, such as OpenStackﬂ
Google Cloucﬂ AWS?] and Microsoft Azureﬂ enabling users
to provision resources in any of those Infrastructure as a
Service (IaaS) providers with a common configuration file.

2) Configuration Management: As an example of a config-
uration management tool, we choose Ansibleﬂ also due to its
high popularity, that, along the support from RedHaﬂ main-
tainer of the project, that also provides a paid version, is one
of the most used configuration management tools. Once again,
due to the very high popularity and contributor count, Ansible
implements, as independent modules, abstraction layers to
enable the management of a very large count of Operating
Systems (OSs), together with their OS specific commands,
such as package managers, and physical equipment, such as
network devices. This large array of supported devices is a
strong indicator of the acceptance of this tool in the industry,
since its main objective is to provide an abstraction layer to
enable the management of devices with a common format, and
that abstraction layer must be implemented manually for each
new supported endpoint (device, OS).

Thttps://github.com/hashicorp/terraform, accessed on 21st December 2020
Zhttps://www.hashicorp.com/, accessed on 10th September 2021
3https://www.openstack.org/, accessed on 10th September 2021
“https://cloud.google.com/, accessed on 10th September 2021
Shttps://aws.amazon.com/, accessed on 10th September 2021
Shttps://azure.microsoft.com/, accessed on 10th September 2021
https://www.ansible.com/, accessed on 10th September 2021
8https://www.redhat.com/, accessed on 10th September 2021

E. Distributed Ledger

The Ledger to be used will be Hyperledger Fabric. This
solution is an implementation of a Blockchain-based DL,
part of the Hyperledger family. Firstly, we chose to use a
member of the HyperledgeIﬂ family due to the high popularity,
compared to other Permissioned Blockchain based DL, and the
support from the Linux Foundatio a major player in the
universe of open source solutions. This makes the members
of this family active developed and documented solutions, an
important aspect due to the current research in the blockchain
solutions area and in the security area, both closely related to
these solutions.

From the Hyperledger family, we chose to use Hyperledger
Fabric in our solution due to several factors:

« It has the biggest community of users and contributors,
which contribute to several factors:

— The comprehensive and in-depth documentation;

— Fast implementation of the newest security patches
and optimizations;

— Fast implementation of new features;

— Fast correction of bugs.

o It is a Permissioned Blockchain based DL;

« It implements a new system of transaction evaluation and
registration, as explained in Section that increases
the speed of the Ledger to close to 2000 Transactions per
Second (TPS), a great increase when compared to similar
solutions[6];

o Allows for the usage of general purpose programming
languages in the development of chaincode, such as
Golang, Java, Javascript and Typescript;

o Utilizes LevelDB as a state database, that enables infor-
mation to be stored in a fast accessing key-value store,
ideal to store the assets as JavaScript Object Notation
(JSON) dictionaries and with string keys, also providing
immediate consistency, opposed to the more popular but
worse eventual consistency;

« Since it is designed to be used as part of a bigger system,
it has both an SDK and APIs in several languages that
allow for interaction with the ledger integrated in other
solutions like in our case.

IV. IMPLEMENTATION DETAILS
A. Environment

To setup the environment, Vagrant, together with Vir-
tualBox, were used. Vagrant enabled us to automate the
provisioning and configuration of all assets related to this
solution, given that scripts to do so were supplied. The central
configuration file for the environment is called Vagrantfile, and
it specifies the architecture of the infrastructure.

For this deployment, we choose to provision two virtual
machines, one to run the Hyperledger Fabric components,
and another to host and run our solution. Both machines
are running Ubuntu 20.04 LTS, and have 4GB of Random
Access Memory (RAM) and 4 CPU cores each. We choose

9https://www.hyperledger.org/, accessed on 10th September 2021
10https://www.linuxfoundation.org/, accessed on 10th September 2021

4GB of RAM since it was a manageable value for our VM
host and both virtual machines were not constrained by it
(not displaying high RAM usage), and we followed the same
reasoning for the CPU core count. Files and folders are
shared between the machines using shared folders between
the machines and the host. Using this shared folder structure
enabled us to easily emulate the physical distribution of files
(mostly keys) from the CAs to the services using them.

B. Hyperledger Fabric

Since Hyperledger Fabric is an already existing solution,
for this project, no code related to Fabric development was
produced. However, it was needed to configure an implemen-
tation of Hyperledger Fabric to use as a DL base of this
solution. The chosen topology for the Ledger system followed
the documentation recommendations of having:

« Two Organizations - Org0 for the orderer service, and

Orgl for the peers and clients (users);

e Three CAs - One to provide TLS certificates for com-
munication between nodes and one for identity creation
withing each organization;

o Three orderer nodes - All belonging to Org0;

« Two peer nodes - Belonging to Orgl;

e One channel - Only one blockchain and state database
that stores all information;

To provide identity management, we use the Fabric CA, an
implementation of a CA created by the Fabric project, since it
is already tuned to generate the correct cryptograpic material
that the Fabric system consumes.

C. Smart Contracts

In our case, only one Smart Contract is needed, that will
handle all asset modifications. Before the implementation of
any logic, it was needed to create specifications for the storage
of the information. With this in mind, two types of Assets were
created:

o Asset - Represents any asset in the infrastructure, such
as Servers, VMs, Containers, and others.

o Applied Tools - This data structure stores information
about each and every tool execution against the infras-
tructure, such as the execution of an Ansible Playbook.

These data structures were coded to be as general as possible
while retaining all the needed information about each asset.
This way we achieve the goal of expandability with no need
for code refactoring. Since the developed tool is to be used
as a proof-of-concept, only key values, representative of the
possible information to be stored were indeed stored and later
processed in the Smart Contract.

The Assets have four main associated functions, to Get,
Register a new Asset, Modify an existing Asset, and Remove
an Asset. It is necessary to enforce that a user can only see its
Assets. In chaincode, this verification is very easy due to the
presence of the ID of the owner of some Asset in the Asset’s
data and the possibility to get the ID of the client calling the
Smart Contract’s function from the Hyperledger Fabric Smart
Contract APL

From a business logic perspective, the registration of a new
Asset verifies that all essential data fields about the Asset are
present, that the Asset Type is valid and it is needed to parse
the dependency list. By default, an Asset is created without any
dependencies or dependants. However, it is possible to specify
dependencies for that Asset. When the Asset is registered, the
logic present in the Smart Contract will automatically parse
those dependencies, check if they are possible (e.g., the Asset
from which the new Asset depends exists) and automatically
add the newly registered Asset to the Dependants List of
the Asset the new Asset depends on. For the removal of an
Asset, the only verifications to be carried being the check for
permissions by the calling client (that must be the owner of the
asset or an admin) and that the Asset to be removed doesn’t
have any Dependants. The remaining action is the modification
of an Asset. In this action several constraints are checked: The
permission of the calling client to modify the Asset, and that
the basic Asset identifying information is no changed (such as
the ID, the Type and Owner).

The management of the Applied Tools is done in a similar
manner to the one applied to the Assets. However, due to the
context, the functions that will be presented will be done to
handle several actions:

o Creation of new Applied Tools - this creation will only
represent that the Applied tool will run, and represents
that a tool is currently running.

o Finish of the Applied Tool - this action is what
confirms the termination of the execution of said tool,
and, depending on the success of the execution, will
change the affected Assets, adding the Applied Tool
data structure ID to the list of applied tools present on
each Asset, and creating the dependencies specified by
the tool (such dependencies are already specified in the
Applied Tool data structure, and the Smart Contract is
only responsible for the distribution of the information
about the dependency across the affected Assets).

« Reversion of the Applied Tool - this action is responsible
for the removal of the dependencies introduced by the
Applied Tool, and will mark the Applied Tool as reverted,
for documentation purposes.

o Getting an Applied Tool - this function is responsible
for the handling the user requests for information about
a specific Applied Tool. A user can only get such infor-
mation if any asset of it was affected by this Applied
Tool.

The Smart Contract receives information about the Assets,
Dependencies and Applied Tools in an already normalized
format, ready to be stored, being only responsible for the
verifications of validity of data and access control verification.
The conversion of the information to these uniformed types,
that will be used across the whole solution is a responsibility
of the creator of said information, being it the user or any of
the tools modules after the execution of said tools.

V. EVALUATION AND RESULT ANALYSIS

In this chapter, we will present a qualitative and quanti-
tative evaluation of the developed solution, resorting to the

creation of different scenarios that can both evaluate the tool
characteristics, according to the previously set requirements,
and represent real world and industry representative use cases.
After the presentation of the results obtained in each of the
scenarios we will discuss those results.

A. Scenario 1 - Authentication

The first scenario to be presented has as its objective to
demonstrate and test the Login process. This process, as
defined and explained in Section consists in the execution
of a login request, carrying a Zip file containing the user’s
credentials, that are evaluated by the Ledger, returning a
Session ID as a cookie if the supplied credentials are correct.
If the credentials are incorrect, the system will return an HTTP
return code 401 - Unauthorized.

When requesting a login for a user with correct credentials,
the system appends to the header of the returning packet
the set-cookie entry with the Session ID for that user, that
must be present on any upcoming requests. When supplied
with incorrect credentials, the system returns the 401 status
code, indicating the login was unsuccessful. It is worth to
note that both login attempts are registered on the ledger
and that the process of obtaining credentials via brute force
is unfeasible since it is unfeasible to generate the needed
certificate signature, since the certificate must be signed by
the Organization CA.

Also, if a user tries to use a invalid Session ID (either an
non existent or an expired one) in any request, the system
returns with a 403 - Forbidden status code, indicating that the
user must login again.

B. Scenario 2 - Normal Workflow

This scenario is dedicated to the demonstration of the ca-
pabilities of the tool for the support of a normal infrastructure
management workflow, without considering failures. We start
the tool with a blank infrastructure, with no assets registered
in the ledger. We will then manually create a series of Assets,
with the purpose of demonstrating both the capability of
manually adding Assets and populating the Ledger to provide
a more realistic initial ledger state for the remaining actions
to be carried out. We then modify and delete some Assets.
After the demonstration of the manual Asset management
capabilities, we will trigger the execution of actions using both
implemented tools, Terraform and Ansible, to provision and
automatically register new Assets in the Ledger, and to make
configuration changes to those Assets, while also registering
the execution of this action.

1) Asset Management: To register an Asset, the user must
create the Asset JSON structure, with the necessary fields
populated. Then, the user uses the register API method to
register the Asset on the Ledger, that will return the same Asset
structure with the ID field populated, since that information is
randomly generated by the ledger itself. We can then verify
the presence of said Asset in the ledger using the correct API
method.

The process for the modification of an Asset is similar, with
the difference of the method called, that is the modify method

instead of the register one, and that the Asset the user sends
already has its ID field populated with the ID of the already
existing Asset that is to be modified. It is important to note
that there are fields that cannot be modified, such as the owner
field. These modifications are verified by the Smart Contract
and rejected.

The Asset removal method simply requires that the user
supplies the Asset ID. Again, we can verify the function of
this method by then querying the Ledger either for the deleted
Asset, that will return an error stating the Asset was not found,
or by querying the Ledger for all assets of the relevant type,
and verifying that the removed Asset is not present.

We could verify that all three methods worked as expected,
with the system creating, modifying and deleting the Assets
as requested.

2) Tool Management: The automatic Asset management
should be the main interaction method with the tool and the
infrastructure, since it reduces the error chances when making
modifications, by automatically registering the actions made
by the infrastructure management tools in the Ledger, reducing
human interaction, and thus, mistake opportunities.

The normal workflow for this type of management consists
of just two requests: The execution request and the confirma-
tion request.

The execution request is made by the user to start the tool
execution process. The request must contain the name of the
tool to be used and the plan files that are to be consumed by the
tool. Our tool will then analyze the dry-run of the tool and
generate an Applied Tool structure with all the information
that will be registered. These generated structures are then
presented to the user, along with a unique ID that represents
the specific execution the user is carrying out.

The user then can see the information that represents the
changes to be made to the infrastructure in the form of those
data structures and confirm the execution, making a request for
confirmation with the execution unique ID. After an execute
request made with a Terraform plan that will create two VMs
in a specific Host, we could observe that the response contains
the ID of the execution, an Applied Tool structure, and a list
of Assets. The list of Assets represents the Assets that will
be modified or created, in this case created. Dependencies are
created automatically, creating a dependency relation between
the host and the two VMs and that, since the tool has only
run in dry-run mode, that status of the implementation is
False. The Applied Tool structure contains all the available
information about the execution of the tool, including modified
or created Assets. Since the confirmation is not yet given by
the user, the changes are not implemented in the infrastructure
and the final status of the tool execution is still empty.

After reviewing the output of the execution request, the user
has the option to either confirm the execution plan, making
the tool invoke the Terraform tool to implement the changes
or to discard this plan by not confirming it. In this scenario
we confirmed the plan. This action triggered the execution of
the tool and, after that, we received an output similar to the
one of the plan request, but this time with all Assets marked
as implemented and the Applied tool would then have the
final_state field populated with the output of the tool.

We can then conclude that for this scenario, representing a
realistic workflow for the usage of this tool, our tool can satisfy
the requirements, by not only ensuring the execution of the
plans, but also guaranteeing that all the changes are correctly
registered in the Ledger, with all the information needed to
identify the user responsible for the action, timestamp of the
execution of each request, and without the possibility for
anyone to modify these registries.

C. Scenario 3 - Authorization

As stated on the requirements, an access control scheme
is necessary. Using the Smart Contract capabilities, we im-
plemented a simple role based access control scheme, with
two different permission levels, user and admin. An user can
only see and modify its Assets. When listing all Assets by
type, only the ones where it is the owner will appear, and
when requesting information about a specific Asset, via its
ID, the tool will only return the information if the user is the
owner, returning a 403-Forbidden status code if not. On the
other hand, an admin can see all the Assets registered in the
infrastructure and is able to modify all of them.

To test and present this behaviour, we chose to create three
different users, one being an admin and the others being
normal users. We could then verify that each user could only
see and modify its Assets, while the admin could see and
modify all Assets.

With this scenario’s verifications we can ensure not only that
a simple access control scheme is possible to be implemented
successfully using Smart Contracts, but also that, since the
Smart Contracts are written in a general purpose programming
language, it is possible to write any type of attributes into a
user’s identity certificate and an Asset can have any size and
information in it, it is possible to implement complex access
control schemes, with and indefinite group or attribute count
and very high granularity.

D. Scenario 4 - Dependency processing

Dependencies may be registered into the Ledger either auto-
matically or manually. Automatic dependency registry happens
when the user uses our tool to invoke the infrastructure
management tools. Since not all dependencies can be detected
automatically, it is also possible for the user to both register
and remove dependencies between already registered assets
using the tool API. To test dependency processing, two Assets
were created with a dependency between them. We could then
check that the tool refuses deletion of Asset the other Asset
depends on before either the dependency of the depending
Asset are removed.

E. Scenario 5 - Rollback of tool applied actions

This scenario is dedicated to demonstrate the rollback
of actions that were made using one of the infrastructure
management tools. The original goal was to develop an API
endpoint that could receive the ID of the applied tool, and,
with access to all the original plans from the tool, generate
a new plan that would undo the original plan. However, after

research both in academic publications and industry oriented
support websites, it was concluded that this process is not
always possible at all, and unfeasible for the majority of the
remaining cases.

1) Tool Rollback Limitations: The main constraint that
renders automatic rollback of infrastructure management tools
actions unfeasible is the the fact that the large majority of
them, including the two present in our solution, Ansible and
Terraform, work on the principle that the target state is the one
that must be preserved and attained. The tools read the current
state of the resources they are to modify and the supplied plans
or target state, and calculate a list of actions to make. The
tools then apply this list of actions, bringing the state of the
resources to the one desired by the user. In this process they
can detect changes that are redundant or already in place, and
save time and resources by not applying them twice. This also
ensures idempotency, that is, if we apply the same plan more
that one time, the end result should be the same as applying
it once, assuming no failures occur.

Although the tools can present the user with a list of
modified parameters, they do not systematically track and store
the previous state of the resource. When trying to revert an
action, if the state of an resource in the report of original
action is “not modified”, the rollback action is to not do
anything. However, if the stored state of the original operation
is “modified”, we have no way of knowing what was exactly
the state of the resource before the tool execution.

2) Proven Solution: Since the rollback of actions is a
common event in a typical infrastructure, some solutions were
devised. The main solution, since the majority of resources
are in fact VMs running in some sort of hypervisor, it to then
harness the features of said hypervisor to make the rollback
of the state of the VMs using snapshots. Another solution that
can be used is to resort to some file systems’ ability to create
snapshots of the entire file system, or to maintain a log of all
the modifications, enabling the user to revert the file system
state to a previous state. This method is usually employed in
physical resources.

3) Integration with our solution: The integration of auto-
matic rollback operations in our tool is possible, however,
it would require for the hypervisor to be connected to our
solution as a Infrastructure management tool, a situation that
we consider as being out of scope for this work.

Nonetheless, the rollback of the state of Assets is fully
supported by our tool in a manual manner. The process for
rollback then consists of the user triggering said rollback
manually in the correct tool/hypervisor, and then registering
it in our tool, so that the inventory database continues to
represent the actual state of the real infrastructure.

F. Load and throughput

After the qualitative analysis presented in the different
scenarios above, we will also make an evaluation on the
performance of this tool. Since the tool is intended to be used
as a middle layer between the user and the infrastructure or
the infrastructure management tools, it is important to ensure
that the tool is then able to serve multiple requests in parallel,

while also adding a minimal time delay to the operations that
are relayed through this tool.

For all the tests, we used Apache JMete to generate the
requests and collect results. For our tests, the main metrics we
collected were the response time, in milliseconds, the general
throughput (the number of requests answered per second) and
lastly, as a control the success rate based on the HTTP return
status of every request.

Since our solution has several API endpoints, we will make
throughput evaluations only for the most relevant ones:

« Read Requests:

— R1 - Get Asset by ID
— R2 - Get Applied Tool by ID

o Write Requests:

— R3 - Register Asset
— R4 - Modify Asset
— RS - Register Applied Tool

Both the login and Asset Type handlers were excluded
from this evaluation since they are less used endpoints, and
where performance is not as important. The request to get
assets by their type is also not evaluated since its response
time is directly dependent from the number of assets with the
specific type the user has access to, with the bottleneck in this
request being the transmission of possibly very large amounts
of data due to a large number of Assets. It is also important
to note that the automatic tool execution endpoints are also
not benchmarked since they depend heavily on the execution
time of the tools, that is out of scope for this project, and all
the requests internally made to the ledger are the same as the
manual requests that we are already evaluating.

We will benchmark each request in two different scenarios:
with a minimal number of Assets registered in the ledger, and
then with the ledger populated with around 100000 Assets, in
order to simulate a large infrastructure. We can then compare
the response times and throughput in both scenarios and verify
if there is any performance degradation with the increased
number of stored assets. For each scenario, we will run each
request 1000 times with a parallelism of 100 concurrent re-
quests, and average the response times and throughput, in order
to get a significant performance measure. The number of 1000
executions was chosen due to it being a large enough value
that allows for the tool to stabilize, and provide consistent
results. The number of 100 concurrent requests was obtained
by testing different values of concurrency until the throughput
value maximized and stabilized, due to the tool being working
at 100% capacity. It is important to note that in experiments
with larger core counts and larger RAM sizes, the throughput
increased with increased concurrency values.

As we can observe from both graphics in Figure [2| and
Figure [3] as expected there is a inverse correlation between
response times and throughput: when the response time is
greater, the throughput is lower. When repeating the tests
with increased computing resources allocated to the Ledger,
increasing the number of concurrent requests, the throughput
values increased to above 200 requests per second. This

Mhttps://jmeter.apache.org/, accessed 27th September 2021

3000
BN Empty database

I Populated Database 2619 2605

200 2301 2298

2216 2236 2237 2213

2201 2192

2000

1500 4

1000 4

Response Time (ms)

500 4

R3
Request type

R1 - Get Asset by ID; R2 - Get Applied Tool by ID; R3 - Register Asset;
R4 - Modify Asset; RS - Register Applied Tool;

Fig. 2. Response times for different request types

Bmm Empty database

45.3 455 s Populated Database

44.9 446 44.6 45.1

40.2 396

IS
S

37.8 37.6

&

Moo oW w
& 3

Throughput (requests/sec)
B

=

10 A

R1 R2 R3 R4 RS

Request type

R1 - Get Asset by ID; R2 - Get Applied Tool by ID; R3 - Register Asset;
R4 - Modify Asset; RS - Register Applied Tool;

Fig. 3. Throughput for different request types

indicates that the requests are processed independently of
each other by the ledger, with the limit being the concurrent
processing capacity of the ledger nodes. This results are on par
with the ones published in several studies about performance
of Hyperledger Fabric such as [4]], [6].

We can also observe in the graphics that both read and write
methods achieve similar performances, both in response time
and throughput. All the methods achieved similar metrics.

Methods with different complexity levels of logic pro-
grammed into the Smart Contract behaved similarly. This
can be explained by understanding that the main time taking
operations in a request are not part of the Smart Contract
execution, but in all the computations that the Ledger must
execute in order to process a transaction. We can then also
conclude that the execution of the Smart Contracts in very
fast, allowing for more complex logic to be programmed in
them without major performance concerns.

Another conclusion that we can draw from the obtained
results is that there is no noticeable performance degradation
from the increase of number of assets in the database and
nodes in the ledger blockchain itself. A value of around
100000 assets in the database has been chosen as the target for
a populated database. We chose this value since we consider
that, in the infrastructures this tool may be used, it is very
improbable to achieve such a high number of assets.

10

Although the response times for the requests are noticeable,
since they are around 2-3 seconds per request, the capacity of
the system to process a large number of requests in parallel
allows for throughput figures that are much higher that would
be possible without parallelism. Having in mind the purpose
of this tool, and that all the requests that are processed by
it are related to IT Infrastructure’s management activities, the
throughput of the tool will then be more important that the
response time, since many of the infrastructure management
activities take considerably longer that these response times,
making them not very noticeable in the context of the ac-
tivities. With this in mind, and focusing of the throughput
values, we observed that with, with limited resources (since
all the nodes of the Ledger are running in the same virtual
machine, that itself has just 6 CPU cores and 4GB of RAM),
the throughput established itself above 35 requests per second
for all request types. Testing with larger resource availability
showed increased performance, that is in par with the general
Ledger performance evaluations presented in other studies
such as [4]l, (6. From a performance perspective, this makes
us confident that this tool can easily cope with large numbers
of infrastructure modifications per seconds, as it can happen
in the real world.

VI. CONCLUSION

After the development of the solution, evaluation was
carried, in a qualitative and quantitative perspectives. The
solution was evaluated in a qualitative manner by making
use of several evaluation scenarios that aimed not only to
cover the requisites but also to represent typical workflows in
which the tool is part of. The access control mechanism was
tested for both the denial of access to unauthenticated users,
but also for the denial of access to unauthorized users, and
the tool behaved as expected, denying all requests that were
not valid according to the Access Control rules. Scenarios
for both manual manipulation of assets and dependencies
were also proposed, with the tool being able to register and
delete assets, according to the business logic rules, and to
manipulate dependencies, and deny requests that would have
broken dependencies. Scenarios for the testing of workflows
involving tool execution and automatic asset tracking and
dependency creation were also evaluated, with the tool being
able to detect new assets and dependencies, although with
limitations.

From a quantitative perspective, a performance analysis was
performed, and we could conclude that, although the tool
introduces a latency penalty in each request and modification
made to the infrastructure, by presenting response times of
around 2200ms for all requests, it can handle a large number of
concurrent requests, presenting a throughput of more than 35
requests per second with limited Ledger resources. This value
can be vastly increased by increasing the resources available
to the solution.

From the obtained results, we could then conclude that the
usage of a DL, more specifically Hyperledger Fabric, can be
a good solution to ensure that all actions that may modify an
IT Infrastructure are both filtered and processed, to ensure the

verification of compliance with Infrastructure constraints, such
as dependency checking, the verification of the permissions of
a user to do such modifications, and lastly to ensure that all the
modifications are registered in an immutable way, that enables
accountability and traceability for all actions. Additionally,
Fabric deploys a state database, that is closely tied with
the ledger, that can represent the infrastructure, acting as its
inventory, without the need for the implementation of external
databases and the consequent development of mechanisms to
ensure that all information that is written to the database is
also written in the ledger.

A. System Limitations and Future Work

All the logic that is present in the Smart Contract can
be expanded both to enable for the verification of more and
more complex constraints and finer grained access control.
As stated in Section the Ledger introduces some delay
in all requests, making the user having to wait some time
for each request to complete. Optimizations in this aspect
can be object of further study, by trying to reduce response
times for example for read requests where the full mechanism
for transaction evaluation may not be needed. From the tools
perspective, and as explained in detail in Section the
detection of dependencies in tool output is very limited in the
present version, and is a complex problem due to the variety
of sources for dependencies. Further study in this area could
be useful to enable solutions like the one presented in this
Thesis to have a more complete inventory of the infrastructure
without the need for humans to manually register details of the
infrastructure, instead having the system automatically detect
more of those details.

REFERENCES
(1]

M. Hilton, “Understanding and Improving Continuous
Integration,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016, New York, NY,
USA: Association for Computing Machinery, 2016,
pp- 1066-1067, 1SBN: 9781450342186. DOI: [10.1145/
2950290.2983952.

J. Itkonen, R. Udd, C. Lassenius, and T. Lehtonen,
“Perceived Benefits of Adopting Continuous Delivery
Practices,” in Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering
and Measurement, ser. ESEM 16, New York, NY, USA:
Association for Computing Machinery, 2016, ISBN:
9781450344272. DOI: 10.1145/2961111.2962627.

M. Oliveira and R. S. Cruz, “Ensuring Traceability
on Management of IT Infrastructures : Orchestrator
based on a Distributed Ledger,” in 2021 16th Iberian
Conference on Information Systems and Technologies
(CISTI), 2021, pp. 1-5. poI: 10.23919/CISTI52073.
2021.9476488.

N. KannengieBer, S. Lins, T. Dehling, and A. Sunyaeyv,
“Trade-Offs between Distributed Ledger Technology
Characteristics,” ACM Comput. Surv., vol. 53, no. 2,
2020, 1SSN: 0360-0300. DOTI: [10.1145/3379463.

(2]

11

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

F. Dai, Y. Shi, N. Meng, L. Wei, and Z. Ye, “From
Bitcoin to cybersecurity: A comparative study of
blockchain application and security issues,” in 2017 4th
International Conference on Systems and Informatics
(ICSAI), Nov. 2017, pp. 975-979. pot: 10.1109/ICSAL
2017.8248427.

R. Nadir, “Comparative study of permissioned
blockchain solutions for enterprises,” in 2019
International Conference on Innovative Computing
(ICIC), Nov. 2019, pp. 1-6. DOI: |10.1109/ICIC48496.
2019.8966735.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Decentralized Business Review, p. 21260,
2008.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G.
Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolié¢, S. W. Cocco, and J.
Yellick, “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains,” in Proceedings
of the Thirteenth EuroSys Conference, ser. EuroSys
18, New York, NY, USA: Association for Computing
Machinery, 2018, 1SBN: 9781450355841. DoI1: 10.1145/
3190508.3190538.

M. Schinle, C. Erler, P. Andris, and W. Stork, “In-
tegration, Execution and Monitoring of Business Pro-
cesses with Chaincode,” in 2020 2nd Conference on
Blockchain Research Applications for Innovative Net-
works and Services (BRAINS), 2020, pp. 63-70. DOI:
10.1109/BRAINS49436.2020.9223283.

W. Cai, Z. Wang, J. Ernst, Z. Hong, C. Feng, and V.
Leung, “Decentralized Applications: The Blockchain-
Empowered Software System,” IEEE Access, vol. 6,
pp- 53019-53033, 2018, 1SSN: 2169-3536. DOI: |10.
1109/ACCESS.2018.2870644.

S. Bhalerao, S. Agarwal, S. Borkar, S. Anekar, N.
Kulkarni, and S. Bhagwat, “Supply Chain Management
using Blockchain,” in 2019 International Conference on
Intelligent Sustainable Systems (ICISS), 2019, pp. 456—
459. por: 10.1109/1SS1.2019.8908031.

M. Hulea, O. Rosu, R. Miron, and A. Astilean, “Phar-
maceutical cold chain management: Platform based on
a distributed ledger,” in 2018 IEEE International Con-
ference on Automation, Quality and Testing, Robotics
(AQTR), 2018, pp. 1-6. poI: |10.1109/AQTR.2018.
8402709.

S. Rouhani, R. Belchior, R. Cruz, and R. Deters, Dis-
tributed Attribute-Based Access Control System Using
a Permissioned Blockchain, 2020. arXiv: 2006.04384
[cs.CR].

https://doi.org/10.1145/2950290.2983952
https://doi.org/10.1145/2950290.2983952
https://doi.org/10.1145/2961111.2962627
https://doi.org/10.23919/CISTI52073.2021.9476488
https://doi.org/10.23919/CISTI52073.2021.9476488
https://doi.org/10.1145/3379463
https://doi.org/10.1109/ICSAI.2017.8248427
https://doi.org/10.1109/ICSAI.2017.8248427
https://doi.org/10.1109/ICIC48496.2019.8966735
https://doi.org/10.1109/ICIC48496.2019.8966735
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/BRAINS49436.2020.9223283
https://doi.org/10.1109/ACCESS.2018.2870644
https://doi.org/10.1109/ACCESS.2018.2870644
https://doi.org/10.1109/ISS1.2019.8908031
https://doi.org/10.1109/AQTR.2018.8402709
https://doi.org/10.1109/AQTR.2018.8402709
https://arxiv.org/abs/2006.04384
https://arxiv.org/abs/2006.04384

	Introduction
	State of the Art
	Similar Tools and Solutions
	Distributed Ledger Technology
	Smart Contracts
	Hyperledger Fabric
	Using Distributed Ledger Technology

	Infrastructure Management Tools

	Solution Architecture
	Approach
	General Architecture
	Broker Module
	Ledger Module
	Tool Module

	General Data Flow
	Login
	Read/Write to the Ledger
	Tool execution

	Infrastructure Management Tools
	Provisioning
	Configuration Management

	Distributed Ledger

	Implementation Details
	Environment
	Hyperledger Fabric
	Smart Contracts

	Evaluation and Result Analysis
	Scenario 1 - Authentication
	Scenario 2 - Normal Workflow
	Asset Management
	Tool Management

	Scenario 3 - Authorization
	Scenario 4 - Dependency processing
	Scenario 5 - Rollback of tool applied actions
	Tool Rollback Limitations
	Proven Solution
	Integration with our solution

	Load and throughput

	Conclusion
	System Limitations and Future Work

