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ABSTRACT
In this paper, following the importance of early detection in breast
cancer to decrease today’s alarming mortality rates, traditional
and innovative approaches on breast cancer diagnosis will be as-
sessed. In the wake of the emerging research on Computer-Aided
Detection (CAD) practices with Deep Learning (DL) approaches in
the mammography screening field and given DL model’s current
successes in this context, an approach on the modern practices to
overcome the particular challenges of data insufficiency, informa-
tion loss and lack of computational power will also be featured.
Finally, this work proposes an advanced DL solution through a Mul-
timodal architecture for classification of mammography screenings
utilizing an Hyperdense Network, which will process inputs of an
unestablished private dataset.

CCS CONCEPTS
• Deep Learning → Convolutional Neural Network; Hyper-
dense Network; Breast Cancer ; Classification; Weak-label; • Dataset
→ Curation.
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1 INTRODUCTION
Current studies showed that Breast Cancer (BC) was the main
cause of death in the EU-27 in 2016 [15], registering a 1.9% death
rate; among women, BC accounted for 3.7% of all deaths and is the
second leading cause of worldwide cancer related deaths with a
percentage of 11.6% [5]. Though hereditary and genetic factors, ac-
companied by the personal and family history weight on the count
of BC cases, demographic and social-economic development are
the main halters, earlier detection and treatment being the leading
reasons these numbers are tendentially decreasing, as this cancer is
more responsive to less aggressive treatment in earlier stages [30].
Mammography screening was found to produce substantial reduc-
tions in the mortality rate of BC in women participating in these
exams [13, 14, 25, 30]. Furthermore, the mammography imaging test
was proved to be the only imaging test that reduces BC’s mortality
[12], bringing light to the importance of the correct interpretation
of these exams. There are, nevertheless, properties that influence
the effectiveness of the diagnosis, like the density structure of a
breast. This factor impacts sensitivity in mammography screening,
particularly in image-based exams, being important to cross-factor
these with different image modalities. More particularly, current ev-
idence indicates that Ultrasound (US) of the breast is an important
adjunct to mammography and clinical examination in the further
assessment of breast abnormalities, as it surpasses the impairment
of breast density (sensitivity problems) [19, 35].

Nowadays, Computer-Aided Diagnosis (CAD) is part of the profes-
sional’s routines, assisting with image interpretation, acting as an
automated second reader by signaling potentially suspicious sites
for radiologists to review. Convolutional Neural Networks (CNNs)
arise as a new generation of CAD devices in the wake of recent
developments in Deep Learning.
Once comparing breast cancer detection performance of radiolo-
gists utilizing these new CAD technological approaches, recent
studies [26, 33] suggest that the CAD-DL imbued systems show
great potential for the assistance of medical professionals.
This work is going to focus on a single CAD system task: classifica-
tion. Classification tasks applied to BC determine the severity of
a screening. Since it is standard for mammography screenings to
take multiple screenings for each breast of a patient (Multi-View)
as opposed to the traditional image classification tasks that take
a single image (Single-View), some adjustments are to be made.
In particular, a Medio-Lateral Oblique (MLO) and Cranio-Caudal
(CC) mammography views are to be taken into consideration in
the classification task. In addition to these, the proposed model
will also make use of the ultrasound image modality, consequently
assigning a Multimodal system architecture.
Concurrently, the curation process of a set of breast images of the
previously enumerated three modalities will also be made. These
endeavors will ultimately produce a usable dataset to feed the Hy-
perdense Network. Following current efforts to develop weak-label
model arquitectures, this work developed a usable dataset with
such labels. Taking into consideration the lack of publicly available
datasets and, moreover, the lack of weak-label datasets in the breast
cancer screening field, this attempt was especially intriguing.
The system will be further explained in the proceeding sections as
well as for its evaluation parameters. As for the proposed dataset
creation, a description of its pre-arrangement efforts, preprocessing
operations and validation will also be clarified.

2 OBJECTIVES
This work has two fundamental objectives: the development of a
Deep Learnining classification model to be used in a CAD system
to ultimately assist medical practitioners in the diagnosis of BC
exams; and the curation of a series of breast examinations to feed
the model.
The first objective was tackled with an automated model, under
a Multimodal Hyperdense-Net architecture [10], that takes 3 dif-
ferent breast exams as input - two related to the CC and MLO
mammography images and one related to the ultrasound modality.
The foreseen output classes of the system will be of Normal Tissue,
Benign and Malignant, associated with no lesion whatsoever and
lower or higher probability of a cancerous tumor respectively.



Concurrently, efforts to curate a set of breast images of the previ-
ously enumerated three modalities will also be made. These endeav-
ors will ultimately produce a usable dataset to feed the Hyperdense
Network following a weak-label paradigm.

3 THEORETICAL BACKGROUND
3.1 Computer-Aided Diagnosis
Computer-Aided Diagnosis (CAD) systems are an interdisciplinary
technology that combines elements of artificial intelligence and
computer visualization models to assist doctors in the interpre-
tation of medical images [8, 29]. More specifically, they process
radiological and pathological images to act as a medical profes-
sional’s second read. This could deeply benefit the radiologist’s
work, as it relies on a short period of time to make a diagnosis
decision which usually depends on the analysis of a minimum of
two medical opinions[21].
With the introduction of CAD systems in the health scene, recent
studies have been trying to make sense if their assistance is rel-
evant [20, 24, 26]. DL approaches have been making significant
improvements in CAD systems in radiology areas [28]. Current
literature focused on these new approaches, found that DL CAD
systems may enhance the sensitivity of mammography. More par-
ticularly, these could detect masses, architectural distortions, and
asymmetries on the screenings regardless of the densities of the
tissues as well as for identifying malignant lesions that are ob-
scured by benign-suspicious lesions [4, 23, 31]. This technology is
now correctly marking most (96.1%) asymptomatic breast cancers
detected with digital mammographic screening, with acceptable
false-positive marks (1.80 per patient) [37]. Another clear advan-
tage was the decrease in reading time, which exhibited an improve-
ment by 29.2% with CAD [4]. This factor is especially important
as cancer’s diagnosis at an early stage is more likely to be treated
successfully [36]. Moreover, as BC diagnosis requires more than
a single medical opinion in the screening context, studies believe
CAD systems are potentially equal to another medical ‘read’, that is,
CAD may hypothetically take the place of a second doctor’s opin-
ion and, with further advances in the area, even as first read system.

3.2 Multi-View and Multimodal Mammography
Models

Early detection and treatment of breast cancer is a fundamental task
to decrease its mortality. Contemporary literature on the field states
that no single modality has high enough sensitivity for a reliable
diagnosis [6]. As a result, the current workflow for radiologists in-
volves the analysis from at least two radiologists of several imaging
modalities, mammography (with CC and MLO views), Ultrasound
(US) and Magnetic Resonance Imaging (MRI). The combination
of these modalities can significantly increase diagnostic accuracy,
resulting in better patient care and reducing the number of unneces-
sary biopsies. Concurrently, as Deep Learning architectures reached
the medical scene, the same methodologies were sought to develop
models capable of detecting and classifying mammography exams
and breasts’ mass segmentation. However, in traditional image clas-
sification tasks only a single image (Single-View) is considered,
which is translated into CC and MLO mammography views being

separately analysed. These systems produced unsatisfactory results,
which led to their depreciation until a more performant architecture
was developed. It is nowadays customary to utilize both CC and
MLO views of mammography to detect tissue anomalies, therefore
relying on a Multi-View approach to produce an output, contrary
to the previous Single-View methodology. This Multi-View net-
work configuration presented increased performance results [32].
Unimodal models, however, tend to ignore the holistic context of
medical images that can only be provided by multiple outlooks.
These needs can be fulfilled with the use of multi-modality. Since
the current SoA models provide the representation capabilities to
conjugate supplementary modality information, the US or MRI
modality are used together with the mammography modality to
clarify certain system results.
In order to potentiate the best model performance, different net-
work configurations are possible to merge the various modalities’
information - early fusion, late fusion are amongst them. Current
methods involve multi-layer fusion [27] or concatenation [22]. In
this work a complex fusion strategy is used, in which each imaging
modality has a path, and dense connections occur not only between
the pairs of layers within the same path, but also between those
across different paths, not requiring neither early nor late fusion
practices [10]. As this method produced good results in the BC
multimodal-diagnosis models, the same approach will be used in
this work.

3.3 Hyperdense Network
Research over the last years has brought to light the performant be-
havior of densely-connected networks in the medical image scene.
Inspired by the trend, hyper-dense architectures started to arise
in the hopes of grasping multimodal image problems, extending
the dense connectivity philosophy to the already proved to be com-
petent tactic of considering various modalities. This architecture
extends the establishment of deep connections not only between
layers within the same modality path, but also between layers
throughout different modality paths. Considering the formerly in-

Figure 1: A section of the proposed HyperDenseNet in this
work’s case of three image modalities.
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troduced function described in Equation (??) of the DenseNet, the
HyperDense Net introduces a more effective feature representation,
that translates the complex relations within and in-between all
abstraction levels. Considering this work’s existence of 3 image
pathways, let 𝑥1

𝑙
, 𝑥2

𝑙
and 𝑥3

𝑙
signify the outputs of the 𝑙𝑡ℎ layer in

streams 1, 2 and 3 respectively, the output of the 𝑙𝑡ℎ layer in stream
𝑠 is defined in Equation (1):
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Furthermore, to decrease information lost during the intermedi-
ate CNN deterministic operations, it was found beneficial shuffling
and interleaving feature map elements in intermediate layers, to
stimulate more information exchange while safeguarding the pre-
vious needed operations. For this reason, Equation (1) is adapted to
Equation (2):

𝑥𝑠
𝑙
= 𝐻𝑠

𝑙
(𝜋𝑠

𝑙
( [𝑥1

𝑙−1, 𝑥
2
𝑙−1, 𝑥

3
𝑙−1, 𝑥

1
𝑙−2, 𝑥

2
𝑙−2, 𝑥

3
𝑙−2, ..., 𝑥

1
0, 𝑥

2
0, 𝑥

3
0])) (2)

Ultimately, 𝜋 is a function that randomly permutes the feature
maps given an input. Consequently, the utilized equation concate-
nates feature maps in a different order for each branch and layer.
Figure (1) illustrates the proposed mechanisms of this architecture.
Each gray region represents a convolutional block, whereas red
arrows indicate convolution operations. Additionally, black arrows
represent the network’s direct connections between feature maps
from different layers, within and in-between the different streams.
As a result, the input of each convolutional block (the maps before
the red arrows) are the permuted concatenation operation (Equation
(2)) of the outputs (maps after the red arrow) of all the preceding
layers from both paths. Addedly, this architecture prioritizes one of
the modalities’ extracted features. In other words, one of the paths
is considered to be the main modality in the network. The modality
with the highest correlation to the pertinent features is usually nom-
inated to be the main modality. The secondary modalities’ features
are fused into the main modality. More specifically, the proposed
model fuses the output of the last layer of each Denselayer of the
secondary modalities to the corresponding denser layer of the main
modality. This can be represented by Equation 3, where 𝑥𝑈𝑆,𝑙 and
𝑥𝑀𝐿𝑂,𝑙 , secondary modalities, are the output of the dense layer
from the US and MLO modality respectively of the dense layer 𝑙 .

𝑦 =

𝑥𝐶𝐶,𝑙⊕
𝑥𝑈𝑆,𝑙 ,𝑥𝑀𝐿𝑂,𝑙

∀𝑙 ∈ 1, 2, 3... (3)

By doing so, this network ensures that the relevant features are
reinforced whilst additional features that may increase the descrip-
tion of the model are included. In order to assess the relevance of
each modality, unimodal experiments are required, resulting in the
selection of the best performing modality as the main one. The
output of the main modality is associated with a max pooling layer
and a ReLU layer, which will finally be associated with the classifier.
In this work, the classifier will output between one of these three
classes: 𝑁𝑜𝑟𝑚𝑎𝑙 , 𝐵𝑒𝑛𝑖𝑔𝑛 or𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 .

3.4 Dataset Impact
The DL system’s performance is reliant on the gathering and analy-
sis of measurement data (𝑖 .𝑒 of datasets). The quality of the training
data is the differentiation factor of the functioning system, as for the
same exact DL model, different datasets produce different accuracy
results. Finding a high-quality dataset, to assure the maximization
of the performance of a DL system is, therefore, an imperative
task [16]. Authors specially advocate the impact of dataset size and
image resolution on the learning competencies of DenseNets ap-
plied to mammographies, concluding that performance is directly
proportional to both [9, 17]:

• (Impact of Amount of Images): Considering deep-learning ar-
chitecture’s paradigm and, more particularly, convolutional
neural networks that solely rely on the visual interpretation
of images, providing a sufficient number of examples for
the model is essential for robust predictive results [3]. More-
over, as breast lesions have different sizes and shapes, it is
essential to classify diverse tumor morphologies.

• (Impact of Image Resolution): The quality (resolution) of the
input images is considered as an influencing factor on the
performance of deep neural networks. Various elements can
have an impact on the image quality, including the presence
Understanding the optimal balance between the resolution
of input images and the computational and model efforts is
essential to achieve maximum performance.

Despite these needs, finding a large high resolution dataset of
breast exams is a difficult chore [9], as optimal datasets are very
difficult and expensive to produce: dataset compilation relies on
the very time-consuming tasks of gathering data, labeling it, and
verifying the made correspondences. With this said, in this work,
having a correctly labeled, large-enough dataset of both the mam-
mography (CC and MLO views) and ultrasound modalities is a
crucial precondition for its development.
With the interest of studying the necessary procedures to produce
a usable dataset and, more specifically, to fully understand the
pipeline of a dataset curation,this work focused its exertions on
curating images of the mammography and ultrasound modalities.

4 PROPOSED SOLUTION
Following the state-of-the-art concepts gathered in the last section,
this section describes the two distinct propositions this work aims
to achieve.

4.1 Dataset Curation
This work proposes the curation of a private dataset to be used in
the classification system’s implementation stages. The data curation
work ultimately produced two artifacts:

• (Repository): A github repository with two folders that con-
tain sets of labeled and validated images with two distinct
preprocessing treatments (‘stretched’ or ‘preserved’).These
images have a 224 × 224 pixel size.

• (Database) :A .csv file that serves as a database, where every
DICOM exam’s information is stored. More particularly, for
each patient’s entry, the following fields are featured: the
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Patient ID, the Acquisition Date, the Image Modality {MG,
US}, the Modality Subtype {CC, MLO, NA}, the Laterality
{Left, Right} ,the Associated BI-RADS {1-5} and links to the
224 × 224 image and DICOM repositories.

Both of these artifacts were created with the help of several
data-processing scripts:

• (Data-Labeling Script): A python program is responsible to
traverse through the different DICOM-filled folders, inspect
their fields, extract the relevant database information and
manually associate them to the medical diagnosis.

• (Validation Script): Cross-factors the developed database
with the original exam’s data, outputting for each element
of the dataset if there are any inconsistencies between the
two.

• (Preprocessing Scripts):A preprocessing script responsible
for standardizing the data’s appearance before it is fed into
the network was created.

4.2 Classification Model
The development of classification model with a Hyperdense Net-
work. This network processes the mammography image modality,
with both CC and MLO views and the US image modality. More
particularly, in this architecture, dense connections not only within
each of the enumerated views but also across different modality
streams will be featured, consequently promoting a multi-path ar-
chitecture of a complete Hyperdense Network.
The network will take as input both mammography and ultrasound
images and will output between either Normal, Benign, and Malig-
nant classes. The classes correspond to BIRAD intervals that will be
discussed in more detail in Section 4 6.1.5. This network’s organiza-
tion pursues the intuition that connected branches, as opposed to
sequential branches, provide better results in multimodal systems,
as it was implied in [7]. Some empirical results are to be made in
order to identify the main branch to weigh heavier on the output .
By observing the training workflow of the classification model,
one can understand that it is a multi-class classification problem,
as the model’s output has three different classes. Moreover, the
proposed model will learn in a weak-label end-to-end fashion. For
that reason, as the loss function, training will use cross-entropy,
whose expression is in Equation (4).

𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦𝑡 , 𝑦𝑡 ) = −
𝐶∑︁
𝑐=1

𝑦𝑡,𝑐 × 𝑙𝑜𝑔(𝑦𝑡,𝑐 ) (4)

where𝐶 denotes the number of classes , while𝑦𝑡,𝑐 and𝑦𝑡,𝑐 denote
the true and predicted probabilities of sample t belonging to class
𝑐 , respectively.

For the purpose of studying the proposed Hyperdense net ar-
chitecture, in addition to the unimodal testings on a densenet ar-
chitecture, the progression of the hyper network’s testings will
follow:

• (Baseline): model 1 has a Hyperdense Net architecture with
a densenet-121 branch architecture. The model will use the
‘stretched’

• (DenseNet Custom) : model 2 will have a Hyperdense Net
architecture with a custom densenet-101 (model 1-A) and
densenet-37 (model 1-B) branch architecture. This model

will use the dataset that had the best results in the Baseline
model 1.

• (Class Weight): This model (B-I) will use a custom Hyper-
dense network with Cross Entropy Loss to mitigate the un-
balanced classification threat.

Finally, once the model reaches its optimal point, a comparison
between the unimodal densenet trials and the hyperdense net re-
sults will be made, in order to assess if the multimodal approach
with a hyper connectivity pattern had better classification perfor-
mance in a weak-label paradigm.

5 EVALUATION METRIC
This work will utilize the most descriptive metrics in the breast
cancer classification task. More particularly, after training, Precision
(Equation (5)), Recall (Equation (6)) and Specificity (Equation (7))
will be used as metrics to assess the model quantitatively. The used
evaluation metrics had to take into account the fact that this work
utilizes an unbalanced dataset - since the dataset has more examples
of a specific class, the probability of the model leaning towards that
diagnosis becomes higher, which jeopardizes the model’s prediction
capabilities whilst, concurrently, might mislead the interpretation
of the model’s results [? ]ref:m141, ref:m142).

For that reason, the equations for each of these metrics were
adapted. Instead of calculating the global metric, across all sam-
ples and classes, it calculates the metric for each class separately,
and averages the metrics across classes, weighing each class by its
support. Furthermore, as these are binary class metrics, an adap-
tation for them to fit this work’s multiclass problem was made
by averaging the final score in a one-vs-rest approach. Each of
these systems of measurement follow below. The used notation
signals TP as 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 cases, TN as 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 cases, FP
as 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 cases and FN as 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 cases.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1
|𝐶 |

|𝐶 |∑︁
𝑐=1

𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
(5)

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
1
|𝐶 |

|𝐶 |∑︁
𝑐=1

𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
(6)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦𝑚𝑎𝑐𝑟𝑜 =
1
|𝐶 |

|𝐶 |∑︁
𝑐=1

𝑇𝑁𝑐

𝑇𝑁𝑐 + 𝐹𝑃𝑐
(7)

The Receiver Operating Characteristic is also going to be plotted.
From the ROC curve, it is also possible to extract the Area Under
the Curve (AUC) score of a model, which expresses the degree or
measure of separability in a scale of 0 to 1, 0.5 being an uninfor-
mative classifier. Both of these metrics were also adapted to fit the
one-vs-rest approach.
Furthermore, a 𝑁 × 𝑁 Confusion Matrix is also generated for each
model, where 𝑁 is the number of classes (3 in this work).
Utilizing k-fold validation and, more particularly, Stratified K-fold
Validation because of the unbalanced nature of the dataset would
have several advantages in this work. The model was instead run 5
times, with random splits of the dataset which is computationally
equivalent to k-fold validation.
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6 IMPLEMENTATION
This section does an inspection on the implementation specifics of
each objective of this work.

6.1 Dataset Curation
In this work, the assembling of a usable dataset with both mam-
mographic views (Cranio-Caudal and Medio-Lateral Oblique) and
ultrasound modality was made.It considers the data labeling, valida-
tion, and preprocessing tasks that compose this dataset’s assembling
workflow, which is schematized in Figure (2).

Figure 2: The dataset curation workflow.

6.1.1 Data Labeling. The data labeling task revolved around as-
signing a label to a sufficient amount of DICOM files. As this work’s
convictions revolve around a weak label approach, this work con-
sisted solely of associating the exam with its corresponding medical
diagnosis.
In order to label the data, this work utilized the Pydicom library that
provides an interface for DICOM object manipulation and reading.
A python script was responsible to traverse through the different
DICOM-filled folders, inspect their fields, extract their relevant in-
formation and manually associate them to their medical diagnosis.
The script takes as input a path to the folder containing the DICOM
files and outputs the file that is going to be stored in a repository
that serves as the database. It is stored in two different formats: the
raw DICOM file and a 224× 224.jpg file. Due to the DICOM format
intricacies and diagnosis-assignment spreadsheet impediments, the
data labeling task was not automated and required manual check-
ing of the exam’s diagnosis and inputting it onto the script.
Every DICOM file’s information was stored in a database - a .csv
file - with the following fields: the Patient ID, the Acquisition Date
(date the team acquired the exam), the Image Modality {MG}, the
Modality Subtype {CC, MLO}, the Laterality {Left, Right}, the Asso-
ciated BI-RADS {1-5} and links to the 224× 224 image and DICOM
repositories. Other data annotations -breast density or lesion posi-
tioning, for instance - were non-existing and fell out of the scope
of this work’s weak label approach.

6.1.2 Validation. Limiting incorrectly labeled data is an important
task in a data curation effort. In order to ratify the labeling process,
a python validation script was created. This script crossfactored
the initial spreadsheet with the developed database information
(the csv file that was generated by the data-labeling script) and
required two distinct stages. By traversing the files the program

would output a file that categorized the database information’s
states for each of the exams. Following the tagging process of both
files, a statistical report on the amount of information that falls into
each category is outputted as well.

6.1.3 Preprocessing. Current literature supports preprocessing as
an essential step in mammogram image analysis [mcite]. It involves
image normalization, grayscale contrast enhancement, breast seg-
mentation, and noise removal.This pipeline is shown in Figure (3).

Figure 3: The dataset preprocessing pipeline.

In the first stage of the pipeline (1), the .TIFF image is extracted
from the DICOM file. The .TIFF’s extraction was made with the
pydicom library. Then, image orientation is normalized (2) by hori-
zontally flipping all images with ‘Right’ laterality in order to have
all breasts facing right. Thereafter, the image’s colour scheme is
also normalized (3), to ensure the breast contains the brighter pixels
and the background contains the darker pixels. Both step (2) and
(3) are skipped in the Ultrasound modality, as they don’t share the
same image particulars.
Removing artifacts, labels and the pectoral muscle follows (4). These
artifacts are often texts in the mammogram, indicating the modality
of the exam, patient information or the hospital’s name. In order
to achieve breast segmentation, the contrast of the image is in-
creased by 4 times, ensuring that the pixels are either white or
black. Thereafter, the image is analyzed as a l*c matrix, where the
average brightness of pixels is computed for each row and column,
generating two uni-dimensional matrices. Through the analysis of
these matrices, it is possible to detect the extent of bright pixels
contained in each row or column, from which the breast area is de-
tected and thus achieving segmentation. This procedure is done for
both mammography vistas (CC and MLO) and for the ultrasound
modality.
Then CLAHE is applied. It partitions the image into 8X8 pixel tiles
and performs histogram equalization in each of them. This method
depends on the presence of noise in each tile - if the tile has no noise,
its histogram is in the 8 × 8 region; when noise is present, those
pixels are uniformly scattered between the surrounding tiles before
employing histogram equalization, to prevent noise amplification.
Lastly, bilinear interpolation to remove the visible borders between
the tiles is applied.

The final preprocessing stage involves image resizing (6) to
224 × 224 pixels, since after the cropping stage (4) the image has an
unbalanced width-length ratio. The rescale is done in two different
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manners in the mammography modality: stretching the image to
fit the 224 × 224 size and preserving the breast’s proportions by
adding additional black pixels on the right to predo the rest of the
mammogram. The first image type was named “stretched” and the
other “preserved”.

6.1.4 Statistical Report. Table 3 illustrates the statistical informa-
tion of the curated dataset on the number of exams per class per
modality.

Table 1: Dataset statistical information.

Modality Modality Subtype Class Number of Images

US NA Normal 109
US NA Benign 92
US NA Malignant 87

MG CC Normal 227
MG CC Benign 208
MG CC Malignant 104

MG MLO Normal 180
MG MLO Benign 156
MG MLO Malignant 103

There are a total number of 288 Ultrasound curated images, 539
Cranio-Caudal Mammographies and 439 Medio-Lateral-Oblique
Mammographies. The dataset is unbalanced not only on the amount
of exams per modality (there is a gap between the number of ultra-
sound and MG-MLO, and finally to the MG-CC exam) but also on
the amount of exams per diagnosis - across every exam modality,
there is a lack of ‘Malignant’ diagnosed exams, whilst the 𝑁𝑜𝑟𝑚𝑎𝑙

class has a larger number of examples.
The presence of an unequal distribution of images between classes
has an impact on the model’s performance and is a common prob-
lem in datasets. Consequently, the statistical distribution of exams
has to be taken into consideration once evaluating the system, as
this model’s predictive capabilities can be jeopardized by the lack of
a balanced number of examples between classes. Finally, since the
Hyperdense Network has as input three images of ultrasound and
CC and MLO mammograms from the same patient. An overview
of the amount of patients that have all or some of the modalities is
stated below:

• Number of patients with 3 modality types of exams: 195
• Number of patients with 2 modality types of exams: 78
• Number of patients with 1 modality type of exams: 53

6.1.5 Final Considerations. Some simplification for this work’s
classification task was made - the BIRAD score was replaced by a
medical qualitative diagnosis. Table 2 illustrates this work’s associ-
ation between the BIRADs score and the classification task’s class.

Table 2: The association between the radiologist’s diagnosis
(BIRAD) and the system’s designed output class.

BIRAD Class

{1} Normal
{2,3} Benign Finding
{4,5} Malignant Finding

6.2 Classification Model
This section contemplates the several implementation efforts that
had to be made in order to create a Hyperdense model and is sub-
divided into the three fundamental tasks that ultimately compose
the stages of this work’s model execution - unimodal testing, data
loading customization and hyperparameter assessment.

6.2.1 Unimodal Testing. Since the proposed Hyperdense Network
architecture has three distinct interconnected branches that con-
template a Densenet network topology, unimodal testing with a
Densenet model, as reported in literature [11, 34], is extremely im-
portant and had to be performed. The opted densenet architecture
was the densenet-121. Designating which of mammograms had the
most valuable information was tested in this architecture.
The results indicated the CCmammography vista as the best modal-
ity, this was due to the lack of Ultrasound exams that is usually
better in the unimodal trials .

6.2.2 Target Specification. Following the network’s pipeline, the
threemammography examinations have to be fed into three branches
of the Hyperdense network. Despite the exams being of the same
patient, these can have different diagnostic results, as each of the
mammograms show different visible lesions in their modality do-
main. Dealing with inputs with multiple targeted outputs adds a
different layer of complexity for this model’s learning process.
In this work’s context, it is more desirable to reduce the rates of
False Negatives (a less severe wrong diagnosis) than it is to reduce
the rates of False Positives (a more severe wrong diagnosis) in the
medical field. Considering a more conservative approach to the
overall diagnosis in this problem domain could potentially save
lives.
For that reason, the designated target of each three-image “batch”
is the one with the medical exam with the highest (more severe)
diagnosis.

6.2.3 Hyperparameter Assessment. The Hyperparameter assess-
ment of the Hyperdense network is reliant on its previous densenet-
121 architecture. Consequently, unimodal testing was also intended
to inspect the several hyperparameters, and Table 3 illustrates their
settlement.

In order to prevent overfitting several changes were made on
the branche’s architecture. More particularly, on the number of
convolutional layers: a combination of (16,16,16) convolutions in
dense blocks was adopted as opposed to the previous (6, 12,24,16)
dense block configuration of the densenet-121. These adjustments
didn’t allow for the usage of the preloaded Image Net weights but
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Table 3: Hyperparameter Specification

Parameters/Model Densenet-121 Hyperdense Net

Starting LR [0 = 10−5 [0 = 10−5

LR Decay Exponential (𝛾 = 0.98) MultiStepLR (𝛾 = 0.1)

Optimizer Adam (𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 1 × 10−8)

Number of Epochs 100 100

Batch Size 32 32

𝐿2 Regularization 1 × 10−4 1 × 10−4

Number of Folds 𝑘 = 5 5

Dropout 𝑝 = 0.4 𝑝 = 0.4

Densenet Compression \ = 0.5 \ = 0.5

Densenet Growth Rate 𝑘 = 32 𝑘 = 32

were necessary as model trials with a pretrained densenet-121 net-
work were worse than with a densenet-101 without pretraining.
The dense block reduction also accounted for fewer parameters for
the model to train.
Weight regularization techniques together with dropout were also
applied to improve the model’s generalization capabilities. 𝐿2 regu-
larization was opted for as network trials produced slightly better
results than with 𝐿1 regularization. Dropout was also added - in the
densenet trials, a bigger probability proved to achieve better perfor-
mance, whilst in the HyperdenseNet architecture it was preferable
to use a lower value (𝑝 = 0.25).
Data Augmentation techniques were applied to overcome data
shortage. More particularly, conducted experiments proved random
rotation and random flipping to be more useful. Multi step LR decay
proved to be better for the Hyperdense Net model than the Expo-
nential LR decay that was used in the densenet trials. Multistep
LR decays the learning rate of each parameter group by gamma
(𝛾 = 0.1 in this work’s model) once the number of epoch reaches
twomilestones - half of the number of epochs and in the last quarter
of the model’s training stages.

sectionResults Firstly, the densenet unimodal testing is illus-
trated in Figure (4). These trials used a densenet-121 model with a
(6, 12, 24, 16) convolutional dense blocks’ configuration. As stated
in Section 6.2.1, this model found the Cranio-Caudal view of a
mammography exam as the modality with the best information.
Despite literary studies presenting the ultrasound modality as the
one with the biggest information gain, as this modality had less
images than the CC mammographies, the results were expected. By
curating more ultrasound exams, the main modality is expected to
shift towards the original one.

The dataset that achieved better results in the unimodal trials was
the preprocessed ‘stretched’ dataset, and this finding was extrapo-
lated to the Hyperdense network’s results. This conclusion follows
the intuition that an increased number of pixels of the breast is
preferable than unadulterated pixels. Furthermore, in future work,
with the help of clinical physicians, following publicly available
dataset’s trends like the InBreast dataset or the CBIS-DDSM, by

Figure 4: Evaluation results for the unimodal tests with a
densenet-121 model. [Compared Models- US: Ultrasound
exams resuls; CC-”S”: Cranio-Caudal mammography with
’Stretched’ preprocessing; MLO”-S”: Medio-Lateral Oblique
mammography with ’Stretched’ preprocessing; CC-”P”:
Cranio-Caudal mammography with ’Preserved’ preprocess-
ing; MLO”-P”: Medio-Lateral Oblique mammography with
’Preserved’ preprocessing]

cropping the image in the area where the tumor is present, the
model is expected to achieve better performance. This assumption
is stated throughout SoA literature as the model would be able
to restrict its feature extraction on the lesion’s area and wouldn’t
be misled by uninformative pixels that can illustrate ambiguous
shapes, consequently leading to a wrong classification. Utilizing
images with better resolution would also have a positive impact on
the network’s performance.
The baseline Hyperdense Net model features a Densenet-121 archi-
tecture in each branch. Further testing with the block’s configura-
tions was made, as well as with the proper optimization techniques.
The results are presented in Figure (5) The model’s block configura-
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Figure 5: Evaluation results from the proposed classification
models.

tions pursued simpler arquitectures at first, to leverage the complex
nature of the Hyperdense’s branches that were harming its abstrac-
tion strength. Through a variety of testings, the Hyperdensenet’s
results were unresponsive to the decrease of the dense block’s com-
plexity. Only by decreasing the number of dense blocks from 4 to
3 and keeping a high number of trainable parameters, did the net-
work start to regain performance. More concretely, the branches’
dense block architecture was restricted to (16, 16, 16).
Once admitting the unbalanced nature of the dataset was being
too harmful to the network’s results, a Weighted Random Sampler
was added to balance out the dataset’s class count. This technique
increased the model’s predictive capabilities, and could testify that
such a method is crucial for models whose input batches have dif-
ferent class rates in the dataset.
Additionally, a comparison between a Hyperdense Architecture
with a multiclass approach and a single view approach can also
be analysed. By isolating each hyperdense branch prediction and
comparing its results with the unimodal densenet architecture’s
results for each of the modalities, conclusions on the utility of the
interchanged information between modalities can be extracted in
this work’s settings. The comparison is illustrated in Figure (6),
where the blue squares are a Hyperdense net’s branch result and
the orange dots are a Densenet’s unimodal result for each modality
for each evaluation metric. The illustrated comparison between
the hyperdense branches and the unimodal test for each of the
modalities’ results indicates that the hyperdense net’s information
exchange between the branches is not enough to outperform the in-
creased architectural complexity of the Dense net. That is, the lower
complexity of each Densenet in the Hyperdensenet’s branches, once
comparing it to the unimodal Densenet’s complexity is possibly
compromising the model’s predictive capabilities.
Finally the Hyperdense Network classification results did not reach
the same capacity asmodels with the same architecture with annota-
tions. Limited work is published with weakly supervised deep learn-
ing models in the Breast Cancer field, specially with this model’s
architecture, which limits the capability to compare this work’s
results.

Figure 6: : Comparison between each branch of the Hyper-
dense network (orange) and each unimodal test (blue) in each
evaluation metric.

However, the way the results stagnated in these values can be
explained by a number of factors. Firstly, as three distinct mam-
mographic exams are featured as input that have both different
semblance and different tumour appearances, each HyperdenseNet
branch is being fed with too few and dissimilar images. Despite
having constant feature exchange, the fact that these features can
be so divergent and with such little image representation, can ulti-
mately jeopardize the output result. This constraint could be moved
past with more data or with the usage of data annotations. Further-
more, as previously stated, a considerable amount of incomplete
input batches are passed through the network, which threatens
the model’s training stage. Considering that each input is reliant
on three images, the input quantity is dropped to a third of the
dataset’s amount, which results in an insufficient amount of images
for the model to learn each class.
Such a deep architecture did not have the proper amount of images
to build a robust predictive capability comparable to SoA Hyper-
dense models that make use of annotated datasets (Supervised
Classification models). Nevertheless, these can be seen as promis-
ing results in the field of Weak Supervision, with possibility of
improvement. The next Chapter will culminate this work’s findings
with a conclusion on the overall judgments and suggestions on the
possible advances of these findings.

7 CONCLUSION
Considering the high BC mortality rates, Computer-Aided Detec-
tion (CAD) systems have been developed in the hopes of assisting
radiologists in the detection of breast lesions. Traditional CAD
systems utilize fairly simple mechanisms to identify such lesions,
which resulted in various studies that questioned the relevance of
these practices. Recent work promoting the usage of Deep Learning
(DL) models have made major breakthroughs on the performance
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evaluation of CAD approaches. In this work, a refined DL model
implementation following today’s SoA practices was discussed and
thoroughly evaluated, alongside the description of a standardized
pipeline for data curation. Subsequently, this work supports the
discussion of different innovative DL architectures for screening
considering a multimodality overview. More particularly, a Hyper-
Dense Network is proposed to be implemented following a mul-
timodal and weak-label approach. Furthermore, due to the large
annotated datasets shortage, some techniques to overcome input
scarcity were also addressed, culminating in the establishment of
a usable dataset with ultrasound, cranio-caudal and medio-lateral
oblique mammograms.
Finally, contemplating the presented results, the possible drawbacks
- data insufficiency, unavailability of high computational power, un-
balanced dataset and model architectural constraints - were also
discussed, highlighting the necessary requirements to better the
parametrized evaluation criteria.

7.1 Achievements
Study in the area of DL hints to a future with improved supporting
tools for mammography screening practitioners. More particularly,
deep architectures with a weak label approach can move past the
constraint of data unavailability in the breast cancer field that is
due to the lack of time and funding resources. Although achieving
performant CAD models through weak label classification could
have a positive impact on their future employment in medical facili-
ties and DL research, classification models with a weak supervision
paradigm is still an open area of investigation [1, 38].
On the other hand, creating a standartized curation process with
preprocessing and validating scripts stands was one of this works
biggest accomplishments. Despite the number of curated images
and the initial labeling difficulties, with more curated data, data aug-
mentation techniques and class weighting techniques, this threat
could be diminished.
Considering the proposed classification model, there were no sub-
stantial improvement on the results to state. However, this work’s
implementation following a weak label approach with an unbal-
anced set of images has sufficient facilities to indicate that with a
more complex pipeline or a bigger dataset size, one could extract
better results. These alternatives are described in the next section.

7.2 Future Work
This work’s classification results added to the collective knowledge
on the importance of a balanced dataset in a complex three-input
architecture. Various limitations were stated throughout the sec-
tions, computational power and dataset size being the most relevant
ones. Considering different model architectures can also be seen as
possible future improvement.
Firstly, as the computational resources were scarce, downsampling
the images to (224 × 224) was necessary. Future work could try to
soothe the downsampling to higher resolutions either by increasing
the computational abilities or by establishing a network pipeline
capable of decomposing a mammogram into smaller manageable
items and passing each section through the network as input whilst
still contributing to the same output result, like in the work of [2].
Additionally, architectural changes that are also being reported in

literature to accommodate higher resolution images can also be
employed. In [18] the authors present a network capable of having
(2600 × 2000) pixels image resolution by reducing the size of the
feature maps in the early stages of the network - by managing the
strides size in the first convolutional and pooling layers - and in
this way accepting, with less information loss, bigger inputs. As to
the dataset’s size, the team that aided in the development of this
work is still acquiring more mammograms. The scalability of the
dataset is possible and is expected to occur in the next few months.
Considering the weak-label approach this work tried to explore,
it is difficult to find publicly available datasets to test on different
mammograms in such a manner. However, pretraining the network
with annotated datasets and moving on to a weak supervision para-
digm by preloading the model could possibly move past the various
constraints of purely image level annotations.
Finally, as the medical and scientific research branches are still
independent, medical exams are not yet seen as potential input to
researchers. Establishing a gateway between the two would deeply
benefit both communities and is stated in this work as a necessity
to develop a better collective understanding on the Breast Cancer
field.
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