
Internet of Things Laboratory

João Gonçalo Vieira Saramago
joaosaramago@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

With the growing use of the Internet of Things in the most diverse areas of work and leisure, it is
important to offer IST students the possibility of receiving education in this area. The universities most
interested in this field already have labs with microcontrollers, small computers, and wireless networks to
interconnect devices. Besides networks, several have IoT platforms to manage communications, devices,
and access to their data. Thus, to create an IoT lab at IST it is important to implement one of these
platforms. After analyzing the open-source options available, ThingsBoard was the one that proved to
be superior and was chosen to be implemented in the lab. The options of microcontrollers to be used
to communicate with the platform were analyzed, and the ESP32 was the selected one. For students
with little to no experience with microcontrollers, a library was created to simplify their communication
with ThingsBoard. In addition, sets of sensors, actuators, and one microcontroller, called SensorBoxes,
were created for installation and demonstration at the IST campus. Performance tests showed that the
platform is adequate for the intended use, although the server provided by IST, where it was installed,
had insufficient resources to use the platform with some intensity. Finally, it was possible to adapt existing
lab work where two students would have to establish wired communications between microcontrollers.
Using the platform these communications could be established over the internet, being an added value in
situations like the one experienced during the COVID-19 pandemic.
Keywords: Internet of Things, Laboratory, ThingsBoard, ESP32

1. Introduction

The Internet of Things is the concept where differ-
ent types of objects connect to the Internet, can
communicate with each other and be controlled re-
motely. It aims to facilitate and optimize people’s
lives by automating different types of scenarios,
both personal and professional. It is best known by
its English name, Internet of Things, or its English
abbreviation, IoT.

To connect devices to the internet we can use an
IoT platform. This allows to connect and manage
devices such as sensors and actuators, store, vi-
sualize and process the collected data. It can also
control access to this data and other logic related to
the application area. One of the many use cases
can be managing large fleets of vehicles through
the platform, to which GPS-enabled devices will
be sending their location data. A user-driven mo-
bile IoT application, for example, to control a smart
home, fetches real-time or previously saved sensor
data from the IoT platform and controls the home’s
actuators. Automations can also be created on the
platform so that it triggers actuators autonomously
depending on sensor data. It is an important tool in
several areas of engineering, both for process op-

timization, using sensor data to understand what
happens over time, and for creating new ideas and
products to put on the market facilitating or adding
something to consumers lives. It is something that
students, especially in the area of computer sci-
ence, should learn about during their higher edu-
cation.

The main motivation of this work is to start creat-
ing the infrastructure for an IoT Lab at Instituto Su-
perior Técnico (IST). Bring the possibility of man-
aging sensors and actuators connected to the In-
ternet through an IoT platform. Allow students to
access sensors located around the campus and
use them for assignments and projects in various
disciplines. This access can be made inside or out-
side IST, so students anywhere in the world can
access this network of sensors and thus continue
their work. Besides access to the existing devices,
students will also be able to create their own and in-
tegrate them into the network. An infrastructure like
this brings new possibilities to several disciplines
and courses, mainly to the Master of Computer
Science and Engineering (MEIC). However, many
courses at IST already have some programming
component in their curriculum due to the influence

1



of computing in all fields of work nowadays. Thus,
other courses can also take advantage of this in-
frastructure. A Civil Engineering course may want
to mount several sensors in buildings to perform
studies. An Environmental Engineering student
may conduct studies on environmental impacts by
collecting data 24/7 and later analyzing it. Indus-
trial Engineering and Management students may
develop projects to monitor production lines, work-
ing according to Industry 4.0. Yet another exam-
ple can be Chemical Engineering students to study
laboratory environments, the behavior of solutions
over time or work they are doing, for example mon-
itoring water purification. Many possibilities exist in
all areas and the availability of such a platform at
IST would bring the opportunity for students from
all courses to experience what is not only the future
but also the present. Thus placing IST students at
the digital forefront as they enter the professional
world.

2. State of Art
This section presents the current state of IoT labs
in higher education, the main technologies used in
this work, and why they were needed.

2.1. IoT Labs in Higher Education
With the growing use of the Internet of Things in
various areas of work and leisure, more and more
universities are trying to introduce their students
to this area. To that end, they create IoT labs fo-
cused on the technological exploration of the area,
where students explore the technology behind the
communications for IoT, and IoT labs focused on
applicational exploration, where students seek to
improve or use existing technology to create new
IoT-related products for consumer use, thus bring-
ing greater comfort and security to their lives. By
creating these labs, universities can bring a more
suitable environment for their students to carry out
their semester projects and for thesis development.
In addition to the labs, universities also allow other
parts of the buildings to be automated, such as
lights [1], so students can not only explore the area
but also put it into practice in the real world, close
to them.

One of the main things that the labs from other
universities have in common is the availability of a
wide range of hardware for students to use. This in-
cludes various microcontrollers, such as Arduinos
and ESP32, and small development computers [2].
There are also various types of sensors and actu-
ators for students to put their projects into practice.

For students who want to create IoT projects
without any knowledge of electronics, just pro-
gramming skills, there is the more applicational
side of these labs. One of the options usually made
available to students in this situation is a sensor

network, which once up and running will always be
sending its sensor data to a server, the latter then
being able to share the stored or real-time data
through its API. IoT platforms are used for this type
of functionality. Among the labs that use this tech-
nology to connect devices, some opt for paid and
renowned versions such as the Amazon, Microsoft,
or Google IoT platforms, or for platforms from their
labs’ sponsors, which influences the choice, but
some also go for open-source options, which for
the work to be implemented is the most appropri-
ate. Labs that don’t use IoT platforms to manage
communications usually only provide a communi-
cations network, for example, LoRaWAN, where
devices can communicate with each other, but for
messages to be managed and stored you have to
create that functionality in your own application.

2.2. IoT Platform

In order to choose the IoT platform that will be
used, several important factors were established.
Being an open-source and free project is the main
point, it should have a large community, active de-
velopment, good documentation, SDKs for several
platforms, control and administration panel, and fi-
nally, support for local installation.

From the beginning, paid platforms or platforms
with limited free plans were excluded, such as
AWS IoT, Google Cloud IoT, Arduino IoT Cloud,
among others. An open-source software has sev-
eral advantages such as no costs to use it, more
privacy, more flexibility in terms of adding features,
not being dependent on the existence and inter-
ests of a company, among others. Considering that
open-source software is created by its community
it is very important that the chosen IoT platform has
a large community behind it.

Among the several options available for IoT plat-
form, the ones that stood out the most, considering
the defined criteria, were ThingsBoard, Kaa IoT,
OpenRemote, and SiteWhere. Taking a closer look
at these options, it was found that ThingsBoard,
even though it is the newest IoT platform it is by
far the most popular one, having the highest num-
ber of Stars in its GitHub repository. In second
place is the Kaa platform with approximately 14%
of ThingsBoard’s number of Stars, third is Site-
Where and last is OpenRemote. ThingsBoard’s
growth trend has also been much higher compared
to the other options.

Looking at the activity of the repositories in the
31 days prior to September 14, 2021, we see
that, as in the previous comparison, ThingsBoard
stands out quite a bit from the others with 158
commits, while Kaa has 8, OpenRemote 55, and
SiteWhere 0. All the platforms in question have
dashboards to manage devices, users, view data,

2



among other features.
In the past, others have compared the existing

open-source IoT platforms. Leonidas Otalora com-
pared in May 2019 the various options in terms of
available features and integration of the platforms
with other devices, and already at that time con-
cluded that ThingsBoard was the best platform to
use, excelling in all points of comparison, including
usability and available documentation[3]. Eduard
Bitencourt and Willian Anjos, in August 2018, also
developed a project based on ThingsBoard, having
compared it with other platforms and coming to the
conclusion that it was indeed the best open-source
platform to use[4].

The fact that the ThingsBoard[5] website indi-
cates that several well-known companies are us-
ing its platform shows its maturity and that it is the
best choice, respecting the criteria, for bringing this
work into a professional environment. Among the
various companies, we find T-Mobile, Bosch, Pros-
egur, and INSYS.

2.2.1 ThingsBoard

ThingsBoard[5] is an open-source IoT platform. It
allows you to interconnect and manage devices
such as sensors and actuators, store, visualize and
process the collected data, making it possible to
create new applications based on that data. It is
designed to be scalable, fault-tolerant, robust, effi-
cient, customizable, and durable. Devices commu-
nicate directly with the platform using MQTT, HTTP,
or CoAP, however, gateways can be used to trans-
late other protocols to MQTT in order to be inter-
preted by the system, such as Modbus, OPC-UA,
and LoRa.

There is a free version (Community Edition) and
a paid version (Paid Edition), however, the free one
has all the features necessary for this work and one
of the goals is to use a free open-source platform.

2.3. Microcontrollers in IoT
With the need to make many objects smart and put
them in many different scenarios, three important
points were considered when choosing microcon-
trollers for IoT in an academic environment. Being
low cost, since it is intended to be used by people
with little experience it is more likely for errors to
occur and damage the device, so to be viable for
IST the cost of each one has to be low. Its versatil-
ity, in order to decrease the learning curve the mi-
crocontroller SDK should be simple to use but also
include more advanced features for those students
who want them. The more functionalities the de-
vice has, the better the investment by IST and the
wider the range of possible projects for students
to create. Finally, its popularity, to facilitate learn-
ing it is important to have as much documentation

as possible available on the Internet for students
to access in order to clarify doubts or learn how to
use the desired features, therefore, in addition to
the official documentation, the larger the commu-
nity using the microcontroller the greater the avail-
ability of tutorials and projects in which it is used.

Given the points mentioned and after exploring
the available IoT tutorials and projects on the in-
ternet, the microcontrollers that stood out were
the Arduino Uno[6] with Wi-Fi board based on
an ESP8266[7], the ESP8266 itself,[8] and the
ESP32[9].

In terms of costs, the official Arduino Uno has an
RRP of 20C, being possible to find it at discount in
some stores, the clone versions can be found for
around 6C from China with shipping to Portugal in-
cluded. The Wi-Fi shields based on the ESP8266
are on sale for about 4.5C from China with ship-
ping included. The ESP8266 is currently on sale
for about 3C from China and shipped to Portugal.
As for the ESP32, it is on sale for approximately 5
C from China and with shipping included to Portu-
gal.

The Arduino Uno is a very popular device among
microcontroller beginners for its simplicity and tol-
erance to abuse, however, it does not have access
to Wi-Fi, so people who already have it and want
to gain that functionality sometimes opt to add a
Wi-Fi shield to it. The ESP8266 and ESP32 are
also very popular for their extra functionality, extra
power, and the ability to also program them through
the Arduino IDE, with many people switching from
Arduinos to these devices.

The advantage of the Arduino Uno with the Wi-
Fi shield, in this work, is IST already having these
devices. However, the ESP32 is the best op-
tion because, compared to the Arduino Uno, it is
much faster, already integrates Wi-Fi in the con-
troller itself, and it is also cheaper, around half the
price when compared to the Arduino and the Wi-
Fi shield. Compared to the ESP8266, the ESP32
is more expensive but faster and newer, being the
successor the company’s focus is now on it. In ad-
dition, the ESP32 already comes with Bluetooth,
thus bringing a wider range of possibilities to stu-
dents. For this reason, the ESP32 was the micro-
controller chosen for this work, using the others for
comparison and compatibility.

3. Architecture
This work intends to create an Internet of Things
environment at IST and provide a foundation for
students to explore this area in the different dis-
ciplines and existing courses. For this to be possi-
ble an IoT platform was implemented, in this case
ThingsBoard, in a server accessible to everyone
through the internet.

3



Figure 1: Architecture of the work to be implemented.

The platform serves as a connection point be-
tween all microcontrollers and the user, either the
latter through the administration page or the REST
API, for example, the user can via the REST API
receive sensor data from certain microcontrollers
and according to his logic trigger the actuators of
other ones. On the administration page, the user
can manage his devices, analyze the data they
transmit in real-time or check their history. This
analysis can be done using dashboards where he
can create graphs and tables with data, and also
buttons to control actuators. The user can define,
through rule chains and by device types, what hap-
pens to the messages arriving at the server, if they
are discarded, if they should be treated before sav-
ing, if they activate alarms, among many other op-
tions. Devices can also be associated with assets,
for example, relating devices to the buildings or
objects where they are installed. There are three
levels of privileges in the platform, the system ad-
ministrator who manages tenants and system set-
tings, the tenant administrators who manage their
tenant’s devices, assets, who their clients are and
what devices they have access to, and finally, the
client level who has access to the allowed devices

and their dashboards. A student who only wants to
access existing sensors on campus will have to re-
quest a client account from the tenant administra-
tor who manages those devices. It is also possible
to make the devices public, however, to avoid ma-
licious use or use that goes against the expected
one, it is preferable that when a student or group
wants to use them they have to ask for permission.
If the student wants to create his own devices, he
can do so by requesting a tenant account, so he
acts as the owner of his business and provider of
device access to his clients. If the student wants
to install his device on the campus, available to all
students, he will have to ask an administrator of the
account that manages IST devices to add his there,
or else one of the provisioning techniques will have
to be activated so that the student alone can add
his device to the sensor network at IST. The sen-
sor data sent to ThingsBoard is called telemetry.
Attributes are key-value pairs about device infor-
mation, it can be whatever the user wants, like
firmware version, parameters, or settings. The de-
vice can both publish and read its attributes. Users
can also access the functionalities of the adminis-
tration pages through the REST API using HTTP

4



requests, these can be abstracted using SDKs in
various programming languages already provided
by ThingsBoard.

Considering that the system is to be used mostly
by students that have just been introduced to mi-
crocontrollers its use must be as simple as possi-
ble, so a library must be created for the microcon-
trollers to simplify their connection and communi-
cation with the platform. ThingsBoard has an of-
ficial library for Arduino that communicates with its
IoT platform through the MQTT API. To further sim-
plify the connection and communication with the
server for inexperienced students, the library is cre-
ated as an extension of the previous one, simplify-
ing the use of the following functionalities:

• Wi-Fi network connection, including Eduroam
network (WPA2 Enterprise)

• Server connection

• Connections maintenance

• Sending SensorBox details

• Subscribing to commands for the actuators

• Device provisioning

• OTA updates

The library is compatible with the Arduino Uno
and its Wi-Fi shield, the ESP8266, and the ESP32.
The protocol used to communicate with the plat-
form is MQTT, however, the user will not need to
know the message structure used by the various
features since he can call functions that already
handle that kind of work. With this library, the same
code file can be used on all three microcontrollers
mentioned.

To demonstrate the use of the platform to stu-
dents and so that those not interested in building
circuits with sensors and actuators can still take
advantage of it, devices will be created to be in-
stalled around the IST, so it will be possible to
obtain measurements of the campus environment
through them. These devices are called Sensor-
Boxes. The SensorBox is the name given to the
set of sensors, actuators, and one microcontroller
ready to be placed anywhere as long as it has ac-
cess to the internet and electricity. In this assem-
bly, there are also LEDs to show the status of the
code and even a way to connect a power supply.
The SensorBoxes will be for indoor use and come
in two versions, a larger demo version where there
is a LED for each sensor and actuator so you can
see when they send or receive messages, and a
smaller version just to be placed on a wall or ta-
ble to collect information. The ESP32, ESP8266

and Arduino Uno with the Wi-Fi shield are compati-
ble with the SensorBox construction. The choice of
actuators should be thought about according to the
target users of the device, whether it is to be used
by one person or by students in general. Actuators
influence the environment where they are, for ex-
ample, a buzzer when triggered will produce noise
and this may be unwanted in certain locations.

4. Implementation
This section explains the implementation of the
work developed, the difficulties and limitations en-
countered.

4.1. ThingsBoard
In this work, the IoT platform was installed on a
personal computer for development purposes and
then on three different servers to experience a pro-
duction environment and work around the prob-
lems encountered. It is also explained how to use
the administration page and the REST API.

Thanks to the good documentation of Things-
Board it is easy to run its server and it can be
installed in many ways on several platforms. For
the development of most of this work was used
Docker running the ThingsBoard server on a per-
sonal computer, using the PostgresSQL database
and the ”In Memory” message queue service. Us-
ing these chosen configurations for the server is
the simplest way to get ThingsBoard running and
ready to develop the rest of the work.

To bring this work closer to real use, we tried
installing ThingsBoard directly on servers. All of
them ran Ubuntu Server 20.04 LTS, so the installa-
tion process was mostly the same for all. Started
by installing it in a local network server, with 4 cores
and 8 GB of RAM, but without being able to access
it from the outside. Using PostgresSQL and the
Kafka message queue service, there were no diffi-
culties in using the platform.

In order to make a ThingsBoard installation ac-
cessible through the internet, we tried it on an AWS
EC2 t2.micro server, which has 1 vCPU and 1GB
of RAM. These resources proved insufficient, re-
sulting in only a few minutes of operation between
each server restart.

Finally, to be able to replicate the installation
done on AWS t2.micro but in a server with more re-
sources and without spending money, a virtual ma-
chine with 2 vCPU and 2GB of RAM was requested
to RNL, a support network to the computer science
courses of IST. Once the machine was available,
ThingsBoard was installed with PostgresSQL and
the ”In Memory” message queue service, this way
it was possible to run the server without problems.
The server can be accessed through the address
thingsboard.rnl.tecnico.ulisboa.pt.

To manage the system there is the system ad-

5

thingsboard.rnl.tecnico.ulisboa.pt


ministrator, who can create new tenants and ad-
ministrators for each tenant. Below this we have
the tenant administrators, we can have in this case
a tenant called Instituto Superior Técnico and as
administrators the people responsible for manag-
ing the installed devices, for example, the IST Sen-
sorBoxes network. They will be able, among many
other things, to create the devices and manage
who has access to them. Students who want ac-
cess to IST’s SensorBoxes will have to request a
client account from the IST tenant. This way it is
possible to control who has access to the devices’
data. If a student wants to create his own devices
and integrate them with the platform he will have to
request an account as an administrator of his own
tenant, this way he will act as a company that has
its devices and can provide access to their data to
its clients.

4.2. SensorBox-ThingsBoard Library
This library is designed to make communications
with ThingsBoard as simple as possible. Both this
and the official ThingsBoard library, on which this
one is based, use external libraries. To ensure that
the library works properly and as described in this
work, these must be also installed, with the Arduino
Uno requiring extra libraries compared to the other
microcontrollers.

The Arduino Uno with the Wi-Fi shield has its
functionality limited due to its reduced processing
power and little available memory, so it is not able
to use the features that require subscribing to mes-
sages, it can only send information to the server.

The library was created in a development envi-
ronment with a Wi-Fi network that has the WPA2-
PSK authentication mode, the traditional home Wi-
Fi network with an SSID and a pre-shared pass-
word. At IST the Wi-Fi network used is Eduroam,
whose authentication mode is WPA2 Enterprise,
so it requires the library to use that authentication
method to connect to the Internet. Although it was
not possible to test, the functionality of being able
to connect to networks with WPA2 Enterprise was
added experimentally to the ESP32.

Thanks to this library, the three microcontrollers
mentioned in this work can run the same code to
connect to and communicate with the Wi-Fi and
ThingsBoard.

The library code can be viewed in its GitHub
repository [10]. The explanation of the created
code is commented in the code files. Usage ex-
amples can be found in the same repository within
the ”examples” folder.

4.3. SensorBox
The SensorBox is the name given in this work
to the assembly of sensors, actuators, and a mi-
crocontroller that communicates with the Things-

Board.
It was designed, at this stage, for indoor spaces.

It aims to have its entire interior visible so that stu-
dents can better understand what they are working
with. It should include LEDs that indicate its oper-
ating state, being that the difference between the
normal and the demonstration version is that the
former has only one LED representing all sensors
and actuators while the latter has a LED dedicated
to each sensor. Finally, it should also include a
plug to connect a power supply. The construction
should be universal in order to be compatible with
as many sensors and actuators as possible. To be
able to install sensors that make measurements re-
lated to air, it must be able to circulate inside, so it
was decided to create an open sandwich construc-
tion, with a wooden base and an acrylic top. It is
compatible with the assembly of two normal 400-
pin breadboards side by side or with the assembly
board from the official Arduino Uno kit. Besides mi-
crocontrollers and breadboards, it should also be
possible to mount sensors that already have their
own circuit on a PCB.

The SensorBoxes created, following the criteria
described above, can be seen in the images 2 and
3.

Figure 2: Demonstration SensorBox.

A variety of microcontrollers were used to show
their compatibility with the library. The ESP32 is
the one recommended for this work and used in the
demo SensorBox. The ESP8266 although older
and worse than the ESP32, is still a very viable op-
tion for this work and is the microcontroller used in
the normal SensorBox. The Arduino Uno with the
Wi-Fi shield is used because IST has quite a few
kits and it is easier to spare those for this use. So
the Arduino can be integrated into the system de-
spite its limited functionality due to its low memory
and weak processing power.

A list of interesting sensors and actuators was
created for the IoT lab. The criteria were to be
low-cost components, to prioritize digital sensors,
sensors mainly focused on measuring the environ-

6



Figure 3: Normal SensorBox.

ment, not to repeat sensors already existing in the
official Arduino Uno kit, and finally to be sensors
popular in the community.

To demonstrate different ways of using the li-
brary created, the SensorBox Normal, with the
ESP8266, was programmed without an operating
system or similar, and the demo version, with the
ESP32, uses FreeRTOS in its program. The Ar-
duino Uno was programmed in the same way as
the ESP8266 only adapting the code to its sensors.
The code can be found in the library repository as
examples of use and contains comments explain-
ing what happens in it.

5. Evaluation
In this section, the capabilities of the created work
are tested to see if it fulfills what is intended and if
it is indeed beneficial to IST students.

5.1. Performance
The performance of the system depends on the
conditions in which it is used, for example, if the
server and the devices are on the same network
or communicate over the internet, or the available
resources of the server on which ThingsBoard is
installed. The tests performed used for local com-
munication the production environment on the local
server and for communication over the internet the
final production environment, which was installed
on the RNL server.

5.1.1 Telemetry Latency

To measure the latency of the messages we used a
Python program that sends telemetry representing
a device and at the same time is subscribed via
WebSocket to its own device’s data. Right after
the message is sent a timer is started that ends
when the message is received back. This way we

are able to correctly measure the time the message
spends from the time it leaves one device until it is
received by another, passing through the server.
In this test, we are not only measuring the time it
takes for the message to reach the server but also,
to arrive at the server, be processed, sent to those
who are subscribed, and received by them. The
test code can be found in the library repository for
SensorBoxes, in the ”python test” folder with the
name ”latency test.py”.

Figure 4: Communications of the latency test.

After getting the results of sending 500 mes-
sages to each of the servers, as expected, we see
that the version where the server is on the same
local network as the device has lower latency be-
cause the messages travel a much shorter path,
averaging 9ms versus 206ms for the server on the
Internet. Despite having different message queu-
ing services it should have practically no influence
because the server was only handling the few mes-
sages from this device, no one else was communi-
cating with it. Note that the results of the test with
the server communicating over the internet were
more unstable over the several times the test was
run, however, the values used for comparison are
within the range of the most typical results. The
result of the test with the local server was virtually
always the same. In both situations, we got values
well below the 1 second that was intended. The
tests were performed in ideal load situations for
the server, only one device communicated with it,
however, this demonstrates that a server correctly
sized for its use case can achieve good results.

5.1.2 Telemetry Send Time

Besides the latency of sending messages, it is im-
portant to see if from the moment you decide to
send a message until it is sent there is any sig-
nificant time lag. For this purpose it was created
code that sends a message and measures the time
it takes for the sending function to execute, it can
be seen in the library repository in the ”examples”
folder with the name ”message sent test”. It does
this 100 times and at the end returns statistics
about the measurements. A comparison is made
between the values of the three microcontrollers
covered in this work, the ESP32 with the FreeR-
TOS based API, the ESP8266 with the NonOS
API, and the Arduino Uno with Wi-Fi card. Thanks
to the library created, the same code file is used on

7



all of them.
Analyzing the results we see that the time taken

by the ESP32 and the ESP8266 is very small, at
most 2ms for the message to be sent, not being
an issue. However, the Arduino Uno takes much
longer to send the message, 114ms on average,
this is due to its lower processing power and mainly
to the fact that it has to communicate with the Wi-Fi
shield to send the desired message, all this causes
a considerable delay when we want the user to
have a real-time experience. So it is not recom-
mended to use the Arduino Uno when a minimal
delay in measurements is important to the user.

5.1.3 Server Load

The purpose of this test is to compare the perfor-
mance of the two server configurations mentioned
in the latency test. The same code was used as
in the latency test but now with more than 1 device
sending a message per second. Various combi-
nations of number of devices and number of mes-
sages per second were used. In this test, each
device has a user subscribed to its messages. The
duration of each test is 60 seconds. Three com-
binations of parameters were chosen for the test,
representing different levels of expected usage of
the server, from little to moderated usage. With
Test 1, 10 devices send 1 message every 2 sec-
onds second, this is a rate of 5 messages per
second, 300 messages per minute. Test 2 has
50 devices sending 1 message per second, a rate
of 50 messages per second, 3,000 messages per
minute. Finally, Test 3 has 250 devices sending 1
message per second, a rate of 250 messages per
second, 15,000 messages per minute.

As with the latency test, the values from the In-
ternet server tests were more unstable, however,
the selected values represent the majority of the
results obtained. As expected the local server
performed much better, staying almost always be-
low the 1 second latency, the desired maximum.
The web server due to the longer path the mes-
sages take and the server configuration, in test 2
already performed worse than the local server in
test 3. In the third test, the latency is mostly al-
ways above one second and messages are already
lost. So the server hosted in the RNL is only suit-
able for development and very light loads. For nor-
mal use, the server should be ordered with more
RAM resources and consequently the possibility
of installing the Kafka message queue on it. In
both it would also be beneficial to use the hybrid
database, where Cassandra would be used for re-
ceiving messages.

There are official performance tests of Things-
Board on AWS servers. Those tests are not directly

comparable to the ones performed here as the offi-
cial ones only test the publishing of messages, not
the subscription to them by users. However, both
types of tests complement each other and give a
general idea of the servers’ performance in send-
ing and subscribing messages and their delays.

5.2. SensorBox-ThingsBoard Library Size
It was measured the impact of the official library
and the one created in this work on the microcon-
trollers’ memory. For the ESP32 and ESP8266,
the increase created by the SensorBox library com-
pared to the official library is not enough to con-
sider not using it since it will greatly simplify the
user’s code. Once the user begins to make his own
code to access the features that this library pro-
vides, he would already be increasing the space
occupied by his code, minimizing the difference
compared to the use of the SensorBox library. For
the Arduino Uno memory is already a scarcer re-
source, however, the SensorBox library already
excludes non-compatible functionalities and thus
most of the code it adds will already have to be
manually created by the user if the library is not
used, for example, the connection to the Wi-Fi net-
work and the ThingsBoard server. So including
the library created in this work is still an advantage
even on the Arduino Uno.

5.3. Laboratory Work
Three laboratory guides were created based on
those of the ACIC course to be tested with stu-
dents and thus to prove the usability of the plat-
form in a learning environment. Due to the pan-
demic situation in which this work took place and
the fact that the lab work needs physical presence
to provide the necessary material for it to be done,
it was not possible to carry out the tests. However,
the guides on which these are based have already
been tested several years with students and are
therefore adequate. Being able to keep the same
idea as the ACIC guides, only adapting them to
use the technologies related to this work without
increasing the difficulty, shows that the system cre-
ated here is suitable for use by students in classes
and consequently in projects. The guides can be
found in the repository of the SensorBoxes library
[10] inside the ”guides” folder.

The difference of these labs compared to the
original ones is the use of the ESP32 instead of
the Arduino Uno and the communication over the
Internet instead of I2C.

With these new guides, besides being possible
for students to work in groups at a distance, they
also gain experience with IoT platforms, important
in the professional world where these are increas-
ingly used to connect the various objects in our
lives. In addition, they would also get to know the

8



platform to use in other works if they want, such as
to access the SensorBoxes or add new devices.

Compared to I2C, the limitation that must be con-
sidered is the communications delay as seen in the
previous points of this section. However, in the real
world and for the use indicated in the guide, the la-
tency being added to communications when using
the ESP32 is not a problem.

6. Conclusions

With this work began the development of an IoT
laboratory for IST, having chosen to start with the
implementation of an infrastructure to interconnect
devices through the internet to which students can
have access anywhere in the world. Considering
only open-source IoT platforms as an option, we
decided to use ThingsBoard due to its vastly supe-
rior popularity over competing platforms, very ac-
tive development, and an ever-increasing range of
features. Three popular devices in this area for
those just starting out were compared, the ESP32,
the ESP8266, and the Arduino Uno with a Wi-Fi
shield. It was concluded that the ESP32 is the
best option, being the one with the best perfor-
mance, better Wi-Fi connection, more pins to use,
and costs about the same as the other options,
however, if the Arduino Uno is the official version
it becomes much more expensive. The Arduino
Uno is not ideal for use with the ThingsBoard due
to its limited resources, plus the Wi-Fi shield pro-
vided added complexity to its use because of its
problems with the logic level converter. Assemblies
were created to serve as a basis for the installation
of sensors spread around IST and to demonstrate
their operation to students. A library for the men-
tioned devices was also created, on top of the of-
ficial library, to further simplify their communication
with the server to the point where the same code
could be used in all of them, when the functionali-
ties used are available in all of them. Thanks to the
library it was possible to create an easy to follow
lab guide to be used in class, without the students
having any experience in communicating over the
internet with these devices.

Through the performance tests conducted, it
was observed that a properly sized ThingsBoard
server is capable of serving the objective of the
work, to capacitate IST with an IoT platform that
can be used by students inside and outside of it,
to explore and perform various types of work in the
area, from the most relaxed to the most demanding
in terms of response times, within what is expected
in the IoT area.

Thanks to the infrastructure created, students
from various courses can experience the Internet
of Things in their areas of interest, thus gaining a
good knowledge base for the professional world of

today and tomorrow where more and more objects
are connected to IoT platforms sending data about
their surroundings or what they do, to be later ana-
lyzed for various purposes.

6.1. Future Work
Future developments of this work would include the
installation of several SensorBoxes at IST, for ex-
ample, with sensors measuring the state and qual-
ity of the environment, so that interested students
can do projects about detecting the occupation of
interior spaces. Other possibilities would be the
creation of tutorials about the use of other exist-
ing functionalities in the ThingsBoard, the creation
of a webpage for the IoT lab so that students can
learn about what is available to them both in terms
of software and hardware, and can consult infor-
mation on how to use them. As for the Sensor-
Boxes, the future goal would be to develop outdoor
assemblies where the components would be pro-
tected from the weather, and solar-powered ver-
sions could even be created for flexibility of instal-
lation on campus without having to run electrical
wires to them. Finally, in the lab environment, spe-
cialized workbenches could be created for IoT and
microcontrollers, where there would be boards with
various combinations of pre-assembled sensors
and actuators together with the necessary bread-
boards and power supplies so that students could
more easily and with greater organization experi-
ment using various components without having to
deal with mounting them individually and possibly
damaging them, they would only have to connect
the desired sensor wires into the assembly they
were making.

References
[1] ISCTE IoT Lab. https://istar.iscte-iul.

pt/portfolio-posts/vr-lab/. Last access
on 21-Out-2021.

[2] Swami Keshvanand Institute of Technol-
ogy IoT Lab. https://www.skit.ac.in/

research/iot-lab.html. Last access on 21-
Out-2021.

[3] Leonidas Andrade Otalora. Implementación
de una plataforma colaborativa del internet de
las coisas para la captura de variables am-
bientales para el municipio santiago de cali.
pages 55–58, Mai 2019.

[4] Willian Pereira dos Anjos Eduardo Natan Bi-
tencourt. Iot centralization and management
applying thingsboard platform. pages 25–27,
Aug 2018.

[5] Open-Source IoT Platform - ThingsBoard.
https://thingsboard.io. Last access on
15-Set-2021.

9

https://istar.iscte-iul.pt/portfolio-posts/vr-lab/
https://istar.iscte-iul.pt/portfolio-posts/vr-lab/
https://www.skit.ac.in/research/iot-lab.html
https://www.skit.ac.in/research/iot-lab.html
https://thingsboard.io


[6] Arduino Uno official page. https://store.

arduino.cc/arduino-uno-rev3. Last access
on 9-Set-2021.

[7] Página do shield Wi-Fi. https://www.

instructables.com/ESP8266-ESP-12E-

UART-Wireless-WIFI-Shield-TTL-Conv/.
Last access on 9-Set-2021.

[8] Microcontroller with Wi-Fi - ESP8266.
https://www.espressif.com/en/products/

socs/esp8266. Last access on 15-Set-2021.

[9] Microcontroller with Wi-Fi and Bluetooth -
ESP32. https://www.espressif.com/en/

products/socs/esp32. Last access on 15-
Set-2021.

[10] Arduino library, SensorBox-ThingsBoard-
SDK. https://github.com/JoaoSaramago/

SensorBox-ThingsBoard-SDK. Last access
on 28-Out-2021.

10

https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.instructables.com/ESP8266-ESP-12E-UART-Wireless-WIFI-Shield-TTL-Conv/
https://www.instructables.com/ESP8266-ESP-12E-UART-Wireless-WIFI-Shield-TTL-Conv/
https://www.instructables.com/ESP8266-ESP-12E-UART-Wireless-WIFI-Shield-TTL-Conv/
https://www.espressif.com/en/products/socs/esp8266
https://www.espressif.com/en/products/socs/esp8266
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://github.com/JoaoSaramago/SensorBox-ThingsBoard-SDK
https://github.com/JoaoSaramago/SensorBox-ThingsBoard-SDK

	Introduction
	State of Art
	IoT Labs in Higher Education
	IoT Platform
	ThingsBoard

	Microcontrollers in IoT

	Architecture
	Implementation
	ThingsBoard
	SensorBox-ThingsBoard Library
	SensorBox

	Evaluation
	Performance
	Telemetry Latency
	Telemetry Send Time
	Server Load

	SensorBox-ThingsBoard Library Size
	Laboratory Work

	Conclusions
	Future Work


