Trustable Blockchain Interoperability: Securing Asset
Transfers involving Permissioned Blockchains

Catarina Pedreira

Instituto Superior Técnico, Universidade de Lisboa

Abstract—The blockchain technology has been drawing a great
deal of attention since its arrival in 2008, with Bitcoin. It does not
come as a surprise that this technology has an enormous potential
to be applied in a vast number of areas. However, currently
blockchains exist in silos, often competing when they could be
cooperating and communicating. Interoperability is essential to
allow for communication between blockchains and thus motivate
mass adoption. In permissioned blockchains, interoperability is
harder given their opaque nature. Some solutions have already
been created in this context, however many require a trusted
private third party, which may be insecure and it is not ideal given
the nature of the technology. In this paper, we propose T-ODAP
(Trustless Open Digital Asset Protocol), a secure multi-layered pro-
tocol that enables a trustless solution for permissioned blockchain
interoperability. T-ODAP is more secure than centralized solutions
given that it eliminates the need for trust in the protocol’s
participants. It provides a Decentralized View Storage (DVS), a
Polkadot Connector that connects permissioned blockchains to the
latter, and a trustless version of the Open Digital Asset Protocol
which leverages the DVS and the connector. The protocol models
the participants as rational agents and implements game theory
techniques in order to punish them in case they deviate the
protocol. T-ODAP is implemented using Polkadot and Hyperledger
Cactus. We tested that the implemented solution worked properly.
In the theoretical evaluation, we were able to evaluate the system’s
robustness and concluded that the system is resilient to attacks,
having the same robustness level as Hashed Time-Lock Contract
(HTLC)-based payment schemes.

I. INTRODUCTION

Blockchains are becoming more and more relevant in today’s
world as they have been proven to have the potential to revolu-
tionize applications and redefine the digital economy [13], and
many use cases besides cryptocurrencies have emerged for the
technology over time. A blockchain is a distributed, immutable
ledger that stores transactions, containing application dependent
data. A blockchain that places restrictions on who its participants
are, only allows them to perform certain actions and is controlled
by a node or group of nodes is considered to be permissioned
or private, while a blockchain that allows anyone to join and
contribute to the network is permissionless (or public) [3].

Blockchains currently exist in silos - there are a large number
of blockchain projects that encompass different characteristics
and that specialize in very distinct areas. Instead of cooperating,
they often compete. In this context, organizations are able to
choose from a wide range of options. However, this is a delicate
choice - it is hard to learn the technology and expensive to invest
in it [9]. Blockchain interoperability is of utmost importance,
since it allows risk reduction by enabling migration across
different blockchains. This way, once a blockchain becomes
obsolete, it is possible to replace it. Additionally, interoperability

enables the creation of new use cases, exploiting synergies
between different solutions and scaling of existing ones [9],
potentially fostering the technology’s adoption.

Both permissioned and permissionless blockchains require
blockchain interoperability, and interoperability looks different
for each of the types. For permissionless blockchains, there are
several solutions that provide interoperability while still main-
taining the decentralized aspect that the technology defends,
such as XCLAIM [15]. This is challenging to achieve, but
still feasible due to the open nature of these chains. When
it comes to permissioned blockchains, the situation is more
challenging. These blockchains are opaque and thus it is against
their nature to share internal states with the external world.
This is challenging to solve - in order to know the internal
state of a blockchain of this type, we have to take the word
of at least one node belonging to the latter and the state we
obtain might be incorrect if we are dealing with malicious
nodes. Some interoperability solutions have also been arising
for permissioned chains, yet most are centralized which may
not be completely secure.

This type of interoperability is very relevant given the fact that
it enables new use cases leveraging permissioned blockchains,
such as cross-border asset transfers between banks. These are, in
general, still a very inconvenient form of payment given the high
transaction fees, the lack of transparency and the high latency
(usually around 2-3 days). In this scenario, with permissioned
blockchain interoperability, each bank could be associated to
a permissioned blockchain (given that a bank’s data can not be
public) and be able to transfer assets from one blockchain to the
other in a much faster, cheaper and secure way. Moreover, in
this context, the interoperability mechanism should be trustless
for a more secure solution - the less we have to place trust on
centralized intermediaries, the better, given that we are dealing
with sensitive information.

ODAP (Open Digital Asset Protocol) is a cross-
communication protocol that operates between two gateway
devices to transfer assets between blockchains represented
by those gateways. This asset transfer is unidirectional and
comparable to atomic swaps, where an asset is locked on one
blockchain and it’s representation is created on another [8].

A more decentralized, trustless and secure solution for per-
missioned blockchains’ interoperability is needed. Thus, we
propose T-ODAP, a multi-layered secure solution for cross-chain
asset transfers with a focus on permissioned blockchains. In
the first layer, T-ODAP encompasses a trustless system that
performs the publication of permissioned blockchain’s internal
state proofs in a DVS, implemented in Polkadot [4]. The second

layer comprises a connector built in Hyperledger Cactus [2],
that is compatible with several permissioned blockchains and
can connect the latter to the DVS. Hyperledger Cactus and
Polkadot are interoperability mechanisms introduced in Section
II. Finally, the third layer entails the use of the DVS and
state proofs to build a more trustless and secure version of the
ODAP protocol. In order to model the behavior of the protocol’s
participants, we used game theory techniques. Please note that
the third layer consists of a theoretical model and was not
implemented yet due to circumstances outside of our control;
the implementation is intended for future work.

T-ODAP’s biggest focus is providing a trustless, more se-
cure solution than others that currently exist for permissioned
blockchain interoperability. This entails a cost and complexity
trade-off, which we are willing to accept as long as our work’s
objectives are met.

Finally, we present a theoretical evaluation for T-ODAP.
We evaluate the full system’s robustness in face of attacks
and conclude that the system is (k,t)-weak-robust, similarly to
mechanisms such as HTLC-based payment schemes or side-
chain protocols [16].

We tested the correct functioning of the first two layers
of T-ODAP through Hyperledger Cactus, which also enables
blockchain and smart contract testing. We also presented the
metrics we would have evaluated if we had had the opportunity,
as well as expressing our predictions for the results to expect,
in relation to ODAP as our baseline.

A. Work Objectives

The main goal of our work is to provide a secure and robust
system that allows for trustless permissioned blockchain interop-
erability through the use of the DVS. The DVS is implemented
in the form of a Polkadot smart contract and the connector is
implemented in Hyperledger Cactus. The implementation of the
theoretical model (i.e. the adaptation of the ODAP protocol) is
intended for future work.

The following research questions should be tackled by our
solution:

1) How to guarantee the internal state proofs’ correctness and
integrity if permissioned blockchains are opaque?

2) How can we effectively model the dynamics of the pro-
tocol in regards to its rational participants, using game
theory?

3) How to make T-ODAP strongly robust in terms of re-
silience to attacks?

II. RELATED WORK

In this section, we discuss background and related work on
the blockchain technology, blockchain interoperability and game
theory to provide a better understanding of our protocol.

A. Introduction to Blockchain

A blockchain can be described as a decentralized, tamper-
proof distributed ledger [11], that allows trusted transactions
among untrusted participants [12]. A transaction is proposed
by a user (blockchain participant) and it is an essential com-
ponent of the blockchain. The data it contains depends on the

blockchain’s scope - e.g. if it is financial, among other data,
the transaction contains the value in concern and the addresses
of the sender and receiver. More broadly, the transaction can
also be called a record. A blockchain stores different sets
of transactions into blocks, where each block is connected
to others forming a chain (hence its name). The blockchain
nodes form and maintain the network’s infrastructure. Each node
communicates with other nodes and contains a local replica
of the chain - when a block is verified, each node attaches
it to its local replica. This replica is usually the same on all
nodes, although on some blockchains there may be temporary
or even permanent distinct local replicas. This can either be a
consequence of the nature of the blockchain (for example, due
to a probabilistic consensus algorithm) or derived from a need
to protect privacy - in a private blockchain, it is desirable for
participants to be able to hide certain parts of the state they
hold [7]. Though this may be the case for local replicas, the
global state (the set of states that compose the blockchain)
remains consistent. The network nodes reach consensus when
they agree on a global state for the blockchain. There are several
algorithms used to reach consensus, some more complex than
others, depending on the type of blockchain - permissioned
blockchains utilize Byzantine Fault Tolerant protocols (BFT) as
consensus mechanisms while permissionless blockchains need
more complex consensus algorithms such as Proof-of-Work,
which consists in solving a hard and computationally expensive
cryptographic puzzle [11].

B. Blockchain Interoperability

Interoperability can be defined as “the ability of two or
more software components to cooperate despite differences
in language, interface, and execution platform” [14]. In the
blockchain context, interoperability is a relatively new theme -
interest from academia and industry did not start growing until
about three years ago [9]. This type of interoperability emerged
due to the desire to create new synergies between blockchains,
thus creating new use cases. Due to the core differences between
permissioned and permissionless blockchains, the interoperabil-
ity problem is distinct for each of the types. Even within the
same type, it can take many different forms due to the huge
variety of existing blockchain infrastructures.

There are several existing blockchain interoperability mech-
anisms. These can be divided in different categories, which we
illustrate in Figure 1, based in [9].

Particularly important for our work, is a Blockchain of
Blockchains named Polkadot [4], a software that (among
other features) allows for interoperability between several
blockchains, and which leverages its own internal, costumizable
blockchains with a parallel nature - parachains (which are also
interoperable between themselves). Hyperledger Cactus is also
fundamental for our work - included in the trusted relay type
(a hybrid solution). Cactus achieves interoperability between
several blockchains (many of them permissioned) through the
use of trusted nodes - Cactus nodes.

XCLAIM [15] is a framework that works to achieve
blockchain interoperability in a trustless way (i.e. without the
need of a centralized trusted third party), leveraging game theory

Category

Sub-category

Main use case

Game theory can be applied to the most significant challenges

Public Connectors

Sidechains
Notary Schemes
Hashed timelocks

Hybrid

pesy

Scalability, asset exchange
ty, 9e

the Blockchain technology, such as security problems, mining
anagement, economical issues with the technology and energy

Cryptocurrency exchangestrddjng [11].

Cryptocurrency trading

Enabling cross-chain assets

Blockchain of Blockchains | ~

Creation of
customized blockchains

III. T-ODAP: DECENTRALIZING ASSET TRANSFERS

In this section, we propose a solution for the problem in-

Trusted Relays Efficient interoperation

Blockchain-Agnostic General protocols
Hybrid Solutions
Blockchain of Blockchains

Blockchain Migrators Risk reduction

Cross-blockchain dApps

troduced in Section I - T-ODAP (Trustless Open Digital Asset
Protocol).

A.| Requirements

Fig. 1: Blockchain Interoperability Solutions (adapted from [9])

techniques. This work cannot resolve this paper’s problem since
it only supports a limited type of permissioned blockchains.
Moreover, the use of a chain relay to provide external data
from a permissioned blockchain might not be secure - as these
blockchains are opaque, one can not know if the information
directly provided from the inside is trustworthy. However, the
game theory techniques may be useful for our work.

Additionally, this recent protocol [6] focuses on enabling an
external party to observe and verify a permissioned blockchain’s
internal state, providing that there is at least one honest member
present in the blockchain’s committee. The state verification is
achieved through the use of a secure public ledger that acts as
a bulletin board - public bulletin - in which snapshots of the
permissioned blockchain’s state (named “view” by the authors)
are published at fixed intervals. This is extremely useful to our
work given that it provides a more decentralized solution for
permissioned blockchains’ interoperability.

Finally, another very relevant work is ODAP, mentioned
previously. To recall, it is a cross-communication protocol
that operates between two gateways to perform asset transfers
between blockchains represented by those gateways. The latter
is rather flexible, allowing blockchains of both types (both
permissioned or permissionless) to transfer assets to each other.
In ODAP (Open Digital Asset Protocol), the gateways are
trusted, i.e. it is assumed that they will not drop an asset before
a given transfer or that they will not transfer it to the wrong
gateway. This corresponds to its most significant disadvantage,
since it might not be very secure to assume this. Moreover, it
is not able to verify permissioned blockchain’s internal state,
which might not be secure for the same reasons presented when
talking about the disadvantages of XCLAIM.

C. Game Theory

Game theory has the goal of modeling a strategic interaction
between different players in a context with predefined outcomes
[10] - a game. A player’s utility reflects the outcome expected by
that player, acting as way to quantify its preferences. A strategy
is a set of actions that the player can choose from, where the
ultimate goal is to achieve its expected outcome. It is also based
in the other players’ strategies. If a player is rational, it has
clear preferences, meaning it always desires to maximize its
own utility by choosing the strategy that comprises the optimal
expected outcome.

T-ODAP must provide a secure and trustless protocol that
enables asset transfers via gateways.
Several non-functional requirements are desired:

e Security - The protocol should ensure that the processing
and delivery of the assets is secure, namely assuring that
gateways follow the protocol and do not tamper, drop or
re-direct the assets to wrong gateways. In order to do this,
the protocol enforces the use of the DVS.

o Compatibility - T-ODAP should be compatible with several
permissioned (and permissionless) blockchains that support
smart contracts with functionality for locking and unlock-
ing assets.

o Trustlessness - The protocol should provide a trustless
solution, i.e. a solution in which a participant does not
need to trust any other participants in the system in order
to maintain security of its assets and other expectations of
functionality, only needing to trust the protocol, mathemat-
ics, cryptography, code and economics [5]. In our case, this
means that the two gateways in any protocol instance do
not need to trust each other in order to perform an asset
transfer;

o Availability - T-ODAP should be working in proper
conditions, with a minimal downtime;

o Testability - 1t needs to be possible to test the system
in a safe environment (e.g. a non-production environment
emulating a high workload);

e Privacy - The protocol should only be able to provide
state proofs about the internal state of each participating
gateway, and not any other that is not involved.

o Efficiency - The solution should be efficient, i.e. despite
encompassing additional steps in relation to ODAP, these
additional steps should not affect performance severely.

The solution should also tackle functional requirements.
These are illustrated in Figure 2.

B. Assumptions

Similarly to related work [15], we assume that adversaries
(in this case, the gateways) are computationally bounded and
rational agents, motivated by actions that increase their utility
and avoiding actions that decrease their utility. As such, the latter
can attempt to perform any attack that potentially maximizes
their utility, such as not completing an asset transfer. In our
context, we assume that a malicious node is any node which
deviates from the established protocol T-ODAP. In terms of the
network, we assume that honest nodes are well-connected and

Solution
- $
N % DvsS

)

%7

Store proofs
Source Recipient
Ledger Ledger
Rollback Asset
\ transfer
i Verify proofs

Source Recipient
Gateway \ - Gateway

Perform cross-
_chain ransfers /
Client)
[Deploy Smart
Contract

(application)
Polkadot

Connector

" Comnect
blockchains
Polkadot

Fig. 2: Functional Requirements T-ODAP

there is a maximum delay in which they receive transaction
broadcasts from users. When it comes to the DVS, we assume
that each permissioned network comprises at least one auditor
node (a member of that network) which validates conflicting
views, deciding which ones are valid and which are not. Thus,
we assume all views published in the DVS are valid (i.e.
correspond to the correct internal state).

C. System Overview

Our solution is composed of several layers that stack on each
other - the DVS, the Polkadot Connector and T-ODAP. This
scheme is depicted in Figure 3.

‘ T-ODAP ‘

‘ Polkadot Connector ‘

Decentralized View Storage

Fig. 3: Layers that build T-ODAP

In the bottom layer of Figure 3, we have the DVS. The
latter is based on the Public Bulletin for permissioned ledgers
presented in Section II and is implemented as a smart contract
in Polkadot. The state proofs (views) are publicly available for
external clients to observe and verify facts against. In practice,
they correspond to a digest of a permissioned blockchain’s
internal state. The necessity for a Public Bulletin or a DVS stems
from the fact that permissioned blockchains are closed systems.
In order to allow for a truly secure and trustless interoperability
between permissioned blockchains (or between a permissioned
and a permissionless chain), there needs to exist a system which
securely shares the state of the latter for external observers.
Similarly to the Public Bulletin, the DVS (Decentralized View
Storage) is an immutable public bulletin where state proofs of
a permissioned blockchain are regularly (i.e. every k blocks)

published by its corresponding committee members. It also
considers a malicious but cautious committee, along with at
least one honest member in the latter, which reports a conflict
if it witnesses malicious behavior. However, there are some key
differences. As stated by the authors of [6], it is possible that
several valid external views exist for the same state. Differently
from the aforementioned work, our algorithm encompasses a
voting mechanism. A quorum of members vote on the view and
the collective decision determines if that view is either valid
or inconclusive, case in which a view conflict is reported which
must be solved externally, by an auditor node. This auditor node
exists in each permissioned network, and corresponds to a node
which function is to decide if a given view is valid or not.
We understand that the existence of this validator node can be
seen as contradictory having our goal of trustlessness in mind,
however it was the solution we found within our limited time.
This is an aspect that can be improved in future work. In our
algorithm, even if all but one member voted positively on a view,
one negative vote is sufficient to raise a conflict on that view
(and vice-versa). Since there is at least one honest member in
the committee, an invalid view will never be published (even if
the honest member is not a voting member in that round, it can
still report the view). The DVS’s publishing frequency should
be adjusted depending on the blockchain leveraging it, i.e. for
a blockchain in which blocks are frequently added to the chain,
the number should be higher and vice-versa.

The Polkadot connector emerges on top of the DVS layer,
as a bridge for permissioned blockchains to be able to access
Polkadot. This is possible since the connector is part of Hyper-
ledger Cactus (see Section II). Thus, a permissioned blockchain
supported by Hyperledger Cactus can use the latter to access
Polkadot through this connector. The connector also implements
mechanisms to deploy smart contracts to the Polkadot network
and to interact with them, by being able to call read and write
function from those contracts. Since the DVS is implemented
in the form of a smart contract and deployed in Polkadot, the
Polkadot Connector is able to interact with the latter.

Finally, our work’s final layer arises as a trustless version
of the existing protocol ODAP, leveraging the use of a DVS
for permissioned blockchains’ internal state sharing. This way,
T-ODAP does not require that gateways trust each other since
they can verify each other’s state in the DVS, prior to any
asset transfer occurring. T-ODAP is compatible with both
permissionless and permissioned blockchains, however it is
focused in the latter. This is because the DVS is necessary for
proving the internal state of permissioned blockchains, but not
needed for permissionless ones given that these are publicly
verifiable.

The following actors exist in T-ODAP:

o Source Ledger Bg - The ledger that desires to transfer an
asset to the recipient ledger, by locking x units from asset
type a to be created in the latter;

o Source Gateway G g - The gateway that transfers the locked
X units from asset type a to the recipient gateway;

o Decentralized View Storage (DVS) - The immutable bulletin
where a permissioned blockchain’s internal state proofs are
published regularly;

e Recipient Gateway G R - The gateway that responds to G g
and is the target of the transfer;

o Recipient Ledger Br - The ledger that receives the asset
transfer, by creating the corresponding tokens in its ledger
and making them available.

We previously saw that rational agents are motivated by
actions that increase their utility and unmotivated by the actions
that decrease it. In order to provide a secure protocol and
motivate the players to choose desired actions (actions according
with the specification of the protocol) instead of the contrary,
T-ODAP punishes a gateway each time it chooses an undesired
action. This punishment consists of decreasing that gateway’s
public reputation, making it less likely that it is chosen in the
next T-ODAP instance. The latter has a negative value associated
to it, which will decrease the player’s overall utility.

D. Protocol

We now discuss the design and architecture of T-ODAP
protocol. Figure 4, built with the Archimate language [1],
illustrates the latter. In this figure, we can observe the several
components forming T-ODAP’s architecture, which are divided
in four different groups for a better understanding.

T-ODAP Architecture

£

Publishes state
proofs in

Source Ledger
(Bs)

Polkadot

Triggers
| deptoyment

Interacts. D
i Vs

S

Hyperledger
Cactus

Fig. 4: Archimate T-ODAP Protocol Architecture

The first group (on top) comprises the source ledger B, as
well as an asset of type A and the source gateway G5, which
executes the asset transfer. The source gateway is a specialized
type of Cactus Node, and it can be defined as ”a computer
system in a blockchain network for the purpose of assisting
in the movement of virtual assets into (out of) the blockchain
network” [?]. The end-user is connected to (5. The latter is
the component which triggers the whole protocol, by issuing a
CC-Tx asset transfer request. This request is associated with
the transfer of x units of an asset of a given type A from
Bg, which (if the protocol is successful) will be created as y
units of an asset of given type B in the recipient ledger B,.
The second group is similar to the first one, however this one
comprises, instead, a recipient ledger B,, the corresponding

recipient gateway G, which interacts with G5 and which is the
target of the transfer, and the resulting created y units of asset of
type B in B,.. This group is not directly connected to an end-user.
Both gateways interact with each other, being that G is the one
that initiates the connection. Then, we can observe the third and
fourth groups. The third group encompasses Hyperledger Cactus
and its several connectors to blockchains/interoperability mech-
anisms (not all are represented), as well as its several Cactus
Nodes. The fourth group comprises the Polkadot network and
the DVS smart contract, deployed in it. In order to (indirectly)
access the DVS, the gateways have to leverage the Polkadot
Connector. Before the protocol instance begins, the connector
connects to Polkadot and deploys the contract code containing
the logic of the DVS. Then, G5 and G, can use the connector
to retrieve and read views from it, analyzing the state of B, and
B, respectively.

B, and B, are also connected to the DVS since, in order to
guarantee the integrity of the views, the latter must be published
by members of the blockchain itself and not by the gateways. If
the gateways were able to publish views, since the latter can be
malicious, we would not be able to be certain that the published
views were always correct.

E. Protocol Flow

We will now discuss the protocol flow of T-ODAP.

Figure 5 illustrates an example of T-ODAP’s protocol flow,
having Fabric as the source ledger and Quorum as its recipient
counterpart. Here, we can observe the main differences in
relation to ODAP:

o DVS is a participant;

o Phase 3 - View Publication Flow - is introduced.

We can also observe that an if condition is introduced at the
bottom, which depends on the outcome of the last step of Phase
3.

First, an end-user (i.e. an application) issues a CC-Tx asset
transfer request through Cactus, which triggers the beginning
of the protocol. Then, Phase 1 (Transfer Initiation Flow) and
2 (Lock-Evidence Verification Flow) take place; these remain
unchanged from what was presented in Section II - the first
phase leverages initiation processes, necessary for connection
between the gateways and the second phase takes care of locking
the asset, along with verifying that the recipient ledger is indeed
interested in receiving the asset transfer. Then, Phase 3 begins.
Here, we begin with Hyperledger Fabric (B;) publishing a view
at a given time t (note that views are frequently published, with
the value k depending on the source blockchain). This step is
particularly important since it shares the internal state of Fabric
at that moment in time, and since this view contains information
about the state of the asset to be transferred. The protocol
proceeds with G, retrieving Fabric’s most recent published view,
in order to be able to analyze its contents and confirm that the
asset is indeed in a blocked state. Note that, in this stage, G,
only retrieves the view after a given time ¢ has passed. This
amount of time depends on the blockchain B,. This is due to
the fact that even if the asset is locked, the view containing this
information might only be published after some time, or the
network can have some delay. To guarantee that the retrieved
view contains the correct and most recent information about the

T-ODAP

F. Threat Model

[

| Source Gateway

Decentralized View Storage

Recipient Gateway

=

: | We now present the threat model and security analysis for

T

ACC-Txasset ansierisissued |

; I
; ————

i T-ODAP. Note that each threat corresponds to an action that

Phase 1 - Transfer Initiation Flow

! can be performed by a malicious node. There are several threats

[
Create channel
T
|

Verify assets

included:

| Phase 2 - Lock-Evid Verification Flow ;

T
Transfer Init
T

Lock asset i
¢ 1
ACK lock atiempt

|
|
| N |

Lock asset confirmation |
I |

ACK lock

T >,

Threat 1 - The source gateway G steals the asset to be
transferred (it does not lock the asset before transferring it to

Gy).

Let us imagine G is meant to transfer an asset to G, so that
the latter creates the asset’s representation in B,.. G5 can try to

i Phase 3 - View Publication Flow f

T
| Retrieve Fabric's most recent view

T
|
I
I
I
T
|
I
|
I
|
I
|
|

Ack transfer init !
I
I
I
J
|
I
|
I
|
Il
T
|
I
1
I

Confirm asset is locked

steal the asset by not providing instructions for By to lock the
asset, while lying to G- about locking it. This way, B, will still
end up creating the asset’s representation although the asset has

at) TRssetis locked)

T

j=

t been locked in the source ledger.

Flow

[-ODAP mitigates this attack through the use of the

|
Commit prepare

i
ACK commit prepare
[

|

I
Commit final

T

|

|

Create asset

Decentralized View Storage. As we have previously seen in
the protocol’s flow, the latter allows for the removal of trust
between the gateways, since the recipient gateway G, can
observe the source ledger’s internal state (including the asset’s
te) prior to the transfer, so that it can stop the latter in case

g

Q

: Phase 5 - Asset Creation ;
T

Retrieve Quorum’s most recent view

Confirm asset s created in Quorum

|
>
gl
|
I
I
!
I
|

1

\ ACK final
I 1
1

I

Transfer completed

I

I I

I Rollback transfer
T T
I

I

|

ACK rollback transfer
T

Unlock asset

Rollback transfer

I
ACK rollback transfer

[}
Transfer rolled back
]

the asset’s is incorrect.

Threat 2 - The source gateway G steals part of the asset
to|be transferred but transfers the remaining portion.

This threat is a slight variation of the previous. In this context,
imagine the asset transfer comprises transferring 5 units of token
of|type A to be created as x units of token of type B in G,.. The
_source gateway can try to lock only 3 of those units and steal the
remaining 2. The transfer will still take place, since G, believes
that B, locked the entire asset.

T-ODAP mitigates this threat as it mitigates threat 1 - the

____‘____r__g_ |

Fig. 5: T-ODAP Protocol Flow example

lock, we wait ¢ units of time. The outcome of this verification
triggers one of two options within the protocol:

o If the asset is indeed locked, Phase 4 (Commitment Es-
tablishment Flow) takes place. This phase comprises a
preparation commit, a final lock (by B;) and a final commit
of the transfer, containing all the information necessary for
B, to create the asset.

After GG, claims that the asset was created in Quorum,
Phase 5 (Asset Creation Verification Flow) starts. Here, G
will retrieve Quorum’s most recent published view (again,
waiting ¢ units of time before doing so) and verify if the
information provided by G, is correct. In case it is, the
transfer process finishes with success, having the asset in
its final state - digital twin asset. Otherwise, GG, attempted
to execute an attack by not creating the asset in the Quorum
blockchain. The transfer is rolled back and the blocked
asset in B, is set to a pure state again, so that it is not lost.

o If the asset is unlocked, this means that G opted for
an undesired action. The transfer has to be rolled back;
otherwise, by creating a representation of the asset in By,
double spend would occur.

S |, S| R | . S

I
I
|
1
|
1
| |
| |
! |
Y
| |
! |
I
|
|
I
|
|
|
I
I

recipient gateway can verify B, the exact amount of token
units that must be locked. If this number does not match what
is expected, the transfer is rolled back.

Threat 3 - The recipient gateway G, does not create the
assets in the recipient ledger.

Here, the threat is focused on the recipient gateway, which
performs a denial-of-service attack by not creating the assets in
B;.. The latter can be executed by a malicious G, that desires to
harm the users of the source gateway, the source gateway or both
by causing them to lock funds that will never be created in B,..
Despite not having a monetary incentive (given that the assets
are not created), the malicious intent towards the participants can
suffice as an incentive for the attack (i.e. the valuation value is
high for this attacker).

T-ODAP mitigates threat 3 through the fifth phase of the
protocol (see Figure 5), in which the internal state of the
recipient ledger is verified after G, claims that the assets were
created. In case the gateway is malicious and the assets are not
created, the transfer suffers a rollback and the asset’s state in
B goes back to pure state.

The attacks described in threat 1, 2 and 3 can still be
successfully executed during the attack windows - i.e. during

the intervals between view publications, since during the latter
the attack is not registered and thus can not be proven to have
happened. In order to diminish the attack window as much as
possible, the view publishing frequency should be high (i.e. k
should be low). However, this is a trade-off - highly frequent
publications incur high costs for the solution.

IV. IMPLEMENTATION

In this section, we present implementation details of the
solution.

Only the first two layers of T-ODAP were implemented - we
were not able to implement the third layer due to circumstances
outside of our control. The DVS layer was implemented as a
Polkadot smart contract, written in the Parity language ink!,
based on Rust, while the Polkadot connector was implemented
as a new connector on Hyperledger Cactus.

The implementation of these layers contributed to both open-
source projects of Polkadot and Hyperledger Cactus.

V. EVALUATION

In this section, we evaluate T-ODAP, being divided into two
sections: theoretical and practical evaluation. Note that, as we
were not able to implement the last layer of the solution, the
practical evaluation could not be completed. We did, how-
ever, perform several tests to both the DVS and the Polkadot
connector’s implementation, in order to guarantee the correct
functioning of the latter.

A. Theoretical Evaluation

In order to perform a theoretical evaluation to T-ODAP, we
leverage the game theoretical framework in [16].

The latter evaluates a blockchain protocol’s robustness by first
identifying the players involved, the actions they can perform
(tied with specific utilities) and the game or games that better
represent that protocol.

In T-ODAP, we have two players - the source gateway
G, and the recipient gateway G,.. These are considered to
be rational players, meaning that they both always desire to
maximize their own utility. Based on the protocol flow of T-
ODAP, we divided the protocol into three different games, the
first (A) corresponding to Phases 1, 2 and 3, the second (B)
corresponding to the scenario where the asset is locked and the
third (C) to the remaining scenario.

In each game, the order of the actions performed matters.
In this context, if any player deviates the protocol, the game
goes back to the initial state, with a null outcome (0) for each
(i.e. (0,0), where the first position corresponds to G and the
second one to (). The initial state corresponds to the state
before the asset transfer. If they do follow each step correctly,
they receive a positive utility of (1,1). If a player is harmed by
another player’s action, the harmed player receives a negative
utility of -1, similarly to authors in [16]. The values of 1 and
-1 were chosen by convention.

Figures 6,7 and 8 correspond to Game A, Game B and Game
C, respectively, and are presented below.

An instance of T-ODAP can be composed by Game A and
Game B forming mechanism AB or by Game A and Game C,
forming mechanism AC. In the latter case, the outcome will

e
/ N
Ve \)
s \ 4 \G,

(0,0) (0,0)

N Y N Y
(0,0) (0,00 (0,0) (1,1)

Fig. 6: Game A - Diagram

7
2w

,M/\
o S
/\m/\

0,0 (0,0)

\./\

(0,0) .52 (0,0)

\/\

(0,0) T (0,0) (1,1)

(0,0 -1
Fig. 7: Game B - Diagram

never be the best outcome possible for any of the players -
it will either be 0 or -1. In Game A, if the players reach the
outcome (1,1), the next game will be Game B. Else, the next
game will be Game C. This means that the mechanism AB is
the only one which can lead to an optimal outcome (if both
players follow the protocol in every step).

Through the analysis of the AB mechanism, and through the
theorems presented in [16], we conclude that T-ODAP is (k,t)-
weak-robust - the same level of robustness as a cross-chain swap
protocol.

B. Practical Evaluation

Since we did not implement all the layers of T-ODAP (due
to depending on the implementation of ODAP to be finished,
and due to the fact that it got delayed), the practical evaluation
could not be completed. These are the metrics we planned to
evaluate (some of which would be evaluated in relation to the
work’s baseline, ODAP):

- Gr
1
RN
- Gs
©,0) (2)
RN
Gr

(0,0)]
N
(0,0) (-1,0)

Fig. 8: Game C - Diagram

e Throughput - The solution must be able to deal with several
cross-chain transaction requests for asset transfers without
causing great harm in latency and performance. ion to
ODAP. As T-ODAP is built on top of ODAP and adds
extra steps (and thus, more complexity), it is certain that
our solution will be somewhat slower than the baseline;

e Latency - We would test T-ODAP against distinct work-
loads of asset transfer request rates. Similarly to before,
T-ODAP is expected to have higher latency when compare
to its baseline;

e Cost - The monetary cost of running an instance of the
protocol, in terms of transaction fees. It is expected that
the cost of T-ODAP would be slightly higher given that
there are extra transactions involved.

o DVS Publishing Frequency - We would test the solution
against different publishing frequencies and observe its
behavior in terms of robustness to attacks, trying to un-
derstand what is the ideal value or range of values for k of
publishing frequency in terms of a having a small attack
window, as well as not having a great loss in performance
at the same time.

We understand that there is a trade-off between performance
and security yet we choose to give more weight the trustlessness
and security of our solution.

VI. CONCLUSION

Blockchain interoperability is essential for mass adop-
tion. This applies to both permissioned and permissionless
blockchains, however we focused on the first due to the small
amount of solutions that currently exists. Some projects have
been studying and presenting ways to achieve this, however
many require a centralized trusted third party, which may not be
completely secure. By trusting individual entities, these systems
are vulnerable to attacks such as incorrect state sharing by
malicious members of permissioned chains or by a malicious
centralized third-party. Therefore, there is an opportunity for a
new, trustless solution which makes the process more secure.
The latter ensures that trust is moved from one entity to a
protocol; this provides a higher level of security given that the
protocol itself is secure.

We explored and analyzed several state-of-the-art solutions,
including XCLAIM, ODAP and Public Bulletin. The aforemen-
tioned studies comprise highly valuable aspects which can be ap-
plied to a solution for permissioned blockchain interoperability.
This includes mechanisms based on game theory that incentivize
the participants to follow the established protocol, a mechanism
to publish internal state proofs and a mechanism to perform
unilateral asset transfers between gateways. All were extremely

valuable for the construction of the solution, however none of
them encompasses all the desired characteristics for our solution
- e.g. XCLAIM uses possibly insecure chain relays and ODAP
requires gateways to trust each other which can be insecure.

We presented T-ODAP, a multi-layered secure and trustless
system leveraging a DVS to publish internal state proofs, a
Polkadot Connector to interact with the latter and a trustless
adaptation of the ODAP protocol. T-ODAP has the goal to arise
as an alternative to the centralized interoperability solutions cur-
rently offered to permissioned blockchains, providing stronger
levels of security in relation to other protocols such as ODAP
due to being trustless.

Theoretically, we evaluated the full system’s robustness in
face of attacks and concluded that the system is (k,t)-weak-
robust, similarly to popular mechanisms such as HTLC-based
payment schemes. We performed tests to the implemented
layers of our solution, which were successful. The latter were
realized through Hyperledger Cactus, which enables blockchain
and smart contract testing. Unfortunately, we were not able to
perform an experimental evaluation given the fact that the third
layer of T-ODAP was not implemented. However, we presented
information about the tests we did to the first two layers of our
solution, which indicated the correct functioning of the system.
Finally, we presented the metrics we would have evaluated if we
had had the opportunity, as well as expressing our predictions
for the results to expect, relatively to ODAP, which is our work’s
baseline.

Our solution contributes to the development of permissioned
blockchain interoperability, which in turn will hopefully con-
tribute to the widespread adoption of permissioned blockchains
in enterprises, affecting the latter and society as a whole.

A. Contributions

We were able to deliver several contributions to the scientific
community and the open-source community, that have value not
only together but also individually.

As primary contributions, we delivered:

1) A Decentralized View Storage built as a Polkadot smart
contract, which allows for trustless state sharing between
opaque blockchains, that can be leveraged for multiple use
cases;

2) A public Polkadot Connector implemented in Cactus,
capable of connecting several permissioned blockchains
to Polkadot. Besides implementing the connector, we
contributed to the open-source community of Hyperledger;

3) A theoretical model of a trustless adaptation of the ODAP
protocol, T-ODAP, that leverages the DVS (and the con-
nector in order to interact with the latter);

4) A game theory based analysis that demonstrates that T-
ODAP is (k,t)-weak-robust.

Note that the implementation of the Polkadot con-

nector and the DVS smart contract can be found in
https://github.com/hyperledger/cactus/pull/1490.

VII. LIMITATIONS AND FUTURE WORK

T-ODAP has some limitations, the first being that it is more
costly than ODAP. This makes sense since T-ODAP adds steps
and more complexity to the latter, as well as several transactions

in blockchains, which causes this higher cost. However, as stated
before, the biggest focus of T-ODAP is in a trustless and secure
solution, so the higher cost comes as a trade-off.

As mentioned before, the third layer of T-ODAP was not
implemented. The implementation was not possible on time
due to circumstances outside of our control; however, the layer
is ready for implementation in future work. This work can be
done through Hyperledger Cactus, which has open-source code,
where ODAP is implemented as well. The adaptation consists on
connecting ODAP to the DVS through the Polkadot Connector,
and then adjusting the protocol to verify the asset’s state before
and after an asset transfer (as described in the solution’s Flow).

Additionally, in future work, other features may be added to
T-ODAP such as the support of slashing to punish participants
in case they deviate the protocol. This can correspond, for
example, to the use of a collateral (as in XCLAIM [15]),
which is removed in case the participants misbehave. This
mechanism involves, however, some challenges: how to assure
that an internal state proof is actually invalid, in order to punish
a participant fairly? The latter is hard to achieve due to the
opaqueness of permissioned blockchains.

The Decentralized View Storage may also support more
gateways simultaneously, instead of only two. This leads to
much more possible synergies between different blockchains,
yet it also entails much more complex logic and a broader array
of attacks. Moreover, the assumption described in Section III-B
which states that our solution assumes all views published in the
DVS are valid can possibly be removed in future work. This
means accepting the fact that auditor nodes can be malicious
or assume that there are no auditor nodes at all, and present a
solution for this challenge.

It is also interesting to leverage a crash-recovery mechanism
for the T-ODAP gateways, given that one of them can crash in
the middle of an asset transfer and it is not desirable to have
to rollback that transfer every time this happens. [8] presents a
first approach to this problem, however it is not implemented
yet.

An additional feature for future work can be the attestation
of the smart contract code running on each gateway, or having
nodes checking the smart contracts and guaranteeing they do
not change. This is due to the fact that the contracts may
contain malicious code that tries to unlock an asset right after
locking it, for example. Finally, it can be interesting to see
study if it is possible to decentralize the solution further, and
see the limitations of the latter.

Acknowledgments: The authors would like to express a deep
appreciation for everyone in the Hyperledger Cactus and Polka-
dot open-source communities who offered to help in this work.
A special thanks to Peter Somogyvari for his unlimited patience,
insight and support.

REFERENCES

[1]1 Archi — open source archimate modelling.

[2] hyperledger/cactus: Hyperledger cactus is a new approach to the
blockchain interoperability problem.

[3] On public and private blockchains — ethereum foundation blog.

[4] Polkadot: Vision for a heterogeneous multi-chain framework.

[5] A trustless, general-purpose polkadot — ethereum bridge — by snowfork
- polkadot — ethereum bridge.

(6]

(71
(8]
(9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakrishna,
and J. Yu. Verifiable observation of permissioned ledgers. 2021 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pages 1-9, 2021.

R. Belchior, S. Guerreiro, A. Vasconcelos, and M. P. Correia. A survey
on business process view integration. ArXiv, abs/2011.14465, 2020.

R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. Hermes: Fault-
tolerant middleware for blockchain interoperability, Mar 2021.

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey on
blockchain interoperability: Past, present, and future trends. ACM Comput.
Surv., 54(8), Oct. 2021.

P. P. Ippolito. Game theory in artificial intelligence — towards data science.
Z. Liu, N. C. Luong, W. Wang, D. Niyato, P. Wang, S. Member, Y.-
C. Liang, and D. I. Kim. A survey on applications of game theory in
blockchain. arXiv, 2019.

P. Taylor, T. Dargahi, A. Dehghantanha, R. Parizi, and K.-K. R. Choo.
A systematic literature review of blockchain cyber security. Digital
Communications and Networks, 6, 02 2019.

S. Underwood. Blockchain beyond bitcoin. Communications of the ACM,
59:15-17, 10 2016.

P. Wegner. Interoperability. ACM Computing Surveys, 28:285-287, 3 1996.
A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt. Xclaim: Trustless, interoperable, cryptocurrency-backed assets.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 193-210,
2019.

P. Zappala, M. Belotti, M. Potop-Butucaru, and S. Secci. Game Theoretical
Framework for Analyzing Blockchains Robustness. In S. Gilbert, editor,
35th International Symposium on Distributed Computing (DISC 2021),
volume 209 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 42:1-42:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik.

