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Abstract—Self-driving vehicles have in recent years come
to the forefront of engineering studies as a commercially
viable solution. There are many objectives associated with
autonomous driving, namely minimising the error between
the vehicle and the reference provided, optimising either
the time or the energy needed to complete the self-
driving task, and most important of all, accomplishing these
objectives safely. A solution that tackles all of these prob-
lems simultaneously is the formulation of the autonomous
driving task as an optimisation problem with multiple, often
concurrent, objectives. By doing so, it is possible to use
optimal control techniques to solve the autonomous driving
problem. One such optimal control technique is Model
Predictive Control. In this work, a controller is proposed to
solve the autonomous driving task, formulated as a path-
following problem, while minimising the energy needed.
This controller consists of an outer loop that provides a
minimum energy speed reference profile and an inner loop
that uses Model Predictive Control to compute the optimal
steering and acceleration commands that lead the vehicle
through the provided path. To test the controller, a robust
and complex model of VIENA, an eletric car developed by
IST was created. The controller is then compared against
well-known path-following controllers and it is capable of
producing results that are either better or on par with the
aforementioned controllers. This was accomplished while
producing a smooth steering signal, a relevant contribution
to provide a safer driving experience.

I. INTRODUCTION

In 2016, around 1.4 million people were injured and
25600 lost their lives in road traffic accidents in the
Member States of the European Union [1]. In 2018
approximately 25100 road fatalities were reported by
the Member States [2]. In 2016, a study carried by the
United States of America NHTSA found that human
error accounts for 94% to 96% of all car accidents [3]. By
diminishing human error, Autonomous Ground Vehicles
(AGVs) have the potential to dramatically reduce the
number of traffic accidents that occur.

Driverless vehicles are, at their core, autonomous
decision-making systems who, through the use of sen-
sors, process acquired information about the surrounding
environment and use said information along with prior
knowledge (about the road network, driving rules, vehicle
dynamics and sensor models) to make the optimal driving

decision in any given situation. This decision system is
hierarchically organised into four components [4]. At
its highest level, a route is planned through the road
network. Next, a behavioural layer is responsible for
selecting a driving task that progresses the car in the way
of its objective and abides by the rules of the road. This
is followed by a motion planning module, that creates a
continuous path through the environment to accomplish
the local navigational task. A local feedback control
system reactively corrects the errors in the execution of
the planned path. Figure 1 illustrates the decision making
hierarchy of an AGV. This work’s focus is on the last
decision making level, the local feedback control.
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Fig. 1. The decision making hierarchy of an AGV, taken from [4] and
adapted.

The objective of this work is to develop a local feed-
back control technique that acts on the vehicle’s steering
and speed and validate it in a simulation environment.

To validate the local feedback control technique, a
model of an AGV must be used. The vehicle char-
acterised in the simulation environment is VIENA1, a
car developed by IST, which is the subject of many
projects, all of which culminate with the creation of a

1http://viena.tecnico.ulisboa.pt/pt/
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fully autonomous electric vehicle. Figure 2 presents a
photograph of VIENA.

Fig. 2. The VIENA car.

II. VIENA CAR MODEL

In this section, the equations that characterise VIENA’s
behaviour are introduced. Subsection II-A presents the
equations that govern VIENA’s movement, also known
as its kinematic model. Subsection II-B presents the
equations that model VIENA’s dynamics, from the forces
and frictions that produce its acceleration, in subsection
II-B1, to the model of its induction motor, and the Field
Oriented Control that is used to drive the motor’s rotor to
its desired velocity, presented in subsection II-B3. Figure
4 shows the block diagram of VIENA’s model.

A. VIENA Kinematic Model

One of the models already used to characterise VIENA
is based on a simple 2D body frame dynamic model with
Ackermann steering [5].

In this model, it is assumed that the vehicle is sub-
jected to the non-holonomic constraint. Rotation of the
vehicle occurs only around the z-axis, which is pointed
upward. Other rotations are the consequence of suspen-
sion movement and road unevenness. The vehicle’s Euler
angle θ (rotation along the y-axis) at the wheel axis level
is close to zero and it will be considered zero. There is
neither lateral nor longitudinal slip, the tires are capable
of sustaining the lateral forces generated during dynamics
and they do not loose contact to the ground.

Using the assumptions above and a simplified bicycle
model, the equations that govern this model are


ẋ = vr cos(θ) cos(φ)

ẏ = vr sin(θ) cos(φ)

v̇r = a

θ̇ = vr
L tan(δ) cos(φ)

(1)

B. VIENA Dynamic Model

The model of VIENA’s behaviour is composed of
a model of an induction motor, controlled via Field
Oriented Control (FOC), a simple gearbox, the dynamics
which the vehicle is subjected to and its kinematic model.
The following subsections provide further insight into the
remainder of these components.

1) Vehicle Dynamics: VIENA’s vehicle dynamics take
as input the vehicle’s wheel torque and determines the
vehicle’s angular wheel speed as well as its linear speed.
To characterise VIENA’s vehicle dynamics, one makes
use of Newton’s second law of motion:∑

F = Ma. (2)

The forces applied to the vehicle are the traction
torque, Tt, applied in the rear wheels, the component of
the force created by the vehicle’s own weight in line with
the vehicle’s movement, F ′g , the friction force applied
between the vehicle’s wheels and the ground, Fr, and
the aerodynamic drag force applied whilst the vehicle is
moving, Fa. The vehicle’s total mass, M , is divided into
the vehicle’s mass, m, and the equivalent mass of the
rotating parts, mrot

eq . Therefore, (2) can be rewritten as

Tt
rw

+ Fg + Fr + Fa = (m+mrot
eq )a (3)

where

F ′g = −mg sin(φ) (4)

denotes the force created by the gravitational pull, with g
denoting earth’s acceleration and φ the path’s inclination,

Fr = −Crrmg cos(φ) (5)

denotes the rolling resistances force, with Crr denoting
the rolling resistance coefficient,

Fa = −1

2
ρCdAf (vr − (−vw))2 (6)

denotes the aerodynamic frag force, with ρ denoting the
air density, Cd the drag coefficient, Af the frontal area
of the vehicle, vr the vehicle’s rear wheel speed and vw
the wind’s speed opposite to the vehicle movement and

mrot
eq =

1

r2
w

(
Iw + Img

2
r

)
(7)
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denotes the equivalent mass of the rotating parts, with
Iw and Im denoting the wheel’s and the motor’s rotor
inertia, respectively and gr denoting the gear ratio of the
gearbox between the motor and the wheels.

Please note that the forces described by equations (4)
through (6) have associated with them a minus sign
because they are contrary to the vehicle’s movement. The
vehicle’s rear wheel speed is given by

vr(t) =

∫ t

0

a(t)dt (8)

and the wheel’s angular speed is given by

ωw(t) =
vr(t)

rw
. (9)

2) Gearbox Subsystem: The adopted gearbox model
simply uses the gear ratio to convert the wheel’s speed
into the motor’s speed and the motor’s torque into the
wheel’s torque, using the following equalities:

ωm = grωw, (10)

Tw = grTm, (11)

where ωm and Tm denotes the motor’s angular speed and
torque, respectively.

3) Induction Motor and Field Oriented Control: To
further characterise VIENA’s behaviour, the induction
motor that receives the desired reference speed and
outputs the needed torque to achieve the desired speed
was modelled and integrated into the overall system. The
presence of the dynamics of the induction motor creates
the need to control it and therefore Field Oriented Con-
trol (FOC) is used to drive the rotor speed to its desired
value. The use of FOC supposes the characterisation of
the induction motor behaviour in the direct-quadrature-
zero, dq0, model. In [6] it is presented the dq0 model as
well as the FOC structure and the equations that govern
it.

FOC aims to control the torque and magnetic flux of
the induction machine separately, using its quadrature,
iq and direct currents, id, respectively. This allows for a
good control of the torque while maintaining magnetic
flux of the induction machine at the rated conditions.
Figure 3 presents the FOC structure system.

+
-

Fig. 3. Field Oriented Control Structure.

III. PROPOSED CONTROLLER

The controller proposed to solve the path-following
problem consists of an inner MPC controller that com-
putes the optimal acceleration and steer commands that
drives the controlled variables as close as possible to
their desired reference values whilst complying with the
given constraints, and an outer loop speed profiler that
updates the reference speed that should be tracked in
case the vehicle is lagging behind the reference travelled
distance. Figure 4 presents a macroscopic view of the
system’s architecture.

A. MPC Controller

The MPC controller, receives as input the reference
states, zref , and the current vehicle state, zmeas and
outputs the optimal acceleration and steer commands,
uopt, that drive the vehicle as close as possible to the
desired pose and speed.

It does so by first predicting the future states by
using the VIENA kinematic model. These predictions, Z̄,
are then used to linearize the VIENA kinematic model
so that a Optimisation Control Problem (OCP) can be
solved. This OCP outputs a sequence of vehicle control
signals that are used to update the predictions made
using the VIENA kinematic model. When the difference
between two OCP iterative outputs is smaller than a given
threshold, ∆umin, or the maximum number of iterations,
K, has been reached, the algorithm stops and outputs the
optimal control signal sequence, uopt. Figure 5 presents
a flowchart of the MPC algorithm.

1) Predicting VIENA’s Motion: The prediction of
VIENA’s future pose and speed is made with the help
of its kinematic model, presented in Subsection II-A,
and the input signals produced by the Linear MPC’s
Optimisation Control Problem. This results in a series
of predictions made along the prediction horizon chosen
for the problem at hand.

2) Linear MPC Formulation: The optimisation con-
trol problem (OCP) solved by the MPC controller op-
timises the control vector, u, over a certain prediction
horizon, denoted Tp. Since the implementation of an
OCP implies a discretization of the problem at hand,
not only the state-space model of the linearized VIENA
vehicle needs to be discretized, but also the prediction
horizon must be converted into a discrete number, N . Let
∆t ∈ R denote the discretization step of the considered
problem. N is therefore

N =
Tp
∆t
∈ N. (12)

It is important to take into account that the OCP
produces a solution for each step of the prediction
horizon. Let m denote the dimension of the control
vector and p denote the dimension of the state vector.
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For the considered dimensions, the OCP would output
a solution in which U ∈ Rm×N−1 and Z ∈ Rp×N ,
where U denotes the set of control inputs and Z the
states produced by subjecting the internal state-space
model to the computed control signals. In this case,
the state vector is given by the quantities of VIENA’s
kinematic model, z = [x y vr θ]

T ∈ R4, and the input
vector is the acceleration and steer command computed,
u = [a δ]T ∈ R2.

Let zrefk ∈ R4 denote the provided reference state at
iteration k. The proposed MPC controller, which makes
use of the template provided in [7] and was based on

[8], with slight changes to the notation, is

minimize
U ∈ R2×N−1

(zrefN − zN )TWf (zrefN − zN )+ (13a)

N−1∑
k=0

(zrefk − zk)TW (zrefk − zk) (13b)

+ uTkRuk+ (13c)

(uk − uk−1)TRd(uk − uk−1) (13d)
subject to

zk+1 = A(z̄k)zk +B(z̄k)uk + C(z̄k), (13e)
δmin ≤ δk ≤ δmax, (13f)
amin ≤ ak ≤ amax, (13g)
|δk − δk−1| ≤ ∆δmax, k = 0 . . . N − 1, (13h)
vrmin ≤ vrk ≤ vrmax , k = 0 . . . N, (13i)
z0 = zmeas. (13j)

Equations (13a) - (13d) denote the problem’s cost
function, which is divided into two separate costs: the
terminal cost, present in equation (13a), and the stage
cost, present in equations (13b) through (13d). As it can
be seen, the problem’s cost function is composed by
sums of weighted squared errors with Wf ∈ R4×4 � 0
denoting the terminal cost weight matrix, W ∈ R4×4 � 0
denoting the stage cost matrix, R ∈ R2×2 � 0 the
input cost weight matrix and Rd ∈ R2×2 � 0 the
input difference cost weight matrix. Matrix R allows
the penalisation of very large inputs and matrix Rd
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the penalisation of big differences between consecutive
inputs, in an effort to have smoother input signals.

To find the best possible values for these matrices, a
fine-tuning process was conducted. In summary, a grid
search was performed to find the combination of matrices
that produced the smallest possible position and speed
error in the path-following problem. The matrices that
produced the best results are

Wf = W =


0.5 0 0 0
0 0.5 0 0
0 0 1.15 0
0 0 0 0.5

 ,
R =

[
0.2 0
0 0.4

]
, Rd =

[
0.01 0

0 1.11

]
.

(14)

Moving on to the OCP’s constraints, they can be bro-
ken down into two categories: the state contraints and the
input constraints. Beginning with the state constraints,
the internal linearized VIENA model is reflected in equa-
tion (13e), where A(z̄), B(z̄) and C(z̄) are the linearized
discrete matrices that model VIENA’s movement. These
matrices are updated using the predictions made using
the VIENA kinematic model, as seen in Figure 5, and
are given by

A(z̄) =
1 0 cos(θ̄) cos(φ)∆t −v̄r sin(θ̄) cos(φ)∆t
0 1 sin(θ̄) cos(φ)∆t v̄r cos(θ̄) cos(φ)∆t
0 0 1 0
0 0 0 1

 ,
(15)

B(z̄) =


0 0
0 0

∆t 0

0 v̄r cos(φ)∆t
L

 , (16)

C(z̄) =


v̄r θ̄ sin(θ̄) cos(φ)∆t
−v̄r θ̄ cos(θ̄) cos(φ)∆t

0
0

 . (17)

The remaining state constraints are the VIENA’s max-
imum and minimum speed constraints, given by equation
(13i).

The input constraints encompass the upper and lower
bounds of the steer and acceleration commands and the
maximum steering speed, and are given by equations
(13f) through (13h).

The initial condition constraint is simply given by the
measured state vector, denoted by equation (13j).

3) Stopping Criterion for the MPC: The MPC al-
gorithm stops either when the final iteration has been
reached or when the sum of the differences between
two consecutive vehicle control signals does not exceed
a certain threshold. When two consecutive input signals
computed by the Linear MPC are very similar, there is no
point in adapting the model further as the Linear MPC
has reached a form of consensus on the optimal input
signals.

The variation on two consecutive input signals ∆u is
therefore computed as

∆u =

N−1∑
i=1

|δi − δi−1|+
N−1∑
i=1

|ai − ai−1|. (18)

Please note that in (18), N − 1 denotes the dimension
of the computed input signal matrices, as seen in III-A2.

When the variation is lower than a given threshold
∆umin, the MPC algorithm stops. As a mathematical
expression, the stopping criterion is

∆u ≤ ∆umin. (19)

B. Optimal Speed Profiler

Since there is the need to produce a reference for the
vehicle’s speed, the possibility for the computation of
a optimal speed profile arises. The proposed solution
consists on a minimum energy speed profile optimisation
that takes into account a time constraint, by providing
the optimisation problem a time interval in which the
track should be performed and penalising differences
between said time interval and the time the vehicle took
to complete the given reference path.

1) Energy Computation Method: The proposed for-
mulation assumes constant acceleration between two
points. This allows the use of the typical equations of
linear motion. If the acceleration is constant then

v(t) = at+ vi (20)

and

x(t) =
1

2
at2 + vit+ xi. (21)

Let vi denote the speed at track point xi and vi+1

denote the speed at track point xi+1. Applying (20)
results in

∆t =
vi+1 − vi

a
⇔ ∆t =

∆v

a
(22)

where ∆t is the time interval between two spatial points,
xi and xi+1. It is also possible to rewrite (21) as
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xi+1 − xi =
1

2
a∆t2 + vi∆t⇔ ∆x =

1

2
a∆t2 + vi∆t.

(23)
Using (22) into (23) results in

∆x =
1

2
a

∆v2

a2
+ vi

∆v

a
⇔ ∆x =

1

2

∆v

a
+ vi

∆v

a
⇔

⇔ a =
1

∆x

(
∆v2

2
+ vi∆v

)
.

(24)

Please note that, in the scope of this problem, ∆x is a
known value, and therefore, only ∆v impacts the value
of a. To compute the needed energy to complete the path,
two distinct cases must be considered: the one in which
∆v 6= 0 and its counterpart, i.e. ∆v = 0.

Beginning with the latter, if ∆v = 0, then a = 0 and
one can compute ∆t knowing that:

ti+1 =
xi+1 − xi

vi
+ ti ⇔

⇔ ∆t =
∆x

vi

(25)

Since a = 0, the speed is constant, as is the traction
power:

ETi
= PTi

∆ti ⇔ ETi
= FTi

vi∆ti ⇔
⇔ ETi

=(
mg (sin(φ) + Crr cos(φ)) +

1

2
ρCdAfv

2
i

)
vi∆ti.

(26)

In the case that ∆v 6= 0, ∆t can be obtained by solving
(23) as function of ∆t:

∆ti =
−b1 +

√
b21 − 4a1c1

2a1
(27)

with

a1 =
1

2
a

b1 = vi

c1 = −∆x.

(28)

Knowing that

ETi =

∫ ∆ti

0

PTidt, (29)

and

PTi = FTivi ⇔
⇔ PTi =(
ma+

1

2
ρCdAfv

2
i +mg(Crr cos(φ) + sin(φ))

)
vi

(30)

and recalling (20) it is possible to compute ETi:

ETi = ma∆ti

(
a

∆ti
2

+ vi

)
+

β

4a

(
(a∆ti + vi)

4 − v4
i

)
+ γ∆ti

(
a

∆ti
2

+ vi

)
(31)

where β and γ are respectively

β =
1

2
ρCdAf

γ = mg(Crr cos(φ) + sin(φ)).
(32)

In the case that there is no regenerative braking,

ETi = max{0, ETi}. (33)

2) Optimisation Problem Formulation: The current
speed profile is found by solving the following optimi-
sation problem:

minimize
v ∈ RN

N∑
i=0

ETi + α|tmax −
N−1∑
n=0

∆ti| (34a)

subject to

v0 = vinit, (34b)
vN = vfinal, (34c)
|ai| − amax ≤ 0, i = 0, . . . , N − 1. (34d)

In optimisation problem (34a) - (34d), ETi
is com-

puted using the solution proposed in subsubsection
III-B1. Equations (34b) and (34c) provide the initial and
final speeds and (34d) guarantees that the acceleration
computed does not exceed the maximum acceleration
available.

The optimisation problem’s cost function minimises
both the energy required to complete the path and the
difference between the target time and the time elapsed,
in which α is a weighting constant translating the relative
importance of one term of the cost function in relation
to the other. The reason for having this latter term in
the cost function rather than in the constraints is to
smooth the time constraint. Would it be a constraint,
it could happen that the time needed to complete the
course would exceed the time available, which would
result in an infeasible solution. By having this term in the
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cost function, the optimisation problem becomes more
lenient, and the importance of completing the course in
a given time frame can be adjusted by increasing the
value of α. Please note that tmax is computed with the
help of the equations of linear motion.

IV. RESULTS AND EXPERIMENTS

The following sections seek to compare the perfor-
mances of three different controllers: the designed MPC
controller, the Pure Pursuit Controller, and the Front
Wheel Position Based Feedback Controller, henceforth
known as the Stanley controller. Since the aforemen-
tioned controllers do not contemplate the control of the
vehicle’s speed, a simple proportional controller was
implemented to have the vehicle follow the speed profile
as close as possible. The VIENA model, presented in
Section II will be used as the vehicle model.

In order to measure the performance of the aforemen-
tioned controllers, a set of metrics must be chosen. To
evaluate how closely the controller is capable of making
the vehicle follow the reference path, the euclidean
distance between the current vehicle position and the
closest path point will be used. To quantify the error
between the reference speed and the vehicle’s speed,
the absolute value of the error was chosen as a metric.
To further analyse the controller’s performance, a small
statistical characterisation of the errors is performed,
namely its maximum, minimum and average values are
presented.

Since the focus of the speed profile optimisation is
the minimisation of the energy spent, the energy spent
during the path-following process will also serve has a
performance metric. It is also important that the vehi-
cle completes the track in the allotted time and thus
the elapsed time during the path-following process in
comparison with the predicted time will also serve as
a performance metric. One final metric that must be
accounted for is the smoothness of the steer command.
It is desirable that there are not abrupt changes in it as
to provide a safe and comfortable driving experience. To
evaluate this, the moving standard deviation of the steer
command was used.

A. Path-Following Experiment

The objective of this first experience is to provide a
grasp of the overall performance of the designed MPC
controller when compared against the Pure Pursuit and
Stanley Controllers.

The results for the first track can be found in Figure
6 and on Tables I and II. The analysis of Figures 6(a)
and 6(c) and of Table II highlights the fact that, when
it comes to the path-following problem, the proposed
MPC controller is at least on par with the solutions

found by the Pure Pursuit and the Stanley controllers,
finding a solution in which the mean position error is
the smallest. It is worth noting the interesting capability
of the MPC controller of anticipating the turns along the
path. This allows the MPC controller to lead VIENA to
make turns on the inside whereas the Pure Pursuit and
Stanley controllers are only capable of making turns on
the outside. Unlike the MPC controller, the Pure Pursuit
and Stanley controllers only look at one point on the
path and are thus incapable of making decisions based
on anything but that point.

Figure 6(e) shows that the steer signal computed by
the proposed MPC controller is much smoother than
its counterparts, highlighting the importance of the Rd
weight matrix.

Figures 6(b) and 6(d) and Table I highlight the major
limitation of the proposed MPC controller, its difficulty
of following the reference speed profile, a problem
which can have severe implications on the energy needed
to complete the track. In this matter, the proportional
controller used in the Pure Pursuit and Stanley controllers
experiments is capable of computing an acceleration
command that leads VIENA’s speed much closer to its
desired values.

TABLE I
ENERGY AND TIME METRICS FOR THE GENERIC PATH.

Target Values Real Values εr[%]

MPC ET [kWh] 0.5058 0.5372 6.208
t [s] 44.67 42.6 4.639

Pure
Pursuit

ET [kWh] 0.5416 0.5378 0.6908
t[s] 43.67 42.80 1.998

Stanley ET [kWh] 0.5395 0.5363 0.5996
t [s] 43.67 42.8 1.998

TABLE II
ERROR METRICS FOR THE GENERIC PATH

emax
pos [m] emin

pos [m] ēpos [m]
MPC 1.9341 0.011 0.8401

Pure Pursuit 1.975 0.0057 0.9269
Stanley 1.774 0.011 0.9041

emax
v [m] emin

v [m/s] ēv [m/s]
MPC 1 0.0014 0.1794

Pure Pursuit 1 0.0020 0.1041
Stanley 1.001 0.0157 0.1423

B. Sharp Turn Path

The results for this path-following experiment are
presented in Figure 7 and in Tables III and IV. This
path has the peculiarity of having a very sharp turn, and
it is an useful case study to evaluate the performance of
the controllers in the presence of a fringe case such as
this one.

As it can be seen in Figure 7(a) and Table IV, while
Stanley and the MPC controller are capable of dealing
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with the sharp turn in a satisfactory manner, the Pure
Pursuit controller not only strays rather far away from
the given reference path but also displays an oscillatory
behaviour when trying to realign VIENA with it. These
results are further reinforced in Table IV in which it
is visible that proposed MPC controller is capable of
providing the solution with both smallest maximum
deviation from the path and the smallest average position
error. It is worthy to point where the steering signal
changes in a more abrupt manner is the sharp turn
location, which was expected. Figure 7(f) validates this
behaviour. While the Pure Pursuit controller exhibits the
smoothest steering signal, it strays to far from the path
to be a considered a viable option to solve problems of
this nature.

In what concerns the reference speed tracking how-
ever, the proposed MPC controller has severe difficulties
in keeping VIENA’s speed close to the desired values, as
it can be seen in Figures 7(b) and 7(d). This has a severe
implication on the energy spent while trekking through
this path, as it can be seen in Table III.

TABLE III
ENERGY AND TIME METRICS FOR THE SHARP TURN PATH.

Target Values Real Values εr[%]

MPC ET [kWh] 1.488 1.708 14.80
t [s] 60.42 62.6 3.617

Pure
Pursuit

ET [kWh] 1.692 1.690 0.1164
t [s] 59.42 66 11.08

Stanley ET [kWh] 1.620 1.618 0.1149
t [s] 59.42 63.4 6.707

TABLE IV
ERROR METRICS FOR THE SHARP TURN PATH.

emax
pos [m] emin

pos [m] ēpos [m]
MPC 3.381 0.011 1.237

Pure Pursuit 11.07 0.011 1.655
Stanley 3.992 0.011 1.285

emax
v [m] emin

v [m/s] ēv [m/s]
MPC 1.423 0.0011 0.4444

Pure Pursuit 1 0.0041 0.0995
Stanley 1.162 0.0067 0.1542

V. CONCLUSION AND FUTURE WORK

In this work a Model Predictive Controller that solves
the path-following problem with the least energy required
was proposed. Along with the controller proposed, a
model of an electric vehicle was also developed. This
model characterises not only the dynamics of the vehi-
cle’s movement, but also the dynamics of its induction
motor, providing an internal control technique that drives
its speed to the desired reference.

As it was shown in Section IV, the proposed controller
has several advantages over the well established Pure
Pursuit and Front Wheel Based Feedback controllers.

Not only is it the controller that consistently produces
the smallest average distance to the path, it is also the
one that is capable of doing so with the smoothest
steering signal. Its capacity of computing simultaneously
a steering and acceleration signal makes it capable of
reducing VIENA’s speed to keep it close to the provided
reference path and its predictive capabilities makes it
possible to have the vehicle perform turns on the inside,
rather than on the outside.

In future works, the fine-tuning process of the weight
matrices could be improved. A machine learning ap-
proach could provide better overall results. Moreover,
focusing on computing a more realistic reference speed
profile that takes into account the path’s characteristics,
such as its curvature, could greatly improve the speed
tracking error.

Another aspect that suggests further study is the im-
plementation of the proposed controller that decreases
the computation time of the vehicle control signals.
As it stands, the current MPC implementation takes
around 0.3 seconds to compute the desired commands.
As noted before the proposed implementation was done
in Matlab. For a real-time implementation, a far faster
implementation needs to be considered. It is possible that
implementing the proposed controller in a language such
as C++ will decrease the computation time significantly.

The further development of VIENA’s model is also
an important step to evaluate the possibility of a real-
time implementation. The development of models that
contemplate sensor dynamics is needed to evaluate the
controller’s robustness to uncertainty and noise.
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Fig. 6. Results for the Controller Fine-tuning Path Experiment.
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Fig. 7. Results for the Sharp Turn Path Experiment.
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