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ABSTRACT
The field of bioacoustics plays an important role on preventing and
reducing human impact on environment, by enabling the develop-
ment of tools capable of performing automated analysis of environ-
mental data. Deep learning methods were successful on automating
the process of species identification in environmental recordings, re-
quiring nonetheless a large number of training samples per species.
Hence, efforts weremade to develop high-accuracymethods capable
of automating species detection in noisy environments with limited
training data. In this document, we address the problem of automat-
ing species detection in noisy environments with limited training
data, proposing an end-to-end spectral based approach for training
a convolutional neural network (CNN) on Mel spectrograms to pre-
dict a set of species present in the Rainforest Connection’s acoustic
recordings. Additionally, we propose a cepstral based framework
for training a Long Short-Term Memory (LSTM) network on the
Mel-frequency cepstral coefficients (MFCCs), complementing this
approach with the motifs extracted by the matrix profile algorithm.
Finally, we evaluate the performance of the approaches so that the
bioacoustic classification framework can be established.

1 INTRODUCTION
Bioacoustics focuses on the analysis of the sounds produced by
or affecting living organisms, especially the ones related to com-
munication. Prior bioacoustic research was heavily dependent on
manual labor to segment, detect and label animal activity, present
in hours of field recordings. Consequently, recent research over-
laps the work developed by Rainforest Connection (NGO) 1 which
focuses on developing bioacoustic monitoring systems to ensure
the rainforest’s conservation, being also a prominent source of
environmental audio data.

Deep learning methods have been successful on automatic acous-
tic identification, through image analysis dedicated architectures,
such as convolutional networks. However, they require a large num-
ber of training samples per species. This limits applicability to rarer
species, which are central to conservation efforts. Thus, the Kaggle
competition "Rainforest Connection Species Audio Detection" 2

encouraged contenders to develop solutions capable of automate
high-accuracy species detection in noisy soundscapes with limited
training data.

In this document, we address the problem of automating species
detection in noisy environments with limited training data, thus, we
explore two main approaches to build a bioacoustic classification
framework. The first, the spectral based one, proposes a frame-
work for training a convolutional neural network (CNN) on Mel
spectrograms to predict a set of species present in the Rainforest
1https://rfcx.org/
2https://www.kaggle.com/c/rfcx-species-audio-detection/data

Connection’s acoustic recordings. We leverage transfer learning by
using a pretrained model as a way to reduce training requirements,
both the amounts of data and time. Finally, we explore several
window sizes, data augmentation techniques and predictive thresh-
olds to improve the model’s performance. The second, the cepstral
based one, proposed an end-to-end pipeline for training a Long
Short-TermMemory (LSTM) network on theMel-frequency cepstral
coefficients (MFCCs). Furthermore, we complement this approach
with the motifs extracted by the matrix profile algorithm, as a way
of improving the performance of the concerned network. Lastly, we
explore the standard and the multidimensional implementation of
the matrix profile algorithm, experimenting also different window
sizes and predictive thresholds.

The best performing approach is the spectral based classification
model, both on the chainsaw and on the Kaggle dataset. It includes
5-second-long Mel spectrograms and relies on the SpecAugment
method to increase the training set size. Regarding the chainsaw
dataset, it achieves an accuracy of 0.97, a mean precision of 0.99 and
a mean recall of 0.97. In relation to the Kaggle dataset, it registers
an accuracy of 0.97, a mean precision of 0.91 and a mean recall of
0.93.

This paper is organized into six sections. Section 2 describes
the concepts addressed by this work and section 3 introduces the
work related with automatic bioacoustic analysis and classification.
Section 4 presents the proposed methodology, section 5 details the
obtained results and section 6 discusses them briefly.

2 BASIC CONCEPTS AND NOTATION
The research direction that this work will concern is sound event
detection, which labels temporal regions within an audio recording,
with their start and end time, as well as with the event’s type. Also, a
frame (or sound clip) indicates the unit of analysis and may contain
several events that may overlap in time.

The referred classifiers, in sound event detection, ideally, have
each one of the acoustic events instances in the training data, labeled
with their start and end time. This type of labels is referred as strong
labels, nevertheless, acquiring them is a costly process that also
requires careful attention to detail by the annotator.

A sound spectrogram is an image of the time-varying spectral
representation, produced by applying the short-time Fourier trans-
form (STFT) to successive overlapping frames of an audio sequence.
The horizontal dimension corresponds to time and the vertical di-
mension corresponds to frequency. The relative spectral intensity
of a sound at any specific time and frequency is indicated by the
color/grayscale intensity of the image.

Model performance and capability to capture the natural vari-
ability of data can be increased with the use of data augmentation

https://rfcx.org/
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techniques. Such signal transformations may include time shifting,
volume control or adding additive noise to the acoustic data.

3 RELATEDWORK
In recent years, Convolutional Neural Networks (CNNs) have out-
performed the former models in visual recognition tasks, namely
in large-scale image and video recognition, mostly due to the late
availability of large public datasets of images such as the ImageNet
(Krizhevsky et al., 2012).

Transfer learning is used to avoid the large amount of training
data and time that deep neural networks with initially randomized
weights require to achieve reasonable performance. In particular,
given the context of environmental data in which labels are costly,
one can take advantage of this technique by retraining with new
data a model already optimized for a similar dataset to improve
performance. The ResNet50 (He et al., 2016) model is a classic
neural network used as backbone for many computer vision tasks
and it was trained on the ImageNet dataset. Despite not containing
spectrograms, models pre-trained on this dataset learn a variety of
image features and have been successfully tuned to spectrogram
classification (LeBien et al., 2020), (Zhong et al., 2020).

Furthermore, the competition "Rainforest Connection Species
Audio Detection", previously referenced, encouraged contenders
to develop models that aimed to automate the detection of several
species in the RFCx audio files. Thus, this competition provides
multiple audio processing methodologies and models architectures
which concern species detection in noisy soundscapes with limited
training data, such as the ones presented in (LeBien et al., 2020),
(Zhong et al., 2020).

4 METHODS
The first approach is centered on the idea that sound signals can
be represented by images. Thus, by extracting the spectral audio
features, namely the Mel spectrograms, this methodology leverages
deep neural networks, such as Convolutional Neural Networks, to
perform the aforementioned task. Also, it takes advantage of trans-
fer learning to reduce training requirements, both the amounts of
data and time. The obtained results validate the proposed frame-
work, as the proposed model is capable of differentiating the multi-
ple events present in the image representations of sound.

Alternatively, the second methodology aims to reduce the proce-
dures associated with an image-based approach. Thus, the second
approach presents an alternative procedure, that explores different
audio features and a distinct network, namely a Long Short-Term
Memory (LSTM) network, to identify the given species in the multi-
ple recordings. The obtained results reveal that the models trained
on the cepstral features, namely the Mel-frequency cepstral co-
efficients (MFCCs), achieve better performance, nevertheless, the
results are relatively worse than the ones attained by the spectral
based one. In this sense, we complement this procedure with the
motifs extracted by the matrix profile algorithm, as a way of im-
proving the performance of the concerned network. Nonetheless,
we only present this additional step in the master’s thesis document
due to space limitations.

Finally, it is important to note that the classifications models
that result from both approaches were trained and evaluated with

a fixed training and test set. In particular, the results presented in
section 5 reflect this condition, mainly because the definition of both
methodologies results from numerous experiments, in which we
considered different network architectures, training configurations
and feature extraction and processing techniques.We only use cross-
validation to train and test the developed classification models in
section 5.6, when both methodologies are well defined and matured.

4.1 Spectral Based Classification Model
Our first proposal was a bioacoustic classification framework us-
ing transfer learning of deep neural networks. Thus, this section
focuses on detailing each step of the suggested end-to-end pipeline,
a process that results in a classification model, as represented in
Fig. 1.

Figure 1: Spectral based approach flowchart.

The starting point consists of converting the sound sequences
(raw audio), that is, the time series, into audio features that can
capture the distinctive properties of each event. Given the results
obtained by deep neural networks in image classification problems
our feature extraction step focuses on the extraction and pro-
cessing of the Mel spectrograms, that are image representations of
sound. So, we explore the learning ability of deep neural networks,
namely Convolutional Neural Networks, describing their training
process with the mentioned spectral shape features.

4.1.1 Feature Extraction and Processing.
In audio processing and analysis, the frame length is critical to
the neural network’s performance, as it must be set long enough
to preserve the meaningful events but not so long that temporal
variations disappear. In this regard, this report proposes a win-
dow function and evaluates the effect of different window (frame)
lengths on the model’s results.

The proposed window function defines the frame’s center (win-
dow center) as the sum of half of the maximum label interval (max-
imum delta) of a given dataset, to the interval’s beginning (interval
start) of the concerned label. The start (window start) and end (win-
dow end) of the frame are the result of subtracting and adding to the
center, respectively, the selected frame length (window duration)
divided by two.

window center = interval start + (maximum delta / 2)
window start = window center - (window duration / 2)
window end = window center + (window duration / 2)

Additionally, it is important to note that the sampling rate by
which the audio is extracted must be taken into consideration when
extracting the mentioned window. All in all, the window function
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allows for a training set composed only by frames that are linked
to a given event.

Figure 2: Window extraction example - Mel spectrogram:
window start (1) window center (2) window end (3).

The extracted Mel spectrogram (Mel spectrogram extraction)
is represented in Fig. 2 by the green box, being the white box
the representation of the event’s labelled time interval. Each Mel
spectrogram is computed using the librosa Python package with the
default settings (sampling rate = 48 kHz, NFFT = 2048, hop length =
512, window length = 2048, Hann window), specifying however the
number of mel bands (n_mels = 224) and if available the minimum
and maximum frequency. The frequency interval corresponds to
the minimum and maximum value registered in the dataset, with a
10% margin to increase the considered interval.

The resulting Mel spectrograms, as a part of the Mel spectro-
gram processing step, are converted to units of decibel (dB), re-
sized to the dimensions supported by the pre-trained model, that
for the ResNet50 case correspond to 224x224 images, and normal-
ized with the min-max scaling. Finally, the spectral features are
converted to color images, that is, images with RGB channels and
given the transfer learning setting, the spectrogram is processed to
the adequate image format of the selected backbone model. For the
ResNet50 model, for instances, the images are converted from RGB
to BGR, then each color channel is zero-centered with respect to
the ImageNet dataset, without scaling.

4.1.2 Convolutional Neural Network Architecture.
The proposed model uses the pre-trained ResNet50 weights used
for ImageNet classification, and includes only the feature extraction
layers of this model, excluding the remaining layers, often referred
as the network "top". Hence, the knowledge obtained in image
classification, namely the detection of basic image features, can be
transferred (transfer learning) to the task at hand by using the
weights of the optimized model. In this sense, by freezing some
layers of the pre-trained model and only training the last several
layers, the model can be fine-tuned to our problem. In addition to
ResNet50, our work also evaluates different backbone models, such
as EfficientNetB0, InceptionResNetV2 and VGG19.

We propose two network architectures for the introducedmethod-
ology, which have as reference the networks introduced in (Zhong
et al., 2020). The firstmodel architecture comprises the pre-trained
model and two fully connected (FC) layers. The first consists of 512
nodes and uses the "Relu" activation function that converts negative

inputs to 0. This layer is followed by a batch normalization and
drop-out layer, the latter with a drop-out rate of 50% in which each
node is ignored with a 50% probability, helping prevent overfitting.
The final layer, given the binary classification setting, consists of
one node that passes through the sigmoid function.

Additionally, we propose the addition of a LSTM layer to comple-
ment the above model, as a way of improving the general model’s
performance. Hence, the second model architecture includes the
pre-trained network (ResNet50), and is followed by a Flatten and
LSTM layer, being the latter composed by 512 neurons. Then, the
subsequent layers follow the structure from the previous network,
tuning however some parameters. In detail, we include two fully
connected (FC) layers, the first with 1024 nodes and that uses the
"Relu" activation function and the last layer which comprises only
one neuron. Likewise, between the aforementioned fully connected
layers there are a batch normalization and a dropout layer to help
prevent overfitting.

4.1.3 Model Training.
Given the binary classification setting, the training step consists
of training the network on the spectral features to obtain a classifi-
cation model. The optimizer uses the Adam optimization method
with a learning rate of 1 ∗ 10−4 and decay of 1 ∗ 10−7. Moreover,
the binary cross entropy loss function is utilized and 30 epochs
are applied. These parameters result from a fine-tuning process
in which we analysed the values who favored the model’s perfor-
mance. For instances, a higher number of epochs did not contribute
to a significant improvement on the performance, ending up in
an overfitting situation in the cases that did. Oppositely, a lower
number of epochs usually did not lead to a convergence point, being
the proposed value a trade-off between both scenarios.

Model performance and capability to capture the natural variabil-
ity of data can be increased with the use of data augmentation
techniques. Thus, two approaches are followed as a way of increas-
ing the training set’s effectiveness: the first randomly adds one of
the two additive noises, Gaussian or Pink, to the audio signal, time
shifting and controlling its volume afterwards; the second applies
the SpecAugment technique to the Mel spectrogram.

4.2 Cepstral Based Classification Model
This section complements the research on the bioacoustic classifi-
cation framework as it presents an alternative approach to the one
proposed in section 4.1, the spectral based one. Despite having the
same goal, as it also aims to obtain a model capable of learning the
distinctive characteristics of the concerned events, it explores the
use of different audio features, such as the Mel-frequency cepstral
coefficients (MFCCs), the root mean square (RMS), the zero-crossing
rate (ZCR) attributes, and even the raw audios. Nevertheless, it is
important to remark that we focus our research on the cepstral
ones.

Hence, the objective is to develop a simpler approach, in compar-
ison to the previous one, in terms of the required feature extraction
and processing steps. In this sense, the Convolutional Neural Net-
work (CNN) was replaced by a Long Short-Term Memory network
(LSTM), changing also the concerned features by the previously
mentioned ones. In detail, we change the network to determine
if the LSTM’s remembering and forgetting nature contributes to
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the learning of the distinctive traits of the events present in our
bioacoustic classification problem.

Figure 3: Cepstral based approach flowchart.

Analogously, the starting point of the proposed procedure con-
sists of transforming the raw audios into audio features that can
be used to train the classification model. We describe the extrac-
tion and processing of the aforementioned features, as well as
the training of the concerned classification model.

4.2.1 Feature Extraction and Processing.
In this section, we cover the procedure that transforms the raw
audios into the features used to train the developed model. We
assume the window function proposed in section 4.1.1, as we will
also have a training set composed only with frames associated with
the presence or absence of a given event. So, the difference in this
step lies on the extracted features and in their processing.

The procedure introduced in this section focuses on the cepstral
features (MFCCs), however, as previously noted, it also addresses
other audio attributes such as the ZCR, the RMS, and the raw
recordings. The librosa Python package once again enables the
extraction of these features.

As the lower order MFCCs contain most of the information
present in the recordings we only extract 13 MFCCs. Also, although
we initially tried normalizing this attribute, we ended up not per-
forming this step as it did not benefit the model’s performance. The
toy problem’s MFCCs attribute is represented in Fig.4. Lastly, the
other features did not undergo through any additional processing.

Figure 4:Window extraction example - MFCC: window start
(1) window center (2) window end (3).

4.2.2 Long Short-Term Memory network architecture.
The model architecture consists of one LSTM layer, that com-
prises 512 nodes and assumes the default activation function, the

hyperbolic tangent (tanh). This layer is responsible for handling the
input features and it is followed by three fully connected layers, the
first with 256 neurons and the second with 128, both with a "Relu"
activation function. The final layer, given the binary classification
setting, has one neuron that goes through the sigmoid activation
function.

Also, it is important to note that the proposed architecture is the
result of multiple experiments, in which we adjusted the configura-
tion according to the attained results. The goal was to maintain the
model as simple as possible without compromising its performance.

4.2.3 Model Training.
The training step is similar to the one described in section 4.1.3,
differing only in the sense that it trains each model on the cepstral
features, instead of the spectral ones. Similarly, the model is trained
with the Adam optimization method, with a learning rate of 1∗10−4
and decay of 1 ∗ 10−7. Also, the binary cross entropy loss function
is utilized, due to the binary classification setting, and 30 epochs
are applied.

5 RESULTS
5.1 Case Studies
5.1.1 Kaggle Competition Dataset.
The "Rainforest Connection Species Audio Detection" 3 is a Kaggle
competition that concerns the classification of 24 bird and amphib-
ian species which inhabit the tropical mountains. It provides 6719
audio files (.flac) that include sounds from numerous species and
two files, the first has data about the true positive events registered
in all recordings, having a labelled interval which refers to the
specie call; the second has data about the false positive events, de-
tailing by opposition the intervals where a certain specie does not
appear. Furthermore, both files also provide data about the specie
present in the audio sample, the sound´s song type as well as the
frequency and time interval of the event.

5.1.2 Chainsaw Dataset.
This dataset refers to the data provided by Hitachi Vantara through
its partnership with Rainforest Connection. It also includes the
VisBig project (PTDC/CCI-CIF/28939/2017), being important to
remark that both connections enable more data to be considered.
Despite that, our work only considers recordings from January
2020, having the concerned dataset 6567 audio files (.flac and .wav).
These particular files have been preprocessed, a procedure in which
files smaller than 1.1MB and with sampling rates lower than 12,000
Hz were filtered out. Also, the remaining audios are approximately
90 seconds-long.

Nonetheless, we consider a subset of these recordings, as only
1091 of these audio files possess annotations regarding chainsaw
events. The labels were obtained by a manual confirmation pro-
cess that validated the output of a model, developed by Huawei,
that detects chainsaw events. In detail, each labelled recording can
encompass multiple events, registering a total of 7885 confirmed
and 3274 rejected chainsaw events, each one annotated with the
corresponding event’s time interval.

3Rainforest Connection Species Audio Detection
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5.2 Spectral Based Model - Kaggle
There are 24 annotated species in the provided dataset, which would
suggest a 24 multi-label classification setting. Nevertheless, two
species have more than one song type, having both type 1 and 4,
revealing the need of two additional labels. As a starting point, the
created training set disregards the song type 4 for the mentioned
species.

In this sense, our approach transforms the 24 multi-label clas-
sification setting into 24 distinct classification problems, where in
each we train a model so that it can learn the presence or absence
of a given specie. Moreover, the upcoming sections describe several
experiments in which the concerned models follow the architecture
described in section 4.1.2. In particular, note that the experiments’
results represent the average of each specie related model’s score,
taking as an example the scores displayed in Fig. 5, that refer to
the average of the accuracy scores across all 24 species. It is also
important to remark that from these results, the ones presented
in section 5.2.2 refer to each specie related model as this analysis
discriminates all species.

Also, the baseline training set includes the maximum number of
true positive events for each specie, that for the majority of species
corresponds to approximate 50 samples. Additionally, other vari-
ants may encompass different quantities of true positive augmented
samples, as further described in section 5.2.1. Lastly, a subset of the
available 350 false positive samples is extracted, for each specie,
in the same quantity as the true positive subset, that may contain
augmented instances. For example, if we complement the baseline
approach with data augmentation, one specie that has 50 true pos-
itive samples, will also have 50 augmented samples and 100 false
positive samples, resulting in a balanced training set for each specie.

5.2.1 Window Size and Data Augmentation.
The first approach aims to assess the effect of different window
sizes and data augmentation techniques on the performance of
each model. Thus, the considered frame lengths were 2, 5 and 10-
second-long, as more than 80 percent of the recorded events have
intervals smaller or equal to 4 seconds. Also, by including the 2
second window one can verify if smaller frames can capture enough
image traits to conduct automate species detection. In addition, for
each window size, we trained a model with a training set that did
not include augmented samples (baseline) and compared it to two
models whose training set contained samples augmented by the
two techniques described in Section 4.1.3.

As detailed in the previous section, the training set that does not
takes advantage of data augmentation techniques includes the max-
imum number of available true positive samples, having the same
number of negative samples. Conversely, both training sets with
augmented instances, from the two aforementioned augmentation
techniques, differ from the latter by having augmented samples in
the same number as the true positive calls, thus enabling the use of
more negative instances. Finally, the evaluation metrics were accu-
racy, which corresponds to the percentage of correct predictions (tp
+ tn) over the total number of instances evaluated (tp + tn + fp + fn);
precision, that measures the fraction of an identified event correctly
classified (tp ÷ (tp + fp)); and sensitivy or recall, which measures the
fraction of positive patterns correctly classified (tp ÷ (tp + fn), being
the test set classified with a threshold score of 0.6. Once again, it

is also relevant to stress that the evaluation metrics represent the
average of the scores of each individual model, excluding those who
fail to learn the distinguishing characteristics of the audio features.

Figure 5: Effect of different window sizes and data augmen-
tation techniques on accuracy, precision and recall.

As depicted in Fig. 5, by including the augmented samples in the
training set we increased the accuracy scores across all windows
sizes. The model trained on the 10-second-long window failed to
capture the data’s variability, leading to the worse results in terms
of precision and recall. The 5 second window obtained a signif-
icant accuracy increase, registering the best precision and recall
score (0.77 and 0.78) with the SpecAugmented spectrograms. Fur-
thermore, the smallest concerned frame obtained similar results in
comparison to the 5 second window in terms of accuracy, achieving,
nevertheless, lower precision and recall scores.

All in all, the results confirm the well-known precision-recall
relation, in which generally an increase in precision leads to a de-
crease in recall, and vice-versa. Consequently, a balance is desired
if false positives and false negatives are equally significant, which
is not the case in our problem’s spectrum as recall is slightly more
important because false negatives are more costly. From this ex-
periment, both the 2 and 5-second long frames seem to be able to
capture the distinctive traits of each Mel spectrogram. Nonetheless,
as the model trained on the 5-second-long windows performed
slightly better, this is the frame length concerned from this point
forward.

5.2.2 Dynamic Window Sizes.
The results obtained in the previous section are strongly marked by
the models that fail to differentiate both classes, difficulty amplified
with the 10 second frame. So, in order to assess if each model would
perform better with a tailoredwindow size, a different approachwas
experimented. More concretely, each specie related spectrogram
was obtained by taking into consideration the mean time interval
of each specie call with a one second margin, which implied that,
for instances, a specie with an average interval call of 2 seconds
would have a 3-second-long Mel spectrogram.

Definition 5.1. Average-precision: Summarizes the precision-
recall curve as the weighted mean of precisions achieved at each
threshold, with the increase in recall from the previous threshold
used as the weight. 𝑃𝑛 and 𝑅𝑛 correspond to the precision and recall
at the nth threshold.

𝐴𝑃 =
∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1) 𝑃𝑛 (5.2.1)
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Hence, the average-precision, presented in the definition 5.1 was
the metric used to compare the model trained on the dynamic win-
dows with the one trained on the fixed window size (5 seconds).
Also, both models had recordings augmented with the SpecAug-
ment method.

Figure 6: Average-precision of dynamic and fixed window
size approaches.

In particular, Fig. 6 demonstrates the difference in average-precision
between each model trained on the dynamic window size (red) and
those trained on the 5 second window (blue). The mean average-
precision scores for the dynamic and fixed size approach are 0.52
and 0.63, respectively. Furthermore, species with a mean window
size smaller than 5, such as 11 and 18, for instances, are the ones
who benefit the most from the dynamic approach. Also, it is possible
to understand the impact that models with lower scores have on the
metrics depicted in Fig. 5. To sum up, the goal of this approach was
to understand if a small combination of window sizes, as a large
one would be extremely costly in the prediction step, would favor
the model’s results. Despite the aforementioned improvement on
the species that register smaller calls, the overall performance was
not sufficient to justify the cost that a windowed approach would
require.

5.2.3 Predictive threshold.
The predictive threshold represents the probability value by which
a given sample is classified, that is, if the probability returned by
the model is superior to the defined threshold the sample will
be classified as belonging to the class, and vice-versa. On that
account, the previous experiments considered a predictive threshold
of 0.6, achieving a precision of 0.77 and a recall of 0.78 with the
best performing model. Nonetheless, one can try to improve the
precision score by increasing the predictive threshold.

Hence, Fig. 7 displays the mean precision and recall variation
with different thresholds, so that the influence of the threshold
value on the obtained results could be determined.
The increase in the threshold value leads to higher precision scores,
nevertheless, this increment also results in a significant decrease

Figure 7: Precision/Recall threshold curve of the model
trained on a 5-second-long window with SpecAugmented
samples.

in recall. The precision-recall balance is achieved somewhere be-
tween the 0.50 and the 0.65 predictive threshold value, with the 0.60
threshold registering the optimal value for the develop approach,
with a precision of 0.77 and a recall of 0.78.

5.2.4 Convolutional Neural Network combined with a Long Short-
Term Memory network.
As referenced in the master thesis document, similar classification
problems were addressed with a hybrid architecture, that combined
Convolutional Neural Networks with Long Short-Term Memory
networks. In this sense, we complement the previous architecture
with an LSTM layer, as an attempt to improve the general perfor-
mance of the developed model.

The network architecture described in 4.1.2 stems from several
experiments in which we tried to establish the optimal combina-
tion to the problem at hand. In depth, we started by adding an
LSTM layer with 512 neurons between the pretrained model and
the fully connected layer with 512 neurons. Despite being the ini-
tial experiment, it remained the best performing one, achieving an
accuracy score of 94% and a precision and recall score of 83% and
84%, respectively.

According to our experiments, an increase in the number of
LSTM’s neurons led to a scenario where we ended up with higher
recall scores and slightly lower precision scores, such as 86% and
80%, for example. Conversely, an increment in the number of neu-
rons of the fully connected layer resulted in lower precision (82%)
and recall scores (79%). Finally, we also tested multiple settings
where we tried several combinations of LSTM and fully connected
layers, nonetheless none of them improved the results from the
best performing one.

5.3 Spectral Based Model - Chainsaw
In view of the results attained in the previous sections, we evaluated
the proposed framework on the dataset, previously introduced in
section 5.1.2, that includes the recordings labelled with the chainsaw
events. The main difference to the annotations concerned in the
previous dataset (5.1.1) lies on the information regarding the event’s
frequency interval, as the labels from this dataset do not detail the
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mentioned interval. Thus, as we analysed the Mel spectrograms
of the different recordings we noticed that chainsaw events, for
the most part, took place in the lower frequencies. Despite being
possible to find other animal sounds in this frequency range, we
also observed that events such as bird sounds, would generally
assume higher frequencies in comparison to the chainsaw sounds.
In this sense, as our goal is to detect chainsaw events, we reduced
the previous sampling rate of 48 kHz to 22kHz since there was no
need to concern such high frequencies when training our model,
imposing also a minimum and maximum frequency of 0.08 and
3kHz, respectively, for the extracted Mel Spectrogram.

Furthermore, the amount of available labelled recordings is con-
siderable larger, in comparison to the previous dataset, favoring the
model greatly as it allows for a bigger training set. However, due to
hardware limitations we restricted the training set to 1600 positive
and 1600 negatives samples. So, apart from the aforementioned
modifications, the training process of this particular classification
model was similar to the one described in section 4.1.

5.3.1 Transfer Learning and Fine-Tuning.
The transfer learning setting enables the use of multiples models
which can be used for prediction, feature extraction, and fine-tuning.
The ResNet50 network was the selected to complement the devel-
oped baseline architecture, as it is often utilized in similar image
classification problems, being the model used as a start point in
numerous solutions. Nevertheless, this section aims to compare
the performance of the previously mentioned model with other
networks that were also trained on the ImageNet dataset.

Figure 8: Comparison between the performance of different
pretrained models.

Consequently, we experimented 3 other pretrained networks,
EfficientNetB0, InceptionResNetV2 and VGG19, as the backbone of
our proposed architecture. We then compared the obtained results
with the ones attainedwith the initial architecture, which comprised
the ResNet50 model. The used training set was the one described
in the above section (5.3), being showcased in Fig 8 the comparison
between the aforementioned models’ performance.

The different networks present similar AUC (area under the
ROC curve), being the Resnet50 model the best performing one,
along with the EfficientNetB3. Even though the ResNet50 network
(as in 50 weight layers) is much deeper than VGG19, its model
size is substantially smaller due to the usage of the global average

pooling layers rather than the fully-connected ones, which makes
it preferable to the latter.

Furthermore, it is also possible to compare all models against the
family of EfficientNets (EfficientNetB0 to EfficientNetB7), consider-
ing only, for simplicity, the B0, B3 and B7 variants. The performance
of the EfficientNetB0 network is very similar to the ResNet50 one,
being also possible to notice that the use of other EfficientNet vari-
ants does not increase significantly the obtained results.

Also, the combination of the Inception architecture with residual
connections, present in the InceptionResNetV2 network, does not
justify the use of this specific architecture as it does not register a
better performance when comparing with the ResNet50 network.

Hitherto, the layers from the pretrained models were frozen,
that is, they were not trained during the training process to avoid
destroying any of the information they contained. Nevertheless,
in this setting one can take one last optional step, referred to as
fine-tuning, that consists of unfreezing the entire model, or a part
of it, and retraining it on the new data, with a very low learning
rate. Despite multiples attempts, we were not able to attain better
results when fine-tuning our model, as all our experiments ended
up with poorer performance.

5.4 Cepstral Based Model - Chainsaw
As stated in section 4.2, this approach aims to provide an alternative
to the spectral based classification model (4.1), by exploring a dif-
ferent network architecture, namely the Long Short-Term Memory
network, and different audio features. In particular, it focuses on
features such as the root mean square (RMS), a reliable indicator for
silence detection, the zero-crossing rate (ZCR), useful for discrimi-
nating periodic signals from those marked by noise, to understand
if it is possible to perform biacoustic classification without all the
processing related with an image-based approach. Moreover, we
also explore the MFCCs as this feature is widely used in similar
problems, as previously referenced.

Figure 9: LSTM network’s performance with different audio
features.

The first experiment sets the baseline for the concerned approach,
as it compares the performance of the LSTM network when trained
with the different referenced audio features. Additionally, it fol-
lows the windowed approach introduced in section 4.1.1. Given the
results presented in Fig.9, it is possible to conclude that the multidi-
mensional feature (MFCCs) outperforms the one-dimensional ones,
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obtaining a similar performance to the spectral based approach, in
this particular setting.
In addition, the networks trained with the raw recordings and
with one of the MFCCs failed to learn the unique properties of
the labelled events, being the worse performing models. Also, the
models trained with the RMS and the ZCR features registered a
significant improvement in performance when comparing to the
ones trained on the aforementioned attributes, being, nonetheless,
quite far from achieving similar results as the ones from the network
trained on the cepstral features.

All in all, given the results, from this point forward we will
only concern the MFCCs and the ZCR attribute, being the latter
considered as a way of confirming the above results, since we also
evaluate the framework on the Kaggle dataset.

5.5 Cepstral Based Model - Kaggle
In light of the results described above, the classification model
presented in this section, was obtained by following two different
approaches. The first trains each specie related LSTM network with
the MFCCs and the second uses the ZCR attributes instead.

5.5.1 Window Size.
LSTM’s networks can keep track of arbitrary long-term dependen-
cies in the input sequences, thus, in this sense, the time component
can play a major part on the outcome of the developed solution.
So, we complemented our research with the study of the window
size’s effect on the model’s performance, as we did in section 5.2.1.
In particular, we want to determine if this type of network benefits
more from longer frames or smaller ones.

The results, displayed in Fig. 10, reveal the discrepancies in re-
lation to the previous experiment, as the networks trained on this
dataset have lower scores in comparison to the ones obtained by
the models trained on the chainsaw one. Also, it is important to
remark that the starting point of this analysis is significantly worse
than the one described in section 5.2.1.

Figure 10: Effect of different window sizes on the LSTM’s ac-
curacy, precision and recall scores.

Moreover, from all the networks trained with the different frame
lengths, it is possible to conclude that the ones trained with the
MFCCs achieved better results. When concerning only this feature,
the accuracy scores were very homogeneous, with a slight decrease
in the one attained by the network trained with the 10-second-long
window. Oppositely, when regarding the ZCR feature, the model
who stands out in terms of accuracy is the one which considered
the 10-second-long frame, as it achieved the highest score.

In terms of precision, all models got similar results when re-
garding the same feature. However it is important to mention that
we registered multiple specie related networks that failed to dis-
tinguish both classes, when considering the models trained with
the 5-second-long ZCR features, as their output was made only of
negative instances, a case which we do not consider.

In relation to recall, it is possible to observe that all models that
concern the ZCR feature achieve lower scores in comparison to
the ones trained with the MFCCs, noting also the considerable low
result of the network trained with the 5-second-long ZCR attribute.
In addition, the recall scores of the models trained with the MFCCs
were very similar, with the 2 and 5 frame lengths standing out in
relation to the other.

To sum up, when concerning the cepstral features, the 2 and
5-second-long window sizes are the frame lengths which favour
the learning capability of each model, similarly to in section 5.2.1.
Nevertheless, there is a significant gap between the performance
of the cepstral based approach and the spectral one, as the first
attained worse results. As a consequence, further research will
attempt to improve this approach, focusing on the network trained
with the 5-second MFCCs, as the difference to model trained with
the 2-second-long frame is relatively small.

5.5.2 Predictive Threshold.
Following the results of the above section, it is possible to notice the
considerable difference between the recall scores and the precision
ones, being the first substantially higher. Thus, as introduced in
section 5.2.3, one can attempt to diminish this gap by changing
the predictive threshold value, that for the previous analysis held a
value of 60%.

Figure 11: Precision/Recall threshold curve of the LSTM net-
work trained with the 5-second-long MFCCs.

From Fig. 11, it is possible to observe the effect that the predictive
threshold holds on the precision and recall scores. As previously
noted, our experiments reveal that an increase in the threshold
value leads to higher precision values and to lower recall ones.
Moreover, as opposed to section 5.2.3, the balance in both scores
is not attained with a 60% threshold value but with a 75% one,
achieving a precision of 66% and a recall of 63%.
Thus, this is the predictive threshold considered from this point
forward, in this approach, as it is the one that favours the developed

8



model, as it increases the precision score without compromising
immensely the recall one.

5.6 Bioacoustic Framework Appreciation and
Best Configuration Results

So far, we have only estimated the models’ performance, as the
concerned metrics were measured in a set of known records. De-
spite the insight given by those performance measures there is
still uncertainty regarding the models’ behaviour when facing un-
seen objects. So, this section focuses on determining the confidence
bounds which detail how much the attained estimate may deviate
from the true value. The mentioned process will only concern the
best configurations of each approach, as the goal of this work is to
establish the best bioacoustic framework possible.

In this regard, to compute the aforementioned intervals we apply
the stratified k-fold cross-validation technique to both datasets, in
which each dataset is divided in k equal-sized parts (folds), that
preserve the percentage of samples for each class. Afterwards, we
train each model under the multiple proposed configurations on
the different folds. The concerned metrics are obtained regarding
also their respective confidence bound. We considered 5 folds for
both datasets (𝑘 = 5) and we used the T-student (95%) distribu-
tion to compute the confidence intervals. Note that the mentioned
computation considers the average of each metric across the 5 folds.

5.6.1 Chainsaw Dataset.
With the chainsaw dataset, both approaches performed well due
to the considerable amount of available labelled recordings. In this
sense, regarding the spectral based approach, we only complement
the configuration described in section 5.3 with the use of cross-
validation.

Figure 12: Cepstral and spectral based classification models
performance (Chainsaw dataset).

The Convolutional Neural network is trained with 5-second-long
Mel spectrograms and leverages the use of the SpecAugment data
augmentation technique to increase its training set. In relation to
the cepstral based approach, we expand the work developed in
section 5.4, with the introduction of the cross-validation technique.
In detail, the Long Short-Term Memory network is trained with
the 5-second-long MFCCs. Also, both procedures use a predictive
threshold of 60%.

In Fig 12, it is possible to compare the accuracy, precision, and re-
call scores from both approaches. From this figure, we can conclude
that the spectral based classification model is the one that achieves
the best performance. Nevertheless, in this particular setting, the
cepstral based classification network registers similar results, stress-
ing the scores obtained by the motif classifier as this alternative
approach was able to approximate the performance of the other
two.

Model Acc.
Low.

Acc.
Up.

Prec.
Low.

Prec.
Up.

Rec.
Low.

Rec.
Up.

Spectral (CNN) 0.95 0.99 0.96 0.99 0.97 0.99
Cepstral (LSTM) 0.90 1.00 0.89 1.00 0.89 1.00
Cepstral (Motif C.) 0.92 0.93 0.92 0.93 0.92 0.93

Table 1: Spectral and cepstral based classification model ac-
curacy, precision and recall T-student (95%) confidence inter-
vals (Chainsaw dataset).

Additionally, in Table. 1 it is possible to observe the confidence
bounds for each metric (accuracy, precision and recall), obtained
at the final step of this analysis. Note that across all metrics, the
spectral based approach is the one with higher confidence bounds.
Not only it attains better results as the higher confidence intervals
support our performance estimation.

All in all, the considerable amount of available labelled record-
ings is the key factor that contributes to the good performance of
the developed models.

5.6.2 Kaggle Dataset.
In this particular dataset, the number of labelled recordings is very
small, as a consequence, both approaches present different tech-
niques to address this problem. As in the previous section, we
expand the analysis concerned up until this point, with the intro-
duction of the cross-validation technique.

In regard to the spectral based approach, our analysis includes
two different architectures, both presented in section 4.1.2. The
main difference between them lies in the introduction of an LSTM
layer in the second architecture. Moreover, both networks are
trained with 5-second-long Mel spectrograms, the training set of
the two is increased with the "SpecAugment" technique, and the
used predictive threshold value is 60%. Oppositely, the cepstral ap-
proach is trained with the 5-second-long MFCCs and according to
the previous results, this procedure uses a predictive threshold of
75%.

The attained results are depicted in Fig. 13, and from a general
point of view the spectral based classification model performed
better than the cepstral one, supporting the idea that this approach
is the more suitable to a bioacoustic classification task. In depth,
apart from recall, it achieved the highest scores, with the network
that includes the LSTM layer standing out from the other one,
and justifying the introduction of this layer. The cepstral based
classification model benefited from the cross-validation technique,
as it registered a significant improvement in all scores, nevertheless,
despite having a higher recall score, all the other metrics are lower
than the ones obtained by the spectral based classification model.
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Figure 13: Cepstral and Spectral based classification models’
performance comparison (Kaggle dataset).

Moreover, in Table. 2 we showcase the confidence bounds for
the previously presented results. Once again, our performance esti-
mation is much stronger for the spectral based classification model.
Nonetheless, in both approaches, the lower confidence bound value
is much smaller in comparison to the ones obtained in the previous
setting. In a sense, the attained confidence intervals align with the
learning difficulties faced by the developed networks, since their
training relied on a limited set of labelled recordings. The spectral
based classification model that includes the LSTM layer is the one
that provides more certainty regarding our performance estimation,
being the cepstral based classification model the one with the lower
confidence bounds.

Model Acc.
Low.

Acc.
Up.

Prec.
Low.

Prec.
Up.

Rec.
Low.

Rec.
Up.

Spec. (CNN) 0.89 1.00 0.64 1.00 0.70 1.00
Spec. (with LSTM) 0.90 0.99 0.74 1.00 0.75 1.00
Ceps. (LSTM) 0.74 1.00 0.56 1.00 0.76 1.00

Table 2: Spectral and cepstral based classification model ac-
curacy, precision and recall T-student (95%) confidence inter-
vals (Kaggle dataset).

To sum up, once again the spectral based approach seems to be
the more adequate approach to a bioacoustic classification task,
however, further research needs to focus on trying to attain higher
confidence bounds when using the proposed methodology with
datasets that have limited training data.

6 CONCLUSION
The field of bioacoustics is key to ensure the conservation of rain-
forests and their wildlife, as it helps reducing human impact on
the environment. In this sense, Rainforest Connection emerges as
a prominent source of environmental audio data, contributing to
this cause by encouraging the development of bioacoustic moni-
toring systems. Deep learning methods have been successful on
automating the process of species identification in environmen-
tal recordings, requiring nonetheless a large number of training
samples per species. Thus, recent research focused on developing

solutions capable of automate high-accuracy species detection in
noisy soundscapes with limited training data.

Our work proposes a bioacoustic classification framework that
achieved encouraging results, presenting capable solutions for the
problem at hand. In depth, it details two different approaches to
address this task, and it evaluates different concepts and procedures
to determine the most suitable one. The first leverages off the trans-
fer learning setting to reduce the training requirements, both the
amounts of data and time, and relies on the Mel spectrograms to
train the developed classification model (CNN). Conversely, the
second uses the MFCCs to train the developed classification model
(LSTM), proposing also an additional network trained on the matrix
profile motifs to complement the proposed methodology.

We have demonstrated that both approaches are able to auto-
mate this process and can be included in bioacoustic monitoring
systems. The spectral based approach performed better than the
cepstral one, in both datasets. In particular, it achieved an accu-
racy of 0.97, a mean precision of 0.99 and a mean recall of 0.97,
with the chainsaw dataset. With the Kaggle dataset, it registered
an accuracy of 0.97, a mean precision of 0.91 and a mean recall of
0.93. The cepstral based approach aimed to present an alternative
to the previous methodology, as it concerned other audio features
and other network type. Additionally, it attempted to improve the
results obtained by this procedure, by exploring a setting in which
a classifier was trained with the motifs extracted by the matrix
profile algorithm.

All in all, we can state that all the goals set for this workwere fully
met, namely the definition of a capable bioacoustic classification
framework.
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