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Abstract—Imbalanced datasets present one of the most com-
plex challenges for modern machine learning classification meth-
ods. Furthermore, despite imbalanced datasets being widespread
in many different and relevant areas, traditional classification
methods often show a large bias towards the over represented
classes, and often show a poor prediction performance on the
underrepresented classes. In this article, the problem of imbal-
anced datasets is approached using the Zero-Order Autonomous
Learning Multi-Model (ALMMo-0) classifier, an AnYa-type fuzzy
rule-based system, which is non-iterative, non-parametric and
fully autonomous. All the tests are performed on imbalanced
versions of benchmark datasets. Firstly, the performance of
ALMMo-0 classifiers is compared to benchmark classification
methods. In particular, the performance is compared to tradi-
tional classification methods, as well as other fuzzy rule-based
systems, and is shown to out-perform the benchmark methods
on highly imbalanced datasets. Secondly, based on the empirical
results obtained with the original ALMMo-0 algorithm, two
modifications are proposed that seek to improve the minority
class detection performance: a one class classifier adaptation of
the original ALMMo-0 that requires no extra parameters to be
estimated, and a weighted class confidence strategy that assigns
different weights to each class and optimizes the weight values
using Bayesian optimization. The proposed methods are shown to
out-perform the original ALMMo-0 regarding the minority class
prediction performance. In particular, the one class classifier is
shown to outperform for high imbalances, while the weighted
class confidence strategy is shown to outperform for low and
high imbalances, depending on the chosen cost function for the
weight optimization.

Index Terms—ALMMo-0 Classifier, Imbalanced Datasets, Bi-
nary Classification, One Class Classification, Bayesian Optimiza-
tion

I. INTRODUCTION

One particular type of challenge that is still incredibly
relevant in the field of machine learning is classification
tasks on highly imbalanced datasets. Imbalanced datasets are
classification datasets where some classes are severely under-
represented compared to the remaining classes. As such, they
pose a very challenging task to many traditional classification
methods, as these often completely disregard the minority
classes, which are usually the classes of most interest.

Furthermore, the problem of imbalanced datasets is particu-
larly relevant, as such datasets occur in a wide variety of areas
and applications. Examples include disease diagnosis, fraud
detection, cybersecurity and image recognition. Therefore, not

only is the problem of imbalanced datasets very prevalent, but
it also occurs in crucial areas of high relevance and interest.

Attending to the high interest in this particular issue, a
lot of attention has been devoted to develop new approaches
and strategies that help reducing the effects of high class
imbalances. As such, a wide variety of methods have been
proposed with different degrees of success and applicability
(1).

However, although many of the state of the art methods for
addressing high class imbalances have achieved better predic-
tion performances on such datasets, most of these methods
still yield black box models that are not explainable in human
terms. This problem, known as interpretability (2), is a very
pertinent and ongoing issue in machine learning, that refers
to obtaining models that not only achieve good prediction
performances, but that are also interpretable by a human expert
that can understand the model reasoning to decide on a certain
class.

Another problem that affects many of the traditional clas-
sification methods is concerned with streaming data environ-
ments, where online learning and adapting to constantly chang-
ing (non-stationary) environments is required. This is due to
the complexity of some of the state of the art classification
methods that causes the training and prediction times to often
be unacceptable for such streaming data applications.

Attending to these commons issues that affect traditional, as
well as state of the art classification methods, this article ap-
proaches the problem of imbalanced datasets from the perspec-
tive of Evolving Fuzzy Inference Systems (EFIS) (3). EFIS
are fuzzy inference systems (FIS) that incorporate mechanisms
that allow for adapting to abrupt changes in the streaming data,
while remaining computationally lightweight in terms of both
memory and processing requirements. Therefore, as fuzzy rule
based (FRB) systems, EFIS are much more interpretable than
traditional machine learning methods, as they are based on
fuzzy logic [19]. Furthermore, they are also well suited for
the growing challenge of streaming data environments.

In 2012, a new type of EFIS architecture was introduced
(4), using AnYa type fuzzy rules and the principles first
introduced with the Empirical Data Analysis (EDA) frame-
work (5). Contrarily to traditional FRB systems, such as the
Mamdani and Takagi-Sugeno fuzzy systems, AnYa type fuzzy
rules introduced a significantly simplified alternative to define
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the antecedent part of the rules, by replacing the parametric
membership functions with non-parametric data clouds.

Attending to the non-parametric nature of the rule an-
tecedents, AnYa type systems are usually less computationally
expensive to train than other FRB systems, making them
very adequate to online learning tasks and streaming data
applications. Despite this being the original task for which
AnYa type systems were introduced, they have since been
successfully applied to static classification and regression
problems with promising results.

In this article, the Zero-Order Autonomous Learning Multi
Model (ALMMo-0) classifier (6) is used to approach the prob-
lem of highly imbalanced datasets. The ALMMo-0 classifier
is an AnYa-type FIS, meaning that it is non-parametric and
lightweight when compared to traditional fuzzy systems, as
its antecedents are cloud based. Furthermore, they are also
non-iterative and fully autonomous, making them ideal for
streaming data environments.

Despite its simplicity, ALMMo-0 classifiers have been
shown to outperform benchmark classification methods, as
well as traditional fuzzy classifiers. More importantly for the
topic of this thesis, ALMMo-0 classifiers model each class
independently, reducing the bias towards the underrepresented
classes

In (7), ALMMo-0 classifiers were used to classify dif-
ferent heart disorders using sound data. The main goal of
the proposed approach was to build highly accurate models,
while also providing interpretable and explainable rules that
may be used by experts to better diagnose hear disorders.
Results have shown that ALMMo-0 classfiers were able to
obtain better results than state-of-the-art methods, and also
that the performance of the original algorithm could be slightly
improved by adding a standardization and normalization pre-
processing layer.

The simplicity of ALMMo-0 classifiers makes them par-
ticularly suitable to be used as the base learners in ensem-
ble learning methods, and also allows the creation of more
lightweight and interpretable deep learning architectures. In
(8), the Multi-Layer Multi-Model Images Classifier (MICE)
ensemble was first introduced, as a fast deep learning network
for handwriting recognition. The MICE ensemble was pro-
posed in order to allow ALMMo-0 classifiers to be applied to
more complex tasks such as image recognition, and consists
of multiple ALMMo-0 base learners trained in parallel. The
ensemble prediction is accomplished using a winner-takes-all
voting strategy that takes each one of the learners predictions.
The MICE ensemble also introduced the first ALMMo deep
learning architecture, by adding a pre-processing layer that
extracts GIST and HOG features from the raw image input.
Each one of the ensemble base classifiers is then trained using
a unique subset of the extracted features.

II. IMBALANCED DATASETS

Imbalanced datasets are classification datasets in which the
objects are not equally distributed among the problem classes.
One of the main implications of training classifiers on highly
imbalanced datasets is that, broadly speaking, the final model

will often show a bias towards classes that have more available
samples, and in some cases may even completely ignore the
underrepresented classes. This is due to the fact that most
classifiers were designed assuming that class imbalance either
does not exist, or if it exists, it is not severe enough to affect
the classifier performance.

One type of imbalanced datasets that are particularly rel-
evant are imbalanced binary classification datasets, where
one of the classes (typically the negative) is significantly
overrepresented and is known as the majority class. The other
class (typically the positive) is known as the minority class.
Imbalanced binary datasets are particularly relevant since
multi-class problems may be decomposed into several binary
problems, using either a one-vs-one or a one-vs-all approach.

Attending to the already discussed prevalence and relevance
of imbalanced datasets, a wide variety of approaches have been
proposed in the literature (9), and as such, the methods hereby
presented pretend to be a broad overview of the different types
of approaches that have been successfully applied in different
problems. Broadly speaking, one can define two different types
of approaches to imbalanced datasets: external (or data-level)
approaches, and internal (or algorithm-level) approaches.

External approaches include all methods that do not modify
in any way the learning algorithm, meaning that these methods
are generally applicable to any classifier. Examples of such
approaches include ressampling methods, feature selection
methods and ensemble learning techniques.

Internal approaches include all methods that modify the
learning algorithm, in order to improve the minority class de-
tection. These include methods such as cost sensitive methods,
threshold moving techniques and one class classification.

III. ZERO-ORDER AUTONOMOUS LEARNING
MULTI-MODEL CLASSIFIERS

The Zero-Order Autonomous Learning Multiple Model
(ALMMo-0) classifier is a non-parametric, non-iterative and
fully autonomous AnYa type fuzzy rule-based (FRB) multi-
class classifier. The structure of ALMMo-0 classifiers is com-
posed of one sub-model per class, each one being trained only
on its class samples.

Each one of the class sub-models is based on multiple AnYa
type fuzzy rules with one data cloud associated to each rule’s
antecedent. These rules assume the structure shown in 1, where
x is a sample, f i

j is the focal point associated to the jth rule
of the ith class classifier, and Labeli is the respective class
label.

IF x ∼ f i
j THEN Labeli (1)

Furthermore, each sub-model is trained independently of
each other since only its class samples are used to iteratively
create the clouds, meaning that the cloud structure for each
class sub-model is not affected by the cloud structures of the
remaining sub-models.

Therefore, the fully trained ALMMo-0 classifier is com-
posed of multiple FRB systems, each one with its set of AnYa
type rules. When classifying a new sample, every rule in each
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one of the class-models will output a confidence score, denoted
as λi

j .
The confidence score is a defined as a function of the

distance between one data sample and one cloud focal point,
as shown in 2. In the original article, the Euclidean distance
is used, without any loss of generality.

λi
j = exp−1

2

∥∥x− f i
j

∥∥2 (2)

In order to assign a label to the sample, one must devise
some form of rule based on the confidence scores of each sub-
model. In ALMMo-0 classifiers, the winner takes all strategy is
used. First, the maximum confidence score of each class sub-
model λi

j∗ is found, and then, the winner takes all principle
is used and the class sub-model with the highest confidence
score assigns its label:

ŷ = argmax
i=1,2,...,L

(λi
j∗) (3)

This classification strategy means that the data clouds effec-
tively create Voronoi tessellation of the data space, dividing it
into different sub-regions that belong to different classes. As
mentioned, these data clouds are non parametric and no prior
assumptions about the data are made.

Furthermore, the training algorithm that creates the clouds is
non iterative and lightweight, meaning that ALMMo-0 classi-
fiers are particularly adequate for streaming data applications,
even though no specific mechanisms to adapt to abrupt changes
in the data are proposed.

Let xi
k be the kth sample from the ith class. The sample

is first norm normalized, as shown in 4, effectively removing
one degree of freedom from the data space and projecting
the sample to a unit radius hyper sphere centered around the
origin.

xi
k ←−

xi
k∥∥xi
k

∥∥ (4)

If the sample is the first sample of its class, xi
1, then the

respective sub-model parameters are initialized using (5).
N i ← 1

µi ← xi
1

Xi ←
∥∥xi

1

∥∥2 (5)

Where N i is the number of samples used to train the sub-
model, µi is the sub-model mean, and Xi is the sub-model
average scalar product. Then, the sample is used to create the
first cloud of its class sub-model, using (6).

Ri ← 1

M i
1 ← 1

f i
1 ← xi

1

Xi
1 ←

∥∥xi
1

∥∥2
ri1 ← r0

(6)

Where Ri is the total number of rules in the sub-model, M i
1

is the number of samples used to update the cloud, f i
1 is the

cloud’s focal point, Xi
1 is the cloud’s average scalar product,

and ri1 is the cloud´s radius. This radius effectively describes
a confidence score threshold around the focal point and its
value is not a problem specific parameter. In this thesis, the
initial cloud radius r0 is assumed to be r0 =

√
2(1− cos 15),

as specified in the original article.
If the newly arrived sample xi

k is not the first sample
of its class, the sub-model parameters N i, µi

k, and Xi
k are

recursively updated using (7).
N i ← N i + 1

µi ← Ni−1
Ni µi +

xi
k

Ni

Xi ← Ni−1
Ni Xi + 1

Ni

∥∥xi
k

∥∥2 (7)

The algorithm then checks for density anomalies in the
sub-model, ie, regions of the data space where the unimodal
density is either too high (high concentration of clouds) or
too low (low concentration of clouds). This is accomplished
by computing the unimodal density between the sample xi

k

and the sub-model mean µi, using (8), and comparing it to
the unimodal densities between each cloud focal point in the
sub-model f i

j , computed using (9).

D(xi
k, µ

i) =
1

1 +
∥xi

k−µi∥2
Xi−∥µi∥2

(8)

D(f i
j , µ

i) =
1

1 +
∥fi

j−µi∥2
Xi−∥µi∥2

(9)

The maximum and minimum focal point densities are
compared to the sample density, defining the first condition
in the algorithm, shown in (10).

D(xi
k, µ

i) > max
j=1,2,...Ri

(D(f i
j , µ

i)) ∨

D(xi
k, µ

i) < min
j=1,2,...Ri

(D(f i
j , µ

i))
(10)

If Condition 1 is verified, then there is a density anomaly
(either too high or too low) and a new cloud is created around
the sample xi

k, using (11).

Ri ← Ri + 1

M i
j ← 1

f i
j ← xi

k

Xi
j ←

∥∥xi
k

∥∥2
rij ← r0

(11)

Otherwise, if Condition 1 is not verified, then no density
anomaly exists and a second condition, based on distance
instead of density, is checked to assess if a nearby cloud
already exists. First, the distances between the sample xi

k and
each focal point in the sub-model are computed, and then the
nearest cloud focal point f i

j∗ is found, using equation 12.

f i
j∗ = argmin

j=1,2,...Ri

(
∥∥xi

k − f i
j

∥∥) (12)

If the distance to the nearest focal point f i
j∗ is less than its

radius rij∗, then the sample is considered to be close enough
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and the cloud is updated. This distance criteria is expressed
by Condition 2, as shown in (13).∥∥xi

k − f i
j∗
∥∥ ≤ rij∗ (13)

If Condition 2 is met, the nearest cloud parameters are
updated using (14).

M i
j∗ ←M i

j∗ + 1

f i
j∗ ←

Mi
j∗−1

Mi
j∗

f i
j∗ +

xi
k

Mi
j∗

Xi
j∗ ←

Mi
j∗−1

Mi
j∗

Xi
j∗ +

1
Mi

j∗

∥∥xi
k

∥∥2 (14)

Otherwise, if Condition 2 is not met, a new cloud is created
using (15). 

Ri ← Ri + 1

M i
j ← 1

f i
j ← xi

k

Xi
j ←

∥∥xi
k

∥∥2
rij ← r0

(15)

The algorithm then proceeds to the next sample. The com-
plete learning process is summarized below in Algorithm 1.

Algorithm 1: ALMMo-0 Training Algorithm

for each class i do
for xi

k in class i do
Normalize xi

k using (4);
if sub-model i is empty then

Initialize sub-model using (5) and (6);
else

Update sub-model parameters using (7);
Compute sample density using (8);
Compute focal densities using (9);
if Condition 1 (10) is met then

Create new cloud using (11);
else

Find nearest cloud using (12);
if Condition 2 (13) is met then

Update nearest cloud using (14);
else

Create new cloud using (15);
end

end
end

end
end

IV. PROPOSED MODIFICATIONS

A. One Class Classifier

In one-class classification (10), models are trained using
only the normal (majority) class data with the goal of training a
model that distinguishes between normal system behaviour and
abnormal behaviour. This task, also known as outlier detection
or novelty detection, has been successfully applied to highly

imbalanced datasets. Concretely, several clustering-based one-
class classification models have been introduced, and their
general principles can be applied to ALMMo-0 classifiers.

One could conceive a one-class adaptation of the original
algorithm, by only training the majority class sub-model, and
therefore creating only one set of rules (clouds), that describe
the normal behaviour of the system. However, one must also
define some classification criterion, that is based on the cloud
structure of ALMMo-0 classifiers.

Recalling the training process described by Algorithm 1,
Condition 2 defines a proximity criterion, in which the cloud
radius is set as a decision boundary to assess whether or not
a sample is within a cloud region of influence. Therefore, one
could use this criterion to classify a sample, by classifying
samples within a cloud’s region of influence as normal, and
abnormal otherwise. Figure 1 illustrates this classification
strategy.

Fig. 1. Data cloud with its support samples and the radius defining a proximity
criterion

Formally, this classification criterion is as shown in (16),
where ŷ is the class prediction, x is a sample, f0

j∗ is the closest
majority class focal point, and r0j∗ is its respective cloud´s
radius. {

ŷ = 0
∥∥x− f0

j∗
∥∥ < r0j∗

ŷ = 1 otherwise
(16)

Furthermore, the clouds radius are already iteratively up-
dated, as part of the training algorithm, meaning that no
extra parameters must be estimated to apply this classification
criteria.

This simple modification of the original algorithm seeks
to be a lightweight approach to improve the performance
of the original classifier on imbalanced binary classification.
Comparing to the original classifier, no extra parameters must
be estimated, and the minority class sub-model is not trained,
meaning that the resultant model has fewer rules (clouds) and
is slightly less complex.

Attending to the simpleness of the proposed modification,
the only required change to the training algorithm is to only
train the majority class sub-model, using the original training
algorithm. The algorithm starts by finding the number of
samples for each class. The class with the largest number of
samples (majority class) is set as the default (normal) class.
Thus, the minority class sub-model is not trained and it is
effectively removed from the model.
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B. Weighted Class Confidence

As already discussed, ALMMo-0 classifiers are defined by
a set of sub-models, each one modelling its class with a set of
AnYa type fuzzy rules. The classification strategy is, as already
described, accomplished using the winner takes all approach.
This approach takes each one of the sub-models confidence
levels, and assigns the class of the sub-model with the highest
confidence.

However, as already mentioned, ALMMo-0 also suffer
from a bias towards the majority class because of its larger
number of clouds that will often capture minority samples
and misclassify the sample as false negatives. Furthermore, the
misclassified minority samples often have a confidence level
λ1 that is only ever so slightly smaller than the confidence
level for the closest majority cloud λ0.

This suggests that one could introduce a weighting strategy
that assigns different weights to the different class sub-models.
Returning to the specific case of binary classification, if one
introduces two complementary weights, denoted as ω0 and ω1,
that weight the class confidence levels, λ0 and λ1, a winner
takes all strategy may defined as in (17).

ŷ = argmax(ω0λ
0
j∗ , ω1λ

1
j∗) (17)

For the case where ω0 = ω1, this approach is effectively
equivalent to the original winner takes all strategy. Even
though only the relative values of the weights is important,
for clarity and intrepretability sake, the weights are defined as
in (18). 

0 ≤ ω0 ≤ 1

0 ≤ ω1 ≤ 1

ω0 + ω1 = 1

(18)

Attending to this definition, only one of weights needs to
be estimated, since the other weight is simply its comple-
ment. This means that the weighted confidence strategy has
similarities to threshold moving approaches, where also one
parameter, the decision threshold, is optimized.

In fact, if one defines the normalized activations, denoted
as γ0 and γ1, as shown in (19), the classification criteria can
be defined as in (20). {

γ0 = λ0

λ0+λ1

γ1 = λ1

λ0+λ1

(19)

{
ŷ = 0 γ1 < 0.5

ŷ = 1 otherwise
(20)

Therefore, the normalized majority class confidence level,
γ1, acts as the classification decision threshold, meaning
that the proposed weighted confidence strategy is effectively
equivalent to adapt the ALMMo-0 classifier to a regressor, and
then optimizing a decision threshold.

Nonetheless, since ALMMo-0 classifiers have been dis-
cussed as such, the approach hereby presented is always dis-
cussed from the weighted confidence perspective, in line with
weighted voting strategies used in ensemble learning. Figure

2 illustrates this ensemble interpretation of the ALMMo-0
architecture.

Fig. 2. Diagram of the modified ALMMo-0 classifier, in which the class
confidence levels are weighted before the class decision

Finally, the question of how to optimize the class weights
still remains to be answered. Similarly to what is usually
done in threshold moving methods (11), the training algorithm
is divided into two stages. In the first stage, the model is
trained normally, using both class samples. In the second stage,
the threshold value is optimized, usually using the classifier
performance on a separate validation set, that was not used
during the first training stage.

One crucial aspect that must be defined beforehand is the
criteria used to assess the classifier performance on the vali-
dation set. Generally speaking, one may choose any relevant
classification metric (12) to define a cost function that is only
a function of ω1. This cost function, denoted as F , is defined
as in (21).

F (ω1) = F (ŷ(ω1), y) (21)

Where F encodes some type of metric that is itself only a
function of the predictions ŷ and the actual labels y. Thus, the
cost function is computed by first computing the predictions
ŷ for a given minority class weight ω1, and then computing
the classification metrics with the obtained results.

The cost function F may multiple local minimums, and
therefore gradient methods may get stuck at one of the local
minimums and yield a sub-optimal solution. Furthermore, in
order to compute the cost function for a given ω1, the class
predictions ŷ must first be computed, which even though is not
prohibitively slow, may be slow enough to make grid search
methods not applicable to online training environments.

Attending to the cost function characteristics and also to
the need to minimize the number of times the cost function
is sampled, the proposed method for the weight optimization
is Baeysian optimization (13), which has been applied to a
wide range of problems and, in particular, to hyper parameter
optimization in machine learning models.

Bayesian optimization is an optimization technique that uses
Bayes Theorem to direct the search in an efficient and effective
manner, compromising between exploring unexplored regions
of the search space, and refining the search in regions with
high likelihood of containing a new minimum.

As mentioned, the training algorithm can be divided in two
stages. The first stage, in which the training set is used to
train both class sub-models, is completely similar to the one
described for the original algorithm, as described in Algorithm
1.
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The second stage is the optimization of the class confidence
weights. In order to define the optimization problem, first
the search interval for the value of ω1 must be defined. As
mentioned, in order to avoid over fit of the training data, a
separate validation set is used to assess the performance of
the unweighted model and optimize the weight values.

Since, as mentioned, the proposed algorithm is meant for
the specific case of imbalanced binary classification, and since
the minority class is known beforehand, in order to increase
the bias towards the minority class, the minority class weight
must be greater than 0.5, which corresponds to the unweighted
model. If no performance improvements are found in the
validation set, both weights keep the same value of 0.5.

Therefore, only the misclassified minority class samples
of the validation set are used to define the search space.
First, the validation set class predictions are computed for
the unweighted model. Then, for each false negative, both
class confidence levels, denoted as λ0 and λ1, respectively,
are used to compute the minimum minority class weight that
would correctly classify the misclassified sample, denoted as
ω∗
1 , and computed as shown in 22.

ω∗
1 =

λ0

λ0 + λ1
(22)

These candidate minority class weights are computed for
each false negative and grouped in a vector of candidate
weights, denoted as ωcands

1 . The search interval is then defined
as in 23.

ω1 ∈ [0.5 , max(ωcands
1 )] (23)

By setting the maximum search value as the maximum of
all the minority class candidate weights, its is guaranteed that
the optimization can lead to a weight that correctly classifiers
all the minority class samples that were misclassified by
the unweighted model. Furthermore, since the initial cost is
computed for the unweighted model, it is guaranteed that the
performance of the model will never degrade relative to the
original model.

Having the search interval defined, it is now possible to
formulate the optimization problem, as shown in (24).

Minimize F (ω1) = F (ŷ(ω1), y)

subject to 0.5 ≤ ω1 ≤ max(ωcands
1 )

As already mentioned, the cost function F (ω1) should
encode an appropriate classification metric, or a combination
of different classification metrics. However, it is crucial to
mention that the goal of this optimization is not necessarily
to improve the performance of the model in terms of the
metrics encoded by the cost function. Since the validation set
is used for the weight optimization, the optimal value will
only be optimal for the validation data, meaning that it does
not guarantee optimal in the test set.

V. RESULTS

In order to assess the performance of both the original
algorithms, as well as the proposed methods, six widely

known and commonly used benchmark datasets were chosen.
The chosen benchmark datasets pretend to be as diverse as
possible, particularly regarding both the number and type of
features. Furthermore, in order to study performances for dif-
ferent degrees of class imbalance, the datasets were ressampled
to artificially obtain datasets with incrementally low minority
class ratios. Thus, the chosen original datasets could not have
too few samples or be overly imbalanced.

Attending to these restrictions the chosen datasets are the
Australian Credit Approval (Australian) (14), German Credit
(German) (15), Mammographic Mass (Mammographic) (16),
Pima Indians Diabetes (Pima) (17), Diagnostic Wisconsin
Breast Cancer (WBCD) (18) and Original Wisconsin Breast
Cancer (WBCO) (19). The general characteristics of the cho-
sen datasets are shown in Table I.

Dataset Imbalance Features
Real Integer Categorical

Australian 44.5% 3 5 6
German 30.0% 0 7 13

Mammographic 48.6% 0 5 0
Pima 34.9% 2 6 0

WBCD 37.3% 30 0 0
WBCO 35.0% 0 9 0

TABLE I
BENCHMARK DATASETS CHARACTERISTICS

It is important to recall that throughout this thesis, class
imbalance is defined as the percentage of minority samples,
and it is expressed as shown in (24), where Nmin is the number
of minority class samples, and Nmaj is the number of majority
class samples.

Imbalance =
Nmin

Nmaj +Nmin
(24)

In order to study the performance for the different methods
and for different class imbalances, the benchmark datasets
were ressampled to obtain class imbalances of 20%, 10%, 5%
and 1%. The ressampled datasets are described in Table II.

For each test, 5-fold validation was used, meaning that 5
tests are performed, each one using a different fold as the
testing set, and the remaining ones (80%) as the training set.
Recalling the training algorithm proposed for the weighted
class confidence ALMMo-0, the validation set was randomly
sampled from the training folds, for each test. In order to
achieve a 20% test, 10% validation, 70% train ratio, the
validation set corresponds to 12.5% of the training set.

Attending to the random nature of the resampling procedure,
it was repeated 5 times for each one of the original datasets,
creating 5 different datasets, that were then used to obtain
the different class imbalances, as already described. Thus, a
total of 25 tests were performed for each method and for each
resampled dataset.

Regarding the choice of the benchmark methods, and since
this thesis seeks to compare the original ALMMo-0 perfor-
mance to both common classification benchmark methods and
other FRB systems, two groups of methods were chosen as
benchmarks.

The first group of methods, composed of Logistic Re-
gression (LR), Support Vector Machine (SVM), and shallow
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Dataset Imbalance Majority
Samples

Minority
Samples

Australian

20% 5831 1458
10% 5831 648
5% 5831 307
1% 5831 58

German

20% 5698 1424
10% 5698 633
5% 5698 300
1% 5698 57

Mammographic

20% 7655 1914
10% 7655 850
5% 7655 403
1% 7655 77

Pima

20% 5090 1272
10% 5090 565
5% 5090 268
1% 5090 51

WBCD

20% 4026 1006
10% 4026 447
5% 4026 212
1% 4026 40

WBCO

20% 4539 1135
10% 4539 504
5% 4539 239
1% 4539 45
TABLE II

RESSAMPLED BENCHMARK DATASETS CHARACTERISTICS

Neural Network (NN), are commonly used benchmark meth-
ods used for classification tasks. The chosen methods are all
relatively simple methods compared to state of the art methods,
since the ALMMo-0 classifier is also a fairly simple and
lightweight structure.

The second group of methods was chosen with the intent
of comparing the original ALMMo-0 to both traditional FIS,
as well as other more complex AnYa type FRB systems.
For traditional FIS, the adaptive neuro-fuzzy inference system
(ANFIS) was chosen. ANFIS are a type of artificial neural
network based on a first-order Takagi-Sugeno inference sys-
tem. Regarding AnYa type FRB systems, the natural choice
is the ALMMo regressor, which is also a first-order FIS.
Since ALMMo regressors share a similar antecedent structure,
comparing their performance to the ALMMo-0 classifier is of
particular interest.

Regarding the choice of cost functions for the proposed
ALMMo-0 weighted class method, four pertinent and com-
monly used classification metrics were selected. These classi-
fication metrics are the geometric mean (GM), F1-Score (F1),
Cohen’s kappa coefficient (KC), and the Matthews correlation
coefficient (MC).

A. ALMMo-0 and Benchmark Methods

Starting with the minority class prediction performance for
low imbalance datasets, the results clearly suggest that, in
general, ALMMo-0 models outperform LR, NN and ANFIS,
while showing more mixed results when comparing to SVM
and ALMMo.

Supporting this conclusion are the recall performances,
which show that LR, NN and ANFIS under-perform on most
of the tests. Recall performances are more mixed for SVM
and ALMMo, showing a slight advantage.

Regarding the impact of the better recall performances
on the majority class detection, recall results show that the
ALMMo-0 classifier out-performs all the benchmark models.
This might seem surprising, since better recall performances
often result in worse precision performances. However, ob-
serving the specificity results, which show that the ALMMo-
0 either matches or under-performs all the other methods
with the exception of the ALMMo regressor, it becomes
clear that the the benchmark methods generally ignored the
minority class, meaning that near perfect specificity results
were achieved without any positive class predictions.

Another interesting set of results are the accuracy perfor-
mances, which show a general advantage of the ALMMo-0
classifier, outperforming all the benchmark methods except
SVM. This further suggests that the better minority class
detection verified for the ALMMo-0 did not significantly
impact the overall prediction performance.

Regarding the remaining metrics, the results clearly sug-
gest that the ALMMo-0 classifier generally outperforms the
benchmarks methods, with the exception of the SVM, which
shows more mixed results. This is expectable, since the geo-
metric mean and F1-Score benefit from higher recall scores.
Regarding the Kappa coefficient and the Matthews coefficient,
the better results are also not surprising, since these metrics
benefit from better minority class detection. Furthermore, these
results once again suggest that the ALMMo-0 classifier is
able to achieve better minority class detection without overly
compromising the overall classification performance.

Regarding the minority class prediction performance for
high imbalance datasets, it is very clear that the ALMMo-
0 classifier generally outperforms all the benchmark methods.
Once again, this conclusion is clearly supported by the recall
results, which show that ALMMo-0 outperforms all the other
models.

Furthermore, the results also show that the ALMMo-0
classifier outperforms all the benchmark models in terms of
precision, while underperfoming in terms of specificity. The
reason for this is that once again, the benchmark models
disregard the minority class samples, meaning the number of
positive class predictions is generally very low, or even zero.

Regarding the accuracy results, the ALMMo-0 classifier is
out-performed by all the benchmark methods. The reason for
this is simply that for highly imbalanced datasets, the accuracy
is far from being a good assessment of the overall prediction
performance of the models.

Regarding the remaining metrics, the results further support
the overall better minority class prediction performance of
ALMMo-0 models, since it outperforms all the benchmark
methods, for each one of the metrics. Therefore, it once
again becomes clear that ALMMo-0 models achieve better
minority class prediction performance without compromising
the overall prediction performance.

Attending to these results, it is clear that the proposed
method is particularly well suited for highly imbalanced
datasets, as it is able to achieve considerably better minority
class prediction performance without overly compromising the
overall classification performance.

All the discussed results are summarized by Table III.
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Metric Class
Imbal.

Method
LR SVM NN ANFIS ALMMo

Accuracy LOW 3/3/6 6/2/4 3/3/6 1/2/9 0/3/9
HIGH 5/4/3 8/4/0 5/3/4 4/2/6 4/6/2

Recall LOW 2/3/7 5/3/4 4/1/7 2/0/10 6/2/4
HIGH 1/2/9 3/1/8 1/2/9 0/1/11 2/2/8

Precision LOW 3/2/7 4/3/5 3/2/7 1/4/7 0/2/10
HIGH 1/3/8 2/5/5 1/3/8 0/3/9 1/1/10

Specificity LOW 5/2/5 5/2/5 7/0/5 7/1/4 2/3/7
HIGH 8/2/2 8/4/0 8/2/2 7/3/2 8/3/1

G-Mean LOW 3/2/7 5/3/4 4/1/7 2/0/10 4/3/5
HIGH 1/2/9 4/0/8 1/2/9 0/1/11 2/2/8

F1-Score LOW 3/1/8 4/5/3 3/2/7 1/1/10 1/2/9
HIGH 1/2/9 4/0/8 1/1/10 0/0/12 0/1/11

Kappa LOW 3/1/8 4/5/3 3/2/7 1/1/10 1/2/9
HIGH 1/2/9 4/0/8 1/1/10 0/0/12 0/1/11

Matthews LOW 3/1/8 6/3/3 3/2/7 1/1/10 1/2/9
HIGH 1/2/9 4/2/6 1/1/10 0/0/12 0/1/11

TABLE III
WIN/TIE/LOSS COUNTS OF THE BENCHMARK METHODS AGAINST THE

ALMMO-0 CLASSIFIER

B. ALMMo-0 and Proposed Modifications

Metric Class
Imbal.

Method

1CC WCC
GM F1 KC MC

Accuracy LOW 1/2/9 0/3/9 1/6/5 0/6/6 0/6/6
HIGH 1/3/8 0/1/11 0/6/6 0/7/5 0/8/4

Recall LOW 3/1/8 10/2/0 3/9/0 2/10/0 2/10/0
HIGH 9/1/2 10/2/0 4/8/0 4/8/0 4/8/0

Precision LOW 2/2/8 0/1/11 0/4/8 0/4/8 0/3/9
HIGH 0/3/9 0/0/12 0/6/6 0/6/6 0/6/6

Specificity LOW 3/1/8 0/1/11 0/6/6 0/7/5 0/8/4
HIGH 0/3/9 0/1/11 0/4/8 0/6/6 0/7/5

G-Mean LOW 2/2/8 6/6/0 2/10/0 2/10/0 2/10/0
HIGH 9/1/2 8/4/0 2/10/0 4/8/0 3/9/0

F1-Score LOW 2/0/10 0/3/9 2/7/3 1/8/3 1/8/3
HIGH 5/4/3 0/1/11 1/8/3 1/8/3 1/7/4

Kappa LOW 2/0/10 0/3/9 2/7/3 1/8/3 1/7/4
HIGH 5/4/3 0/1/11 2/7/3 1/7/4 1/7/4

Matthews LOW 2/0/10 0/3/9 1/8/3 0/9/3 1/7/4
HIGH 4/5/3 0/2/10 1/7/4 1/9/2 1/7/4

TABLE IV
WIN/TIE/LOSS COUNTS OF THE PROPOSED METHODS AGAINST THE

ALMMO-0 CLASSIFIER

1) One Class Classifier (1CC): Regarding the accuracy, it
is clear that, in general, the one class classifier significantly
under performs for all datasets and class imbalances. Further-
more, the results show no significant relation between accuracy
performance and the imbalance ratio.

In terms of recall, it is clear that the proposed method tends
to outperform at higher imbalances, while underperforming
at lower imbalances. Furthermore, the results show a clear
relation between recall performance and class imbalance, as
the recall performance tends to improve as the class imbalance
becomes more pronounced.

Precision performance results clearly show that the pro-
posed method significantly under performs for all datasets and
class imbalances. This is expected, as the increase in recall
performance implies a decrease in precision performance, as
the reduction of false negatives leads to an increase of false
positives. Furthermore, results show that the precision per-
formance deteriorates for more pronounced class imbalances,

following the opposite behaviour that was verified for the
recall performance.

Regarding specificity, results show a slight decrease in
performance for all datasets and class imbalances. Further-
more, there is also no clear relation between the specificity
performance and the imbalance ratio. However, it is very clear
that the decrease in specificity performance is always less
substantial than the decrease in precision performance, since
the number of false positives is much smaller than the number
of true negatives.

Performance in terms of the geometric mean follows a
similar behaviour to the one discussed for recall, as the
proposed method only outperforms the original algorithm for
high imbalances. These results are simple to justify, since, as
discussed, no substantial changes in specificity performance
were found and, therefore, the geometric mean performance
is essentially controlled by the recall performance.

Regarding the F1-Score, the results show a similar be-
haviour to what was observed for the geometric mean, al-
though the results are more mixed and dependent on the
dataset. These results are justified by the recall and precision
performances, clearly suggesting that for high imbalances,
the recall improvements outweigh the drops in precision
performance. Furthermore, the fact that the F1-Score gives
equal importance to recall and precision further suggests that
the proposed method provides a good compromise between
minimizing false negatives and not excessively increasing the
number of false positives.

Regarding the Kappa and Matthews coefficients, the results
shows that the proposed method under-performs for low im-
balances, while showing mixed and highly dataset dependent
results for high imbalances. Nonetheless, since there is no
significant performance change regarding these metrics, and
since the recall performance clearly improved, it is clear that
for high imbalances the proposed method provides a clear
improvement on the minority class prediction performance
without compromising the overall classification performance.

Attending to the results presented so far for the individual
metrics, one can arrive at some general conclusions about the
proposed one class classifier. Firstly, it is clear that there is
an improvement in the minority class detection for high class
imbalances, as is clearly shown by the recall improvements. It
is also clear that the minimization of false negatives does not
exaggeratedly increase the number of false positives. However,
one could still argue that, in certain contexts and applications,
the increase in false positives may still be too large and may
not justify the reduction of false negatives.

2) Weighted Class Confidence (WCC): Accuracy perfor-
mance results show that, similarly to the one class classifier,
the proposed method generally under performs for all datasets
and class imbalances. However, contrarily to what was ob-
served for the one class classifier, the results also show a clear
relation between higher class imbalances and higher accuracy
penalties.

Furthermore, the accuracy results also suggest that the
performance for GM is clearly distinct from the other cost
functions, as it is clear that GM yields the highest drops in
accuracy, not only when compared to original ALMMo-0, but
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also when compared to the one class classifier. Cost functions
F1, KC and MC show a general small under performance, with
an overall moderate drop for high imbalances.

Recall results show that the proposed method generally
outperforms across all datasets and, in particular, high class
imbalances. This is in contrast with what was observed for
the one class classifier, which has shown moderate recall drops
for low class imbalances. Therefore, the results suggest that
the weighted class confidence method is, in general, more
adequate for lower class imbalances than the proposed one
class classifier.

Furthermore, the recall performances show once again a
clear difference between GM and the remaining cost functions,
as GM not only significantly outperforms the other cost
functions, but also significantly outperforms the one class
classifier. This is expected, as GM has also shown the largest
drop in accuracy, implying that GM achieves the largest
reduction in false negatives, at the cost of having the largest
increase in false positives. Cost functions F1, KC and MC
all show comparable results, achieving a more subtle false
negative minimization, while also not exaggeratedly increasing
the number of false positives.

As expected, precision results show that the proposed
method under-performs for all cost functions, and also support
what was concluded from the recall performances, as GM
shows the largest drops, particularly at higher imbalances.
Cost functions F1, KC and MC show less significant drops
in precision since, as already mentioned, they also achieve
more modest recall improvements.

The specificity results further support what was concluded
from the previous metrics, showing that, as it was the case for
the one class classifier, there is a general under performance
for all datasets and class imbalances. Furthermore, cost func-
tions F1, KC and MC once again show comparable results
which are also comparable to the one class classifier. Cost
function GM is the only method that shows a significant drop
in specificity, particular at higher class imbalances since, as
was already discussed, it significantly increases the number of
false positives.

Geometric mean performances suggest a very similar be-
haviour to the one observed for the one class classifier. Cost
functions F1, KC and MC achieve moderate improvements at
higher class imbalances, in line with their recall performance,
while still under performing the one class classifier. Cost
function GM shows once again the largest improvement, since
it also achieves the largest recall improvements.

It is important to mention that, despite GM using the
geometric mean to optimize the class weighting, this is most
likely not the reason why it outperforms the other methods,
since, as it will be discussed for F1, KC and MC, the results
show no clear correlation between the cost function metric
and the actual model performance on that same metric. Thus,
the most likely explanation for the substantial performance
increase that GM shows for the geometric mean is that,
since the specificity suffers only moderate drops, using the
geometric mean as the cost function is essentially equivalent
to optimizing only the recall performance, meaning that no
compromise between false negatives and false positives is

considered.
Observing the results for F1-Score, Kappa and Matthews, it

once again becomes clear that cost function GM and the other
cost functions yield different results. Cost function GM shows
larger drops than the other cost functions and the one class
classifier, once again due to the large increase in false positives
that causes an overall classification performance penalization.

Attending to these results, it is clear that the proposed
method is not only able to achieve better minority class de-
tection, but also that the different cost functions yield models
with different biases towards the minority class. In particular,
the results suggest that the GM cost function shows the
strongest performance on low imbalances, while the remaining
cost functions may be better suited for high imbalances, as
they provide a more balanced compromise between recall and
precision performances.

VI. CONCLUSION

This thesis proposed two main goals: studying and compar-
ing the performance of ALMMo-0 classifiers to other relevant
benchmark methods, and proposing methods based on the
original ALMMo-0 that seek to mitigate the effect of highly
imbalanced datasets.

Regarding the first point, the results clearly suggest that
ALMMo-0 classifiers achieves better minority class prediction
performance when compared to benchmark methods such as
LR, SVM and NN, when compared to traditional FRB systems
such as the ANFIS, and also when compared to the first-order
ALMMo regressor.

Furthermore, the selected benchmark methods were left
unmodified, meaning that the original algorithms, as well
as the datasets, were left unmodified. Thus, the results also
suggest that these original algorithms in general show very
poor performances on highly imbalanced datasets, and, in
many cases, completely ignore the minority class.

Regarding the second point, two modifications of the origi-
nal ALMMo-0 algorithm were proposed: a one class classifier,
and a weighted class confidence approach. The results suggest
that both methods achieve, to different extents, better minority
class detection that the original ALMMo-0 classifier.

Regarding the proposed one class classifier, the results sug-
gest that it outperforms the original ALMMo-0 on datasets that
display high class imbalances. This conclusion is supported by
the overall higher recall scores, as well as the higher GM, F1,
KC and MC values. Furthermore, the overall better minority
class detection is achieved without increasing too much the
number of false positives.

The proposed one class classifier is also a remarkably simple
modification of the original algorithm, as it simply removes
the minority class sub-model, leaving the rest of the training
algorithm unmodified. Since it uses the clouds radius as the
classification decision threshold, which are parameters that
already must be estimated during the training process, the
proposed method does not introduce any complexity to the
original algorithm.

Regarding the proposed weighted class confidence ap-
proach, the results suggest that the different cost functions
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yield models with remarkably different characteristics. In par-
ticular the GM cost function tends do yield models with higher
biases towards the minority class, meaning that it gives more
weight to positive class samples. As such, the weighted class
confidence approach using the GM cost function is particularly
adequate for datasets that show a moderate class imbalance,
as the resultant models show significant increases in recall and
acceptable drops in precision. However, on highly imbalanced,
a large drop in precision is often observed, meaning that the
models may not be applicable to some domains.

The remaining cost function, F1, KC and MC, yield slightly
different results but, in general, generate models with a more
subtle bias towards the minority class. In particular, for highly
imbalanced datasets, these cost functions yield models that
still achieve significant recall improvements, but also do not
exaggeratedly compromise the majority class detection.

Still regarding the proposed weighted class confidence
approach, some issues were observed, particularly in the
optimization process. As evidenced by the relatively similar
results for the F1, KC and MC cost functions, it is clear that
for small validation sets, the optimisation procedure will not
be able to differentiate between the different cost functions,
as the small number of validation samples will often force
the process to converge towards the same weight value that
minimizes the different cost functions.

Furthermore, the optimization results also show that for
smaller validation sets, it is often observed that the model
remains unweighted, meaning that increasing the minority
class weight did not translate into a minimization of the cost
function.

Nonetheless, the results obtained for the proposed methods
are still very encouraging, as they offer, in general, different
models that outperform the original ALMMo-0, which itself
also was shown to outperform the selected benchmark meth-
ods.
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