
Attractor reachability estimation in logical models

Yu Cheng

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Pedro Tiago Gonçalves Monteiro
Prof. Claudine Chaouiya

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. Pedro Tiago Gonçalves Monteiro
Member of the Committee: Profª. Elisabeth Remy

November 2021

Acknowledgments

My deepest gratitude goes to Prof. Pedro and Prof.a Claudine. They have always been available to

share their knowledge, train my spirit of criticism, teach me the right approach to conduct a research,

clarify all my doubts and provide any support that has made this Thesis possible. It was a pleasure to

have worked under their supervision and make a contribution to the Colomoto community.

I also would like to thank my beloved parents, SuiMai and LiPing, for their caring, moral and financial

supports over all these years.

Finally, my special gratitude to XiaoYi, my beloved sister, and XingLei, my best friend, for their avail-

abilities and encouragements during the pandemic.

Abstract

Mathematical modeling of biological systems is often used as a tool to simulate and validate networks

underlying biological processes. In particular, logical models are well-suited to capture dynamical prop-

erties of regulatory networks where biological phenotypes, e.g., cell phenotypes, are associated with

model attractors (stable states, or complex attractors). Identification of model attractors and quantifica-

tion of their reachability are particularly relevant. However, as the size of a network model increases, the

analysis of such asymptotical behavior turns particularly difficult. Indeed, the number of model states

increases exponentially with the number of model components, hindering model analysis.

Several studies have been conducted to tackle the attractors determination and the quantification

of their reachability. In particular, the algorithm Avatar was proposed as an adaptation of classical

Monte Carlo simulations, offering a good performance for models with large and intertwined transient

and terminal cycles. Nevertheless, Avatar and Monte Carlo only perform simulations considering the

asynchronous updating scheme with uniform probabilities associated to concurrent transitions.

In this work, we aim to extend these algorithms to support novel updating schemes and calculate

transition probabilities according to qualitative rates associated to component updates. We have pro-

vided convenient command line features to ease launching these algorithms, and developed sets of

automatic tests to ensure their correctness. As a result, new functionalities have been integrated into

bioLQM, a java library devoted to logical modeling, broadening the use of these new features. Finally,

we further assessed the relevance of these developments by considering their application to real case

studies.

Keywords

Logical modeling; Attractors; Reachability quantification; Markov process; Biological regulatory net-

works.

iii

Resumo

A modelagem matemática de sistemas biológicos é frequentemente usada como uma ferramenta para

simular e validar redes que descrevem processos biológicos. Em particular, os modelos lógicos são

adequados para capturar propriedades dinâmicas de redes regulatórias onde fenótipos biológicos,e.g.,

fenótipos celulares, estão associados a atratores de modelo. A identificação dos atratores e a quantificação

de sua alcançabilidade são particularmente relevantes. No entanto, à medida que o tamanho do mod-

elo aumenta, a análise de tal comportamento assintótico torna-se particularmente difı́cil. De facto, à

medida que mais nós são introduzidos, o número de estados do modelo aumenta exponencialmente, o

que dificulta a análise do modelo.

Vários estudos foram conduzidos para abordar a determinação de atratores e a quantificação de

sua alcançabilidade. Em particular, o algoritmo Avatar foi proposto como uma adaptação da simulação

clássica de Monte Carlo que oferece um bom desempenho para modelos com ciclos terminais e tran-

sientes grandes. No entanto, Avatar e Monte Carlo só realizam simulações considerando o esquema

de atualização assı́ncrona com probabilidades uniformes associadas a transições concorrentes.

Para o propósito deste trabalho, pretendemos estender esses algoritmos para suportar um novos

esquemas de atualização e calcular as probabilidades de transição de acordo com os rates associadas

a cada atualização de componente. Desenvolvemos conjuntos de testes automáticos para garantir a

sua correção. Os novos algoritmos poderão ser usados na linha de commando e foram integradas ao

bioLQM, uma biblioteca java dedicada à modelagem lógica, o que divulga o uso dessas ferramentas.

Finalmente, avaliamos ainda mais a relevância desses desenvolvimentos, considerando sua aplicação

a estudos de caso reais.

Palavras Chave

Modelagem lógica; Atratores; Quantificação da alcançabilidade, Cadeia de Markov, Rede de transcrição

genética.

v

Contents

1 Introduction 1

1.1 Objectives . 3

1.2 Dissertation Outline . 4

2 Background 5

2.1 Logical regulatory graph . 6

2.2 Model dynamics and properties . 7

2.3 Model analysis . 11

2.4 Markov process . 13

2.5 STG seen as Absorbing Markov Chains . 15

3 Related Work 17

3.1 Attractor identification . 18

3.1.1 Classical algorithm to identify Strongly Connected Components 18

3.1.2 Hierarchical Transition Graph . 21

3.1.3 Stable state identification . 23

3.2 Attractor reachability . 26

3.2.1 SAT-based algorithm to find attractors . 26

3.2.2 Model Checking for reachability analysis . 27

3.3 Quantification of attractor reachability . 29

3.3.1 Classical Monte Carlo Simulation . 29

3.3.2 Firefront . 29

3.3.3 MaBoSS . 31

3.3.4 Avatar . 32

4 Extension of the Quantification Reachability Algorithms 35

4.1 Software context . 36

4.1.1 BioLQM . 36

4.1.2 GINsim . 36

4.2 Refactoring and migration of Avatar, Firefront and Monte Carlo to bioLQM 37

vii

4.3 Supporting new updating modes in Avatar and Monte Carlo 38

4.3.1 Non-uniform transition probabilities . 39

4.3.2 Priority Classes . 40

4.4 Implementation of new updating modes . 41

4.5 Integration into ColoMoTo Interactive Notebook . 43

5 Evaluation 45

5.1 Junit test cases . 46

5.1.1 Test model 1 . 46

5.1.2 Test model 2 . 47

5.1.3 Test model 3 . 50

5.2 Synthetic models . 53

5.3 Biological models . 59

5.3.1 The segment polarity model . 59

5.3.2 The T helper cells differentiation model . 68

6 Conclusion 77

Bibliography 79

A Manual of bioLQM 85

A.1 Overview . 85

A.2 Input parameters of algorithms . 88

viii

List of Figures

2.1 Logical Regulatory Graph (LRG) of p53-Mdm2 model . 7

2.2 LRG of toy model . 7

2.3 State Transition Graph (STG) of p53-Mdm2 model using asynchronous update scheme . 8

2.4 STG of p53-Mdm2 model using synchronous update scheme 9

2.5 Asynchronous STG of toy model. 10

2.6 Asynchronous STG of toy model with priority classes. 11

2.7 Example of a Markov chain . 14

2.8 Absorbing Markov chain . 14

2.9 Absorbing Markov chain by considering complex attractor as an absorbing class 15

3.1 R.Tarjan Algorithm . 20

3.2 Tarjan procedure on a graph where each node is labelled with the couple (id, low-link),

and the state of the stack is provided along the procedure 20

3.3 Hierarchical Transition Graph (HTG) of the toy model . 22

3.4 Stable state identification using Decision Diagrams . 25

3.5 A synchronous STG composed by 8 states . 26

3.6 Plotting of the distribution of probability of states in p53-Mdm2 model 32

3.7 Random walk to discover a cycle that is getting rewired 34

3.8 Avatar rewiring of the discovered cycle using random exit 34

4.1 Current architecture of GINsim . 37

4.2 New architecture of GINsim . 38

4.3 Transient cycle with non-uniform rates . 39

4.4 Rewired cycle with non-uniform transition probabilities (exact exit probabilities) 40

4.5 Rewired cycle with non-uniform transition probabilities (uniform exit probabilities) 40

ix

5.1 Model 1: (A) Regulatory graph; (B) Truth table; (C) STG for the asynchronous update, with

2 stable states in red and a transient Strongly Connected Components (SCC) in green;

(D) STG for the priority classes (1: {G1}, 2:{G2,G3}) with 2 stable states in red; (E) STG

for the priority classes (1: {G1, G2−,G3−}, 2:{G2+,G3+}) with 2 stable states in red. . . 46

5.2 Model 2: (A) Regulatory graph; (B) Truth table; (C) STG for the asynchronous update,

with 1 stable state in dark red, a complex attractor in light red and a transient SCC in

green; (D) STG for the priority classes (1: {G0+, G1−, G2, G3}, 2:{G0−,G1+}), with 1

stable state in dark red, 2 complex attractors in light red and pink; (E) STG for the priority

classes (1: {G0−, G1−, G2−,G3−}, 2:{G0+, G1+, G2+,G3+}) with 1 stable state in dark

red and 1 complex attractor in light red. 48

5.3 Model 3: (A) Regulatory graph; (B) Truth table; (C) Asynchronous STG, with 1 stable

state and a cyclic attractor in red and a transient SCC in green. The model generating

the same STG as that of the original model, with the priority classes as indicated: (D)

Regulatory graph; (E) Truth table; (F) asynchronous STG, isomorphic to that of the STG

of the original model with the priority classes . 50

5.4 Random model 1 from [1]. 54

5.5 Random model 2 from [1]. 55

5.6 Random model 3 from [1]. 56

5.7 Synthetic model 1 from [1]. 57

5.8 Synthetic model 2 from [1]. 58

5.9 The segmentation process involved in the development of the fly Drosophila (image adapted

from SD. Hueber’s PhD thesis) . 59

5.10 Intra-cellular network of the segment polarity model. 60

5.11 Inter-cellular interactions of segment polarity model . 60

5.12 Model dynamic of segment polarity model (6 cells) by considering priority classes 1:

{Ciact, Cirep, Fz, Dsh, Pka}; 2: {Ci, Wg, Nkd, En, Slp, Hh, Ptc}. Image retrieved from [2] 63

5.13 Inter-cellular interactions where Wg signals can diffuse towards two neighboring cells,

with Nkd preventing this longer range diffusion. 68

5.14 Differentiation of Th cells. Th0 cells differentiate into Th1 or Th2 cells, taken from [3] . . . 69

5.15 Logical regulatory graph of T helper differentiation network 70

A.1 Usage of bioLQM . 86

A.2 Formats supported by bioLQM . 86

A.3 Modifiers available in bioLQM . 86

A.4 Tools available in bioLQM . 87

A.5 Example of usage of bioLQM . 87

x

https://www.researchgate.net/publication/41879778_Identification_and_functional_analysis_of_Hox_downstream_genes_in_Drosophila/figures?lo=1

A.6 Available parameters of Avatar . 88

A.7 Available parameters of Monte Carlo . 88

xi

xii

List of Tables

5.1 Reachability probabilities for the test model 1, asynchronous dynamics and two priority

classes (see Fig. 5.1). Avatar’s parameters: runs=1E3, expansion limit=1E4, rewiring

limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo’s pa-

rameters: runs=1E3, maximum depth=1E4. 47

5.2 Reachability probabilities for the test model 2, asynchronous dynamics and two priority

classes (see Fig. 5.2). Avatar’s parameters: runs=1E3, expansion limit=1E4, rewiring

limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo’s pa-

rameters: runs=1E3, maximum depth=1E4. 49

5.3 Reachability probabilities evaluated by Avatar for the model 3, asynchronous dynamics

and priority classes (see Fig. 5.3). Avatar parameters: runs=1E3, expansion limit=1E4,

rewiring limit=1E4, tau=3, minimum SCC to rewire=4, maximum depth=1E4, rates= G0:1,G1[-

]:0.5,G1[+]:2,G2:1.5,G3:1 . 51

5.4 Reachability probabilities evaluated by Monte Carlo for the model 3, asynchronous dy-

namics and priority classes (see Fig. 5.3). Monte Carlo’s parameters: runs=1E3, maxi-

mum depth=1E4, rates= G0:1,G1[-]:0.5,G1[+]:2,G2:1.5,G3:1 52

5.5 Reachability probabilities for the random model 1. Avatar parameters: runs=1E3, expan-

sion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4,

asynchronous update, uniform transition probability. Monte Carlo’s parameters: runs=1E3,

maximum depth=1E4, asynchronous update, uniform transition probability. 54

5.6 Reachability probabilities for the random model 2. Avatar parameters: runs=1E3, expan-

sion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4.

Monte Carlo parameters: runs=1E3, maximum depth=1E4. 55

5.7 Reachability probabilities for the random model 3. Avatar parameters: runs=1E3, expan-

sion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4.

Monte Carlo’s parameters: runs=1E3, maximum depth=1E4. 56

xiii

5.8 Reachability probabilities for the synthetic model 1. Avatar parameters: runs=1E3, expan-

sion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4.

Monte Carlo’s parameters: runs=1E3, maximum depth=1E4. 57

5.9 Reachability probabilities for the synthetic model 2. Avatar parameters: runs=1E3, expan-

sion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4.

Monte Carlo’s parameters: runs=1E3, maximum depth=1E4. 58

5.10 Reachability probabilities evaluated the by revised version of Monte Carlo for the synthetic

model 2. Avatar parameters: runs=1E3, expansion limit=1E4, rewiring limit=1E3, tau=3,

minimum SCC to rewire=4, maximum depth=1E6. Monte Carlo’s parameters: runs=1E3,

maximum depth=1E6. 58

5.11 Stable states of the segment polarity model (single cell). 61

5.12 Reachability probabilities for the segment polarity model (single cell). Avatar parameters:

runs=1E3, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4,

maximum depth=1E6, initial state = whole state space. Monte Carlo’s parameters: runs=1E3,

maximum depth=1E6, initial space= whole state space. 62

5.13 Reachability probabilities for the segment polarity model (6 cells). Avatar parameters:

runs=1E4, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4,

maximum depth=1E6. Monte Carlo’s parameters: runs=1E4, maximum depth=1E6. . . . 65

5.14 Reachability probabilities evatuated by Avatar for the segment polarity model (6 cells) by

considering mutants. Priority classes 1: {Ciact, Cirep, Fz, Dsh, Pka}; 2: {Ci, Wg, Nkd, En,

Slp, Hh, Ptc}, initial state = pair rule module. Avatar’s parameters: runs=1E4, expansion

limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E6. . 66

5.15 Reachability probabilities evatuated by Monte Carlo for the segment polarity model (6

cells) by considering mutants. Priority classes 1: {Ciact, Cirep, Fz, Dsh, Pka}; 2: {Ci,

Wg, Nkd, En, Slp, Hh, Ptc}, initial state = pair rule module. MonteCarlo’s parameters:

runs=1E4, maximum depth=1E6. 67

5.16 Reachability probabilities for the modified segment polarity model (6 cells). Initial state =

pair rule module, priority classes 1:{Ciact, Cirep, Fz, Dsh, Pka}; 2:{Ci, Wg, Nkd, En, Slp,

Hh, Ptc}. Avatar’s parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3, tau=3,

minimum SCC to rewire=4, maximum depth=1E6. Monte Carlo’s parameters: runs=1E4,

maximum depth=1E6. 68

5.17 Reachability probabilities for the T helper differentiation model when considering transient

inputs. Avatar parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3, tau=3,

minimum SCC to rewire=4, maximum depth=1E6. Monte Carlo’s parameters: runs=1E4,

maximum depth=1E6. 71

xiv

5.18 Reachability probabilities for the T helper differentiation model when considering tran-

sient inputs and non-uniform transition rates. Avatar parameters: runs=1E4, expansion

limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E6.

Monte Carlo’s parameters: runs=1E4, maximum depth=1E6. 72

5.19 Reachability probabilities evaluated by Avatar for the T helper cells differentiation model

by considering mutants. initial state = whole state space, Avatar’s parameters: runs=1E4,

expansion limit = 1E4, rewiring limit = 1E3, maximum depth=1E6. 74

5.20 Reachability probabilities evaluated by Monte Carlo for the T helper cells differentiation

model by considering mutants. initial state = whole state space, Avatar’s parameters:

runs=1E4, expansion limit = 1E4, rewiring limit = 1E3, maximum depth=1E6. 75

A.1 Phenotypes and the corresponding patterns . 88

xv

xvi

List of Algorithms

4.1 Generate successors and probs . 41

4.2 First strategy of rewiring procedure (exact exit probability) 42

4.3 Second strategy of rewiring procedure (uniform exit probability) 43

xvii

xviii

Acronyms

API Application Program Interface

BDD Boolean Decision Diagram

CTL Computation Tree Logic

DFS Depth First Search

HTG Hierarchical Transition Graph

LRG Logical Regulatory Graph

MDD Multi-valued Decision Diagram

ODE Ordinary Differential Equation

SAT Boolean Satisfiability Problem

SCC Strongly Connected Components

STG State Transition Graph

xix

1
Introduction

Contents

1.1 Objectives . 3

1.2 Dissertation Outline . 4

1

Nowadays, the number of studied biological systems is increasing at a very fast pace, and it gives the

motivation and importance of modeling it to ease the understanding of complex biological phenomena,

from biochemical pathways to cell differentiation. Mathematical modeling of biological regulatory net-

works [4] has proven to be a good approach as it describes networks underlying the control of biological

processes, in a precise and unambiguous way. Specifically, modeling is effective to understand the

role of individual components and interactions, to validate or question the current understanding and to

predict behaviors upon perturbations.

There are two major types of modeling approaches [5]: quantitative modeling and qualitative model-

ing. In the first framework, the most commonly used formalism is Ordinary Differential Equation (ODE),

where the model includes concentrations of chemical species represented by real numbers at a time

t. In this context, regulatory interactions between the components, i.e., synthesis or degradation, are

defined by non linear functions, and the evolution of these concentrations are defined by ODE. Nev-

ertheless, this approach has two main limitations: first, the approach is deterministic and thus focuses

on an average behavior, therefore it is not adequate for heterogeneous systems; second, it is difficult to

assign values to the kinetic parameters of the model.

In the second framework, the most used formalism is Boolean network. Here the model is repre-

sented by regulatory nodes, corresponding to components of the biological system, regulatory interac-

tions, corresponding to arrows from source nodes to target nodes, and regulatory rules, which define

the associated functions of regulatory nodes to reach their activity levels. As a result, model states are

represented by the (Boolean) activity levels of the nodes, and the dynamics is defined by the set of tran-

sitions between the states, represented as a State Transition Graph (STG). The main drawback of this

approach is the combinatorial explosion: the size of the state transition graph can reach up to 2]nodes,

turning most of algorithms for model analysis NP-complete.

Several tools have been developed, implementing these modeling frameworks for biological net-

works. In this work, the focus is on logical modeling (the extension of Boolean networks to account for

multiple discrete values).

2

1.1 Objectives

This work focuses on logical models as they are appropriate to capture salient dynamical properties of

regulatory networks. Much work has been conducted by several groups who contributed with various

computer tools and methods for the definition and dynamical analyses of logical models.

The dynamics of a model is represented in terms of an STG. Since the number of states is finite,

simulations always end up in a steady behavior, corresponding to a single state or not. We are partic-

ularly interested in such asymptotic behaviors, which, in the mathematical field of dynamical systems,

are denoted attractors. They correspond to the terminal Strongly Connected Components (SCC) in the

context of the STG, and they reveal states of relevant biological properties (e.g. long term oscillations).

Apart from the identification of attractors, we are also interested in the quantification of their reach-

ability. This provides relevant predictions as attractors can reflect biological responses. For instance,

when several attractors arise, we are able to assess the most probable attractors, thus predicting the

most likely behavior feasible under a specific condition.

The identification and estimation of the reachability of the model attractors is not an easy challenge,

though. As the number of model components increases, the number of states of the model grows

exponentially, hindering the analysis and identification of the model properties.

The algorithm Avatar [1] was proposed to assess the reachability of such property. It is an adapted

Monte-Carlo approach, which is proved to have good performance for models with large transient and

terminal cycles. It explores iteratively the state space by performing random sampling and aggregates

these results to estimate the probability of reaching attractors. Different from a classical Monte-Carlo

simulation, it offers mechanisms to identify terminal cycles and to avoid getting trapped in transient

cycles. Nevertheless, it has two limitations: first, the algorithm is performed for simulations using solely

asynchronous updating scheme; second, it assumes that the probabilities of concurrent transitions are

uniformly distributed.

The objective of this work is to improve Avatar and Monte Carlo algorithms and their implementations

to overcome limitations mentioned above. Hence, new functionalities were developed and integrated into

bioLQM [6], which is a Java toolkit for the conversion, transformation, and analysis of Logical Qualitative

Models of biological regulatory networks.

3

1.2 Dissertation Outline

This document is organized in the following way.

Chapter 2 introduces notions and fundamentals concerning the logical modeling formalism.

Chapter 3 presents the related work developed by community for the identification and estimation of

attractors reachability.

Chapter 4 presents a solution for Avatar and Monte Carlo to overcome aforementioned limitations and

the computational works performed to integrate them in bioLQM.

Chapter 5 demonstrates the performance and the ability of the revised version of algorithms to identify

attractors and to quantify their reachability, when evaluating on test model, synthetic model and biological

models.

Chapter 6 summarizes all the works performed and proposes possible future works.

Appendix A includes a manual which provides additional information to use our tools in command line

through bioLQM [6].

4

2
Background

Contents

2.1 Logical regulatory graph . 6

2.2 Model dynamics and properties . 7

2.3 Model analysis . 11

2.4 Markov process . 13

2.5 STG seen as Absorbing Markov Chains . 15

5

This chapter presents the fundamental concepts concerning the logical modeling. It is organized in

five parts: a briefly presentation of logical regulatory graphs; a description and representation of the

dynamics that a model defines and its properties; a brief review of methods for model analysis; a brief

introduction to Markov process; and finally, the application of Absorbing Markov chain to the dynamics

of a model.

2.1 Logical regulatory graph

A Logical Regulatory Graph (LRG) can be interpreted as the composition of three components:

• Regulatory nodes, defining set of nodes representing the biological factors. Each node has a

maximum functional level of activity or concentration.

• Regulatory interactions, defining the interaction arcs, i.e., synthesis or degradation, between the

nodes in the model. An interaction is active when the level of its source is equal or above its

threshold.

• Regulatory rules, that specify the logical rules for each node to reach a given activity level.

Note that the definition of adequate regulatory rules is necessary to ensure the desired effects of each

interaction on the target nodes, e.g., when a negative interaction operates on the target node, the rule

should reflect this negative effect, decreasing the level of the target node. In any case, the signs of

interactions can be derived from the logical functions and an interaction is functional when it affects the

focal value of its target [7].

Formally, a logical regulatory graph can be defined as:

• A set of n regulatory components G = {g1, g2, . . . gn}, where each gi is associated with a variable

si which takes its values in 0, . . . ,maxi. The (finite) state space S is defined as the Cartesian

product
∏

i=1,...,n{0, . . . ,maxi};

• For each gi, Ki denotes its logical regulatory function and defines its value, i.e., Ki : S →

{0, . . . ,maxi} specifies the evolution of gi; ∀s ∈ S, Ki(s) is the target value of gi that depends

on the state s.

Figure 2.1 presents the topological representation of the regulatory network of LRG of p53-Mdm2 model

[8] with its associated regulatory rules. Moreover, a toy model is presented and its representation and

regulatory rules are illustrated in Figure 2.2.

6

Figure 2.1: LRG of p53-Mdm2 model

Figure 2.2: LRG of toy model

The regulatory components of the model are nodes with respective label. The edges between nodes

denotes the regulatory interaction, green arrows denotes positive interaction (synthesis) and red arrows

denotes negative interaction (degradation).

2.2 Model dynamics and properties

From the definition of LRG, we define the model state as a vector s = (s1, . . . , sn), where si denotes the

activity level of the corresponding node.

At a given state, the rules associated with each node define its target level. When the current level

of a node is different from its target level, it is called to update towards this target level, resulting in

a transition to another state, i.e., when there is a change of the activity level of the model variables,

transitions are created where the values of the variables si are increased or decreased.

The resulting state transitions define the State Transition Graph (STG), representing the dynamic

behavior of the logical model. In this graph, nodes represent the states of the model variables, while

directed arcs represent state transitions. Formally, the definition of the STG can be described as follows:

Given a LRG R = (G,K), where G denotes the set of the components and K denotes the set of the

logical regulatory functions, the corresponding STG E = (S, T) is a directed graph with:

• S the state space R : S =
∏

gi∈GDi, where Di = 0, . . . ,maxi, which are the values that the level

of the regulatory node gi can assume.

7

• T : S2 → {0, 1}: the transition function. There is an arc connecting a state s to its successor s′

whenever T (s, s′) = 1. The transition function is defined according to an updating policy and the

regulatory functions.

Here each state is represented by the vector s, which is composed by n values, where n is the number

of the regulatory nodes, and its value is defined by the activity level of each regulatory component.

We further refine that, concerning the construction of the STG, several nodes can be called to update

at a given state, thus, the modeler must specify how the update should be performed. The two most

used strategies are the synchronous and asynchronous updates.

With the asynchronous update, each variable is modified independently, generating as many transi-

tions as the number of updated variables, i.e., if the current state involves k updating calls, it will thus

have k successors. This updating scheme potentially generates non-deterministic dynamics. Given a

model with n regulatory nodes, we denote s(t) the state at iteration t and si(t) the value of the activity

level of the component gi at iteration t. Its successor state s(t + 1) can be defined according to the

following equation:

si(t+ 1) = si(t) + sign(Ki(s(t))− si(t)),

sj(t+ 1) = sj(t) for all j 6= i.
(2.1)

Note that a stable state s can be considered as its own successor.

The full STG generated from the LRG of the model of the mammalian p53-Mdm2 network using the

asynchronous updating scheme can be visualized in Figure 2.3.

Figure 2.3: STG of p53-Mdm2 model using asynchronous update scheme

In contrast, in the synchronous updating scheme, all concerned nodes perform the updating si-

8

multaneously, resulting in an unique transition toward a single successor state. Thus, it is defined by

increasing or decreasing by 1 all the variables whose current values differ from the values specified

by their logical functions. Hence, this updating generates deterministic dynamics and using the same

formalism described in the asynchronous updating scheme, its successor state s(t + 1) can be defined

according to the following equation:

s(t+ 1) = (si(t) + sign(Ki(s(t))− si(t)))i=1,...n (2.2)

According to this equation, the successor state s(t + 1) can be obtained by increasing, decreasing

or maintaining the value of of activity level of each component of the model taking into account their

corresponding logical regulatory function. Note that sign(p) is equal to 1 if p > 0,−1 if p < 0, and 0

otherwise, where p is the difference between the value of the target activity level and the value of current

activity level of the corresponding variable.

The STG of the p53-Mdm2 model generated using synchronous updating scheme is presented in

Figure 2.4. Note that, compared to the STG generated in the asynchronous updating scheme in Figure

2.3, the graph is now divided in three disconnected sub-graphs. And some trajectories are grouped in a

single transition.

Figure 2.4: STG of p53-Mdm2 model using synchronous update scheme

Since the state space of graph is finite, there is always at least one state without successors or a

cyclic trajectory denoted as terminal Strongly Connected Components (SCC), i.e., a sub-graph with a

maximum number of states that are mutually reachable and no leaving transition.

For the dynamical analysis of the biological network, we are particularly interested in the sub-graphs

of the STG as they reveal properties relevant for the identification of such asymptotic behaviors [9]. To

9

formally define an attractor, we introduce the following notations [10]:

• Scc is the set of all SCCs of the E .

• S is the subset of Scc and represent the set of trivial SCCs (∀C ∈ S , |C| = 1).

• C represents the set of complex SCC: (∀C ∈ C , |C| >= 2).

• ∀s, s′ ∈ S, s s′ means that for every state s and s′ of S, if s s′, then exist a path from s to s′.

• ∀s ∈ S, ∀C ∈ Scc, s C means there exists a path from every state s of S to any state s′ of C.

• ∗ denotes terminal elements of Scc. The non-terminal components are transient, i.e., with leaving

transitions.

• C∗ is an attractor if ∀s ∈ C∗, ∀s′ ∈ S, s s′ → s′ ∈ C∗, i.e., for every state s of SCC C, if exist a

path from s to any state s′ of S, then s′ belongs to C.

Note that C ∗ denotes the set of complex attractors and S ∗ denotes the set of stable state.

Figure 2.5 presents the STG of the toy model (in an asynchronous dynamics) when grouping states

in SCCs. And we can observe that:

• States without color are transient trivial SCCs that lead to other transient SCC or attractors;

• States in green form a transient complex SCC;

• States in light red form a terminal complex SCC (complex attractor);

• State in dark red is a terminal trivial SCC (stable state).

Figure 2.5: Asynchronous STG of toy model.

From the biological point of view, the asynchronous scheme is more realistic than the synchronous

scheme as it accounts for different delays associated to the updates, generating all potential trajectories.

10

It is also important to mention that different updating schemes may lead to different dynamics. Indeed,

while the stable states are preserved, the STG of the p53-Mdm2 model generated from the synchronous

updating presented in Figure 2.4, generates two more cyclic attractors, which can be reached only from

two or three states.

Furthermore, asynchronous scheme generates as many successors as updating calls, thus some

of these trajectories are potentially unfeasible. In case of concurrent events, some choices can be

prioritized as long as the choice is well-grounded on the nature of the processes involved [11].

Indeed, in a biological context, defining the priority classes can be seen as a refinement of the

updating scheme by defining the different time scales associated with biochemical processes. Taking

into account additional knowledge, we can classify component updates into slow or fast processes.

Hence, when we considering an asynchronous scheme refined with priority class, some transient SCCs

with oscillatory behaviors may turn into cyclic attractors.

Figure 2.6: Asynchronous STG of toy model with priority classes.

Figure 2.6 shows the STG generated by the LRG of the toy model, when considering that the degra-

dation of regulatory factors is faster than the synthesis.

As a result, transitions involving increasing component levels (i.e., corresponding to synthesis) are

being eliminated when they are in concurrence with transitions decreasing some component levels.

Note that, trajectories that are considered unfeasible as discarded, which may lead to the loss of some

transient SCCs, to new (complex) attractors, and to modified reachability properties.

2.3 Model analysis

Attractors are always present in the model whether to be a stable state or a cyclic attractor. Note that

the identification of attractors is especially important for the analysis of biological model. Indeed, model

attractor are relevant to understand biological processes in the system. Cyclic attractors are associated

with oscillatory behaviors that are observed in the case of the cell cycle or circadian rhythms [11]. Stable

states, instead, are usually associated with cellular responses to external factors or perturbation or cell

11

lineages [12].

However, the identification of such property brings hard challenges. As the number of component of

the model increases, the size of the corresponding state space (and hence STG) grows exponentially.

Indeed, in small models (up to dozen components), it is relatively easy to recover attractors by

analyzing directly the STG constructed. However, for larger models, such an approach to identify the

attractors becomes unrealistic.

The identification of the stable states is relatively easier, as it can be identified by reaching to a state

without successors (except itself). By analyzing the logical regulatory function of each component and

represent it by a decision diagram, it is possible to identify all the stable states of a model up to hundred

components [7].

The identification of the complex attractors is harder, as they might differentiate from the selection of

different updating scheme. They are cycles composed by p states (without knowing p in advance) Thus,

it is hard to detect without exploring the whole STG.

Moreover, one can compact the full STG by grouping states that belong to the same complex SCC

into a single node. The resulting graph is denoted as Hierarchical Transition Graph (HTG) [10] and

it eases the analysis of the dynamical properties. In specific, it reveals properties related with the

identification of attractors and the basins of attraction that is described in Subsection 3.1.2.

A method based on model checking applied in biological systems [13] allows to verify the reachability

of attractors. The model checker takes a set of properties expressed as temporal logic formulas and

checks whether they are satisfied by the model.

The estimation of reachability of attractors is even harder. This is because, apart from the difficulties

for the identification of the attractors mentioned above, we are performing simulations with several runs

in order to assess the transition probability to each attractor. In practice, we are exploring the whole

STG and calculating the percentage of runs which reach to a determinate attractor, and as the size of

the STG grows exponentially, the process becomes computationally intensive.

The algorithms Firefront and Avatar [1] have been proposed to quantify the attractor reachability.

Both approaches allow to estimate the distribution of the reachability of attractors under the assumption

of equiprobability of concurrent transitions, differing in the performance (the second one performs well

with STG with large transient SCCs) and the requirements (the first one requires an initial condition). On

the other hand, MaBoSS [14] is proposed to estimate the state probabilities over time and compute the

stationary distribution of the resulting Markov process of the model.

12

2.4 Markov process

A Markov process is a stochastic process that satisfies the Markov property which is characterized as

memory-less. Indeed, in a Markov process, the probability of transitioning to any particular state only

depends on the current state, i.e., predictions can be made regardless the history of the process or the

future states1. A Markov process can be characterized as time continuous or time discrete. For this

work, we focused on Markov processes with discrete time and state space, denoted as Markov chain.

To describe a Markov chain, let us assume wthat e have a set of states
∑

= {s1, s2, . . . , sn}. Given

a stochastic process, it starts in one of these states and transitions from one state to another. Each

transition is denoted as step. The probability of a state si transiting to another state sj is denoted by Pi,j

and is called transition probability. Such probability does not depend on which of the previous states are

visited by the process before the current state. This property is denoted Markov Property and can be

described as follows [15].

Let X be a Markov chain, and let Xt = s denote that the chain is in the state s at time t. The

probability of transiting from the state si at time t to a successor state sj is:

P (Xt+1 = sj |Xt = si) = P (Xt+1 = sj |X0 = s0, X1 = s1, . . . , Xt = si) (2.3)

The transition matrix P of a Markov chain X is a matrix providing the probability of transitioning

between states. In particular, given an ordering of the matrix’s rows and columns by the state space
∑

,

the (i, j)th element of the matrix P is given by

Pi,j = P (Xt+1 = sj |Xt = si) (2.4)

P as defined by Equation 2.4 is a probability matrix: for all i, the ith row gives the probabilities to reach

each state of the state space from state si, the sum of these probabilities being 1. Furthermore, by

calculating the k-step transition matrix of the chain, we can obtain the transition probabilities of each

state after k steps, calculated according to the following equation:

P k = Πi=1...kP (2.5)

By assigning the initial probabilities of the chain starting in each of the states, we define u to be the

probability vector which represents the starting distribution and then the probability that the chain is in

state si after n steps is the ith entry in the vector:

1https://en.wikipedia.org/wiki/Markov chain

13

https://en.wikipedia.org/wiki/Markov_chain

un = uPn (2.6)

Figure 2.7: Example of a Markov chain

Figure 2.7 provides an example of a Markov chain. According to the probabilities assigned to the arcs

between the nodes, the transition matrix of the Markov chain built on states A and B is P =

(
0.3 0.7
0.8 0.2

)
.

To obtain the transition probabilities of each state after 2 steps, we calculate the 2-step transition matrix:

P 2 =

(
0.65 0.35
0.4 0.6

)
.

We further introduce the notion of an Absorbing Markov chain, which is a special type of Markov

chain. A state si of a Markov chain is called absorbing if it has no successor but it self (pi,i = 1). A

Markov chain is absorbing if it has at least one absorbing state and if, from every state, an absorbing

state is reached. A state that is not absorbing is called transient.

Figure 2.8: Absorbing Markov chain

Figure 2.8 presents an example of an absorbing Markov chain, which has two absorbing states (A

and E), where from any transient state, the probability of hitting an absorbing state as time progresses

is almost 1.

14

Figure 2.9: Absorbing Markov chain by considering complex attractor as an absorbing class

2.5 STG seen as Absorbing Markov Chains

The incidence matrix of a STG can naturally be translated into an |S| x |S| - transition matrix Π which is

defined as follows [1] :

∀s, s′ ∈ S Π(s, s′) > 0⇔ (s, s′) ∈ T,

∀s ∈ S Π(s, s′) = 1⇔ Succ(s) = ∅,

Π(s, s′) = 0 otherwise

(2.7)

In a first stage, we can assume that the probabilities of concurrent transitions are uniformly dis-

tributed:

∀s ∈ S, ∀s′ ∈ Succ(s),Π(s, s′) =
1

|Succ(s)|
(2.8)

Therefore, our Markov chain (s0,Π) is defined by the set of states and the transition matrix previously

defined. For the chain to stop whenever it reaches an attractor, we considered the quotient graph of the

STG, i.e., the graph partitioned into blocks according to the SCC. Each complex attractor of the STG is

thus interpreted as a single node and, by considering this new STG, each terminal node corresponds

to an absorbing state of the corresponding chain. We denote it, in our context, as an absorbing class of

the chain. Note that the number of absorbing classes of the Markov chain corresponds to the number of

attractors of our model.

For instance, the left Markov chain of Figure 2.9 is not an absorbing Markov chain as it has a terminal

cycle composed by nodes C, D, E. But we can group them into a single node and denote it as the

absorbing class of the chain. In this case, we have two absorbing classes that are node A and node (C,

D, E).

We thus define the Markov chain X on the set S = T ∪A, where T ⊂ S is the set of all the transient

states, and A is the set of absorbing classes. The transition matrix π of X is [1]:

• π(ai, u) = 0 ∀u ∈ T, ∀ai ∈ A

15

• π(u, ai) = 1 ∀ai ∈ A

• π(ai, aj) = 0 ∀ai ∈ A,∀aj ∈ A, i 6= j

• π(u, v) = Π(u, v) ∀u, v ∈ T ;

• π(u, ai) =
∑

v∈ai
Π(u, v) ∀u ∈ T, ∀ai ∈ A.

If there are r absorbing classes and t transient states, one can rearrange the matrix π by considering

first the transient states and then the absorbing classes, forming the canonical form [16] of the transition

matrix:

π =

(
Q R
O I

)
(2.9)

where Q is a t-by-t matrix with Q(u, v) = π(u, v) for u, v ∈ T , R is a t-by-r matrix with R(u, a) = π(u, a)

for u ∈ T and a ∈ A, O is an r-by-t null matrix, and I is an r-by-r identity matrix.

By introducing the time step in the transition matrix, we denote πk(u, v) the probability that, started

in state u, the chain is in state v after k steps and it can be defined as:

πk =

(
Qk (

∑k−1
j=0 Q

j)R

O I

)
(2.10)

From this, the following properties hold [16]:

• Qk tends to 0 when k tends to infinity (limn→∞Qk = 0), which means the process will eventually

escape from transient states;

• for an absorbing Markov chain X, the matrix N = (I −Q)−1 is called the fundamental matrix. The

entry Ni,j of N gives the expected number of times that the process is in the transient state sj if it

is started in the transient state si;

• the expected number of steps for absorption of a chain starting in state si is given by: t = Nc

where c is a column vector with all entries equal to 1;

• the absorption probabilities are given by: B = NR where N is the fundamental matrix and R is

the sub-matrix of the canonical form of the transition matrix.

By substituting variables, from any u ∈ T , the probability of X being absorbed in a ∈ A is P (X∞ =

a|X0 = u) = (I −Q)−1R(u, a).

16

3
Related Work

Contents

3.1 Attractor identification . 18

3.2 Attractor reachability . 26

3.3 Quantification of attractor reachability . 29

17

Several research lines have been proposed to analyse the dynamics of logical models of biological

systems.

For the identification of attractors, in 2013 D. Bérenguier et al. proposed a method based on the

Tarjan algorithm [17] to cope with large dynamics [10]. The method consists in the construction of a Hi-

erarchical Transition Graph (HTG), a compact representation of the STG, which eases the identification

of complex attractors and their basins of attraction. In 2007, an approach based on the construction

of a representation of the regulatory functions in terms of Multi-valued Decision Diagram (MDD) was

proposed by A. Naldi et al. [7]. This representation allows the identification of stable states of models

with up to hundred components [7].

When it comes to attractor reachability, approaches based on a Boolean Satisfiability Problem (SAT)-

algorithm was proposed by Dubrova et al. [18]. In 2015, Abou-Jaoudé et al. published a method based

on Model Checking to assess reachability properties [13].

To estimate the reachability of attractors, Stoll et al. developed a C++ software (MaBoSS) that

computes the temporal evolution of probability distributions of states of the STG [14]. The algorithms

Avatar and Firefront were proposed by Mendes et al.. These algorithms, apart from being able to identify

the attractors (stable states or complex attractors), were designed to quantify the reachability probability

of the attractors [1].

3.1 Attractor identification

The identification of attractors is not an easy challenge. In particular, complex attractors which, apart

from being dependent from the updating scheme, are hard to be identified. In this section, we present

and discuss existing methods to identify attractors of logical models.

3.1.1 Classical algorithm to identify Strongly Connected Components

In 1972, R. Tarjan published an algorithm [17] for finding the Strongly Connected Components (SCC) of

a directed graph, which performs a single pass of a Depth First Search (DFS).

To better understand the algorithm, it is essential to understand the concept of low-link value. The

low-link value of a node is the smallest node id reachable from that node when performing a DFS search.

In the Tarjan algorithm, we have:

• an array of low-link of each node;

• an array of id of each node;

• a stack to store visited nodes;

18

The Tarjan procedure can be described as follows:

1. Mark each vertices as unvisited;

2. Start the DFS at a random node. Upon visiting a node assign it an id and a low-link value. Mark

explored nodes as visited and add it to the stack;

3. When reaching an already visited node with all its successors visited, the DFS backtracking is

performed:

• the low-link value of the current node is updated to the minimum between the low-link value

of previous node and the low-link value of the current node;

• if the current node id is equal to its low link value, pop off all the nodes until reaching the

current node (the nodes popped form a SCC);

4. repeat the process until all the nodes are being visited.

The pseudo-code of the algorithm is given in Figure 3.1.

Time Complexity: since the procedure is called only once per node, the running time of the algorithm

is linear in the number of vertices and edges, i.e., O(|V |+ |E|).

Space Complexity: this algorithm requires two supplementary arrays to store the index and low link

value of each node, and a stack for storing visited nodes. So the worst-case size of the stack is |V |

(when the graph is a single giant SCC). Therefore the space complexity is O(|V |).

The identification of SCC is relevant for the purpose of this work. Apart from easing the detection of

terminal SCC which correspond, in our context, to model attractors, it is possible to apply the Tarjan pro-

cedure to group SCC and shrink them into a single node, obtaining the SCC graph that is a compacted

representation of the STG.

19

Figure 3.1: R.Tarjan Algorithm

Figure 3.2: Tarjan procedure on a graph where each node is labelled with the couple (id, low-link), and the state of
the stack is provided along the procedure

Figure 3.2 illustrates the Tarjan procedure on a graph. We start the DFS at node 1. During the

exploration nodes 2, 4, 5, 6, 7 and 8 are visited, and we assign the corresponding low link values and

id values in steps a) to g). At step h), the DFS backtracking is performed, and we update the low link

values of the nodes 6, 7, 8. As a consequence, nodes are popped from the stack until reaching the node

whose id is equal to its low link value, forming the SCCs (SCC1: 5, 6, 7, 8 and SCC2: 4). At step i), by

proceeding the DFS backtracking, we visit the node 3 and following the exact same procedure described

20

above, we obtain SCC3: 1,2,3.

3.1.2 Hierarchical Transition Graph

Here a strategy to ease the analysis of large dynamics is briefly presented [10]: the construction of

Hierarchical Transition Graph (HTG), which can be interpreted as a further reduction of the STG by

grouping sets of states that form SCC or that are composed by a chain of trivial SCCs leading to the

same set of SCCs and attractors.

To define a HTG, let us recapitulate the types of SCCs that exist in a STG:

• C denotes the set of complex SCCs;

• S denotes the set of trivial SCCs;

• The S ∗ and C ∗ are terminal SCCs and denote, respectively, stable states and complex attractors.

We introduce the application σ that associates to an SCC C, the set of complex or terminal SCC, i.e.,

CUS ∗, that are reachable from X, including C itself if it is complex or terminal [10].

σ(X) = {C ∈ C ∪S ∗s.t X = C or ∀s ∈ X, s C} (3.1)

Furthermore, P ⊂ 2S is defined as the set of irreversible transient components where trivial non-terminal

SCCs are grouped together if they share the same σ-image [10],

P = {I ∈ 2S s.t. ∀s ∈ I, {s} ∈ S \S ∗ and s, s′ ∈ I ⇒ σ({s}) = σ({s′})} (3.2)

We can interpret the HTG associated to an STG as a tree whose nodes includes complex SCCs, stable

states and sets of linear chains of trivial non-terminal SCCs. Therefore the definition of the HTG can be

described as: H = (C ∪P ∪S ∗,T), where T defines the arcs of the H [10]

T (C,C ′) = 1⇔ ∃s′ ∈ C,∃s′ ∈ C ′ s.t T (s, s′) = 1 (3.3)

which means there is an arc from C to C ′ if and only if there is a transition from a state s in C to a state

s′ in C ′.

Note that from this definition, we can determine two properties:

• A path connecting any HTG component to a non-irreversible component implies the existence of a

path in the corresponding STG;

21

Figure 2.5: asynchronous STG of toy model (repeated from page 10)

• A path between two states in the STG implies the existence of a path between the HTG compo-

nents they belong to.

These properties are proved in [10].

Given the STG generated from the toy model using the asynchronous scheme presented in Figure

2.5 and its generated HTG is illustrated in Figure

3.3.

Figure 3.3: HTG of the toy model

We can observe that:

• the red node represents the stable state;

• the pink node represents the complex attractor;

• the blue node represents a transient complex SCC;

• the green and grey nodes represent the groups of trivial SCCs that share the same σ-image σ, as

they are able to reach to the same set of SCCs.

The algorithm to generate HTGs, given a set of condition can be found in the supplementary file of

the article [10].

The HTG is especially relevant for the dynamical analysis of logical models, easing the visualization

of attractors and their basins of attraction.

22

Indeed, given A∗, an attractor, and C a node of the HTG, the states in C are in BA∗ , the basin

of attraction of A∗, if and only if A∗ ∈ σ(C), i.e., A∗ belongs to the set of complex or terminal SCCs

reachable from states in C. The states in C are in BA∗ , the strict basin of attraction of A∗, if and only if

σ(C) ∩ (C ∪S) = {A∗}, i.e., from the states of C the only reachable attractor is A∗ [10].

3.1.3 Stable state identification

Here we present methods to identify stable states of logical models. In particular, we describe the use

of Decision Diagrams (binary or multi-valued) [19] [7].

In a LRG, the logical function Ki associated to a node gi specifies the evolution of si, the activity

level of that node. It can take a finite number of values (in {0, . . .Maxi}), depending on the values of the

regulators of gi (the nodes targeting gi in the regulatory graph). The representation of the function Ki

in terms of a decision diagram is presented below, where the decision variables are the activity levels of

the regulators.

A Boolean Decision Diagram (BDD) is a directed acyclic graph composed by decision nodes and

terminal nodes. Each decision node has two outgoing edges representing the values 0 and 1, and

terminal nodes are labelled with the function Boolean values. Along a path, the child chosen for each

non-terminal node is labelled with the value of the corresponding edge. The path from the root node

to the 1-terminal node (resp. 0-terminal node) represents a variable assignment for which the Boolean

function is true (resp. false). If the function is multi-valued, Multi-valued Decision Diagrams (MDD) are

used, where decision nodes have as many outgoing edges as the number of possible values, and there

are as many terminal nodes as the number of the function values.

One can reduce the sizes of such diagrams by merging isomorphic sub-diagrams which are shared

by multiple nodes and bypassing nodes whose children are the roots of isomorphic sub-graphs. The

resulting reduced graph is called Reduced Ordered MDDs [7].

The representation of the functions Kis by means of MDDs greatly facilitates the analysis of specific

dynamical properties [7]. In particular, it allows to identify all the stable states of the model without

having to explore the whole STG. As described in Section 2.2, a stable state is such that the current

activity of each variable is equal to its target level. In other words, a stable state is a fixed point of the

function (Ki)i=1,...n defined over the state space. Given a LRG R = (G,K) with G = {g1, . . . , gn}, a

state is stable iff:

∀i ∈ {1, . . . , n},Ki(s) = si (3.4)

To identify such stable states, we can build the logical stability decision diagram for each gene that

represents the conditions for the gene value to be stable. This is done by transforming the MDD rep-

23

resenting the logical function. For any gene gi, the decision variable si is added in the MDD, and the

terminal nodes are set to 0 for a change (a decrease or an increase, if the gene is not in a stable value),

or to 1 for no change. The gene gi is stable when the value of its resulting diagram Si is 1 (true).

The diagrams constructed thus represent the logical conditions for the stability of the genes. To get

the stability condition of the whole, we can perform the product of these diagrams to get a single diagram

Si...n that represent the conjunction (AND) of the individual stability conditions. The rules to combine the

diagrams are as follows [7]:

• decision variables are ordered with the same order, for all diagrams;

• if S1 and S2 are reduced to single nodes, the product is a node, its value being the product of those

of S1 and S2;

• else if S1 is a single node with value 1 , the result is S2;

• else if S1 and S2 roots are sub-graphs of nodes with the same order, the result is a root of this

order, and its sub-graphs are recursive combination of sub-graphs rooted in its children;

• otherwise, if the root of S1 has an order less than that of the root of S2 (or symmetrically), the result

is such that:

– the root is that of S1;

– its children are recursive combinations of S2 with those of S1.

Finally, the paths in the resulting diagram that lead to 1-terminal nodes give the stable states.

Figure 3.4 presents an example of identification of stable states using the BDD approach. We start

by constructing the BDD representation of the regulatory function of each node. Next, the logical stability

diagram of each node is derived from the function. Finally, we combine all the decision diagrams into

a single one according to the rules described above. The stable states are defined by the paths of the

resulting diagram that lead to leaves value 1, which are 010, 101, 110.

24

Figure 3.4: Stable state identification using Decision Diagrams

25

3.2 Attractor reachability

In this part of the document, approaches to identify attractors along with reachability properties, e.g., to

determine if an attractors is reachable from a specific initial state, are introduced. In particular, the two

main approaches that will be described in this document are: SAT-based approach and Model checking.

3.2.1 SAT-based algorithm to find attractors

Dubrova and Teslenko [18] proposed an approach to identify attractors in logical models under the

synchronous updating scheme. Hence, in this context, the model dynamics is deterministic and finite,

where all the variables of the model are updated simultaneously whenever their target level is different

from their current level.

The Boolean Satisfiability Problem (SAT) is the problem of determining whether a Boolean formula

can be satisfied by an assignment of the problem variables.

Given a model and the STG constructed using the synchronous updating scheme together with an

integer k, the algorithm can be described as follows:

1. Generate a vector of random initial states;

2. Choose the ith initial state in the vector and generate a trajectory of length k;

3. For the current trajectory, check whether it contains a loop or not. Since, in a synchronous logical

model, each state has a single successor, we can assess the presence of a loop by checking if

last state of the trajectory occurs twice.

4. If a loop is found, then mark all the states of the loop as they form an attractor, otherwise double

k, continue the generation of the trajectory and proceed to step 3;

5. Repeat the steps 2, 3 and 4 until all the initial states are explored.

Figure 3.5: A synchronous STG composed by 8 states

Providing an example of the execution of the algorithm in the STG presented in Figure 3.5, The

algorithm starts to search for a trajectory of length k = 2.

26

1. Suppose that the trajectory we found is 111 → 011 → 000. Since the last state (000) occurs only

once, this trajectory does not contain any attractor;

2. As a consequence, we double k′s value to 4 and continue the search;

3. Suppose that, in the next iteration, the path found is 100→ 101→ 010→ 101→ 010. In this case,

we found two occurrences of state 010, thus (101, 010) is being marked as a two-state attractor;

4. In the following search, the trajectory found is 011 → 000 → 001 → 000 → 001. Here state 001

occurs twice, thus we mark (000, 001) which is a two-state attractor;

5. In the final search, there are no more paths of length 4 that do not contain states of already

identified attractor. Therefore, the algorithm terminates.

The method proposed in [18] applies such approach in the context of attractor reachability, in partic-

ular, it uses the SAT-solver for the identification of trajectories of a particular length k. For that purpose,

a propositional formula F is introduced and a satisfying assignment to this propositional formula corre-

sponds to a valid trajectory in the STG.

The generation of such a formula is obtained by unfolding the transition relation, where T(s,s′) is

true if there is a transition in the STG between the states s and s′. The process of unfolding can be

interpreted as the recurrent application of the transition relation:

Tp...r =

r−1∧
i=p

T (si, si+1) (3.5)

where Tp...r denotes the transition relation T unfolded from the time step p to the time step r.

Once obtained the formula F , a SAT-solver is called to check the satisfiability of this expression and

to find a satisfying assignment. If the expression is unsatisfiable, then there is no trajectories of length k

in the STG (this implies that all attractors have been already identified) or the trajectory does not contain

a loop (then we double k and proceed with the generation of the new trajectory). On the other hand, if the

SAT-solver finds a satisfying assignment, the algorithm checks whether there is a loop in the trajectory

corresponding to this assignment.

3.2.2 Model Checking for reachability analysis

Here another approach to verify reachability properties of a logical model is presented. This method

involves the use of model checking, which checks whether the model satisfies some properties.

27

The dynamics of a logical model can be represented by a graph-based Kripke structure, which con-

tains all the information regarding the variables of the model and the transitions between the states [20].

To perform a verification, a model checker receives as input such a structure and a set of properties

specified as temporal logic formulas. It verifies whether each of these properties is satisfied by the

model under study, answering true or false to each of them. Temporal logic is a formalism used to

specify the sequence of transitions between states, where the notion of time to make transition is not

specified explicitly, only the order between them.

The verification of a model of a biological system aims to validate the existence of a trajectory com-

plying a specific property (e.g., reaching an given attractor) from a given initial condition [9, 13]. In the

case of the asynchronous updating, one might be interested in studying each alternative path sepa-

rately. This suggests the use of a temporal logic that provides path quantifiers where, at each step, a

choice can be made between multiple paths, i.e., a branching-time temporal logic. Within the family of

branching-time temporal logics, Computation Tree Logic (CTL) is the most commonly used.

Different model checkers are available, differing in their characteristics. For the purpose of efficient

application of this technique in the analysis of logical models, a symbolic model checker is used where

the state space is generated during its exploration. In this context, NuSMV-ARCTL [21] is the most

appropriate model checker which is the integration of NuSMV [22] (a symbolic model checker that uses

MDDs) with the Action-Restricted CTL (extension of CTL with labels added to the transitions of the

Kripke structure) [23].

Furthermore, PRISM model checker (https://www.prismmodelchecker.org/) is a probabilistic model

checker which is useful for modeling and analysis of the system exhibiting stochastic behaviour [24]. It

supports a CTL extension, performs symbolic model checking, which means state space is generated

during the exploration, and it is especially useful in our work as the dynamic of our model (STG) can be

translated to a discrete-time Markov chain [24].

To enable the use of model checking to analyse logical models, GINsim provides an export of models

under the asynchronous updating scheme into NuSMV specifications [25, 26]. Biological observations

and properties that we want to verify are then added to the NuSMV specification as temporal logic

formulas.

28

https://www.prismmodelchecker.org/

3.3 Quantification of attractor reachability

We briefly present and discuss existing methods focused on the reachability quantification, which allows

further analysis of the biological model and prediction of behaviors that are most likely to happen.

Algorithms enabling reachability quantification are presented, namely: the classical Monte Carlo

simulation (for the convenience, we will refer it to be Monte Carlo) , Firefront and Avatar proposed by

Mendes et al. [1], and MaBoSS presented by Stoll et al. [14].

3.3.1 Classical Monte Carlo Simulation

When the brute-force search in a network is not feasible, Monte Carlo is the most common approach to

estimate the likelihood of the outcome [27]. It relies on repeating random sampling to obtain numerical

results. This method may vary from context to context but tends to follow a particular pattern1:

1. Define a domain of possible inputs;

2. Generate inputs randomly from a probability distribution over the domain;

3. Perform a deterministic computation on the inputs;

4. Aggregate the results.

In our context, the algorithm performs a large number of simulations that halt whenever they reach a

terminal (stable) state or when a maximal depth is reached. The advantage of this algorithm is that

the simulation does not record past states, i.e., it is only based on the present state and the transitions

to its successors. Thus, the memory requirements is minimal. When the specified number of runs is

achieved, we aggregate the results and estimate the reachability probabilities of the stable states.

However, this approach has 2 limitations:

• Terminal SCCs are not being detected, where it gets trapped and repeats the process endlessly.

• When the structure of the STG is composed by many transient SCCs, it might revisit states already

visited an unrestricted number of times, turning it computationally intensive.

3.3.2 Firefront

The next algorithm presented is Firefront, proposed by Mendes et al. [1]. Although relatively simple, it is

efficient when the size of transient SCCs is relatively small.

1Wikipedia: https://en.wikipedia.org/wiki/Monte Carlo

29

https://en.wikipedia.org/wiki/Monte_Carlo

This algorithm performs a breadth-first search from an initial state s0 whose probability is assigned,

initially, to be 1. Then it distributes and propagates the probability of such state to its successors.

Three sets F , N and A are used.

• Fk is the set of states being expanded at step k, it is called firefront as it corresponds to the front

line of the breadth-first exploration: Fk = {s ∈
∑
,∃so s of length k} where

∑
is the set of

states. For the convenience, we will refer firefront to be F , omitting k. During the expansion, it is

calculated for each state s the probability of the Markov chain X to be in s after iterating k times

from the initial state s0, i.e., P (Xk = s|X0 = s0) = πk(s0, s).

• To tackle the efficiency bottleneck, N the set of neglected states is introduced that is used to avoid

the exploration of unlikely trajectories. If the probability associated with a state s ∈ F drops below

a certain value α, then s is moved from F to N . The successors of a state in N are not explored.

Nevertheless, if such a state is visited again as being the successor of a state of F (therefore

updating its probability), and if its probability exceeds the threshold, it is moved back to F .

• If a state in F has no successors, it is moved to A, the set of stable states; if it is already in A, its

probability increases according to this new trajectory.

Note that the sum of the probabilities of the states in F , N , and A is 1.

Firefront terminates whenever the total probability in F drops to zero or below some predefined

threshold β or a predefined maximum depth is reached. The algorithm can be consulted in the article [1].

30

3.3.3 MaBoSS

MaBoSS is a software tool that assesses attractor reachability in asynchronous Boolean dynamics [14].

Note that MaBoSS cannot be used when considering multi-valued models (unless we booleanize the

models).

It is an approach based on the continuous time Markov processes. To transform a discrete time

Markov process described in Section 2.4 in a continuous time Markov process, transition probabilities

should be replaced by transition rates ρ(s → s′), where s and s′ are the states of the system. These

transition rates ρ(s→ s′) are non-zero only if s′ is a successor of s. Hence, the Boolean function Ki can

be replaced by the functions Rup/down
i

(
s
)
∈ [0,∞] [14]. Given gi (the node whose value differs from s

and s′) and si (the value of node gi at state s):

ρ(s→s′) = Rup
gi

(
s
)

if si = 0

ρ(s→s′) = Rdown
gi

(
s
)

if si = 1
(3.6)

where Rup
i corresponds to the activation rate of node gi, and Rdown

i corresponds to the inactivation rate

of node gi.

MaBoSS uses a simulation algorithm which is based on the Kinetic Monte-Carlo algorithm (also

named Gillespie algorithm) [28]. Given an initial state s, a maximum time, two uniform random numbers

u, u′ ∈ [0, 1]:

1. Compute total rate of transition leaving the state s: ρtot =
∑

s′ ρ(s→s′)

2. Compute transition time: δt = −log(u)/ρtot

3. Order the successor states s′(j) (j = 1, ...p, where p is the number of successors) depending on

their respective transition rates ρ(j) = ρ(s→s′(j)).

4. Compute the successor state s′(k) such that
∑k−1

j=0 ρj <
(
u′ρtot

)
≤
∑k

j=0 ρj , (with ρ0 = 0) .

5. Repeat the steps 1, 2, 3 and 4 until the specified maximum time is reached.

As results, the algorithm produces a set of stochastic trajectories which can be used to compute proba-

bilities [14].

MaBoSS installation instructions and indications to build and run a logical model can be obtained

at https://maboss.curie.fr/. The output of the simulation is a set of data files with tables containing the

temporal evolution of state probability distributions. Figure 3.6 presents the the plot obtained from the

MaBoSS simulation on the p53-Mdm2 model. This model has a unique stable state where p53 = 0,

Mdm2cyt = 1, Mdm2nuc = 1 and DNAdam = 0. Therefore, the probability of any state that has p53

component activated, drops along the time.

31

https://maboss.curie.fr/

Figure 3.6: Plotting of the distribution of probability of states in p53-Mdm2 model

3.3.4 Avatar

Avatar is the last presented algorithm to quantify attractor reachability and it is the focus of this work. It

is a modified Monte Carlo method that aims at efficiently coping with SCCs [1].

The main drawbacks of the classical Monte-Carlo approach are the following: the cycles are not

being detected, therefore the simulation does not halt when entering in a complex attractor; also, when

entering in a transient SCC, it may repeatedly revisit states already visited.

To solve such limitations, Avatar was designed as an appropriate modification of the classical algo-

rithm: when entering a cycle, this is detected (when a state has already been visited), and the cycle

is dismantled while appropriately recalculating probabilities. More precisely, upon visiting a cycle, the

transitions between the states of the cycle are replaced by transitions towards each exit state of the

cycle, i.e., targets of the transitions leaving the cycle. These new transitions are associated with appro-

priate probabilities (calculated according to the properties of absorbing Markov chain). This process is

called rewiring of the STG, and each rewiring creates a new so-called Incarnation of the dynamics. The

simulation continues from the current state after the rewiring process ends [1].

Below, we describe the theoretical foundations of Avatar rewiring procedure and how the new transi-

tion matrix is calculated.

Suppose that we have a Markov chainX, defined by the finite set of states of a STG and its incidence

matrix, an initial condition. And a random walk discover a cycle C = (c1, c2, . . . ck). We denote B the set

of states directly reachable from C, i.e., exiting states of the cycle.

We further define q the k × k sub-matrix of π (notation as defined in Section 2.5), for the states

c1, . . . ck of the cycle, and r the k × |B| sub-matrix of π, defining the transitions from C to B. The

transition matrix of the rewired sub-graph of the STG is modified as follows:

• remove the transitions between the states of C and replace the sub-matrix q with the null matrix;

• add a transition from each state ofC to each state ofB and replace the sub-matrix r by
[
(Id− q)−1r

]
(the correctness of this process is described in Section 2.5).

32

Let Y denote this new chain, we can assert that starting from any transient state u and considering

any attractor a, X and Y have the same asymptotic behaviors:

∀u ∈ T, ∀a ∈ A,Pu(Y∞ = a) = Pu(X∞ = a) (3.7)

This property is proved in [1].

In Figure 3.7, a illustration of the Avatar rewiring is provided. We can observe that the sub-matrix b

is replaced by the null matrix and the sub-matrix r is recalculated according to the properties described

above.

Avatar performs an extension step controlled by a parameter τ which is a modified Tarjan’s algorithm

for SCC identification [17], where more trajectories are being explored up to a depth of τ from states

of the original cycle and all the subsequent rewiring is performed over the discovered cycle through the

extension. Furthermore, the value of τ is doubled within each attempt to search further cycles in order

to speed up the identification of SCC [1].

The current implementation of Avatar has two important parameters: expansion and rewiring limit.

The first parameter limits the size of the cycle being detected, whereas the second parameter concerns

the size of the cycle to be rewired. According to this, Avatar attempts to extend the cycle to be rewired

when a cycle is found. However, if the extended cycle has more states than the specified rewiring Limit,

only a sub-SCC of the detected cycle is rewired.

As a consequence, due to the bad time complexity (O(n3)) for inverting a matrix, it is recommended

to limit the rewiring limit of the sub-graph to be rewired when performing the exact exit probabilities

strategy (the approach where the sub-matrix r is replaced by
[
(Id− q)−1r

]
).

To tackle such a bottleneck, Avatar offers another strategy for rewiring, that is uniform exit proba-

bilities. In this strategy, the transitions between the states of the discovered cycle are removed and,

for each state of the cycle, the probabilities of the transitions from this state to the exiting states are

distributed uniformly, according to the number of exiting states, i.e., 1/|B|, where B is the set of exiting

states of the cycle. An illustration is presented in Figure 3.8;

The complete algorithm can be consulted in the supplementary material of the article [1].

33

Figure 3.7: Random walk to discover a cycle that is getting rewired

Figure 3.8: Avatar rewiring of the discovered cycle using random exit

34

4
Extension of the Quantification

Reachability Algorithms

Contents

4.1 Software context . 36

4.2 Refactoring and migration of Avatar, Firefront and Monte Carlo to bioLQM 37

4.3 Supporting new updating modes in Avatar and Monte Carlo 38

4.4 Implementation of new updating modes . 41

4.5 Integration into ColoMoTo Interactive Notebook . 43

35

4.1 Software context

4.1.1 BioLQM

In 2018, A. Naldi presented bioLQM, a toolkit for the manipulation and analysis of logical models of

biological regulatory networks. The source code of bioLQM is available at

https://github.com/colomoto/bioLQM.

Unlike most other software tools that use their own file format to define logical model, bioLQM has

a list of supported formats. BioLQM import/export capability is listed in [6]. Furthermore, it is recom-

mended for users to use the SBML qual exchange format when using bioLQM. The format was proposed

by Chaouiya et al., 2013 to improve interoperability between modeling tools [29].

To generate the dynamics of a logical model, that is defined by the states and the transitions between

them (described in Section 2.2), bioLQM provides an extensive choice of updating modes (in addition

to the synchronous and asynchronous updating modes). The description of available updating modes

can be found in [6]. Moreover, bioLQM currently supports the identification of stable states through the

use of decision diagrams (extract and combine stability conditions from the logical rules as described

in Subsection 3.1.3). The efficient identification of complex attractors and their reachability probabilities

remains a challenge. To tackle this issue, we integrated the existing Monte Carlo, Firefront, Avatar in

bioLQM.

The full instruction and examples that explain how to use bioLQM can be found in [6], where further

information regarding model modifiers are explained (e.g., how to define perturbations, model reduction

and Boolean mapping of multi-valued models).

4.1.2 GINsim

The classical Monte Carlo simulation, as well as the Firefront and Avatar algorithms are currently imple-

mented in GINsim [25], an integrated software built in Java, available at http://ginsim.org/. This software

tool offers a user friendly graphical interface for the modeling and simulation of regulatory network. Its

general architecture can be seen as follows:

• The graphical interface uses an Application Program Interface (API) in the ”serviceGUI” layer which

is responsible of displaying the frame of each panel.

• the serviceGUI is responsible for calling the appropriate tool from the bioLQM API; however in the

case of the Avatar, Firefront and Monte Carlo algorihms, these are implemented in GINsim.

• For the dynamical analysis of the model and its simulation, it uses the API offered by bioLQM;

36

https://github.com/colomoto/bioLQM
http://ginsim.org/

• Avatar, Firefront and Monte Carlo use updaters (i.e., Java classes responsible for the updating

modes) in bioLQM to get the successors of a state.

An illustration of the current architecture is presented in Figure 4.1.

Figure 4.1: Current architecture of GINsim

4.2 Refactoring and migration of Avatar, Firefront and Monte Carlo

to bioLQM

As mentioned above, Avatar, Firefront and Monte Carlo implementation was initially integrated in GIN-

sim, with a code mixed with that of the graphical user interface.

We started by cleaning up the code and migrating the algorithms to bioLQM. In the next bioLQM

release, the new versions of Avatar, Firefront and Monte Carlo will be available as new bioLQM tools. As

a consequence, these algorithms can now be launched from the command line. In the future, GINsim

will have a interface for Avatar, Firefront and Monte Carlo and the serviceGUI of GINsim will call the

corresponding service of bioLQM to use quantification reachability algorithms. An overview of the new

architecture is presented in Figure 4.2.

37

Figure 4.2: New architecture of GINsim

4.3 Supporting new updating modes in Avatar and Monte Carlo

So far, Avatar and Monte Carlo as implemented in GINsim supported the sole asynchronous update

mode, considering that the probabilities of concurrent transitions were uniformly distributed. For this

work, we aimed to surpass these limitations and:

• Support the definition of priority classes as described in Section 2.2. More precisely, given a state

and its successors, the transition probabilities are set to zero for updates affecting genes that are

in classes with lower ranks, and are uniformly distributed for updates affecting genes in the class

with the higher rank (for this work, the definition of priority classes involves the sole asynchronous

update).

• Account for user defined transition rates according to some knowledge of the underlying biolog-

ical processes, i.e., a qualitative rate associated to the update of each gene; the probabilities of

concurrent transitions are then determined according to these relative rates.

• Integrate the two concepts described above in a single feature, where the algorithm handles dy-

namics generated using the asynchronous updating scheme with priority classes, and where tran-

sition probabilities are defined according to some biological information.

38

Note that Firefront was not extended. Extension of this algorithm might be considered as a future

work.

4.3.1 Non-uniform transition probabilities

The integration of qualitative rates in Monte Carlo is relatively simple as this algorithm does not cope

with SCCs. Therefore, when having non-uniform transition rates, the transition probability of a state to

one of its successors is given by the ratio between the rate of that transition and the sum of the rates of

all the transitions leaving the state.

In contrast, in Avatar, because of the rewiring procedure, when transition rates are different, the

calculation of the probabilities of transitioning from the states of a cycle to the exiting states must be

adapted.

To get the intuition of defining probabilities to exiting states and validate the correctness of the

adapted rewiring process, we started by building examples of STGs. Let us take as an example a

transient cycle (shown in Figure 4.3) and try to rewired it considering non-uniform rates.

Figure 4.3: Transient cycle with non-uniform rates

Avatar has two rewiring strategies: exact exit probabilities and uniform exit probabilities. In the first

approach, the integration of non-uniform transition rates does not imply any modification compared to

the existing procedure (see 3.3.4). Indeed, the calculation of the new transition matrix is based on

39

properties of absorbing Markov chains (the resulting rewired graph of the example presented above and

the new transition matrix are illustrated in Figure 4.4).

Figure 4.4: Rewired cycle with non-uniform transition probabilities (exact exit probabilities)

In the second approach, when probabilities of concurrent transitions are uniformly distributed, the

transition probabilities of each state of the cycle to the exiting states are also uniformly distributed,

according to the number of the exiting states. However, with the consideration of distinct transition rates,

these probabilities must be redefined. For this, a new method to calculate the transition probabilities

was designed. Given a state c1 of a cycle C and a set of exiting states of the cycle B = (b1, . . . bk),

the probability of transitioning from c1 to any exiting state bi of the cycle is given by Rc1 bi/T R where

Rc1 bi is the rate associated with the transition from state c1 to state bi and T R is the sum of the rates

associated with the transitions from the state c1 to the states of B (
∑k

i=1Rc1 bi). We assumed that, if

there is no direct transition from c1 to bi , the rate Rc1 bi is set to 1. The rewired graph for the example

presented above and the new transition matrix are illustrated in Figure 4.5.

Figure 4.5: Rewired cycle with non-uniform transition probabilities (uniform exit probabilities)

4.3.2 Priority Classes

The integration of priority classes (described in Section 2.2) in Avatar and Monte Carlo is relatively

easy to implement. BioLQM includes in its set of tools a priority updater (Java class responsible for the

40

priority class updating mode). Both algorithms can thus directly use this updater to perform a simulation

considering priority classes. In this scheme, updating calls concerning genes of lower rank are only

possible if there are no updating calls for genes in a higher rank.

The current implementation of priority classes in bioLQM supports the definition of synchronous

and asynchronous classes (i.e., sets of genes in given ranks that are updated synchronously or asyn-

chronously). Note that each class of a given rank can be associated with a different updating scheme.

However, the definition of priority classes is currently being refined by other members of the group, and

here we only focused on simpler definitions involving the sole asynchronous (uniform and non-uniform

updates).

So far, extending Avatar and Monte Carlo to support priority classes was restricted to classes asso-

ciated to the asynchronous updating scheme (potentially with rates).

4.4 Implementation of new updating modes

For both Monte Carlo and Avatar, we included the option to select the updater with priority classes. With

the integration of rates, Monte Carlo and Avatar pick a successor according to the calculated probability

(based on rates). Algorithm 4.1 describes how Monte Carlo and Avatar get the successors of a given

state, and determines the transition probability for each of them. The parameter ”updater” is used to de-

termine the successors of a state (asynchronous or priority) and the parameter ”rates of updating calls”

stores the qualitative rates associated to the updates of the model components.

Algorithm 4.1 Generate successors and probs
Input: current state, updater, rates of updating calls

1: totalRate = 0
2: successors← updater.getSuccessors(current state)
3: successors and rates← applyRates(current state, successors, rates of updating calls)
4: successors and probs← empty
5: for all succ in successors and rates do
6: totalRate + = succ.rate
7: end for
8: for all succ in successors and rates do
9: probability← succ.rate/totalRate

10: successors and probs.add(succ, probability)
11: end for
12: return successors and probs

The two strategies for the rewiring procedure are outlined in the Algorithms 4.2 and 4.3. These

algorithms describe how the rewiring of the sub-graph comprising the states of the discovered cycle

and their immediate successors (i.e. exits of the cycle) is performed. More precisely, the output of the

rewiring procedure is the new sub-matrix of the transition matrix describing the transitions between the

41

states of the cycle and the exiting states of the cycle.

We denote q as the probability sub-matrix for the transitions between the states of the cycle, and r as

the probability sub-matrix for the transitions from the states of the cycle to the exiting states of the cycle.

In the first strategy, the matrix r is re-calculated as (Id−q)−1r. In the novel version of this procedure,

the transition probabilities in the matrices q and r are no longer uniformly distributed (they are calculated

in the Algorithm 4.1).

Algorithm 4.2 First strategy of rewiring procedure (exact exit probability)
Input: Cycle, Exits, updater, rates of updating calls

1: q = [Cycle.size()][Cycle.size()]
2: q ← null matrix
3: r = [Cycle.size()][Exits.size()]
4: r ← null matrix
5: for all v in Cycle do
6: successors and probs← Generate successors(v, updater, rates of updating calls)
7: v index← Cycle.indexOf(v)
8: for all w in successors and probs do
9: if w in Exits then

10: r[v index][Exits.indexOf(w)] = w.probability
11: else if w in Cycle then
12: q[v index][Cycle.indexOf(w)] = w.probability
13: end if
14: end for
15: end for
16: r ← (Id− q)−1r
17: return r

In the second strategy, the matrix r is initialized with the rates associated with the rates of the transi-

tions from the cycle states to the exit states (if there is no transition, then the associated rate is 1). Then

it is appropriately manipulated to get the probabilities associated to the transitions from each cycle state

to all the exit states.

42

Algorithm 4.3 Second strategy of rewiring procedure (uniform exit probability)
Input: Cycle, Exits, updater, rates of updating calls

1: r = [Cycle.size()][Exits.size()]
2: r ← null matrix
3: total rates = [Cycle.size()]
4: total rates = [0. . . 0]
5: for all v in Cycle do
6: successors← updater.getSuccessors(current state)
7: successors and rates← applyRates(current state, successors, rates of updating calls)
8: v index← Cycle.indexOf(v)
9: for all w in Exits do

10: if w in successors and rates then
11: r[v index][Exits.indexOf(w)] = successors and rates.get rate(w)
12: total rates[Cycle.indexOf(w)] + = successors and rates.get rate(w)
13: else
14: r[v index][Exits.indexOf(w)] = 1
15: total rates[Cycle.indexOf(w)] + = 1
16: end if
17: end for
18: end for
19: for i = 0; i < Cycle.size(); i++ do
20: for j = 0; j < Exits.size(); j++ do
21: r[i][j]← r[i][j] / total rates[i]
22: end for
23: end for
24: return r

4.5 Integration into ColoMoTo Interactive Notebook

Logical models have been successfully applied to regulatory system. The continuous growth of the

community has motivated the development of an environment where scientists and developers could

reach a consensus within the sub-domain of logical models, thus, promoting the cooperative devel-

opment of shared standard and tools [30]. For this purpose, the Consortium for Logical Models and

Tools (CoLoMoTo, http://colomoto.org) was born at Instituto Gulbenkian de Ciência (Portugal) in 2010.

It is an international open community that aims at the standardization of model representation and the

promotion of methods, models and tools [30].

Dynamical analysis of models of regulatory networks often relies on workflows in which different

software tools are chained together [31]. Recently, the scientific community has been increasingly con-

cerned about difficulties in reproducing published results, especially when some of these tools might be

difficult to install or require a steep learning curve (thus, hindering the accessibility and the reproducibil-

ity of results) [31]. In our context, a user must be minimally familiar with the command-line commands

and read the manual presented in Appendix A in order to reproduce our results.

To address the aforementioned reproducibility and reusability issues, CoLoMoTo presented a repro-

ducibility oriented framework which provides an easy-to-use environment to edit, execute, share, and

43

http://colomoto.org

reproduce analyses of qualitative models of biological networks by integrating various logical modeling

software tools, called CoLoMoTo Interactive Notebook (available at https://colomoto.github.io/colomoto-

docker/) [31]. This framework integrates a set of pre-installed tools from the CoLoMoTo community and

it is possible to integrate further tools (in our context, Avatar and Monte Carlo) by defining the corre-

sponding Python interface [31]. The framework is composed by three main components: CoLoMoTo

Docker image, Python interface and Jupyter web interface [31]. Its general architecture can be seen as

follow:

• The framework is distributed as a Docker image which contains the set of pre-installed software/-

tools (e.g., GINsim [25], bioLQM [6], MaBoSS [14]). The CoLoMoTo Docker is a container tech-

nology based on virtualization, which is lightweight and provides an isolated environment (similar

to a Virtual Box, but the isolation is at software level).

• For each of the tools embedded in the image, a Python interface is developed which greatly ease

its execution and fetch the results.

• Jupyter web interface enables users to interact efficiently with the system (e.g., upload models,

include textual annotations and get a greater visualization of the results). Moreover, the resulting

file can then be saved and re-executed or shared with other users.

Currently, we are still working on the development of the Python interface, as we are waiting for the

integration of Avatar and Monte Carlo in the official version of bioLQM. Subsequently, CoLoMoTo Jupyter

Notebook will be able to use these algorithms by importing the upcoming version of bioLQM.

44

https://colomoto.github.io/colomoto-docker/
https://colomoto.github.io/colomoto-docker/

5
Evaluation

Contents

5.1 Junit test cases . 46

5.2 Synthetic models . 53

5.3 Biological models . 59

45

5.1 Junit test cases

Unit tests are automated tests written to ensure that a unit (i.e., a section of an application) meets its

design, and behaves as intended. With the continuous development and extension of software appli-

cations, the interest of unit tests is to ensure the unit’s correctness along introduced extensions and

modifications of the whole.

In this work, the unit is the module related to the reachability algorithms (Avatar and Monte Carlo).

Three simple toy models were defined to implement such tests. The first two models were designed to

test the integration of the priority updater with uniform transition probabilities. The third model integrates

priority classes and non-uniform transition probabilities.

Note that, as Monte Carlo cannot assess the reachability of complex attractors (when entering a

terminal SCC, the process is trapped and proceeds the exploration until reaching the maximum depth),

the probabilities for reaching stable states are provided as intervals, and we denote N/D (not defined)

for the probabilities reaching the complex attractors.

5.1.1 Test model 1

(A) (B) (C)

G1,G2,G3 F(G1,G2,G3)
000 000
001 110
010 000
011 101
100 001
101 111
110 001
111 111

Asynchronous update

(D) Priorities (1: {G1}, 2:{G2,G3}) (E) Priorities (1: {G1, G2−,G3−}, 2:{G2+,G3+})

Figure 5.1: Model 1: (A) Regulatory graph; (B) Truth table; (C) STG for the asynchronous update, with 2 stable
states in red and a transient SCC in green; (D) STG for the priority classes (1: {G1}, 2:{G2,G3}) with
2 stable states in red; (E) STG for the priority classes (1: {G1, G2−,G3−}, 2:{G2+,G3+}) with 2 stable
states in red.

The first model encompasses 3 components. Its LRG and its dynamics are presented in Figure

5.1. We can observe that identified stable states are invariant for all updating modes, but reachability

46

properties vary: stable state 111 is reachable from state 100 in the asynchronous dynamics, which is not

the case when considering priority classes (Figure 5.1, panel (D) and panel (E)).

Algorithm Updating mode Initial state Reached attractors Probability % of successful Time
simulations

Avatar

Asynchronous
[100] SS1 [000] 0.503 100 0.4 sSS2 [111] 0.497

update [011] SS1 [000] 0.201 100 0.4 sSS2 [111] 0.799

Priority 1: {G1}, [100] SS1 [000] 1 100 0.4 sSS2 [111] 0

2:{G2,G3} [011] SS1 [000] 0 100 0.4 sSS2 [111] 1

Priority 1: {G1, G2−,G3−}, [100] SS1 [000] 1 100 0.4 sSS2 [111] 0

2:{G2+,G3+} [011] SS1 [000] 0.25 100 0.4 sSS2 [111] 0.75

Monte

Asynchronous
[100] SS1 [000] [0.509, 0.509] 100 0.3 s

Carlo

SS2 [111] [0.491, 0.491]

update [011] SS1 [000] [0.206, 0.206] 100 0.3 sSS2 [111] [0.794, 0.794]

Priority 1: {G1}, [100] SS1 [000] [1.0, 1.0] 100 0.3 sSS2 [111] [0, 0]

2:{G2,G3} [011] SS1 [000] [0, 0] 100 0.3 sSS2 [111] [1.0, 1.0]

Priority 1: {G1, G2−,G3−}, [100] SS1 [000] [1.0, 1.0] 100 0.3 sSS2 [111] [0, 0]

2:{G2+,G3+} [011] SS1 [000] [0.25, 0.25] 100 0.3 sSS2 [111] [0.75, 0.75]

Table 5.1: Reachability probabilities for the test model 1, asynchronous dynamics and two priority classes (see Fig.
5.1). Avatar’s parameters: runs=1E3, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to
rewire=4, maximum depth=1E4. Monte Carlo’s parameters: runs=1E3, maximum depth=1E4.

For convenience, stable states are denoted SS and complex attractors CA.

5.1.2 Test model 2

The LRG and STG of the model 2 are presented in Figure 5.2. This model has a transient cycle in the

asynchronous dynamics, that turns into a cyclic attractor for the priority classes 1: {G0+, G1−, G2, G3},

2:{G0−,G1+} (see panel D of Figure 5.2).

47

(A) (B) (C) Asynchronous update
G0,G1,G2,G3 F(G0,G1,G2,G3)

0000 0010
0001 0000
0010 0011
0011 0001
0100 1011
0101 1001
0110 1011
0111 1001
1000 0110
1001 0100
1010 0111
1011 0101
1100 1111
1101 1101
1110 1111
1111 1101

(D) Priority 1: {G0+, G1−, G2, G3},
2:{G0−,G1+}

(E) Priority 1: {G0−, G1−, G2−,G3−},
2:{G0+, G1+, G2+,G3+}

Figure 5.2: Model 2: (A) Regulatory graph; (B) Truth table; (C) STG for the asynchronous update, with 1 stable state
in dark red, a complex attractor in light red and a transient SCC in green; (D) STG for the priority classes
(1: {G0+, G1−, G2, G3}, 2:{G0−,G1+}), with 1 stable state in dark red, 2 complex attractors in light
red and pink; (E) STG for the priority classes (1: {G0−, G1−, G2−,G3−}, 2:{G0+, G1+, G2+,G3+})
with 1 stable state in dark red and 1 complex attractor in light red.

The results of the reachability quantification for the test model 2 are presented in Table 5.2. We can

assert the correctness of the results by directly analyzing the STGs and the probability of reaching each

attractor. Note that, for priority classes 1: {G0−, G1−, G2−,G3−}, 2:{G0+, G1+, G2+,G3+}, Monte

Carlo cannot identify any attractor starting from the initial states 1000 and 0110, as the simulation ends

up in a cyclic attractor and repeats the process until reaching the maximum depth (same for the priority

classes 1: {G0+, G1−, G2, G3}, 2:{G0−,G1+} and initial state 1000). As a consequence, we can

observe that the time to compute these three simulations (see 9th, 11th and 12th rows of Table 5.2) are

longer compared to the time used to compute all other simulations. Indeed, in these cases, Monte Carlo

indicates that 0 successful runs (below max depth) out of 1000 reached an attractor.

48

Algorithm Updating mode Initial state Reached attractors Probability % of successful Time
simulations

Avatar

Asynchronous
[1000] SS1 [1101] 0.501 100 0.4 sCA1 [00**] 0.499

update [0110] SS1 [1101] 0.487 100 0.4 sCA1 [00**] 0.513

Priority 1: {G0+, G1−, G2, G3},
[1000]

SS1 [1101] 0
100 0.4 sCA1 [00**] 0

CA2 [10**] 1

2:{G0−,G1+} [0110]
SS1 [1101] 0.518

100 0.4 sCA1 [00**] 0.482
CA2 [10**] 0

Priority 1: {G0−, G1−, G2−,G3−}, [1000] SS1 [1101] 0 100 0.4 sCA1 [00**] 1

2:{G0+, G1+, G2+,G3+} [0110] SS1 [1101] 0 100 0.4 sCA1 [00**] 1

Monte

Asynchronous
[1000] SS1 [1101] [0.509, 1.0] 50.9 3 s

Carlo

CA1 [00**] N/D

update [0110] SS1 [1101] [0.503, 1.0] 50.3 3 sCA1 [00**] N/D

Priority 1: {G0+, G1−, G2, G3},
[1000]

SS1 [1101] [0, 1.0]
0 6 sCA1 [00**] N/D

CA2 [10**] N/D

2:{G0−,G1+} [0110]
SS1 [1101] [0.503, 1.0]

50.3 3 sCA1 [00**] N/D
CA2 [10**] N/D

Priority 1: {G0−, G1−, G2−,G3−}, [1000] SS1 [1101] [0, 1.0] 0 6 sCA1 [00**] N/D

2:{G0+, G1+, G2+,G3+} [0110] SS1 [1101] [0, 1.0] 0 6 sCA1 [00**] N/D

Table 5.2: Reachability probabilities for the test model 2, asynchronous dynamics and two priority classes (see Fig.
5.2). Avatar’s parameters: runs=1E3, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to
rewire=4, maximum depth=1E4. Monte Carlo’s parameters: runs=1E3, maximum depth=1E4.

49

5.1.3 Test model 3

(A) (B) (C)
G0,G1,G2,G3 F(G0,G1,G2,G3)

0000 0010
0001 0000
0010 0011
0011 0001
0100 1011
0101 1001
0110 1011
0111 1001
1000 0110
1001 0000
1010 0111
1011 0001
1100 1111
1101 1101
1110 1111
1111 1101

Priority classes: 1:{G3}; 2:{G0+,G1,G2}3:{G0− }
Model generating the corresponding dynamics

(D) (E) (F)
G0,G1,G2,G3 F(G0,G1,G2,G3)

0000 0010
0001 0000
0010 0011
0011 0001
0100 0101
0101 1001
0110 0111
0111 1001
1000 1110
1001 1000
1010 1011
1011 1001
1100 1101
1101 1101
1110 1111
1111 1101

Figure 5.3: Model 3: (A) Regulatory graph; (B) Truth table; (C) Asynchronous STG, with 1 stable state and a cyclic
attractor in red and a transient SCC in green. The model generating the same STG as that of the original
model, with the priority classes as indicated: (D) Regulatory graph; (E) Truth table; (F) asynchronous
STG, isomorphic to that of the STG of the original model with the priority classes

For this junit test case, the focus is to combine priority classes with non-uniform rates. We defined

the qualitative rates associated to the updating of each gene as follows: G0:1, G1−:0.5, G1+:2, G2:1.5,

G3:1. The test model 3 is displayed in Figure 5.3 A-C.

We intend to compare the results obtained with the revised version of Avatar against MaBoSS. How-

ever, as MaBoSS cannot assess reachability probabilities with priority settings, we built the equivalent

model that generates the same dynamics as displayed in Figure 5.3 panels D-F, which is the STG of the

model when considering the priority classes 1:{G3}; 2:{G0+,G1,G2}3:{G0−}.

The results of the simulations are presented in the tables 5.3 and 5.4. We can observe that the

differences between the probabilities of reaching the stable states obtained using MaBoSS, the new

version of Avatar and Monte Carlo do not exceed 0.03.

50

Algorithm Updating mode Initial state Reached attractors Probability % of successful Time
simulations

Avatar

Asynchronous update

[****] SS1 [1101] 0.446
100 0.4 sCA1 [00**] 0.554

Probability of the SS1 w/ MaBoSS: 0.447

uniform rates

[1001] SS1 [1101] 0.231
100 0.4 sCA1 [00**] 0.769

Probability of the SS1 w/ MaBoSS: 0.231

[0111] SS1 [1101] 0.501
100 0.4 sCA1 [00**] 0.499

Probability of the SS1 w/ MaBoSS: 0.495

Asynchronous update

[****] SS1 [1101] 0.521
100 0.4 sCA1 [00**] 0.479

Probability of the SS1 w/ MaBoSS: 0.519

non-uniform rates

[1001] SS1 [1101] 0.317
100 0.4 sCA1 [00**] 0.683

Probability of the SS1 w/ MaBoSS: 0.312

[0111] SS1 [1101] 0.669
100 0.4 sCA1 [00**] 0.331

Probability of the SS1 w/ MaBoSS: 0.679

Priority classes: 1:{G3};

[****] SS1 [1101] 0.631
100 0.4 sCA1 [00**] 0.359

Probability of the SS1 w/ MaBoSS: 0.631

2:{G0+,G1,G2}; 3:{G0− }

[1001] SS1 [1101] 1
100 0.4 sCA1 [00**] 0

Probability of the SS1 w/ MaBoSS: 1

uniform rates. [0111] SS1 [1101] 0.495
100 0.4 sCA1 [00**] 0.505

Probability of the SS1 w/ MaBoSS: 0.495

Priority classes: 1:{G3};

[****] SS1 [1101] 0.676
100 0.4 sCA1 [00**] 0.324

Probability of the SS1 w/ MaBoSS: 0.673

2:{G0+,G1,G2}; 3:{G0− }

[1001] SS1 [1101] 1
100 0.4 sCA1 [00**] 0

Probability of the SS1 w/ MaBoSS: 1

non-uniform rates. [0111] SS1 [1101] 0.487
100 0.4 sCA1 [00**] 0.513

Probability of the SS1 w/ MaBoSS: 0.493

Table 5.3: Reachability probabilities evaluated by Avatar for the model 3, asynchronous dynamics and priority
classes (see Fig. 5.3). Avatar parameters: runs=1E3, expansion limit=1E4, rewiring limit=1E4, tau=3,
minimum SCC to rewire=4, maximum depth=1E4, rates= G0:1,G1[-]:0.5,G1[+]:2,G2:1.5,G3:1

51

Algorithm Updating mode Initial state Reached attractors Probability % of successful Time
simulations

Monte

Asynchronous update

[****] SS1 [1101] [0.456, 1.0]
45.6 3 s

Carlo

CA1 [00**] N/D
Probability of the SS1 w/ MaBoSS: 0.447

uniform rates

[1001] SS1 [1101] [0.233, 1.0]
23.3 4 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.231

[0111] SS1 [1101] [0.501, 1.0]
50.1 3 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.495

Asynchronous update

[****] SS1 [1101] [0.521, 1.0]
52.1 3 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.519

non-uniform rates

[1001] SS1 [1101] [0.302, 1.0]
30.2 4 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.312

[0111] SS1 [1101] [0.681, 1.0]
68.1 3 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.679

Priority classes: 1:{G3};

[****] SS1 [1101] [0.635, 1.0]
63.5 3 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.631

2:{G0+,G1,G2}; 3:{G0− }

[1001] SS1 [1101] [1.0, 1.0]
100 0.2 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 1

uniform rates [0111] SS1 [1101] [0.495, 1.0]
49.5 4 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.495

Priority classes: 1:{G3};

[****] SS1 [1101] [0.676, 1.0]
67.6 3 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.673

2:{G0+,G1,G2}; 3:{G0− }

[1001] SS1 [1101] [1.0, 1.0]
100 0.2 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 1

non-uniform rates [0111] SS1 [1101] [0.488, 1.0]
48.8 4 sCA1 [00**] N/D

Probability of the SS1 w/ MaBoSS: 0.493

Table 5.4: Reachability probabilities evaluated by Monte Carlo for the model 3, asynchronous dynamics and priority
classes (see Fig. 5.3). Monte Carlo’s parameters: runs=1E3, maximum depth=1E4, rates= G0:1,G1[-
]:0.5,G1[+]:2,G2:1.5,G3:1

We can observe that, for both priority settings, starting from 1001, Monte Carlo only needed 0.2

seconds to finish because all runs ended up in the stable state, at a limited depth. In contrast, when

considering the whole state space as initial conditions, about 1/3 of the runs were trapped in the cyclic

attractor (see table 5.3), requiring a larger number of simulation steps (the maximum depth specified).

52

5.2 Synthetic models

In order to ensure the consistency of the algorithm modifications, we aimed to reproduce the results

listed in Table 2 of [1]. We chose the same five models that were used to test the original version

of Avatar (see Table 1 of [1]). These are presented in Figures 5.4, 5.5, 5.6, 5.7 and 5.8 (due to the

large size of the models, it is not possible to display their STGs, we rather provide information regarding

the dynamics). To avoid deviations caused by the different performances of computers, we re-ran the

algorithms, previous and revised versions, on the same computer. We compared the results in terms of

reachability probabilities and of running times. The results of the simulations (Avatar and Monte Carlo)

are listed below in Tables 5.5, 5.6, 5.7, 5.8 and 5.9, for the five synthetic models respectively.

We can observe that there are some discrepancies between the results obtained in the original and

revised version of Monte Carlo algorithms. After analysing the probabilities, it is clear that the old version

of Monte Carlo had some bugs that have been solved during this refactoring.

Note that the synthetic model 2 has a large transient SCC composed by 8192 states in an asyn-

chronous dynamics. Starting from the state 0000001000000100, the process must traverse such a SCC

to reach the stable state SS3 (1111100101101001). As a consequence, some runs reached the prede-

fined maximum depth (104) and failed to reach attractor SS3. Indeed, as we can observe in the Table

5.9, only 6.2% of the Monte Carlo runs were successful. To address this issue, we had to raise the maxi-

mum depth to 107 in order to increase the percentage of successful simulations. Nevertheless, still 0.3%

of the Monte Carlo runs were unsuccessful and the presence of such a transient SCC causes Monte

Carlo to revisit states of the SCC an unrestricted number to times, leading to time overload (see Table

5.10). In contrast, Avatar is able to complete all the runs and offers a better performance by rewiring the

encountered cycles.

53

Random model 1 Model dynamics
(asynchronous update)

Number of states: 1024
Largest transient: 880
Number of stable state: 1
SS1: 0110011010
Number of complex attractor: 1
CA1: 110*100*11

Figure 5.4: Random model 1 from [1].

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[0000000000]
Avatar

old SS1 0.672 100 1 sCA1 0.328

revised SS1 0.683 100 1 sCA1 0.317

Monte Carlo previous SS1 [0.905, 1.0] 90.5 2 s
revised SS1 [0.674, 1.0] 67.4 1 s

Table 5.5: Reachability probabilities for the random model 1. Avatar parameters: runs=1E3, expansion limit=1E4,
rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4, asynchronous update, uni-
form transition probability. Monte Carlo’s parameters: runs=1E3, maximum depth=1E4, asynchronous
update, uniform transition probability.

54

Random model 2 Model dynamics
(asynchronous update)

Number of states: 88
Largest transient: 4
Number of stable state: 1
SS1: 0011011110
Number of complex attractor: 1
CA1: *0110111*1

Figure 5.5: Random model 2 from [1].

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[0100011100]
Avatar

previous SS1 0.246 100 0.1 sCA1 0.754

revised SS1 0.265 100 0.4 sCA1 0.735

Monte Carlo previous SS1 [0.794, 1.0] 79.4 1 s
revised SS1 [0.243, 1.0] 24.3 4 s

Table 5.6: Reachability probabilities for the random model 2. Avatar parameters: runs=1E3, expansion limit=1E4,
rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo parameters:
runs=1E3, maximum depth=1E4.

55

Random model 3 Model dynamics
(asynchronous update)

Number of states: 1408
Largest transient: 168
Number of stable state: 1
SS1: 101010000001110
Number of complex attractor: 1
CA1: 1*0001001001*00

Figure 5.6: Random model 3 from [1].

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[100000000000000]
Avatar

previous SS1 0.211 100 0.1 sCA1 0.789

revised SS1 0.208 100 0.7 sCA1 0.792

Monte Carlo previous SS1 [0.081, 1.0] 8.1 7 s
revised SS1 [0.216, 1.0] 21.6 4 s

Table 5.7: Reachability probabilities for the random model 3. Avatar parameters: runs=1E3, expansion limit=1E4,
rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo’s parameters:
runs=1E3, maximum depth=1E4.

56

Synthetic model 1 Model dynamics
(asynchronous update)

Number of states: 28320
Largest transient: 1024
Number of stable state: 1
SS1: 101001101001010
Number of complex attractor: 1
CA1: **1**0*********

Figure 5.7: Synthetic model 1 from [1].

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[000001100110111]
Avatar

previous SS1 0.595 100 4 sCA1 0.405

revised SS1 0.562 100 4 sCA1 0.438

Monte Carlo previous SS1 [0.222, 1.0] 22.2 6 s
revised SS1 [0.597, 1.0] 59.7 5 s

Table 5.8: Reachability probabilities for the synthetic model 1. Avatar parameters: runs=1E3, expansion limit=1E4,
rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo’s parameters:
runs=1E3, maximum depth=1E4.

57

Synthetic model 2 Model dynamics
(asynchronous update)

Number of states: 16224
Largest transient: 8192
Number of stable state: 3
Stable state 1 (SS1):
1010011010010100
Stable state 2 (SS2):
1101100100101001
Stable state 3 (SS3):
1111100101101001

Figure 5.8: Synthetic model 2 from [1].

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[0000001000000100]
Avatar

previous SS1 0.07 64.9 142 sSS3 0.579

revised SS1 0.069 73.6 173 sSS3 0.667

Monte Carlo previous SS1 [0.008, 1.0] 0.8 8 s

revised SS1 [0.068, 0.996] 6.2 9 sSS3 [0.004, 0.932]

Table 5.9: Reachability probabilities for the synthetic model 2. Avatar parameters: runs=1E3, expansion limit=1E4,
rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E4. Monte Carlo’s parameters:
runs=1E3, maximum depth=1E4.

Initial state Algorithm Version Reached attractor Probability % of successful Time
simulations

[0000001000000100]
Avatar revised SS1 0.065 100 267 sSS3 0.935

Monte Carlo revised SS1 [0.072, 0.075] 99.7 1610 sSS3 [0.925, 0.928]

Table 5.10: Reachability probabilities evaluated the by revised version of Monte Carlo for the synthetic model
2. Avatar parameters: runs=1E3, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to
rewire=4, maximum depth=1E6. Monte Carlo’s parameters: runs=1E3, maximum depth=1E6.

58

5.3 Biological models

To further evaluate our implementation on published biological models, we considered the segment

polarity module proposed by L. Sánchez et al. in 2008 [2], available at http://ginsim.org/model/SP, and

a model of T helper cells differentiation proposed by L. Mendoza in 2006 [3], available at

http://ginsim.org/node/41.

5.3.1 The segment polarity model

The segment polarity model describes a specific step of the segmentation typically involved in the

Drosophila embryo (see Figure 5.9).

Figure 5.9: The segmentation process involved in the development of the fly Drosophila (image adapted from SD.
Hueber’s PhD thesis)

Note that the model does not consider the whole process of the development starting from the zygote.

Indeed, this model focuses on the process that consolidates the borders between the embryo segments,

starting from the state induced by the pair-rule genes.

To account for this segmentation process, the model needs to consider 6 neighbouring cells, including

cell-cell signalling mechanisms. Its intra-cellular network encompasses 12 nodes, namely Fz, Dsh, En,

Ptc, Slp, Nkd, Pka, Ciact, Cirep, Ci, Wg, Hh (see Figure 5.10). The network has 2 input components

59

http://ginsim.org/model/SP
http://ginsim.org/node/41
https://www.researchgate.net/publication/41879778_Identification_and_functional_analysis_of_Hox_downstream_genes_in_Drosophila/figures?lo=1
https://www.researchgate.net/publication/41879778_Identification_and_functional_analysis_of_Hox_downstream_genes_in_Drosophila/figures?lo=1

(Wg input and Hh input) that correspond to the receptors of signals emitted by neighbouring cells. These

are defined by Wg and Hh signals as shown in Figure 5.11.

Figure 5.10: Intra-cellular network of the segment polarity model.

Figure 5.11: Inter-cellular interactions of segment polarity model

By fixing the inputs, we performed the reachability analysis for the intra-cellular network. The at-

tractors obtained are presented in Table 5.11. By omitting the 2 stable states obtained by activating

both inputs Wg input and Hh input (taking into account that a cell should not receive both signals), we

obtained 5 stable states denoted, respectively, trivial phenotype (T), C phenotype, Wg phenotype, En

60

phenotype and Nkd phenotype (N). Table 5.11 shows these stable states.

Wg Hh Wg Fz Dsh Slp Nkd En Hh Ci Ciact Cirep Pka Ptc State
input input

0 0 0 0 0 0 1 0 0 1 0 1 2 1 T
0 1 0 0 0 0 1 0 0 1 1 0 0 0 C
0 1 2 1 1 1 2 0 0 1 2 0 0 0 Wg
1 0 0 1 1 0 0 1 1 0 0 0 0 0 En
1 0 0 1 1 1 2 0 0 1 1 0 2 2 N
1 1 2 1 1 1 2 0 0 1 2 0 0 0 Wg
1 1 0 1 1 0 0 1 1 0 0 0 0 0 En

Table 5.11: Stable states of the segment polarity model (single cell).

Furthermore, by taking into consideration that protein modification events are faster than gene ex-

pression processes, Sánchez et al. proposed two priority classes {1:{Ciact, Cirep, Fz, Dsh, Pka}; 2:{Ci,

Wg, Nkd, En, Slp, Hh, Ptc} [2]. These priority configurations were used when assessing the reachability

probabilities with Avatar and Monte Carlo algorithms. The results of reachability probabilities for the

model with a single cell are presented in Table 5.12.

We can observe that, with the introduction of priority classes or non-uniform rates, the probability

of reaching the Wg phenotype state by having the input Hh input activated is higher compared to the

reachability probability in an asynchronous and uniform rates model dynamics.

61

Algorithm initial states Updating mode Inputs Reached Probability % of successful Time
simulations

Avatar [************]

Asynchronous update

Wg input= 0 T 1.0 100 0.7 s

whole state space

Uniform rates

Hh input= 0
Wg input= 0 C 0.858 100 0.6 sHh input= 1 Wg 0.142
Wg input= 1 En 0.503 100 0.5 sHh input= 0 N 0.497

Priority classes 1:{Ciact,Cirep,Fz,

Wg input= 0 T 1.0 100 0.7 s

Dsh, Pka}; 2:{Ci,Wg,Nkd,En,Slp,

Hh input= 0

Hh,Ptc}. Uniform rates

Wg input= 0 C 0.753 100 0.6 sHh input= 1 Wg 0.247
Wg input= 1 En 0.493 100 0.5 sHh input= 0 N 0.507

Asynchronous update. Rates:

Wg input= 0 T 1.0 100 0.7 s

Ciact, Cirep, Fz, Dsh, Pka: 50;

Hh input= 0

Ci, Wg, Nkd, En, Slp, Hh, Ptc: 1

Wg input= 0 C 0.767 100 0.7 sHh input= 1 Wg 0.233
Wg input= 1 En 0.498 100 0.6 sHh input= 0 N 0.502

Monte [************]

Asynchronous update.

Wg input= 0 T [1.0, 1.0] 100 0.3 s

Carlo whole state space

Uniform rates

Hh input= 0
Wg input= 0 C [0.843, 0.843] 100 0.3 sHh input= 1 Wg [0.157, 0.157]
Wg input= 1 En [0.503, 0.503] 100 0.3 sHh input= 0 N [0.497, 0.497]

Priority classes 1:{Ciact,Cirep,Fz,

Wg input= 0 T [1.0, 1.0] 100 0.3 s

Dsh, Pka}; 2:{Ci,Wg,Nkd,En,Slp,

Hh input= 0

Hh,Ptc}. Uniform rates

Wg input= 0 C [0.764, 0.764] 100 0.3 sHh input= 1 Wg [0.236, 0.236]
Wg input= 1 En [0.501, 0.501] 100 0.3 sHh input= 0 N [0.499, 0.499]

Asynchronous update. Rates:

Wg input= 0 T [1.0, 1.0] 100 0.3 s

Ciact, Cirep, Fz, Dsh, Pka: 50;

Hh input= 0

Ci, Wg, Nkd, En, Slp, Hh, Ptc: 1

Wg input= 0 C [0.769, 0.769] 100 0.3 sHh input= 1 Wg [0.231, 0.231]
Wg input= 1 En [0.513, 0.513] 100 0.3 sHh input= 0 N [0.487, 0.487]

Table 5.12: Reachability probabilities for the segment polarity model (single cell). Avatar parameters: runs=1E3,
expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E6, initial
state = whole state space. Monte Carlo’s parameters: runs=1E3, maximum depth=1E6, initial space=
whole state space.

When considering the inter-cellular model connected through cell signaling, we have a huge state

space with (35 ∗ 27)]num of cells states and a maximum of 5]num of cells stable states. However, this num-

ber would be effective if the inter-cellular signaling did not restrict the compatibility between neighbouring

stable states by interconnecting the intra-cellular network, as it might have no effect. Hence, we have a

restricted number of stable states.

In this case study, we are particularly interested in the model dynamics of the complete model of 6

connected cells. Since the pattern of expression induced by the pair-rule genes is the initial condition for

the subsequent segment polarity module [2], we performed the reachability analysis starting from this

initial state. As a result, the system leads to two significant stable states: a stable state composed by the

sequence of cellular phenotypes T Nkd Wg En C T, denoting the wild type pattern (the pattern observed

experimentally), and a stable state composed by all cells in the trivial state (T), which is a consequence

of an early loss of the pair-rule signal, i.e., loss of Wg and En expression in the cells 3 and 4, which are

responsible for defining the borders between the two segments [2] (see Figure 5.12). It is important to

62

mention that, the trivial state is not biologically observed, and the probability of reaching this stable state

is the highest (approximately 0.85) in an asynchronous dynamics. With the introduction of the priority

classes and non-uniform transition probabilities, we expect to obtain the wild type pattern as the most

probable attractor.

Figure 5.12: Model dynamic of segment polarity model (6 cells) by considering priority classes 1: {Ciact, Cirep, Fz,
Dsh, Pka}; 2: {Ci, Wg, Nkd, En, Slp, Hh, Ptc}. Image retrieved from [2]

63

Results are presented in Table 5.13. Note that all attractors not explicitly specified in the table are

stable states that have a very low reachability probability. As all runs performed by Monte Carlo were

successful, and no complex attractors were identified by Avatar. Overall, we were thus able to recover

the results presented in [2], complementing them with estimates of the attractor probabilities. We can

observe that, while the probability of reaching the trivial state is the highest in an asynchronous dynam-

ics, with the introduction of priority settings, the probability of reaching the wild type state has raised

significantly, becoming the most probable attractor. Moreover, as an alternative to the priority settings,

we performed the reachability analysis by considering that the rate of the transitions related to nodes of

the high priority class is 50 and the rate of the transitions related to nodes of the low priority class is 1.

As a result, the reachability probabilities obtained are similar to the probabilities obtained with the pri-

orities. Interestingly, when integrating both priority settings and non-uniform transition probabilities (we

considered that synthesis of a regulatory factor, i.e., transition increasing the value of the component, is

50 times faster than its degradation, i.e., transition increasing its value), the probability of reaching the

trivial state has dropped significantly (from 0.84 to 0.14).

Regarding the performances of the algorithms, Avatar is constrained by the need to assess the

complex structure of the model. The largest transient encountered has over 3 million of states and

Avatar struggles at identifying those transients. The reachability probabilities obtained with Avatar might

be more precise but, this model has no cyclic attractors, Monte Carlo was able to retrieve, more efficiently

most of the attractors (in particular those stable states reachable without the need to visit large transient

SCCs).

64

Algorithm Initial state Updating mode Reached attractors Probability % of successful Time
simulations

Avatar Pair-rule

Asynchronous update

T N Wg En C T 0.076

100 239 s

module

Uniform rates

T T T T T T 0.8453
C En Wg En C T 0.0476
other attractors 0.0311

Priority classes 1: {Ciact, Cirep, Fz, T N Wg En C T 0.5822

100 43 sDsh, Pka}; 2:{Ci, Wg, Nkd, En, Slp, T T T T T T 0.2926

Hh, Ptc}. Uniform rates En Wg Wg En C T 0.0707
other attractors 0.0545

Asynchronous update. Rates: T N Wg En C T 0.5775

100 306 sCiact, Cirep, Fz, Dsh, Pka: 50; T T T T T T 0.2905

Ci, Wg, Nkd, En, Slp, Hh, Ptc:1 En Wg Wg En C T 0.0675
other attractors 0.0665

Priority classes 1:{Ciact, Cirep, Fz, T N Wg En C T 0.5191

100 40 sDsh, Pka}; 2:{C1, Wg, Nkd, En, Slp, T T T T T T 0.1551
Hh, Ptc} En Wg Wg En C T 0.2351
Rate for the increasing update: 50; other attractors 0.0907
Rate for the decreasing update: 1

Monte Pair-rule

Asynchronous update

T N Wg En C T [0.0795, 0.0795]

100 6 s

Carlo module

Uniform rates

T T T T T T [0.8415, 0.8415]
C En Wg En C T [0.0479, 0.0479]
other attractors [0.0311, 0.0311]

Priority classes 1:{Ciact, Cirep, Fz, T N Wg En C T [0.5786, 0.5786]

100 7 sDsh, Pka}; 2:{Ci, Wg, Nkd, En, Slp, T T T T T T [0.2965, 0.2965]

Hh, Ptc}. Uniform rates En Wg Wg En C T [0.0672, 0.0672]
other attractors [0.0577, 0.0577]

Asynchronous update. Rates: T N Wg En C T [0.5567, 0.5567]

100 6 sCiact, Cirep, Fz, Dsh, Pka: 50; T T T T T T [0.317, 0.317]

Ci, Wg, Nkd, En, Slp, Hh, Ptc:1 En Wg Wg En C T [0.0607, 0.0607]
other attractors [0.0656, 0.0656]

Priority classes 2:{Ciact, Cirep, Fz, T N Wg En C T [0.5121, 0.5121]

100 6 sDsh, Pka}; 2:{Ci, Wg, Nkd, En, Slp, T T T T T T [0.1443, 0.1443]
Hh, Ptc} En Wg Wg En C T [0.2545, 0.2545]
Rate for the increasing update: 50 other attractors [0.0891, 0.0891]
Rate for the decreasing update: 1

Table 5.13: Reachability probabilities for the segment polarity model (6 cells). Avatar parameters: runs=1E4, ex-
pansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4, maximum depth=1E6. Monte
Carlo’s parameters: runs=1E4, maximum depth=1E6.

Finally, when considering different type of genetic background, we applied some perturbations on

the model to observe their impact on the model dynamics. A gene mutation can be classified into

loss-of-function, ectopic expression or partial loss-of-function where the activity levels of the gene is

constrained, respectively, to 0, its maximal level, and the range i.e., 0 to 1 for a multi-valued component.

We can observe from the Tables 5.14 and 5.15 that, when applying perturbations to the model, some

attractors not identified in a wild type situation arose. Most of our results are coherent with the outcomes

presented by Sanchez et al. (see Appendix of [2]). However, according to our results, for the loss-of-

function of Nkd, it is not possible to reach the expected pattern, where ”the Wg-stripe expands anteriorly,

whereas the En-stripe expands posteriorly and induces Wg in the adjacent posterior cell” [2].

65

Genetic background Most probable attractors Probability Description
Wild-type T N Wg En C T 0.5822 T Trivial cell, N Nkd cell,

T T T T T T 0.2926 Wg Wg cell, En En cell,
other attractors 0.1252 C Ci,Ci-act cell

Loss of function of T T T T T T 1.0 T trivial cell
Wg, En, Hh and Ci
Loss of function of Wg Wg Wg En C C 0.415 Wg Wg cell, En En cell,
Ptc En Wg Wg En C C 0.393 C Ci,Ci-act cell

other attractors 0.192
Loss of function of Wg Wg Wg En* C C 0.401 Wg Wg cell, En* En cell
Ptc and Hh e Wg Wg e C C 0.381 without Hh expression, C

other attractors 0.218 Ci,Ci-act cell
Loss of function of Nkd T* A Wg* En* C* T*

A A Wg* En C* T*
0.4921
0.1325

T* Trivial cell without Nkd ex-
pression,

other attractors 0.4054 A previous Nkd cell that loses
Nkd expression and gains
medium level of Wg,
Wg* Wg cell without Nkd ex-
pression,
C* C cell without Nkd expression

Loss of function of Ptc,
Wg

C C C C C C 1.0 C Ci,Ci-act cell

Loss of function of Ptc;
Partial loss-of-function of
Wg

C Wg* Wg* C C C
Wg* Wg* Wg* C C C
C Wg* Wg* C C C
C C Wg* C C C
other attractors

0.6185
0.1521
0.0961
0.0875
0.0458

C Ci,Ci-Ciact cell, Wg* Wg cell
having medium level of Wg

Ectopic expression of En En* En* En* En* En* En* 1.0 En* Cell expressing only
En and Hh

Ectopic expression of Wg En* Wg Wg En* En* En*
N* N* Wg En* En* En*
En* Wg Wg En* En* Wg
N* N* Wg En* En* Wg
other attractors

0.211
0.192
0.195
0.197
0.205

En* En cell having an ctopic ex-
pression of Wg
N* Nkd having an ectopic ex-
pression of Wg,
Wg Wg cell

Ectopic expression of Nkd T* N Wg En* C* T
T* T* T* T* T* T*
other attractors

0.5812
0.2943
0.1245

T* Trivial cell with Nkd at its max-
imal level, N Nkd cell, Wg Wg
cell, En* En cell with Nkd at
its maximal level, C* Ci,Ci-Ciact
cell with Nkd at its maximal level

Ectopic expression of Wg;
loss-of-function of Slp

En* En* En* En* En* En* 1.0 En* En cell expressing Wg
transgene

Table 5.14: Reachability probabilities evatuated by Avatar for the segment polarity model (6 cells) by considering
mutants. Priority classes 1: {Ciact, Cirep, Fz, Dsh, Pka}; 2: {Ci, Wg, Nkd, En, Slp, Hh, Ptc}, initial
state = pair rule module. Avatar’s parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3,
tau=3, minimum SCC to rewire=4, maximum depth=1E6.

66

Genetic background Most probable attractors Probability Description
Wild-type T N Wg En C T [0.5786,0.5786] T Trivial cell, N Nkd cell,

T T T T T T [0.2965, 0.2965] Wg Wg cell, En En cell,
other attractors [0.1249, 0.1249] C Ci,Ciact cell

Loss of function of T T T T T T [1.0, 1.0] T trivial cell
Wg, En, Hh and Ci
Loss of function of Wg Wg Wg En C C [0.410, 0.410] Wg Wg cell, En En cell,
Ptc En Wg Wg En C C [0.381, 0.381] C Ci,Ciact cell

other attractors [0.209, 0.209]
Loss of function of Wg Wg Wg En* C C [0.409, 0.409] Wg Wg cell, En* En cell
Ptc and Hh En* Wg Wg En* C C [0.379, 0.379] without Hh expression, C

other attractors [0.212, 0.212] Ci,Ci-act cell
Loss of function of Nkd T* A Wg* En* C* T*

A A Wg* En C* T*
[0.4821, 0.4821]
[0.134, 0.134]

T* Trivial cell without Nkd
expression,

other attractors [0.3839, 0.3839] A previous Nkd cell that
loses Nkd expression and
gains medium level of
Wg,
Wg* Wg cell without Nkd
expression,
C* C cell without Nkd ex-
pression

Loss of function of Ptc,
Wg

C C C C C C [1.0, 1.0] C Ci,Ciact cell

Loss of function of Ptc;
Partial loss-of-function of
Wg

C Wg* Wg* C C C
Wg* Wg* Wg* C C C
C Wg* Wg* C C C
C C Wg* C C C
other attractors

[0.6165, 0.6165]
[0.1515, 0.1515]
[0.0954, 0.0954]
[0.0862, 0.0862]
[0.0504, 0.0504]

C Ci,Ciact cell, Wg* Wg
cell having medium level
of Wg

Ectopic expression of En En* En* En* En* En* En* [1.0, 1.0] En* Cell expressing only
En and Hh

Ectopic expression of Wg En* Wg Wg En* En* En*
N* N* Wg En* En* En*
En* Wg Wg En* En* Wg
N* N* Wg En* En* Wg
other attractors

[0.206, 0.206]
[0.197, 0.197]
[0.191, 0.191]
[0.197, 0.197]
[0.209, 0.209]

En* En cell having an
ctopic expression of Wg
N* Nkd having an ectopic
expression of Wg,
Wg Wg cell

Ectopic expression of Nkd T* N Wg En* C* T*
T* T* T* T* T* T*
other attractors

[0.5719, 0.5719]
[0.3042, 0.3042]
[0.1239, 0.1239]

T* Trivial cell with Nkd at
its maximal level, N Nkd
cell, Wg Wg cell, En* En
cell with Nkd at its maxi-
mal level, C* Ci,Ciact cell
with Nkd at its maximal
level

Ectopic expression of Wg;
loss-of-function of Slp

En* En* En* En* En* En* [1.0, 1.0] En* En cell expressing
Wg transgene

Table 5.15: Reachability probabilities evatuated by Monte Carlo for the segment polarity model (6 cells) by consid-
ering mutants. Priority classes 1: {Ciact, Cirep, Fz, Dsh, Pka}; 2: {Ci, Wg, Nkd, En, Slp, Hh, Ptc},
initial state = pair rule module. MonteCarlo’s parameters: runs=1E4, maximum depth=1E6.

To solve this discrepancy, we followed the hypothesis discussed by Sánchez et al. in [2]. We con-

sidered a variant of the segment polarity model, where Wg signals can diffuse towards two neighboring

cells in the absence of Nkd factor (see Figure 5.13).

67

Figure 5.13: Inter-cellular interactions where Wg signals can diffuse towards two neighboring cells, with Nkd pre-
venting this longer range diffusion.

With this model modification, the expected pattern arises as reachable attractor. By summing the

probabilities of the attractors that match the expected pattern (that is a wider anterior Wg stripe, a wider

En posterior stripe, and the appearance of Wg in the posterior region), we obtain the results presented

in Table 5.16. Nevertheless, the probability of reaching such a pattern is relatively low even, when

considering priority classes and non-uniform rates. This would suggest that the update setting needs to

be refined.

Algorithm Genetic Updating mode Matching attractors Probability % of successful Time
backgrounds % of simulations

Avatar loss of function

Asynchronous update. * * Wg En Wg * 0.1521
100 1779 s

of Nkd

Uniform rates. * * Wg En En Wg 0.0243
other attractors 0.8236

Asynchronous update. Rates: * * Wg En Wg * 0.1851 100 1746 sCiact, Cirep, Fz, Dsh, Pka: 50. other attractors 0.8149
Priority update. * * Wg En Wg * 0.2293 100 546 sUniform rates. other attractors 0.7707
Priority update. * * Wg En Wg * 0.2479 100 520 sRate for the increasing update:50; other attractors 0.7321
Rate for the decreasing update:1.

Monte loss of function

Asynchronous update. * * Wg En Wg * [0.1516, 0.1516]
100 9 s

Carlo of Nkd

Uniform rates. * * Wg En En Wg [0.0245, 0.0245]
other attractors [0.8239, 0.8239]

Asynchronous update. Rates: * * Wg En Wg * [0.1848, 0.1849]
100 6 sCiact, Cirep, Fz, Dsh, Pka: 50. * * Wg En En Wg [0.0001, 0.0001]

other attractors [0.8151, 8151]
Priority update. * * Wg En Wg * [0.2287, 0.2287] 100 6 sUniform rates. other attractors [0.7713, 0.7713]
Priority update. * * Wg En Wg * [0.2687, 0.2687] 100 6 sRate for the increasing update:50; other attractors [0.7313, 0.7313]
Rate for the decreasing update:1.

Table 5.16: Reachability probabilities for the modified segment polarity model (6 cells). Initial state = pair rule
module, priority classes 1:{Ciact, Cirep, Fz, Dsh, Pka}; 2:{Ci, Wg, Nkd, En, Slp, Hh, Ptc}. Avatar’s
parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4,
maximum depth=1E6. Monte Carlo’s parameters: runs=1E4, maximum depth=1E6.

5.3.2 The T helper cells differentiation model

Our second case study is a published model of T helper cells differentiation model presented by Men-

doza [3]. The immune system of vertebrates encompasses various type of cells. Among them, Cd4+ T

68

cells (a type of T lymphocytes) can be sub-classified as Th1 or Th2 cells, which have a common precur-

sor Th0 [3]. These cells differ in their secretion pattern of cytokines (i.e., protein that are secreted by the

cell), and in their role in the cellular responses: the molecules secreted by Th1 cells lead to inflammatory

immune responses (IFN-g), while those secreted by Th2 cells intervene in humoral immune responses

(IL-4) [3]. Importantly, these cytokines secreted by Th cells promote the differentiation of these cells,

and inhibit the proliferation of each other [3] (see Figure 5.14).

Figure 5.14: Differentiation of Th cells. Th0 cells differentiate into Th1 or Th2 cells, taken from [3]

The network defined by Mendoza encompasses 17 nodes, namely IFN-g, IFN-bR, IFN-b, IFN-gR, IL-

4, IL-12, IL-18, IL-4R, IL-12R, IL-18R, STAT-1, STAT-6, STAT-4, IRAK, SOCS-1, GATA-3, and T-bet (see

Figure 5.15) [3]. To briefly describe the regulatory network, the nodes of the network represent various

kinds of molecules: secreted cytokines, receptors, signal transducers and transcription factors. IFN-g

is a determinant of the Th1 phenotype, which acts on its target cells by binding to a receptor (IFN-gR)

present in the Th1 cells themselves [3]. The transduction of the IFN-g/IFN-gR signal acts via STAT-1,

which can be activated by IFN-g via IFN-gR [3]. T-bet is a transcription factor that activates the production

of IFN-g, and its expression is up-regulated by IFN-g through a STAT-1-dependent mechanism [3]. To

summarize, the circuit IFNg→IFN-gR→STAT1→Tbet creates a positive feedback loop that promotes the

differentiation of Th1 cells. For the Th2 cells, IL-4 is an important cytokine associated with the Th2

phenotype. The transduction pathway that mediates IL-4 starts by the binding of IL-4 to its receptor

(IL-4R) [3]. Then, the IL-4R signal is transduced by STAT-6, which activates GATA-3 [3]. GATA-3 itself

is capable of inducing IL-4, thus establishing a positive feedback loop and promoting the differentiation

of Th2 cells [3]. While IFN-g and IL-4 are two cytokines that promote, respectively, the differentiation of

Th1 and Th2 cells, IL-12 is a molecule produced by monocytes and dendritic cells that, synergistically,

act with IL-18 (a molecules produced by many cell types) to cause a significant secretion of IFN-g. [3]

69

Figure 5.15: Logical regulatory graph of T helper differentiation network

In terms of dynamics, the state space of this model is composed by a total of 213 ∗ 34 states and the

four attractors reached have the following characteristics:

1. Inactivation of all the network nodes;

2. High expression of IFN-g, SOCS-1 and T-bet (reaching their maximum level), medium expression

of IFN-gR, STAT-1, and all other nodes inactivated;

3. High expression of of SOCS-1, medium expression of IFN-g, IFN-gR, STAT-1, T-bet, and all other

nodes inactivated;

4. High levels of IL-4, IL-4R, STAT-6, GATA-3, and all other nodes inactivated.

These four attractors have a clear biological interpretation. The first attractor corresponds to Th0

cells (Th0); the second (Th1 m) and third attractors (Th1 h) are states related with Th1 cells as they

both have IFN-g activated. The difference between them lies in the activity level: Th1 h has a higher

level of IFN-g, which leads to a higher level of its secretion. The fourth attractor represents the state of

Th2 cells (Th2).

Note that the differentiation process itself can be represented by the transition of the system from one

attractor to another. Hence, we can give the network a stimulus that would make the system transitioning

from one basin of attraction to another [3], thus promoting the differentiation of Th0 cell to Th1 or Th2.

For this purpose, we aimed to check the probability of reaching these attractors by considering the

following conditions:

• Starting from the Th0 attractor, we give to the system a stimulus of IFN-g, IL-4 or a mixture of IL-12

and IL-18, i.e., set the initial states as the state of Th0 plus the activation of these inputs;

70

• Furthermore, we can set a low rate for these cytokines (we considered that the rate for the update

of these components is 0.2) and observe how the probabilities vary.

Algorithm Updating mode Initial states Reached
attractor

Probability % of successful
simulations

Time

Avatar Asynchronous update

[*****************]
Th0 0.0913

100 1 s

Uniform rates

Sampling
Th1 m 0.4632
Th1 h 0.4056
Th2 0.0401

Th0 + transient
input IFN-g:1

Th0
Th1 m

0.6873
0.3127 100 1 s

Th0 + transient
input IFN-g:2

Th0
Th1 m
Th1 h

0.4472
0.4812
0.0709 100 1 s

Th0 + transient
input IL-12:1

Th0
Th1 m

0.7686
0.2314 100 1 s

Th0 + transient
input IL-18:1

Th0 1.0 100 1 s

Th0 + transient
inputs IL-12:1,
IL-18:1

Th0
Th1 m
Th1 h

0.7452
0.2419
0.0129

100 1 s

Th0 + transient
input IL-4:1

Th0
Th2

0.7443
0.2557 100 1 s

Monte Asynchronous update

[*****************]
Th0 [0.0915, 0.0915]

100 1 s

Carlo Uniform rates

Sampling
Th1 m [0.4608, 0.4608]
Th1 h [0.409, 0.409]
Th2 [0.0387, 0.0387]

Th0 + transient
input IFN-g:1

Th0
Th1 m

[0.6907, 0.6907]
[0.3093, 0.3093] 100 1 s

Th0 + transient
input IFN-g:2

Th0
Th1 m
Th1 h

[0.4373, 0.4373]
[0.4874, 0.4874]
[0.0753, 0.0753]

100 1 s

Th0 + transient
input IL-12:1

Th0
Th1 m

[0.7679, 0.7679]
[0.2321, 0.2321] 100 1 s

Th0 + transient
input IL-18:1

Th0 [1.0, 1.0] 100 1 s

Th0 + transient
inputs IL-12:1,
IL-18:1

Th0
Th1 m
Th1 h

[0.7674, 0.7674]
[0.2216, 0.2216]
[0.011, 0.011]

100 1 s

Th0 + transient
input IL-4:1

Th0
Th2

[0.7461, 0.7461]
[0.2539, 0.2539] 100 1 s

Table 5.17: Reachability probabilities for the T helper differentiation model when considering transient inputs. Avatar
parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3, tau=3, minimum SCC to rewire=4,
maximum depth=1E6. Monte Carlo’s parameters: runs=1E4, maximum depth=1E6.

71

The results listed in Table 5.17 confirm the role of the cytokines described above, and we can observe

that:

• A higher level of IFN-g can increase the probability of reaching the Th1 state (both Th1 m and

Th1 h);

• IL-18 does not promote the differentiation of Th0, but, together with IL-12, it stimulates the differ-

entiation into Th1 with high level of IFN-g.

Algorithm Updating mode Initial states Reached
attractor

Probability % of successful
simulations

Time

Avatar Asynchronous update

[*****************]
Th0 0.0928

100 1 s

Rates of inputs: 0.2

Sampling
Th1 m 0.4712

Rates of non-inputs

Th1 h 0.404

components: 1

Th2 0.032
Th0 + transient
input IFN-g:1

Th0
Th1 m

0.282
0.718 100 1 s

Th0 + transient
input IFN-g:2

Th0
Th1 m
Th1 h

0.0711
0.6692
0.2597

100 1 s

Th0 + transient
input IL-12:1

Th0
Th1 m

0.5613
0.4387 100 1 s

Th0 + transient
input IL-18:1

Th0 1.0 100 1 s

Th0 + transient
inputs IL-12:1,
IL-18:1

Th0
Th1 m
Th1 h

0.5575
0.2419
0.0255

100 1 s

Th0 + transient
input IL-4:1

Th0
Th2

0.3807
0.6193 100 1 s

Monte Asynchronous update

[*****************]
Th0 [0.0805, 0.0505]

100 1 s

Carlo Rates of inputs: 0.2

Sampling
Th1 m [0.4772, 0.5072]

Rates of non-inputs

Th1 h [0.4108, 0.4108]

components: 1

Th2 [0.0315, 0.0315]
Th0 + transient
input IFN-g:1

Th0
Th1 m

[0.2807, 0.2807]
[0.7193, 0.7193] 100 1 s

Th0 + transient
input IFN-g:2

Th0
Th1 m
Th1 h

[0.068, 0.068]
[0.6642, 0.6642]
[0.2678, 0.2678]

100 1 s

Th0 + transient
input IL-12:1

Th0
Th1 m

[0.5545, 0.5545]
[0.4455, 0.4455] 100 1 s

Th0 + transient
input IL-18:1

Th0 [1.0, 1.0] 100 1 s

Th0 + transient
inputs IL-12:1,
IL-18:1

Th0
Th1 m
Th1 h

[0.5553, 0.5553]
[0.4181, 0.4181]
[0.0266, 0.0266]

100 1 s

Th0 + transient
input IL-4:1

Th0
Th2

[0.3713, 0.3713]
[0.6287, 0.6287] 100 1 s

Table 5.18: Reachability probabilities for the T helper differentiation model when considering transient inputs and
non-uniform transition rates. Avatar parameters: runs=1E4, expansion limit=1E4, rewiring limit=1E3,
tau=3, minimum SCC to rewire=4, maximum depth=1E6. Monte Carlo’s parameters: runs=1E4, maxi-
mum depth=1E6.

When considering a low rate for the updating of these molecules, we can observe that the probability

of reaching the Th0 state has dropped significantly, while the probabilities of all other attractors have

increased notably (see Table 5.18).

72

Finally, the results listed in Tables 5.19 and 5.20 present the reachability results when applying

perturbations to the model. We can observe that, when fixing the value of these cytokines, the model

dynamics differ notably from a wild type. Furthermore, by analysing these results, we were able to get

some insights into the network:

• It is expected to reach the same attractors with a loss of function of IFN-g or IFN-gR (since they

belong to the same feedback loop). However, the attractors of these mutants differ in the level of

activation of IFN-g (which is observed biologically [3]);

• With ectopic expression of IFN-g, the system leads to Th1 state with high level of IFN-g. Whereas,

when fixing the value of IFN-g to 1, the attractors reached correspond to Th1 state with medium

expression of IFN-g, which is coherent to the dynamic role that this molecules plays in the differ-

entiation process;

• In the case of ectopic expression of IL-18, the system does not behave differently from the wild-

type as the four reached attractors are similar to those observed in a wild-type (with the activation

of IL-18, IL-18R, and IRAK, as shown by Table 5.19);

• IL-18 is a potent inducer in combination with IL-12 [3]. Indeed, when having both IL-12, IL-18

over-expressed, the system leads to the loss the Th0 attractor and both reached Th1 states have

IFN-g highly expressed;

• With ectopic expression of GATA-3, the system has a high probability of reaching the Th2 state

which is coherent to the fact that GATA-3 is a transcription factor that induces IL-4.

73

Genetic background Reached attractors Probability
Wild-type Th0: Th0 state

Th1 m: Th1 state with medium level of IFN-g
Th1 h: Th1 state with high level of IFN-g
Th2: Th2 state

0.0913
0.4632
0.4056
0.0401

Loss of function of IFN-g Th0: Th0 state
Th0*: Th0 state with medium expression of T-bet and
high expression of SOCS-1
Th0*: Th0 state with high expression of SOCS-1 and
T-bet
Th2: Th2 state

0.1126
0.4401

0.3991

0.0482
Loss of function of IFN-gR Th0: Th0 state

Th1 m*: Th1 m state without the expression of STAT-1
and IFN-gR.
Th1 h*: Th1 h state without the expression of STAT-1
and IFN-gR
Th2: Th2 state

0.1412
0.4085

0.3811

0.0692
Restriction of activity of
IFN-g to 1

Th1 m Th1 m state
Th1 m* Th1 m state with high level of T-bet

0.5949
0.4051

Ectopic expression of
IFN-g

Th1 h*: Th1 m state with medium expression of T-bet
Th1 h: Th1 h state

0.5509
0.4491

Ectopic expression of IL-
12

Th2*: Th2 state with IL-12 activated
Th1 m*: Th1 m state with IL-12, IL-12R and STAT-4 ac-
tivated
Th1 h*: Th1 h state with IL-12, IL-12R and STAT-4 ac-
tivated

0.0355
0.5568

0.4077

Ectopic expression of IL-
18

Th0: Th0 state
Th1 m*: Th1 m state with IL-18, IL-18R and IRAK acti-
vated
Th1 h*: Th1 h state with IL-18, IL-18R and IRAK acti-
vated
Th2: Th2 state with IL-18 activated

0.0946
0.4647

0.3987

0.042
Ectopic expression of IL-
12 and IL-18

Th0: Th0 state with IL-12 and IL-18 activated
Th1 h*: Th1 h state with IL-18, IL-18R, IRAK, IL-12, IL-
12R activated and medium expression of T-bet.
Th1 h*: Th1 h state with IL-18, IL-18R, IRAK, IL-12,
IL-12R activated and high expression of T-bet

0.035
0.5274

0.4376

Ectopic expression of
GATA-3

Th1 m*: Th1 m state with GATA-3 activated
Th1 h*: Th1 h state with GATA-3 activated
Th2: Th2 state

0.2636
0.1923
0.5441

Table 5.19: Reachability probabilities evaluated by Avatar for the T helper cells differentiation model by considering
mutants. initial state = whole state space, Avatar’s parameters: runs=1E4, expansion limit = 1E4,
rewiring limit = 1E3, maximum depth=1E6.

74

Genetic background Reached attractors Probability
Wild-type Th0: Th0 state

Th1 m: Th1 state with medium level of IFN-g
Th1 h: Th1 state with high level of IFN-g
Th2: Th2 state

[0.0915, 0.0915]
[0.4608, 0.4608]
[0.409, 0.409]
[0.0387, 0.387]

Loss of function of IFN-g Th0: Th0 state
Th0*: Th0 state with medium expression of T-bet and
high expression of SOCS-1
Th0*: Th0 state with high expression of SOCS-1 and
T-bet
Th2: Th2 state

[0.1133, 0.1133]
[0.4392, 0.4392]

[0.3983, 0.3983]

[0.0492, 0.0492]
Loss of function of IFN-gR Th0: Th0 state

Th1 m*: Th1 m state without the expression of
STAT-1 and IFN-gR.
Th1 h*: Th1 h state without the expression of STAT-
1 and IFN-gR
Th2: Th2 state

[0.1367, 0.1367]
[0.412, 0.412]

[0.3795, 0.3795]

[0.0718, 0.0718]
Restriction of activity of
IFN-g to 1

Th1 m Th1 m state
Th1 m* Th1 m state with high level of T-bet

[0.6082, 0.6082]
[0.3918, 0.3918]

Ectopic expression of
IFN-g

Th1 h*: Th1 m state with medium expression of T-
bet
Th1 h: Th1 h state

[0.5559, 0.5559]
[0.4441]

Ectopic expression of IL-
12

Th2*: Th2 state with IL-12 activated
Th1 m*: Th1 m state with IL-12, IL-12R and STAT-4
activated
Th1 h*: Th1 h state with IL-12, IL-12R and STAT-4
activated

[0.0355, 0.0355]
[0.5561, 0.5561]

[0.4084, 0.4084]

Ectopic expression of IL-
18

Th0: Th0 state
Th1 m*: Th1 m state with IL-18, IL-18R and IRAK
activated
Th1 h*: Th1 h state with IL-18, IL-18R and IRAK ac-
tivated
Th2: Th2 state with IL-18 activated

[0.0949, 0.0949]
[0.4556, 0.4556]

[0.4113, 0.4113]

[0.0382, 0.0382]
Ectopic expression of IL-
12 and IL-18

Th0: Th0 state with IL-12 and IL-18 activated
Th1 h*: Th1 h state with IL-18, IL-18R, IRAK, IL-12,
IL-12R activated and medium expression of T-bet
Th1 h*: Th1 h state with IL-18, IL-18R, IRAK, IL-12,
IL-12R activated and high expression of T-bet

[0.0353, 0.0353]
[0.526, 0.526]

[0.4387, 0.4387]

Ectopic expression of
GATA-3

Th1 m*: Th1 m state with GATA-3 activated
Th1 h*: Th1 h state with GATA-3 activated
Th2: Th2 state

[0.2665, 0.2665]
[0.1971, 0.1971]
[0.5364, 0.5364]

Table 5.20: Reachability probabilities evaluated by Monte Carlo for the T helper cells differentiation model by con-
sidering mutants. initial state = whole state space, Avatar’s parameters: runs=1E4, expansion limit =
1E4, rewiring limit = 1E3, maximum depth=1E6.

75

76

6
Conclusion

77

Logical modelling has been proposed to capture salient dynamical properties models of regulatory net-

works, and has proved well suited for this intent. We are particularly interested in identifying model

attractors and to quantify their reachability.

The dynamics of a model can be represented by a State Transition Graph (STG). To identify the

attractors of a logical model, one can compute its STG and directly analyse it. However, due to the

combinatorial explosion of the number of states, this procedure becomes impractical for large models.

To address this issue, Mendes et al. [1] proposed some tools (Avatar, Firefront and Monte Carlo) to

surpass efficiency bottlenecks and solve the problem of quantification of attractor reachability. Never-

theless, Avatar and Monte Carlo were limited to solely support the asynchronous update scheme, as

probabilities of concurrent transitions were defined as uniformly distributed. To overcome these limita-

tions, we extended both Avatar and Monte Carlo algorithms to support priority classes and non-uniform

probabilities.

At first, we refactored the original three algorithms, and made the code migration from GINsim to

bioLQM in order to increase their interoperability and extensibility. These algorithms can now be used

by calling the corresponding service of bioLQM, and, in the future, this could be easily extended to

support other updating modes. In addition, we integrated priority classes by considering the priority

updater existing in bioLQM [6]. Moreover, the transition probabilities, initially uniform, are now calculated

according to the qualitative rate associated to each component update. Furthermore, when considering

non-uniform transition probabilities in Avatar, we redefined the method of calculating the probabilities

of transitions exiting a cycle to the exiting states of the cycle. In particular, in the second strategy of

rewiring procedure, the probabilities of exiting a rewired cycle are calculated according to the number of

transition from each state of the cycle to exit states, and to the rates associated to these transitions.

The results obtained from the JUnit test cases and the synthetic models have shown the correctness

of the revised algorithms and their ability to identify efficiently the attractors and assess their reacha-

bility. Monte Carlo has an excellent performance in the absence of large transient SCCs and its use is

recommended when the attractors are known to be all stable states. Avatar supports the identification of

complex attractors and rewires transient SCCs, as a consequence, its performance is highly dependent

on the STG structure and the chosen parameters. When considering biological models, the integration

of priority classes and non-uniform transition probabilities permits further analyses of the model prop-

erties. For example, by taking into account biological knowledge related to the kinetic of the regulatory

processes, we were able to maximize the reachability probabilities of the wild type state of the segment

polarity model [2], thus, reducing the probability of reaching attractors not biologically observed.

To promote the accessibility of the tools developed (as well as the reproducibility of our results), we

started to integrate our tools in CoLoMoTo Interactive Notebook [31] by developing the corresponding

Python programming interface. While this work is still incomplete, we aim to finish the implementation

78

as soon as the official version of bioLQM integrates our tools.

As a future work, other updating modes could be proposed and integrated in the quantification reach-

ability algorithms. In particular, the current priority settings only account for sole asynchronous updating

for each class, we could refine these settings to classes with different types of updating modes, such as

the synchronous updating scheme and the complete updating scheme [6].

79

80

Bibliography

[1] N. D. Mendes, R. Henriques, E. Remy, J. Carneiro, P. T. Monteiro, and C. Chaouiya, “Estimating

attractor reachability in asynchronous logical models,” Frontiers in Physiology, vol. 9, Sep. 2018.

[Online]. Available: https://doi.org/10.3389/fphys.2018.01161

[2] L. Sanchez, C. Chaouiya, and D. Thieffry, “Segmenting the fly embryo: logical analysis of the role of

the segment polarity cross-regulatory module,” The International Journal of Developmental Biology,

vol. 52, no. 8, pp. 1059–1075, 2008. [Online]. Available: https://doi.org/10.1387/ijdb.072439ls

[3] L. Mendoza, “A network model for the control of the differentiation process in th

cells,” Biosystems, vol. 84, no. 2, pp. 101–114, May 2006. [Online]. Available: https:

//doi.org/10.1016/j.biosystems.2005.10.004

[4] H. de Jong, “Modeling and simulation of genetic regulatory systems: A literature review,”

Journal of Computational Biology, vol. 9, no. 1, pp. 67–103, Jan. 2002. [Online]. Available:

https://doi.org/10.1089/10665270252833208

[5] N. L. Novère, “Quantitative and logic modelling of molecular and gene networks,” Nature

Reviews Genetics, vol. 16, no. 3, pp. 146–158, Feb. 2015. [Online]. Available: https:

//doi.org/10.1038/nrg3885

[6] A. Naldi, “BioLQM: A java toolkit for the manipulation and conversion of logical qualitative

models of biological networks,” Frontiers in Physiology, vol. 9, Nov. 2018. [Online]. Available:

https://doi.org/10.3389/fphys.2018.01605

[7] A. Naldi, D. Thieffry, and C. Chaouiya, “Decision diagrams for the representation and analysis of

logical models of genetic networks,” in Computational Methods in Systems Biology. Springer Berlin

Heidelberg, 2007, pp. 233–247. [Online]. Available: https://doi.org/10.1007/978-3-540-75140-3 16

[8] W. Abou-Jaoudé, D. A. Ouattara, and M. Kaufman, “From structure to dynamics: Frequency tuning

in the p53–mdm2 network,” Journal of Theoretical Biology, vol. 258, no. 4, pp. 561–577, Jun. 2009.

[Online]. Available: https://doi.org/10.1016/j.jtbi.2009.02.005

81

https://doi.org/10.3389/fphys.2018.01161
https://doi.org/10.1387/ijdb.072439ls
https://doi.org/10.1016/j.biosystems.2005.10.004
https://doi.org/10.1016/j.biosystems.2005.10.004
https://doi.org/10.1089/10665270252833208
https://doi.org/10.1038/nrg3885
https://doi.org/10.1038/nrg3885
https://doi.org/10.3389/fphys.2018.01605
https://doi.org/10.1007/978-3-540-75140-3_16
https://doi.org/10.1016/j.jtbi.2009.02.005

[9] W. Abou-Jaoudé, P. Traynard, P. T. Monteiro, J. Saez-Rodriguez, T. Helikar, D. Thieffry, and

C. Chaouiya, “Logical modeling and dynamical analysis of cellular networks,” Frontiers in Genetics,

vol. 7, May 2016. [Online]. Available: https://doi.org/10.3389/fgene.2016.00094

[10] D. Bérenguier, C. Chaouiya, P. T. Monteiro, A. Naldi, E. Remy, D. Thieffry, and L. Tichit, “Dynamical

modeling and analysis of large cellular regulatory networks,” Chaos: An Interdisciplinary

Journal of Nonlinear Science, vol. 23, no. 2, p. 025114, Jun. 2013. [Online]. Available:

https://doi.org/10.1063/1.4809783

[11] A. Faure, A. Naldi, C. Chaouiya, and D. Thieffry, “Dynamical analysis of a generic boolean model

for the control of the mammalian cell cycle,” Bioinformatics, vol. 22, no. 14, pp. e124–e131, Jul.

2006. [Online]. Available: https://doi.org/10.1093/bioinformatics/btl210

[12] A. Naldi, J. Carneiro, C. Chaouiya, and D. Thieffry, “Diversity and plasticity of th cell types predicted

from regulatory network modelling,” PLoS Computational Biology, vol. 6, no. 9, p. e1000912, Sep.

2010. [Online]. Available: https://doi.org/10.1371/journal.pcbi.1000912

[13] W. Abou-Jaoudé, P. T. Monteiro, A. Naldi, M. Grandclaudon, V. Soumelis, C. Chaouiya, and

D. Thieffry, “Model checking to assess t-helper cell plasticity,” Frontiers in Bioengineering and

Biotechnology, vol. 2, Jan. 2015. [Online]. Available: https://doi.org/10.3389/fbioe.2014.00086

[14] G. Stoll, E. Viara, E. Barillot, and L. Calzone, “Continuous time boolean modeling for biological

signaling: application of gillespie algorithm,” BMC Systems Biology, vol. 6, no. 1, p. 116, 2012.

[Online]. Available: https://doi.org/10.1186/1752-0509-6-116

[15] P. Brémaud, “Discrete-time markov models,” in Texts in Applied Mathematics. Springer New York,

1999, pp. 53–93. [Online]. Available: https://doi.org/10.1007/978-1-4757-3124-8 2

[16] C. M. Grinstead and J. L. Snell, Introduction to Probability. AMS, 2003. [Online]. Available:

http://www.dartmouth.edu/∼chance/teaching aids/books articles/probability book/book.html

[17] R. Tarjan, “Depth-first search and linear graph algorithms,” in 12th Annual Symposium

on Switching and Automata Theory (swat 1971). IEEE, Oct. 1971. [Online]. Available:

https://doi.org/10.1109/swat.1971.10

[18] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attractors in synchronous boolean

networks,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 5, pp.

1393–1399, Sep. 2011. [Online]. Available: https://doi.org/10.1109/tcbb.2010.20

[19] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli, “An efficient method for dynamic

analysis of gene regulatory networks and in silico gene perturbation experiments,” in Lecture

82

https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1063/1.4809783
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1371/journal.pcbi.1000912
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.1186/1752-0509-6-116
https://doi.org/10.1007/978-1-4757-3124-8_2
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
https://doi.org/10.1109/swat.1971.10
https://doi.org/10.1109/tcbb.2010.20

Notes in Computer Science. Springer Berlin Heidelberg, 2007, pp. 62–76. [Online]. Available:

https://doi.org/10.1007/978-3-540-71681-5 5

[20] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in Handbook

of Model Checking. Springer International Publishing, 2018, pp. 1–26. [Online]. Available:

https://doi.org/10.1007/978-3-319-10575-8 1

[21] S. Busard and C. Pecheur, “Rich counter-examples for temporal-epistemic logic model checking,”

Electronic Proceedings in Theoretical Computer Science, vol. 78, p. 39–53, Feb 2012. [Online].

Available: http://dx.doi.org/10.4204/EPTCS.78.4

[22] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: a new symbolic model checker,”

International Journal on Software Tools for Technology Transfer (STTT), vol. 2, no. 4, pp. 410–425,

Mar. 2000. [Online]. Available: https://doi.org/10.1007/s100090050046

[23] A. Lomuscio, C. Pecheur, and F. Raimondi, “Automatic verification of knowledge and time with

nusmv,” in Proceedings of the Twentieth International Joint Conference on Artificial Intelligence.

IJCAI/AAAI Press, 2007, pp. 1384–1389.

[24] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic real-time

systems,” in Computer Aided Verification. Springer Berlin Heidelberg, 2011, pp. 585–591.

[Online]. Available: https://doi.org/10.1007/978-3-642-22110-1 47

[25] A. Naldi, C. Hernandez, W. Abou-Jaoudé, P. T. Monteiro, C. Chaouiya, and D. Thieffry, “Logical

modeling and analysis of cellular regulatory networks with GINsim 3.0,” Frontiers in Physiology,

vol. 9, Jun. 2018. [Online]. Available: https://doi.org/10.3389/fphys.2018.00646

[26] P. T. Monteiro and C. Chaouiya, “Efficient verification for logical models of regulatory networks,” in

6th International Conference on Practical Applications of Computational Biology & Bioinformatics.

Springer, 2012, pp. 259–267. [Online]. Available: https://doi.org/10.1007/978-3-642-28839-5 30

[27] G. A. Bird, “Monte-Carlo simulation in an engineering context,” Progress in Astronautics and

Aeronautics, vol. 74, pp. 239–255, Jan. 1981. [Online]. Available: https://ui.adsabs.harvard.edu/

abs/1981PrAA...74..239B

[28] D. T. Gillespie, “A general method for numerically simulating the stochastic time evolution of

coupled chemical reactions,” Journal of Computational Physics, vol. 22, no. 4, pp. 403–434, Dec.

1976. [Online]. Available: https://doi.org/10.1016/0021-9991(76)90041-3

[29] C. Chaouiya, D. Bérenguier, S. M. Keating, A. Naldi, M. P. van Iersel, N. Rodriguez, A. Dräger,

F. Büchel, T. Cokelaer, B. Kowal, B. Wicks, E. Gonçalves, J. Dorier, M. Page, P. T. Monteiro, A. von

83

https://doi.org/10.1007/978-3-540-71681-5_5
https://doi.org/10.1007/978-3-319-10575-8_1
http://dx.doi.org/10.4204/EPTCS.78.4
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.3389/fphys.2018.00646
https://doi.org/10.1007/978-3-642-28839-5_30
https://ui.adsabs.harvard.edu/abs/1981PrAA...74..239B
https://ui.adsabs.harvard.edu/abs/1981PrAA...74..239B
https://doi.org/10.1016/0021-9991(76)90041-3

Kamp, I. Xenarios, H. de Jong, M. Hucka, S. Klamt, D. Thieffry, N. L. Novère, J. Saez-Rodriguez,

and T. Helikar, “SBML qualitative models: a model representation format and infrastructure to

foster interactions between qualitative modelling formalisms and tools,” BMC Systems Biology,

vol. 7, no. 1, p. 135, 2013. [Online]. Available: https://doi.org/10.1186/1752-0509-7-135

[30] A. Naldi, P. T. Monteiro, C. Mussel, H. A. Kestler, D. Thieffry, I. Xenarios, J. Saez-Rodriguez,

T. Helikar, and C. C. and, “Cooperative development of logical modelling standards and tools

with CoLoMoTo,” Bioinformatics, vol. 31, no. 7, pp. 1154–1159, Jan. 2015. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btv013

[31] A. Naldi, C. Hernandez, N. Levy, G. Stoll, P. T. Monteiro, C. Chaouiya, T. Helikar, A. Zinovyev,

L. Calzone, S. Cohen-Boulakia, D. Thieffry, and L. Paulevé, “The CoLoMoTo interactive notebook:

Accessible and reproducible computational analyses for qualitative biological networks,” Frontiers

in Physiology, vol. 9, Jun. 2018. [Online]. Available: https://doi.org/10.3389/fphys.2018.00680

84

https://doi.org/10.1186/1752-0509-7-135
https://doi.org/10.1093/bioinformatics/btv013
https://doi.org/10.3389/fphys.2018.00680

A
Manual of bioLQM

Here we present a small user manual of the modified bioLQM proposed in this thesis, through the use

of command-line arguments [6].

A.1 Overview

By running the executable through the command java -jar bioLQM.jar, bioLQM will provide a script-

ing interface to illustrate all the instructions to manipulate a logical model. As illustrated in Figure A.1, it

is mandatory to provide a model file when intent to run the bioLQM tool. The extensive list of model file

supported by bioLQM is listed in Figure A.2.

85

Figure A.1: Usage of bioLQM

Figure A.2: Formats supported by bioLQM

A user may need to apply a modifier to the model before running a specific tool. To apply a mod-

ifier, the corresponding argument is -m followed by the modifier in question. Example: java -jar

bioLQM.jar model file -m modifier. The list of the available modifiers in bioLQM is listed in Fig-

ure A.3.

Figure A.3: Modifiers available in bioLQM

To run a specific tool, the corresponding argument is -r followed by the desired designation. Note

that, when manipulating a modified model, it is necessary to modify it before executing a tool, i.e., the

argument -m modifier should never be specified after the argument -r tool. The list of the available

86

tools in bioLQM is presented in Figure A.4.

Figure A.4: Tools available in bioLQM

More examples of usage of bioLQM can be seen in Figure A.5.

Figure A.5: Example of usage of bioLQM

To define initial conditions, a user can specify a pattern by passing the corresponding argument

-i pattern. It is possible to set multiple patterns as initial conditions by separating them with a "-"

(example: -i pattern1-pattern2). Whenever we would like to perform simulations using Avatar or

Monte Carlo, bioLQM will choose a random state from the union of the specified patterns and set it as

an initial state at each given iteration. Note that this argument can be also used in the following tools:

random walk and compute deterministic trace.

To facilitate its use and improve the readability of the results obtained, it is possible to provide to

the system a file, which contains the information regarding a phenotype (a named (set of) pattern(s)),

through the argument "-ns file name". As benefits, users can directly specify the name of a pheno-

type, when defining the initial conditions (example: "-i phenotype" or "-i" phenotype1-phenotype2"

when setting multiple patterns as initial conditions). Moreover, when retrieving simulation results, the

system will automatically parse the reached pattern to identify the corresponding phenotype. Table A.1

shows an example.

87

T 0000*****121
C 0000****1***

Wg 21112*******
En *****11*****
N 0***200*****

Table A.1: Phenotypes and the corresponding patterns

A.2 Input parameters of algorithms

Since Avatar and Monte Carlo have their own extensive list of parameters, we provided scripting pages

to show which parameters are supported by each algorithm. For Avatar, it is required to always specify

the number of runs, rewiring and expansion limits (see Figure A.6), while, for Monte Carlo, only the

number of runs needs to be specified (see Figure A.7).

Figure A.6: Available parameters of Avatar

Figure A.7: Available parameters of Monte Carlo

Furthermore, since the format of input string of some of these parameters might not be intuitive, we

provided the following information to ease its use:

• For the parameter --priorityClasses, nodes in the same priority are separated by a ”/” , and

classes are separated by a ”:”, where the class with the highest priority is the first in the string.

Example: java -jar bioLQM.jar model.sbml -r avatar --priorityClasses G1[+]:G2/G3/

G4/G1[-] (the synthesis of G1 is in the higher class, while G2, G3, G4 and the degration of G1 are

in the lower class).

88

• For the parameter --rates, to assign a value to the rate of a node, we have a pair ”node:rate”,

where ”node” is the name of the node and ”rate” is a floating number. The pairs are separated by

a comma ”,”. The rates of nodes not explicitly specified are, initially assigned to value 1.

Example: java -jar bioLQM.jar model.sbml -r avatar --rates G1[+]:5,G3[-]:3 (the rate

of synthesis of G1 is 5, the rate of degradation of G3 is 3 and the rest of the rates are 1).

89

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Objectives
	1.2 Dissertation Outline

	2 Background
	2.1 Logical regulatory graph
	2.2 Model dynamics and properties
	2.3 Model analysis
	2.4 Markov process
	2.5 STG seen as Absorbing Markov Chains

	3 Related Work
	3.1 Attractor identification
	3.1.1 Classical algorithm to identify Strongly Connected Components
	3.1.2 Hierarchical Transition Graph
	3.1.3 Stable state identification

	3.2 Attractor reachability
	3.2.1 SAT-based algorithm to find attractors
	3.2.2 Model Checking for reachability analysis

	3.3 Quantification of attractor reachability
	3.3.1 Classical Monte Carlo Simulation
	3.3.2 Firefront
	3.3.3 MaBoSS
	3.3.4 Avatar

	4 Extension of the Quantification Reachability Algorithms
	4.1 Software context
	4.1.1 BioLQM
	4.1.2 GINsim

	4.2 Refactoring and migration of Avatar, Firefront and Monte Carlo to bioLQM
	4.3 Supporting new updating modes in Avatar and Monte Carlo
	4.3.1 Non-uniform transition probabilities
	4.3.2 Priority Classes

	4.4 Implementation of new updating modes
	4.5 Integration into ColoMoTo Interactive Notebook

	5 Evaluation
	5.1 Junit test cases
	5.1.1 Test model 1
	5.1.2 Test model 2
	5.1.3 Test model 3

	5.2 Synthetic models
	5.3 Biological models
	5.3.1 The segment polarity model
	5.3.2 The T helper cells differentiation model

	6 Conclusion
	Bibliography

	Bibliography
	Appendix A

	A Manual of bioLQM
	A.1 Overview
	A.2 Input parameters of algorithms
	Appendix B

