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Abstract

Parkinson’s disease is a neurological disorder that affects 1% of the population over 60. Multiple
diseases cause similar symptoms, but Parkinson’s disease is characterized by dopaminergic neuronal
loss. This leads to dopamine deficiency, which can be detected with a DaTscan. Subjects initially
diagnosed with Parkinson’s, but who have a negative exam are grouped as patients with Scans Without
Evidence of Dopamine Deficiency. The present work aims to achieve the distinction of subjects with
and without dopamine deficiency with a structural Magnetic Resonance Imaging scan. Images from
311 subjects from the PPMI database were processed with FreeSurfer into 689 features. Data was
then divided into 2 categories, with 70% allocated to training sets, and 30% set aside for test sets.
Cross-validation and a validation set, made up of 10% of the training data, were used to compare
different modelling approaches. An existing Machine Learning pipeline was used as a baseline approach.
Multiple algorithms were compared. For feature selection, the features were partitioned into sets
according to brain region, and as an alternative, features from robust Principal Component Analysis.
The baseline approach overfitted, with accuracies of 96.6% and 54.5% for training and validation sets,
respectively. All other simpler approaches resulted in underfitting or overfitting, with the highest
validation balanced accuracy being 80.42% and 62.67% for cross validation. These were tested in the
independent test set where the highest balanced accuracy was 50.60%.
Keywords: Parkinson’s Disease, SWEDD, Machine Learning, Magnetic Resonance Imaging

1. Introduction

Parkinson’s Disease (PD) is a neurological disorder
that currently affects 1% of the population older
than 60 years [1], with more than 6 million indi-
viduals affected worldwide [2], and it is expected to
affect a greater percentage of the population in the
decades to come [3]. In regard to its pathogenesis,
most cases of PD are idiopathic (unknown cause),
although there are known genetic and environmen-
tal contributions [2], with the greatest risk factor
being age [3].

Pathologically, PD is characterised by a loss of
dopaminergic neurons and the presence of Lewy
bodies, which are abnormal aggregations of protein
that develop inside nerve cells in the midbrain [3].
This leads to non-motor symptoms, like sleep dis-
orders, and motor symptoms, for instance tremors
and rigidity, the latter two being the most well-
known PD symptoms.

Diagnosing Parkinson’s Disease

There is currently no definitive test for the diagnosis
of PD in the living. Diagnosis requires post-mortem
examination of the brain for neuronal loss and de-
pigmentation of the substantia nigra, in addition to

the presence of Lewy bodies in the brain stem [4, 5].

Patients usually seek clinical help when motor
symptoms start. Parkinsonism is a general term for
a group of neurological disorders that cause those
motor symptoms such as tremors, slow movement,
and stiffness, and PD is the disease that most com-
monly explains a Parkinsonism case. The diagno-
sis process for a patient presenting symptoms relies
on the expertise and experience of clinicians to dis-
tinguish and identify the underlying disease, based
mainly on observational signs and symptoms, brain
exams and response to medication [5].

The accuracy of PD diagnosis still has room for
improvement, with current studies reporting an ac-
curacy of 83.9% when done by experts and 73.8%
when given by non experts [6].

DaTscan and SWEDD

DaTscan SPECT (single-photon emission comput-
erized tomography) is a highly accurate exam, with
98% sensitivity and 100% specificity, in detecting
dopamine deficiency in subjects with Parkinsonism
[2]. The use of DaTscan for the diagnosis of PD
has been studied [7], but it does not add enough to
the diagnostic assessment to make it worthwhile [2],
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since this exam is expensive and not easily available.

However, there are subjects that are clinically di-
agnosed with PD, whom after post-mortem exam-
ination or via DaTscan are detected to not have
dopamine deficiency. These subjects are grouped
as SWEDD (Scans Without Evidence of Dopamine
Deficiency) but it should not be considered a diag-
nosis, since these subjects may present a plethora
of different diseases other than PD, for instance
supranigral parkinsonism and vascular parkinson-
ism [8].

Hypothesis and objectives

The present work study aims to achieve the distinc-
tion of subjects with and without dopamine defi-
ciency with a structural Magnetic Resonance Imag-
ing scan.

The main objective is to study if the hypothesis
is possible. Starting by trying an already existing
approach as a baseline, then exploring different al-
gorithms, data transformations and machine learn-
ing methods. Validate these methods to choose the
best one, to then test it in an independent set. If
the hypothesis is achieved, then get some insights
on how the distinction is done, for instance, what
brain regions are the most important.

In the following 2 Background section an
overview of what has been done in literature re-
garding the hypothesis and how the MRI process-
ing works. Followed by 3 Implementation section
where the methods used are detailed. In 4 Results
section all the results are shown with a discussion
on the work. Finally in 5 Conclusion section there is
an explanation if the hypothesis was fulfilled along
with some ideas for future work.

2. Background
2.1. The promise of Machine Learning

Machine learning (ML) has been used to distinguish
PD subjects from others, through the use of symp-
toms, speech, movement patterns, and neuroimag-
ing data [9–11].

Some reviews comment on the possibility of ex-
ploring Deep Learning to accomplish this [12–14],
but some of the most common critiques to this ap-
proach are the lack of data quantity and that im-
provement in the accuracy does not seem worth-
while given the resulting loss of interpretability.

There is a large quantity of articles aiming at the
diagnosis of PD through the use of classical ML, and
reviews that attempt to compare them [15–18]], al-
beit this is currently difficult to do since there is
no reporting standard, and most often insufficient
details describing the employed analysis pipeline.
The most common algorithms reported to be used
in several of the reviews are SVM, with some men-
tions of Random Forest, Naive Bayes and Logis-
tic Regression. The accuracy in distinguishing be-

tween healthy controls and PD subjects varies be-
tween 80% and 100%, which are unusual results to
obtain in a ML model, with a proper independent
test, especially with data as complex as the brain.
Moreover, distinguishing between healthy controls
and different diseases tends to yield good results,
while trying to differentiate diagnosis tends not to
lead to such good results [15]. It should be noted
that accuracy is used in every comparison in the
reviews but it can be misleading because of unbal-
anced datasets.

PD vs SWEDD

A search query in PubMed and Scopus for articles
that tried to accomplish the separation of groups
by dopamine (PD, SWEDD, and control groups)
with MRI and machine learning, returned very few
studies, see Table 1. Of these results, only one uses
sMRI T1w. The others use DTI images and classi-
cal ML algorithms with features extracted from the
images (DTI tracts), reporting an accuracy of up to
97%.

Table 1 includes one of Diana Prata’s lab unpub-
lished data using sMRI T1w to distinguish PD from
SWEDD with ML. It reports an accuracy of 97.4%,
73.3% and 65.3% in separating PD vs Control, PD
vs SWEDD and Control vs SWEDD, respectively,
by choosing adequate MRI slices. In particular, this
suggests that Control and SWEDD groups might be
not easily distinguishable.

2.2. Image preprocessing

There are multiple resources that can be used to
process MRI scans, the purpose of which is to turn
these 3D images into features that can be isolated
and extracted. These can be for example surface
areas, folding indexes, or volumes of regions of the
brain.

FreeSurfer [24] provides a full processing stream
for structural MRI data [25], including: skull strip-
ping (Figure 1), gray-white matter segmentation,
reconstruction of cortical surface models, labeling
of regions on the cortical surface, as well as subcor-
tical brain structures (Figure 2).

Figure 1: Three stages from the FreeSurfer cortical
analysis pipeline: A - Skull stripped image. B -
White matter segmentation. C - Surface between
white and gray (yellow line) and between gray and
pia (red line) overlaid on the original volume [24]
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Table 1: Comparison table of studies that differentiate PD, Control and SWEDD

Reference MRI type Features Model
Sample
Size

PD Control SWEDD Test Accuracy

[19] DTI DTI tracts SVM 142 37% 37% 27% 42% 81.25%
[20] DTI DTI tracts SVM quadratic 48 54% - 46% LOOCV 72.5%
[21] DTI DTI tracts SVM linear 80 33% 33% 33% LOOCV 77.92%
[22] DTI DTI tracts SVM 77 48% - 52% LOOCV 97%
[23] sMRI T1w Image slices CNN 197 43% 43% 15% 30% 60%-80%

Figure 2: A - Volume-based labeling. Note that cor-
tical gray matter and white mater are represented
by single classes. Also note that there are separate
labels for the structures in each hemisphere. B-
Surface-based labeling. [24]

3. Implementation
3.1. Data Source
The MRI T1w came from the PPMI database [26].
PPMI is a landmark observational study that makes
its data set and biorepository available to academia
and industry. The PPMI study divides its en-
rolled subjects into different groups, called Research
Groups.

3.2. Image Selection
For each subject it was selected only one image,
to avoid subject-bias in the hopes of achieving the
best classification facilitating the interpretation of
results and gathering of insights. In the PPMI
database there are 761 subjects with an MRI and
DaTscan. From this group various choices in pa-
rameters and restrictions were chosen:

1. MRI had to have Field Strength = 3T, left 471
subjects;

2. MRI had to be 3D, left 470 subjects;

3. MRI had to be MPRAGE, left 407 subjects;

4. MRI without considerable noise or ghosting,
left 402 subjects;

5. MRI had to have Repetition Time = 2300, left
337 subjects;

6. MRI and DaTscan within 12 months, left 316
subjects

So, each subject had to have a DaTscan result
and an MRI T1w, within one year so as to be as
close to the ground truth diagnosis as possible. Fur-
thermore, the MRI T1w had to have good qual-
ity and minimal noise and ghosting, selected via

a manual visual inspection. Additionally it had
to have the following parameters: MPRAGE, Field
Strength=3T, Repetition Time (TR)=2300. These
parameters were chosen to avoid possible bias that
could exist due to relations between the different
parameters and labels.

There were 5 subjects whose DaTscan result did
not match what would be expected from belonging
to the Research Group, and these were excluded.
Once the model is chosen and trained, they may be
used to check what the model would classify them
as.

Included data

From the 311 chosen subjects, 104 (33%) have
a negative DaTscan, and 207 (67%) a positive
DaTscan. With positive label, 71 are Control and
33 SWEDD, while the ones with negative label, 160
are PD, 46 are GenCohort PD, and 1 GenReg PD.

3.3. Resulting Features

The pipeline used from Freesurfer processes sMRI
wT1 into 689 features, 8 of them are copies or masks
and can be removed. The remaining are separated
between left and right hemisphere (lh, rh), and
these features can be divided between 41 different
brain regions. These features can be of 9 different
types: thickness, volume, curvind, wm, thicknessstd,
foldind, gauscurv, meancurv, area.

3.4. Training, Validation and Testing Sets

An independent test set is important for testing the
validity of the results obtained and to test the final
model as a possible tool to be used in the clinical
diagnosis process. Therefore, a representative and
significant test set is important, so 30% of the data
was reserved for the final testing. Some considera-
tions regarding the diagnosis, sex and age, had to
be accounted for, since the amount of data is not
large enough to rely on randomness as a guaranteed
means to achieve representation of all classes.

Age was balanced between , since it can be a con-
founding variable in MRI images, because age has
an affect on the brain, for instance, it is negatively
correlated with grey matter measures [27]. This
is accomplished by ensuring the average age is the
same in both sexes. Furthermore, the different di-
agnosis in each DaTscan label is also balanced such
that both sexes have similar percentages of each
diagnosis, and subjects with multiple images were
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left to the test set, since they could bring a higher
value in the verification of the reliability of the re-
sults. Due to there is a relationship between sex
and PD diagnosis, as there is a higher percentage
of men diagnosed [28], the balancing in the test set
was done such that it is equivalent across diagnoses,
with 1 female to every 1.5 male, so that the confi-
dence estimates can be equal for both sexes in the
test results analysis.
After imposing these restrictions, subjects were

chosen randomly from the remaining options, to be
either in the training or testing sets.
To compare different approaches either cross-

validation can be used or validation in an indepen-
dent validation set. For a validation set, 10% of
the training set was selected randomly, and for the
cross-validation all the training set was used.

3.5. Baseline Approach
Diana Prata’s Lab had previously developed an
MRI ML pipeline to create and train a model to
aid diagnosis of Alzheimer’s disease (under peer re-
view).
This approach consists of using a voting sys-

tem between 7 different classifiers: a linear support
vector machine (l-SVM); a decision tree classifier
(DT); a random forest classifier (RF); an extremely
randomized tree classifier (ET); a linear discrimi-
nant analysis classifier (LDA); a logistic regression
classifier (LR); a logistic regression classifier with
stochastic gradient descent learning (LR-SGD).
All hyperparameters are chosen by using an evo-

lution algorithm and cross validation.
This pipeline served as the baseline approach in

the present study.

3.6. Data Transformations
Different transformations can be made to the data,
for efforts of feature selection or to remove subject
specific data to make comparing data between sub-
jects fairer.

Brain Regions
The 672 features were divided into 41 sets related to
certain brain regions. This transformation allows to
have less features than subjects and it can also be
a method to identify what brain regions are more
important for the classification problem.
This idea originally purposed herein aimed at us-

ing a priori knowledge that exists of the features
and data being used, instead of relying on naive
search for feature selection.

Robust Principal Component Analysis
Features obtained by explaining 90% of vari-
ance with Robust Principal Component Analysis
(RPCA) was used instead of the original 672, which
transforms the problem into one where there are less
features than subjects.

One possible problem with this transformation is
that since the number of subjects is less than origi-
nal features, the new features explain not just vari-
ance of features but also of subjects. And so these
features might not be well chosen for generalizabil-
ity and future data.

Normalize

Data normalization is a transformation that is per-
formed before RPCA, but using it by it self can
bring improvement to some models, such as SVM,
since it allows the models not to give more signifi-
cance to certain features with higher values.

This transformation is done such that for each
feature the following calculation is done.

x′ =
x− x̄

std

where std is the standard deviation, and x̄ is the
mean.

Relative

The features which are of type area or volume, can
be divided by the total surface area of the brain,
or total volume of the brain, so as to have features
that can be comparable between subjects. These
features become relative instead of absolute.

3.7. Balancing

This dataset was unbalanced, and as most machine
learning algorithms perform better when training
with balanced data, multiple techniques for balanc-
ing the data were explored.

Balancing in model

Most models implemented by sklearn, and in par-
ticular all models used herein, have a parameter
that can be used so the model gives weights to the
classes, and for balancing, this parameter can be set
to balanced, class weight=’balanced’.

Undersampling

Another option is to perform undersampling, which
consists of removing samples from the class with the
highest amount, so as to balance them.

Oversampling

Another option is to perform overrsampling, which
consists of repeating samples from the class with
the least amount, so as to balance them.

3.8. Exploration for best model

The main idea was to test simple models, in order
to avoid overfitting, which happened in the baseline
approach, explained below in detail. Comparing
multiple options of combining different algorithms,
balancing and transformation seems to be the best
approach as, in this way, it is possible to choose the
best ones to test in the reserved set.
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Here, the multiple options were attained using
combinations of alternatives. Each combination is
composed choosing one of each alternative in the
following bullet points:

1. Algorithm: Logistic Regression, Perceptron,
Ridge Classifier, Random Forest, Support Vec-
tor Machine

2. Validation: 10% of training set, Cross-
validation

3. Balancing: None, Over, Under, Balanced in
model

4. Features: All features, the subset of features
for each of the 41 brain regions

5. Transformation: None, Normalize, Relative,
RPCA (only when all features are selected)

Algorithms were chosen for their interpretability,
and the hyperparameters were chosen with cross-
validation and grid search.
Besides the balancing types mentioned, types

which create artificial data were not considered due
to the medical nature of the data. Moreover, when
using cross-validation and oversampling simultane-
ously it could be the case that the training subsets
in the folds could have the same data points as in
the testing fold, since sklearn is not prepared to
handle this situation. Thus, this method was pro-
grammed from scratch.
The RPCA transformation is only applied when

using all features, since this and selecting a subset
of features from a brain region are different feature
selection methods.
In sum, there were a total of 160 combinations

if all features are selected, and 4920 when the sub-
set of features corresponds to each of the 41 brain
regions.
For each combination the following metrics were

calculated: Accuracy and Balanced Accuracy.

4. Results
4.1. Label distribution
In the dataset, 33% have a negative DaTscan and
67% have a positive DaTscan. Both training and
testing set have the same distribution.

4.2. Research Groups Distribution
Subjects that have a negative DaTscan belong to
either the Control group or SWEDD group, while
subjects that have a positive DaTscan belong to ei-
ther the PD group or GenCohort PD group or Gen-
Reg PD group. Since there was a high percentage
of subjects from the GenCohort PD group that had
multiple images in the same day, and these were
to be reserved to the test set, the distributions of
training and testing sets are not equal. The final
distributions in both sets can be seen in Table 2.

Table 2: Distribution of research groups, in the
training and testing sets.
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Test 23% 11% 47% 19% 0%

4.3. Age distribution
The mean and standard deviation (std) age across
all the data is 61.3 ± 10.1. To test the significance
of age in the DaTscan result, the Mann-Whitney
test was used, which resulted in a p = 0.163, so
there is not significant evidence to reject that the
age distribution is equal for both labels.

Table 3: Age mean and std across label, in the train
and test sets.

DaTscan
negative

DaTscan
positive

Train 59.1 ± 11.7 61.8 ± 9.4
Test 61.8 ± 10.0 62.5 ± 9.4

Table 4: Age mean and std across research group,
in the train and test sets.
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Train 58.2± 12.0 61.1± 10.8 61.5± 9.0 62.6± 11.0 70.9

Test 62.0± 9.6 61.4± 11.3 60.6± 9.8 67.2± 6.5 -

4.4. Sex distribution
The distribution of the sexes across all the data is
36% female and 64% male. To test the significance
of sex in the DaTscan result, the Person Chi-Square
test was used, which resulted in a p = 0.762, so
there is not significant evidence to reject that the
sex distribution is equal for both labels.

Table 5: Sex distribution Female - Male, across la-
bel, in the train and test sets.

DaTscan
negative

DaTscan
positive

Train 36% - 64% 34% - 66%
Test 41% - 59% 40% - 60%

4.5. Correlation analysis results
By analysing the number of zero entries in the fea-
tures, four features were found to only have value
zero: Right-non-WM-hypointensities, Left-non-
WM-hypointensities, Right-WM-hypointensities
and Left-WM-hypointensities, and they were
removed. Moreover, the features 5th-Ventricle
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Table 6: Sex distribution Female - Male, across re-
search group, in the train and test sets.
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41%
59%
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60%

39%
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and non-WM-hypointensities only have 4 and 25
non-zero entries, which can indicate that they may
not be useful for the models, but they were left in
the dataset.

By checking the features with correlation
higher/lower than 0.95/-0.95 the following five fea-
tures were removed, which we assumed would be re-
dundant, and with the correlation we confirm they
don’t have significant information.

4.6. Robust Principal Component Analysis
results

The RPCA returns 29, 50 and 129 features that
explain 80%, 90% and 100% variance, respectively.

4.7. Baseline approach results

Using the pipeline explained in Section 3.5 resulted
in a model which its performance in shown in Ta-
ble 7, with the results of labeling both the train-
ing dataset as well as the testing dataset. Across
all metrics, we can see the model performs signifi-
cantly worse in labelling the testing dataset when
compared to the results from the training dataset.
This was a clear sign that the model was overfitting
the data, and a possible explanation would be the
high complexity of the model and chosen hyperpa-
rameters.

Table 7: Results from baseline approach.
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Test 54.5% 43.8% 16.7% 52.2% 40.0%

4.8. Exploration for best model results

Results shown in this section follow the idea: first
all the results are shown together along with some
statistics, followed by details of the scores for the 5
best model combinations for all features or regions
and for validation or cross validation. Finally the
scores of testing of these best models are reported.

The balanced accuracy was used to compare all
combinations, since accuracy is used in the litera-
ture but using the normal accuracy could be mis-
leading since the data is unbalanced.

4.9. Overall results
There are more than 5000 possible combinations
from following the approach explained in Section
3.8, and it is not possible to discuss them individu-
ally. So, to be able to evaluate overall how different
approaches affect the results, the balanced accuracy
average was calculated for different aggregations,
which we can see in Tables 8, 9, 10 with the com-
binations that used all the features, and Tables 11,
12 and 13 for the combinations that used subsets of
features relative to brain regions.

Table 8: Average balanced accuracies for all fea-
tures and for each algorithm

Model Train Validation CV
LR 79.34% 54.77% 47.73%

Perceptron 71.70% 58.91% 48.09%
RC 81.33% 58.70% 50.13%
RF 100.00% 53.93% 48.97%
SVM 75.00% 49.92% 50.00%

Table 9: Average balanced accuracies for all fea-
tures and for each balancing type

Balancing Train Validation CV
None 72.09% 53.21% 49.01%

Undersampling 91.91% 54.60% 49.01%
Oversampling 90.58% 59.25% 49.18%

In-model 71.32% 53.92% 48.73%

Table 10: Average balanced accuracies for all fea-
tures and for each transformation

Transformation Train Validation CV
None 80.61% 53.21% 50.14%
RPCA 79.78% 53.83% 48.15%

Normalize 88.65% 56.69% 47.55%
Relative 76.86% 57.25% 50.10%

Table 11: Average balanced accuracies when us-
ing brain regions features subsets and for each al-
gorithm

Model Train Validation CV
LR 56.66% 50.67% 49.35%

Perceptron 50.83% 50.33% 49.88%
RC 60.76% 51.00% 49.05%
RF 100.00% 53.21% 49.47%
SVM 75.61% 49.47% 50.02%

Table 12: Average balanced accuracies when using
brain regions features subsets and for each balanc-
ing type

Balancing Train Validation CV
None 61.96% 50.33% 49.70%

Undersampling 74.62% 50.80% 49.70%
Oversampling 74.27% 51.28% 49.97%

In-model 64.24% 51.33% 48.84%

4.10. Best model combinations results
For the tables in this section B. Accuracy represents
balanced accuracy.
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Table 13: Average balanced accuracies when using
brain regions features subsets and for each transfor-
mation

Transformation Train Validation CV
None 68.77% 50.94% 49.64%

Normalize 68.77% 50.94% 49.50%
Relative 68.77% 50.94% 49.52%

In Tables 14, 15, 16, 17 we see the results of
the best combinations for all features, and for
brain regions, both when using validation and cross-
validation Balanced Accuracy .
The models were tested and outputted the results

shown in Tables 18, 19, 16 and 17.

4.11. Discussion
Result
In regard to general results, a common tendency
(seen across Tables 8 through 13) is that the bal-
anced accuracy of the models is higher for the train-
ing set than for the validation set, with the latter
being on average slightly above 50%. This shows
that most models suffered from overfitting. Tables
8 and 11 in particular show that models using Ran-
dom Forest as the algorithm were especially prone
to this, seeing as the average balanced accuracy for
the training set is 100%.
The oversampling strategy for balancing data

tends to give better results (as seen in Tables 9
and 12), both from the lens of validation and cross-
validation. In addition, there is no significant im-
provement from using any of the studied feature
transformations (Tables 10 and 13).
Looking at the best models, the Ridge Classi-

fier algorithm provides the best models for deal-
ing with a large number of features (Tables 14 and
15), whereas Logistic Regression is most appropri-
ate for the situations with less features (Tables 16
and 17). On the other hand, models using SVM
as algorithm are not represented in the top models.
Regarding data balancing, oversampling seems to
lead to better models, whereas RPCA is not repre-
sented among the top models. Finally, the features
from the brain regions insula and temporalpole seem
to be of importance for this classification.
Although these results may seem promising, it

should be noted that, since we have studied so many
combinations, finding good results might simply be
because we are bound to find some model that hap-
pens to work well with this particular dataset. This
is why it is important to use a testing dataset, which
is completely separate from the pipeline followed up
until this point.
The testing results (Tables 18 through 21) show

that, across all combinations, the top models se-
lected before do not generalize well: for instance,
the values of balanced accuracy do not go higher
than 60%. Despite that, the majority of these mod-

els outclass the baseline considered for this work in
terms of the balanced accuracy, as well as the other
metrics calculated.

Considerations
The articles found and studied in this report show a
lack of research attempts in using MRI to differenti-
ate subjects with and without dopamine deficiency,
and only a few using Diffusion MRI – with the most
common MRI (sMRI Tw1) still surprisingly unex-
plored. Hence the hypothesis of the present study
was to examine whether it would be possible to use
sMRI to identify what patients would have a posi-
tive result from a DaTscan, with the use of Machine
Learning.

With the initial analysis, some patterns in the
data seem to emerge which could indicate that a
smaller set of features could be used. Furthermore,
the baseline ML approach seems to be overffited,
with balanced accuracy of the train and test set be-
ing 94.6% and 43.8%, respectively. This indicated
that a possible path would be to use simpler models
and method of finding hyperparameters.

The different models, when further tested in an
independent set, suffered from underfitting or over-
fitting, but with the best models having higher
scores than the baseline approach. The highest bal-
anced accuracy achieved was 50.60%.

The option of using subsets of features that were
relative to brain regions all ran into the same issues,
but this would be a method of feature selection that
could pinpoint what regions would be of most im-
portance to this classification problem. The highest
balanced accuracy achieved was 57.11% with fea-
tures from the temporalpole.

Validation vs cross-validation
Comparing the validation and cross-validation re-
sults found across the top models tested, the bal-
anced accuracy obtained from cross validation is a
better predictor of the testing balanced accuracy,
whereas the results using the usual validation are
overly optimistic. This is in line with observations
suggesting cross validation should be preferred in
situations where small datasets are available, as is
the case here.

5. Conclusion
The overall conclusion is that, although we were
able to obtain models that outperform the baseline,
the approaches used with the given dataset are not
able to distinguish between subjects with and with-
out dopamine deficiency with the features that were
extracted from a sMRI. As thus, this work has no
immediate clinical applicability.

Future Work
Multiples paths can be followed to further test if it
possible to use MRI to identify what patients would

7



Table 14: Best combinations for all features, using validation.
ID Model Transformation Balancing B. Accuracy Accuracy
1 Perceptron relative oversampling 77.08% 73.91%
2 Logistic Regression relative oversampling 75.00% 82.61%
3 Ridge Classifier none oversampling 71.25% 73.91%
4 Ridge Classifier none in-model 67.92% 69.57%
5 Ridge Classifier none none 67.92% 69.57%
6 Perceptron normalize none 67.92% 69.57%
7 Perceptron normalize oversampling 67.92% 69.57%

Table 15: Best combinations for all features, using cross-validation.
ID Model Transformation Balancing B. Accuracy Accuracy
1 Ridge Classifier none oversampling 55.18% 52.92%
2 Ridge Classifier relative none 53.15% 65.47%
3 Ridge Classifier relative undersampling 53.15% 65.47%
4 Logistic Regression relative oversampling 53.06% 45.97%
5 Random Forest normalize oversampling 52.66% 59.35%

Table 16: Best combinations, using brain regions features subsets and validation.
Region Model Balancing B. Accuracy Accuracy
insula Logistic Regression oversampling 80.42% 78.26%
temporalpole Random Forest undersampling 77.92% 82.61%
rostralmiddlefrontal Random Forest undersampling 77.08% 73.91%
superiorfrontal Ridge Classifier in-model 77.08% 73.91%
cuneus Random Forest oversampling 74.58% 78.26%

Table 17: Best combinations, using brain regions features subsets and cross-validation.
Region Model Transformation Balancing B. Accuracy Accuracy
posteriorcingulate Ridge Classifier * in-model 62.67% 62.68%
paracentral Logistic Regression normalize oversampling 59.51% 58.14%
cerebellum Logistic Regression normalize oversampling 59.30% 51.15%
posteriorcingulate Logistic Regression * in-model 59.17% 59.01%
insula Random Forest normalize oversampling 58.43% 59.46%

Table 18: Testing models from Table 14, that use
all features, obtained with validation

ID
Train

B. Accuracy
B. Accuracy Accuracy

1 61.34% 50.60% 62.77%
2 85.86% 48.49% 50.00%
3 100% 45.41% 48.94%
4 100% 43.00% 45.74%
5 100% 44.60% 47.87%
6 100% 45.36% 47.87%
7 98.97% 44.60% 47.87%

Table 19: Testing models from Table 15, that use
all features, obtained with cross-validation

ID
Train

B. Accuracy
B. Accuracy Accuracy

1 100% 45.41% 48.94%
2 52.08% 49.19% 64.89%
3 100% 48.44% 48.94%
4 85.86% 48.49% 50.00%
5 100% 48.34% 62.77%

have a positive result from a DaTscan. One of
more important ones would be to gather more data,
which is an effort being pursued by Diana Prata’s
Lab, although medical data and MRIs is not data
that is easily scalable. Using more homogeneous
groups can be advantages, by separating the nega-

Table 20: Testing models from Table 20, that use
brain regions, obtained with validation

Region
Train

B. Accuracy
B. Accuracy Accuracy

insula 56.90% 45.51% 51.06%
temporalpole 100% 57.11% 56.38%
rostralmiddlefrontal 100% 54.94% 58.51%
superiorfrontal 57.45% 39.01% 41.49%
cuneus 100% 47.33% 57.45%

Table 21: Testing models from Table 21, that use
brain regions, obtained with cross-validation

Region
Train

B. Accuracy
B. Accuracy Accuracy

posteriorcingulate RC 64.36 45.26% 45.74%
paracentral 53.10% 54.08% 56.38%
cerebellum 58.28% 53.18% 53.19%
posteriorcingulate LR 63.68% 46.77% 45.74%
insula 100% 47.33% 57.45%

tive group, and then solving two binary problems.
However, this would make the data available even
more unbalanced.

Another option is consider using other type of
features extracted from Structural MRI, or use an-
other modality such as DTI to try to replicate the
results that exist in the literature. Furthermore,
More Structural MRI can be used if for selecting
them less restrictions on the parameters are made,
but this can bring problems since the images may

8



be different enough that the models would detect
them, and differentiate between them instead of the
label that is wanted.
Finally more complex models, such as CNN or

other deep learning methods may bring more in-
sights, but since there is not a lot of data, this is
not a clear path to take.
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