OrderWarp

1*' Henrique Lourengo Ferreira
Instituto Superior Técnico
Lisbon, Portugal
ferreira.henrique27 @gmail.com

Abstract—The creation of platforms that support Big Data and
Streaming domains is nowadays an important topic. However,
the excessive amount of data forces the visualization’s system to
find the best data aggregation techniques to explicitly display
information, and that at the same time does not impact the
overall performance of the system. These techniques have to
be applied in runtime, since that is when data is received in
Streaming systems. To deal with this issue, there is a concept
called Graceful degradation, a technique that depicts information
with different levels of aggregation and detail for different
time periods. We present OrderWarp, a system that displays
ordinal big data applying the abovementioned technique using
WebGL technologies for performance enhancement. The system’s
visualization uses different task-oriented idioms accompanied
by animated transitions to represent changes in aggregations
between periods. Using a binning strategy, the aggregation
method ensures the visualization is able to always represent
the whole dataset, and run indefinitely. The study confirms the
performance boost in Big Data Streaming visualizations, resulting
of the system’s architecture. It also finds the most effective idioms
to represent ordinal data in these domains, as well as the best
transitions between said idioms.

Index Terms—Big Data, Streaming, Ordinal Data, Graceful
Degradation, Information visualizations, Idioms and Transitions

I. INTRODUCTION

Information analysis is extremely important for data recog-
nition and decision-making in multiple areas of scientific
study, playing an important role in the development of said
areas. The advancement of information technologies, such
as smartphones or IoT devices, originated a growth in the
amount of accessible and valuable data, created and stored
by increasingly more entities. When the dimensions of these
datasets defy, computationally, its representation, it is safe to
say that the dataset belongs to the Big Data domain.

Understanding information present in a dataset with a few
thousand records without using a visualization, can be an
excessively time-consuming task, and if this dataset enters
the Big Data domain, the analysis is unpractical or even im-
possible. This means that Big Data visualizations are obliged
to find adequate aggregation techniques that represent the
whole dataset. If the aggregation is too small, the visualization
is forced to draw more representative elements of the data,
and the drawing time will affect the system’s computational
performance, or the overdrawing of elements will make the vi-
sualization illegible, in both cases its analysis is compromised.
Oppositely, if the aggregation is too large the visualization
might lose the ability to present useful information. The
aggregation level is therefore dependent of intended detail.

The ease of producing data also means that at every moment
new data is being generated and plenty of systems experience
an increase in traffic. Decision-making, in these situations, has
to done in real-time. This domain is called Streaming, and it
is characterized by the data’s moment of creation being during
the observation of the visualization, whose main concern is the
representation of the data as soon as it is received and without
it constantly changing the visualization with new data.

Joining both domains, the result is an analysis with the
advantages of the two, which addresses an even bigger compu-
tational challenge. Since, in Streaming visualizations, the data
can not be processed before the start of the visualization, since
it has not yet been created, it is necessary to group it during the
visualization’s runtime. The moment where the grouping oc-
curs is also important to study. If grouped too soon, the system
could, again, lose important information. If too belatedly, the
visualization will hold too many visual elements. Moreover,
the moment where it was created, should be explicit in the
visualization. Newer data is usually the focus of Streaming
visualizations, yet older data can present important information
too, so both data periods should be represented. This implies
that more data needs to represented, hence the system requires,
once again, an aggregation technique that should group data
according to its age.

With all this in mind, Pires et al. [13] presented the Grace-
ful degradation technique, whose objective is to represent Big
Data Streaming data in different LoD, with different visualiza-
tion techniques, in separate timespans, from the beginning of
the visualization to real-time. The work only took into account
quantitative data, and to further the value of the technique, in
this work’s case, the studied data type is the ordinal data.
Ordinal data is defined as data divided in categories, where
these present a defined discrete order. One example of this
type of data is seen in Likert scales, being the most common
in social sciences’ studies [9]. Understanding the best visual
representations for ordinal data in the Graceful degradation
technique is the focus of this work.

II. STATE-OF-THE-ART

Big Data’s inherit conditions provokes complications re-
garding visual noise and large image perception identified in
Gorodov et al. [5] for unprepared visualizations. LiveRac [11]
and Ferreira et al. [6] present the full dataset with different
LoD’s. The first work displays quantitative data, while the
last works in geospatial data. Alternatively, Daae Lampe and
Hauser [3] and Repke [16] apply a modified Kernel density

algorithm used in geospatial and graph data types respectively.
For multivariable data, Sansen et al. [14] uses a parallel
coordinates with Bézier curves to reduce intersection clutter.

In Streaming visualizations, it is important to analyze works
that explore Time-series, where the data’s timestamp is fun-
damental for the visualization. The majority of visualizations
explain age through one finite axis, that, in some idioms such
as stream graph used in [2, 8], pass this idea with clarity.
However, this idiom is not suitable for every data type, nor
does it show additional details. Mansmann et al. [10] creates
a data path for their data, displaying with more detail the
newer data. Since it addresses categorical data, the authors
were unable to find a technique which aggregated all the data
in one idiom, forcing data to leave the system.

Regarding performance, in Big data visualizations, the sys-
tem should scale with higher amounts of data. A common
response is to apply pre-processing techniques to a dataset
[18, 14, 15] which groups data and in turn reduces its
access time. Zhicheng Liu and Heer [18] accomplishes this
using multidimensional projections, Sansen et al. [14] applies
extensive cluster algorithms, trading pre-processing time with
interactivity, Tim Repke [16] uses machine learning algorithms
accompanied by the t-SNE algorithm. Even the visualizations
which apply these techniques still need some form of real-
time aggregation due to the users infinite possible queries [14].
Sansen et al. [14] presents the on-demand processing module
and Sye-Min Chan et al. [15] implements a technique for
predictive caching, that foresees the next data necessary for the
most likely succeeding interaction. Pre-processing techniques
require prior knowledge of the dataset, which is not known in
Streaming domains. The focus in these visualizations should
be fast and iterative data treatment techniques. Traub et al.
[17] implements a variation of the M4 algorithm to extract
necessary data in the specific moments, and Fujiwara et al.
[7] uses the incremental PCA algorithm to reduce the new
data’s dimensions. These solutions work with high flows of
data, therefore they are effective for both studied domains.

A. VisBig

VisBig is a set of works, where the goal is to study and
extend the concept of Graceful degradation. The first proposed
work was Pires et al. [13], which serves as base for OrderWarp.

Graceful degradation’s technique displays data along a path,
passing through different levels of detail. The LoD’s represent
different timespans which are depicted in different connected
idioms, suitable for the respective timespan. The final idiom
should present an aggregation technique that allows the group-
ing of all data since the beginning of the visualization. The
system was called VisMillion and analyzed the presented tech-
nique for quantitative data, leaving other data types unstudied.

Connecting the idioms are horizontal transitions [1], respon-
sible for transforming the information in the first idiom to
the second, while explaining the changes in the aggregation
levels. These modules play a pivotal part in the conservation of
the user’s perception of data between idioms. For this reason,
Pereira et al. [12] studied the effectiveness of developed
transitions between the scatter plot idiom to other idioms.

None of the studied works address ordinal data in big data
streaming visualizations. Our goal is to find the best possible
different task-oriented idioms for ordinal data as well as their
transitions, and create a performance stable system that can
display all data in a dataset and run indefinitely, using the
Graceful degradation technique.

III. SOLUTION

With ordinal data in mind, we propose OrderWarp, a system
that extends the Graceful degradation technique to this data
type, by restructuring VisMillion’s [13] architecture to WebGL
technologies, and creating a set of connected idioms and tran-
sitions between them, that can run indefinitely and maintain all
received information inside the visualization separated through
different LoD’s. Therefore, the system commits to implement a
visualization displaying ordinal Big data in real-time, grouping
data along a timeline through different idioms that can provide
information in separate timespans, until it reaches a final idiom
which agglomerates the totality of data since the beginning of
the visualization. In the next sections, we describe our solution.

A. Architecture

To achieve the previous goals the resulting architecture
can be seen in figure 1. The visualization is composed by
a limitless number of different modules, all commanded by
the Modules manager. The Modules manager is responsible
for linking the idioms by sending and receiving the data to
the respective idioms, updating the current module’s timings
and other relevant information of the visualization, such as
its start time or the number of ordinal values. This module is
responsible for the update of the common time axis.

Each module is created given a width and a timespan
configurable by the user in order to accommodate the needs
of the visualization, this way the user can alter the detail of
each module. Using these properties, each module is charge
of calculating the position of an element inside itself through
the equation p = vModule+b, where the velocity (v M odule)
is the division of the width by the timespan. Each module is
responsible for an idiom that is the visual depiction of data.
The module commands the data while within its timespan by
storing, sending it to the idiom and returning it back to the
Modules manager.

A module can also be a transition module, which is
the entity responsible for continually transforming the data
in the form of the previous module to the next module’s
requirements. This is accomplished by the creation of bins, the
structures responsible for grouping data. Since the transition
is the link between two modules, the position of the data also
has to decelerate from the first module’s velocity to the second
module’s velocity. Opposite to the other modules, the module’s
timespan (At) is not given as an input by the user, but rather
calculated with the remaining available visualization width (w)
divided by the number of existing transitions, by the following
equations:

vModule2? — vModulel?
a = (D

2w

At — vModule2 — vModulel @)

a

The visualizations are representations of the data using
different techniques for different analysis tasks. These repre-
sentations are purely visual, which means a module can change
visualization in runtime, making the system more dynamic.

-
- Streamer
-

.
Dataset
‘Generator
Module 1 Module 2 Module 3 Module n }

i J' Visualization J' J')

o) i)))
|

Screen

Modules Manager
.

Fig. 1. OrderWarp’s architecture

B. Migration

VisMillion [13] and VisMillion and change [12] were
conceived to support Big Data. In Pereira et al. [12], the
authors came to the conclusion that its visualization could
reach 1000 dots per second. After careful consideration, both
works decided to implement the visualization using the D3.js
JavaScript library for manipulation of documents based on
data. D3.js makes it easy to bind data to HTML elements, and
defining animation and interaction behaviors for them. This
library usually uses SVG technology, a XML based vector
image format. Another possible alternative is canvas, which,
instead of drawing according to vectors, draws elements pixel
by pixel inside the canvas’ dimensions. SVG’s alternatives
are a better and simpler solution for the representation of
larger objects, since it draws the element as a whole and has
already built-in manipulation and interactivity functions. The
manipulation of these elements takes time, which makes this
solution ineffective for visualizations with plenty of elements.
Canvas draws by pixel, this means the scale of the dimension
of elements does not alter the drawing phase of the system,
perfect for Big data visualizations. The downside of this
technology is that it requires much more scripting, leading
to larger implementation times and increased lines of code.

OrderWarp’s proposed solution uses the THREE.js library,
used to create, manipulate and display 3D or 2D elements,
which is also built on top of WebGL. WebGL is a JavaScript
API that accelerates the rendering of graphic elements in a
web browser by shifting the drawing of the elements to the
GPU’s. WebGL, alongside the canvas technology, is shown
by Kee et al. [4] as the best solution for displaying complex
visualizations.

The first phase of implementation, after restructuring the
architecture of the visualization, was to implement the visual-
ization techniques studied in the VisBig organization [13, 12,

1] in the best way possible, within a WebGL environment.
The process was done by creating a THREE.js scene which
is the subject displayed in the canvas through the view of
a virtual orthographic camera. A scene holds the objects or
meshes, which will be the visual elements displayed in the
visualization. To animate a scene, the application updates
every object inside the scene and then renders it continuously.

C. Dataset generator

Finding an ordinal big data dataset, capable of testing all
tasks our visualization sets out to accomplish, is not easy.
Therefore, we created our own dataset generator capable of
creating sending and manipulating data through the use of
python server script.

The server and client use the Socket.IO library, which
creates a WebSocket channel between them. After creating the
channel, this technology maintains the connection, lowering
the latency of every communication between the entities. The
channel is also bidirectional, which allows the server to send
data to the visualization, and it returns performance measures
for later analysis.

Both ordinal and quantitative data can be generated in
the server, with the data values assigned by one of multiple
functions of randomness, which can be changed prior or during
runtime. After creating a data point, the server sleeps until
it needs to create a new one. However, the sleep function
consumes time itself, so for bigger flows the server becomes
unable to create points at a sufficient rate. In these cases, the
server sends multiple data points corresponding to the spent
time. The data is received by the Streamer module, which is
the platform of communication between the visualization and
the server.

D. Elements

The visual representations of data, displayed in the visual-
ization, are individual elements created by both idioms and
transitions which manipulate these representations to convey
information as intended by them. All elements are instances
of the THREE js library, and the required elements were the
following:

o Dots: Simple, small rectangular planes that represent
individual data points.

o Lines: Rectangular plane, where its height and angle of
rotation is given by two x and y coordinates. The line
thickness is also modifiable.

o Rectangles: Rectangular plane, with a single position. In
this case the rectangle’s size or color is modifiable. It is
also possible to draw borders surrounding the rectangle,
accomplished by the creation of lines for each border.
These means, the rectangles are comprised of five ge-
ometries instead of one.

o Polygon: This element is needed to create non-rectangle
polygons, and it is possible through a buffer geometry, by
providing a list of vertices positions. This element allows
more flexibility, since it does not restrict the shape of the
visual representation, yet its manipulation is much more
complex.

On a preliminary test phase, while using the dots ele-
ments, we verified that the performance of the system in
terms of fps’s, would easily be heavily reduced. To improve
performance of this element, we substituted the dot mesh
with instanced meshes. These elements reduce the number
of manipulated objects by joining every dot created between
two updates, in a single instance. From that point on, the
manipulation of the instanced mesh impacts every dot inside
it. This limits the alteration of the dot’s properties, reflected
in the incapability of changing the dots’ opacity.

Whether it be in drawing or scripting, the amount of
elements in the visualization dictates the performance of the
visualization. All elements are stored in a scene’s array where
one element’s removal takes O(n), and in OrderWarp this
event happens very often. In order not to impact the perfor-
mance of the visualization, the system stores every element
sent for removal, and when a new one is required, instead of
creating a new element, it reuses freed meshes.

E. Bins

The concept of Graceful degradation is only possible with
the help of bins. They are responsible for reducing the amount
of data in the visualization by representations of the same,
lowering the computational load and allowing more informa-
tion to be displayed. Bins are agglomerations of all the data
received during a period. When no more points will be added
to the bin, it will compute and hold various properties of
the grouped data, simplifying its access later on. Examples
of these properties are its timestamp, and the number of data
points inside the bin.

The transition modules generate bins continually, receiving
all data during the bins’ interval whether it is single data points
or other bins. In case of more than one transition, the second
transition’s bins have to be a multiple of the previous one,
to avoid two same size bins receiving different amounts of
smaller bins. An example of this can be seen in figure 2 shows
in a) two 9 second bins receiving a different number of smaller
bins.

9 second larger bin X 9 second larger bin Y

r V- N
timestamp timestamp timestamp
inside bin X inside bin Y inside bin Y

6 second smaller bin 6 second smaller bin 6 second smaller bin

Fig. 2. Depiction of the difference between non-multiple and multiple bin
duration times.

E Idioms

Idioms are the visual representation of data, who’s job is
to allow the user to accurately understand the information
present in the data, and take insightful information about said
data. The idiom’s suitability relies on the tasks relevant to

analyze, such as the evolution of the data or the comparison
between ordinal values, while also taking into account their
volume or in which timeframe they are being studied. All
idioms share an x-axis which encodes the data’s timestamp,
which is constantly updated in real-time, forcing the visual
elements to move towards the end of the visualization. The y-
axis also encodes the ordinal value for the whole visualization.
The implemented idioms are explained below.

1) Cleveland plot: The Cleveland plot was proposed as a
variation of the quantitative scatter plot. In both idioms the
visual representation is achieved by drawing an individual
dot for every data point received. Oppositely to scatter plot,
in Cleveland plot the dots are restrained into invisible lines
representing each existing ordinal value. In terms of imple-
mentation, these idioms are the same, as the ordinal values
are converted to a position as if they were quantitative.

Since the dots represent individual data points, the number
of elements being drawn every update is considerably high,
impacting the visualization’s performance more than other
solutions. To reduce the number of elements, this idiom
implements the abovementioned instanced meshes, which does
not reduce the number of visual meshes raising the concern
of dot clutter when the dots overlap due to a higher data flow
resulting in an unclear data’s distribution.

This idiom is a great solution to understand the arrival
of data points and its distribution over time, as each data
point is represent in one dot. Since it applies no aggregation
techniques, it is only suitable as the beginning idiom. It is
also more effective for smaller timespans, computationally and
visually, since longer time periods will result in more elements
to draw, and bigger visual agglomerations.

Fig. 3. Cleveland plot: The dots move from right to left, representing its
timestamp along the idiom. Each “row” of dots represents one ordinal value.

2) Heat map: The common heat map resembles a table of
colors, where rows and columns encode different attributes
of the data and their intersection returns a number encoded
with a color inside a spectrum. In our heat map, the position
on the x-axis encodes a time interval. The number of points
inside this interval yields the saturation of a rectangle called
a cell. The cell’s timestamp dictates the interval’s position,
which also moves towards the idiom’s end.

The number of points inside a cell varies with the data’s
distribution, but also with the overall data flow of the visu-
alization. This means the value scale needs to adapt to the

idiom’s data, increasing the maximum value if it was surpassed
and lowering it when the value no longer accurately reflects
the data in the idiom. The change is done gradually, in order
to avoid visualization leaps that can compromise the user’s
comprehension of the data.

This idiom is suitable for various time periods, but pre-
sumably most suitable as a replacement of the Cleveland plot,
since it creates a small aggregation of the data that can still
distinguish its distribution, trading performance with temporal
discretization of the data.

B 0s

Fig. 4. Heatmap: Each cell’s color encodes the data point quantities in a
timespan. Since it represents a time interval, it moves along the data’s path.

3) Ordinal line chart: As explained before, ordinal data
shares a lot of characteristics with quantitative data, so it is
understandable that an idiom is suitable for both data types.
Since a mean value does not make sense in ordinal data, Pires
et al. [13]’s solution of a mean line chart needs rethinking. The
goal of the idiom is to understand the distribution of points
and its evolution through time. To keep these functionalities,
each ordinal value will have its own line chart encoding the
number of data points inside a bin. Each line segment is
connected to the previous bin’s position, forming a line whose
slope encodes the evolution of the data. This allows value
comparison with the other lines if each line chart presents the
same scale. Otherwise, one position would encode different
values, confusing the information’s analysis.

Like the heatmap, the idiom’s scale needs to be adjusted to
the values inside the idiom. If the amount of points surpasses
the maximum scale value, the scale’s upper limit increases to
the new value plus a fraction of 11—0 this maximum, avoiding
a possible line overlap. If the maximum number of points in
the idiom decreases to less than 70% of the scale’s upper
limit, then its value also decreases to a new maximum. These
techniques avoid a constant change of scales.

If the idiom’s timespan is too little, the evolution analysis
might be insignificant, and since the idiom renews the depicted
data, it can not serve as an accumulating idiom. This makes
the idiom most suitable for middle modules with somewhat of
a time magnitude.

4) Stacked bars: Stacked bars’ goal is to effectively show
proportions of the data values between every existing value
group encoded with a different color and their values com-
prised in stacked lengths of a single bar, and then compared
to other stacked bars. The bigger the size of the stacked bar, the

W\/\/‘_

3miss 245

Fig. 5. Ordinal line chart: There is one line for each ordinal bin, updated
after every bin duration of the previous transition.

bigger the proportion of total values in the value group of that
specific bar. In OrderWarp each bar corresponds to an ordinal
value, and the groups are encoded in the x-axis representing
time intervals defined as ”Eras”. The length of each full bar
is the width of the idiom, and the Eras are encoded with a
color from a list which is reused through time. Each Era has
the same timespan, and every new data point in the idiom will
belong to the latest one. A new Era is created when the last
one has surpassed the idiom’s beginning date. Since the time
intervals move along the idiom, the first and last Eras will
not be fully represented most of the time has their beginning
has surpassed the idioms end or their end is yet to enter the
idiom. This means these Eras will not have all their data points
present for comparison.

This idiom is suited for middle idioms, since the Eras need
a considerable interval to represent relevant visual cues. The
idiom is also not capable of accumulating data, so it should
not represent the latest module.

amads 245

Fig. 6. Stacked bars: Each bar in the vertical axis represents an ordinal
value, and the colored bars encode time periods called Eras. The Eras’ width
represents their percentage of records on the idiom for that ordinal value.

5) Bar chart: A bar chart is an idiom composed by bars
where its size represents a quantity on one axis, and each bar
is placed side by side for value comparison. With ordinal data
each value is depicted with a bar, rather than an interval of
values [13]. In our implementation, to keep a visual continuity
the bar chart is horizontal, which means there are two x-axes,
the common time visualization axis and one which identifies
the number of data points in the bars.

To represent the arrival of new data, the bars gradually
increase in size to their new values on the idiom. The scale
updates the idiom’s the maximum value, when the current hits
90% of the previous. To avoid constant change of the scale,
instead of changing to the new maximum, it adds 30% to it.
When the scale changes, the bars’ length changes with it by
gradually decreasing in size, since the maximum has increased.

This idiom is only suitable for a last idiom period, since
there is no visual connection between the elements to the left
boundary of the idiom, which maintains the data path idea.
For a last period idiom, it works perfectly, as the constant
update of bar size and scales allows the data to be grouped
indefinitely since the start of the visualization.

2m2s 245

Fig. 7. Bar chart: The bars are placed horizontally, connected to the beginning
of the idiom. Their width enlarges when data points arrive. The bars’ sizes
represent the number of data points since the beginning of the visualization.

G. Transitions

The transitions referred in this work are horizontal transi-
tions, which represent the continuity between two idioms, by
transforming the elements that represent the data in the former
idiom (A) to the next idiom’s (B) element properties [1]. The
goal to perceptibly show that the information is the same in
different aggregation levels. Part of this transformation is also
reducing the element’s velocity from idiom A (vA) to idiom
B (vB), and does so using the movement equations:

At = |timestamp — idiomStartTime] 3)
pzoffsetA—i—vA—&—a% ()

Two different transitions were developed for each idiom
combination, to provide alternatives and explore the prop-
erties of an effective transition, while avoiding an extensive
combinatorial explosion of transitions, which would limit the
implementation and analysis time. Some combinations were
not studied because either the idioms were not suitable in their
positions or were previously studied in [12]. Each combination
of idioms also has a default transition, which is a simple fade
out of the elements from idiom A. The picked transitions in
plenty of cases followed similar or identical logics, and for
that reason these transitions will be explained as one.

The first transition is only used in Cleveland plot to ordinal
line chart. In Growing Bars the dots converge on top of a bar
in the left boundary of the transition, causing the bar to grow
to the value it will have in the ordinal line chart. This bar is
attached to a line which connects to the next idiom’s latest line,
creating a seamless connection where there is always a line
being produced, and growing with each entering dot, giving
the idea that they are being grouped by pilling up in a bar
whose height is its number of dots. Again, in this combination,
there is a second transition called Grouped Deots. Similarly to
Pereira et al. [12]’s scatter plot to line chart. The dots converge
at the beginning of the respective line segment, giving the idea
that the dots group together on the group’s future on the ordinal
line chart. The lines’ opacity grows the closer they get to the
next idiom.

[EEF3LEE

Fig. 8. Cleveland plot to Ordinal line chart transitions

Pilot Lines is a variation of the once again Pereira et al.
[12]’s tested transition. As explained before, instanced meshes
do not allow changing the size of a single point without
computational drawbacks, and thus it is unfeasible to replicate
the transition. Our variation of this transition, gradually scales
down the instanced meshes’ height until the first third of the
transition. By scaling the height to zero, the dots convey the
idea that they are being merged into a single point, however
this is only the case for quantitative data, as the ordinal values
follow a line and the scaling will almost be unperceivable.
After the first third, a single rectangle is created with the size
the dots would occupy in the next idiom. Once these rectangles
hit the idiom boundary, just like stacking dots, they enlarge a
horizontal bar that will “pushed” to the next idiom.

Fig. 9. Cleveland plot to bar chart’s Pilot lines

On all combinations ending in either a heatmap or an
ordinal line chart, a Morphing transition was applied. In these

transitions, the elements that exit the first idiom gradually
transform into the elements present on the second. This could
be done by changing color, opacity, size and/or rotation.
If more than one element is needed to represent the next
element, then the first will morph into a portion of the second
rather than the totality. The element morphing eases the visual
transition, and the proportion clarifies how much data is being
grouped.

Fig. 10. Example of the Morphing transition

In ordinal line chart to heatmap combination, a different
transition was implemented called Line squeeze. In this
transition the lines will move towards the boundary while
horizontally straightening, and after they reach their position
in the heatmap, they increase in height almost as if they
were squeezed against the boundary. Multiple lines will likely
represent one cell, so each line will depict just a portion of
said cell.

4 - T —— T
B — S~
34— ———— T
= ———— — ——
W o~ — T

e N e —

Fig. 11. Ordinal line chart to heatmap line squeeze

When starting with idioms whose elements are rectangles,
there is an alternative transition of Squares. In order to
understand the quantity of points inside the expelled element,
it divides itself in smaller squares proportional to the total
received points in that interval. If the ending idiom is the
ordinal line chart, then the created squares will transform into
small segments of a line by rotating and resizing themselves
gradually. If instead the ending transition is a stacked bars or
bar chart, then the squares will enter and increase the size of a
bar, which will then seem to be pushed to the next idiom. The
combination of the stacked bars to heatmap starts the same
way with a rectangle being split into squares, but in this case
they will enter a cell which starts with no opacity, until it
reaches the intended opacity. There is also another transition
called Dissolving Lines, beginning in an ordinal line chart and
ending in a stacked bars/bar chart, which as the same logic
as the Squares transition for the same ending idiom, the only
difference is that instead of splitting the element once into

squares, it “dissolves” the lines into segments while entering
the transition.

Fig. 12. Example of the Squares and Dissolving Lines transitions

Oppositely, if the ending idiom represents data through
rectangles, then one alternative is a Stacking Bars. Here,
the starting elements, if not already rectangles, transform into
them. After transforming, the resulting rectangles make their
way to the end of the transition, where they stack on top others
rectangles, giving the idea that they are being aggregated into
a single bar that represents the bin.

WSS

| [I\ /N ~——
[INN7 75~

[\/ I\~ ~—
I\

|/

[\

\/\/rr—~—ro

\\/ /e

IAVAVYAS

Fig. 13. Example of the Stacking Bars transition

IV. EVALUATION

The evaluation of OrderWarp was done in two fronts, the
measure of the system’s performance and the confirmation
of the effectiveness of the visual representations through user
testing.

A. System’s performance

Without a stable performance, the information comprehen-
sion is affected through visual leaps, frame freezing or worst-
case scenario a system crash. To ensure the good functioning
of the whole system, two tests were done in a visualization
with three idioms and two transitions, with the same con-
ditions. In the first test the idioms were Cleveland plot, an
ordinal line chart and a bar chart, from left to right respectively,
with Growing Bars and Stacking bars as transitions. In the sec-
ond, a heatmap, a stacked bars and a final bar chart composed
the visualization, separated by two Stacking Bars transitions.
The idioms positions were chosen based on the theorized
most suitable positions, and the combinations were chosen
arbitrarily, ending in a bar chart to ensure the visualization
depicts the full dataset. A study of all the combinations of
idioms was also done to find out which transitions impact the
performance the most.

All the performance tests were executed during 10 minutes
with 100, 1000 and 10000 records per second data flows, using
Google Chrome version 94.0.4606.81 in a Windows 10 envi-
ronment with an Intel(R) Core(TM) i5-8400 CPU @2.80GHz,
16Gb of RAM memory in a 1920x1080 resolution, with
NVIDIA GeForce GTX 1660 GPU. This duration ensures that
any complications relative to time will likely be recognized.

Two measures were identified as essential to maintain
system performance. The first being fps, with a set lower limit
of 30 to ensure a fluid visualization. The values retrieved from
the visualization were a fps average in 10 second intervals,
guaranteeing no punctual spikes. The second measure was
the stored memory of the system, which is the amount of
structures required for the visualization to run. If this value
is too high it might compromise the system’s functionality,
but more importantly if it increases linearly through time, the
system will crash at some point in the future, thus the system
can not run indefinitely.

Regarding the fps measure, all the tests stabilized quickly
at some point in the analysis, always keeping the same fps
value. For the two first tests, the fps value was much greater
than the given limit, with the worst performing visualization
out of the two, implementing the Cleveland plot. The lowest
recorded value was 103.2 fps and the average value was 104.8
+ 3.8. When substituting the first idiom with the heatmap, the
values rose, as expected, and it was possible to see that, since
no idioms created elements depending on the data flow, the
fps values were similar for all data flows. The transitions were
tested with just two idioms and wider transition spans, and for
this reason the values for Cleveland plot starting transitions
suffered a decrease in fps for all cases. However, the Pilot
Lines transitions had lower fps than the limit only for 10000
points data flow.

Performance of the system using 3 idioms

wh
=N

Performance of the system using 3 idioms

second intervals

Average fps in 10

— 10000 — 10000
— 1000

— 100

Fig. 14. Fps’s evolution through time results for the first and second tests.

For the memory usage, it was clear in every test that, even
though larger data flows will hold higher memory values as
expected, its evolution was constant through time regardless of
the data flow. No surprising information was discovered when
studying the memory usage in the transitions, since the ones
who implemented more visual elements return higher values.

B. Discussion

In both measures, the system fulfilled its goals, so we can
conclude that system’s architecture in WebGL technologies
allows the visualization of Big Data Streaming for as long as
required.

C. User Testing

To evaluate the effectiveness of the implemented represen-
tations, we conducted usability tests to a group of users. The
study was done via questionnaires created with Google forms.
On total, there were 13 questionnaires, an initial user profile
questionnaire, followed by one questionnaire for each possible
combination of idioms. Each user could complete any amount
of different testing questionnaires out of all 12 throughout a
two-week period. The questionnaires were tested online, to
reach more people and not require the presence of a guide.
The tests were assigned using an ID, corresponding to a row
in a 12 by 12 Latin square distribution, that ensures no bias
in the order attribution.

1) Questionnaires: The 12 questionnaires all followed the
same structure. The users were first presented with a descrip-
tion of the purpose of the study and their role in it. After this
there was an explanation of the OrderWarp accompanied by
a video ! covering the system step by step. All user testing
videos were recorded with a starting data flow of 100 points
per second.

The next questionnaire sections focused on the analysis of
each idiom in the combination individually. These sections
start off with another video showing only the functioning of
the target idiom, followed by objective questions that allow
the quantification of the idiom’s effectiveness. There were then
two common questions to evaluate the cognitive demand of the
idioms, which asked - "How confident are you on the previous
answers?” and - "How many times did you have to rewatch
the video?”. Finally, the user is encouraged to identify any
problems with the idiom and/or offer suggestions. To avoid
duplicate answers in questionnaires with the same idiom, users
could skip these section if already answered.

The next two questionnaire sections serve to evaluate the
two proposed transitions for the questionnaire’s combination.
As before, there was a testing video followed by three ques-
tions - How clear is it that the data is being aggregated; How
fluid is the transition; and Which of these is statements is true
regarding the transition’s logic with the first two presenting a
Likert scale, and the next one, three different written options.
The users were then asked suggestions again, the previous
cognitive demand questions, and a final transition preference
question between both alternatives.

2) Participants: 24 people between the ages of 18 to 30
(91.7%) and 50 to 60 (8.3%) responded to the questionnaires.
16 identified as male, 7 as female and one as non-binary. The
users’ experience with visualizations was dispersed, a third
used it occasionally, 37.5% every week, 12.5% every day, and
the rest never used or only once a month. Almost every user
knew the bar chart, line chart, and scatter plot idioms, and a
smaller considerable proportion was familiar with a heatmap
and stacked bars.

3) Results: The results are split in idioms and transitions

3.A) Idioms: For the Cleveland plot idiom, the displayed
video 2 showed an almost binomial distribution on one of the
values, and then suddenly an agglomeration of points emerges

Uhttps://youtu.be/RcwU2Bc3KTS
Zhttps://youtu.be/uKTqZ0IQWDg

on a distinct ordinal value. The first question (Q1) targeted
the user’s distinction of the distribution of the ordinal values.
The next focused on the recognition of agglomerations (Q2),
followed by identification of which values were affected by
this agglomeration(Q3). The results are shown in table I.

Question Q1 Q2 Q3
Results 100% | 100% | 83.3%
TABLE T
CLEVELAND PLOT EFFICIENCY RESULTS

Q1 and Q2 proved the visualization to be quite effective
in its proposed tasks. Yet the identification of agglomerations
return lower results, but still positive, with 83% answering Q3
correctly.

Heatmap’s video 3 followed the same logic as before, with a
different dataset and agglomeration instant. Since the analyzed
tasks are identical, so were the three first questions, adapted
to the new dataset. The idiom’s section presented two extra
questions, the first (Q4) researched the comprehension of the
lack of records in the idiom. The second’s (QS5) purpose was to
understand the scale changing perception with a Likert scale.

Question Q1 Q2 Q3 Q4 Q5
Results 100% | 95.7% | 87.0% | 82.6% | 4 (1)
TABLE I
HEATMAP EFFICIENCY RESULTS

The results can be found in table II. The three first
questions’ results showed similar findings as before, with a
slight decrease in agglomeration identification balanced by an
increase in the affected values’ recognition. 82.6% perceived
the idiom’s scale correctly when no values were shown, and
considered its change easy to understand, with 4 (1).

The test of the ordinal line chart was different. The video’s
4 dataset was designed so that one of the values presented
a larger amount of points, testing their comparison with the
previous Q1. Two of the other values tested the analysis of
the idiom’s evolution (Q2), with one irregularly increasing
linearly and the other decreasing. The last question focused
on understanding if the idiom accurately perceives the exact
value of a line (Q3). The results can be found in table III.

Question Q1 Q2 Q3
Results 957% | 783% | 56.5%
TABLE TIT
ORDINAL LINE CHART EFFICIENCY RESULTS

The results were positive for the first couple of questions,
however, the third identified a problem on either the logic or
the implementation of the scale, with only 56.5% finding the
correct answer.

Stacked bars goal is to understand the proportions of points
arrived in different time intervals called Eras, which were the
test subject of the questions. Stacked bars video > showed a
normal distribution of the data through various Eras, and then,
a sudden agglomeration on the S value.

3https://youtu.be/2KNuAX6ZmBI
“https://youtu.be/ozKu4JvQ1-A
Shttps://youtu.be/ZVY VDIICZAY

The first question’s (Q1) objective was to study the com-
parison between Eras, by asking to identify the most common
one. The second question’s (Q2) goal was to identify an outlier
Era in an ordinal value, by identifying the one where the
agglomeration was present. The third question (Q3), asked
the user to identify the percentage value of an Era. In the last
question, when asked the true or false question on whether
the first and last idioms were fully represented (Q4), the users
had to understand that these two Eras’ had missing values.
Oppositely, the scale of the proportions was well distinguished,
with a vast majority correctly identifying the percentage of
records in an Era (Q3). In the last question (Q4), the study
found that only 20% of users understood that the timespan
of the idiom did not represent the full interval of the first and
final Era. Furthermore, a number of users commented that this
idiom was not intuitive. The results can be found in table IV.

Question Q1 Q2 Q3 Q4
Results 72.7% | 59.1% | 86.4% | 20.0%
TABLE TV

STACKED BARS EFFICIENCY RESULTS

This idiom presented somewhat of negative results. 72.7%
found the most common Era for most ordinal values, but
40.9% said that it was not clear in which Era this did not occur.
Furthermore, the identification of the individual values was
clear for most users, with 86.4% finding the correct answer,
however, only 20.0% understood that the Eras were not fully
represented in the idiom.

Bar chart’s video ® demonstrates a simple binomial distri-
bution of points around the L value. The idiom was then tested
with just two questions, the first (Q1), tested the efficiency
of the idiom on comparison by asking to identify the most
common value. The second (Q2) asked to identify the number
of records in an ordinal value. The results can be found in
table V.

Question Ql Q2
Results 100% | 88.9%
TABLE V
BAR CHART EFFICIENCY RESULTS

Both questions showed good results in the two measures
with 100% and 88.9% correct answers respectively.

An additional analysis on the comparison of the confidence
values for each idiom and the amount of times the users
rewatched the videos, represented in the box plots on figure
15, shows the cognitive demand of the users per idiom.

3.B) Transitions: As explained in section IV-C1, the tran-
sitions sections asked three questions, which targeted the
transitions’ aggregation, fluidity and logic. To understand if
there were statistically significant differences between the first
two measures, each combination of transitions underwent a
Wilcoxon signed-rank test except for one transition that found
a non-normal difference median distribution and was tested
with the sign test. For the logic measure, the question’s result
type had to be tested with the McNemar’s Test. However,

Shttps://youtu.be/FrvASul2RE4

Confidence and Rewatch Times Variable

5 R — BEconfidence
MRewatch Times
101 102
s *
106 108
3 —
35
2

Score

. I
1

Bar chart

Cleveland Heatmap Ordinalline Stacked
plot chart bars

Fig. 15. Answer confidence and rewatch times comparison between idioms

no significant differences were found in any combination,
and consequently will not be shown in the following results.
Furthermore, in this work, any transition with a median value
of 3 or lower in any of the measures is considered not to be
effective enough to represent the changes between idioms.

For the Cleveland plot beginning transitions, only the first
combination with the ordinal line chart was compared statis-
tically, since it was the only one with two transitions. The
Growing Bars transition saw statistically better results with
p < 0.0005 in both measures and z = —3.678 for fluidity
alone. The aggregation measure was the only one which used
the sign test. For the other two idiom combinations, there was
only the Pilot Lines transitions, which proved to be effective
in both combinations and measures.

Heatmap’s beginning transitions, resulted in a statistical
significance between Line Morphing and Squares measures,
when addressing the ordinal line chart as the ending idiom.
The fluidity measure saw significant differences, deeming Line
Morphing more suitable. For the next two combinations,
Stacking bars was picked as more suitable. However, when
combining with stacked bars, no significant differences were
found, the decision was done through user preference. In bar
chart’s case, the transition was significantly better in both
measures.

Starting with the ordinal line chart, the transition picked for
the heatmap combination was Cell Morphing, which returned
statistical significant improvements over Line Squeeze in both
measures. For stacked bars and bar chart, the same transitions
were implemented and analyzed, but no statistical distinctions
were found, and so the user preference chose the Stacking
Bars transitions.

In the last beginning idiom, both combinations ending
in heatmap and line chart were only distinguished by user
preference, with the resulting transitions being Squares and
Line Morphing, respectively. However, the second transition’s
fluidity values did not surpass the given median limit, thus it
should be substituted or rethought. From stacked bars to bar
chart, the Squares transition saw statistical differences in the
aggregation measure, which declared it the most suitable. The
fluidity values barely surpassed the median limit.

D. Discussion

Addressing idioms, Cleveland plot, heatmap, ordinal line
chart and bar chart, all showed positive results in the question-
naires, with most questions answered correctly by most part
of the users, proving to be good representations for ordinal
data on the Graceful degradation technique. Cleveland plot
generates performance issues and visual clutter when the data
flow is too high, and so, we suggest changing idiom to heatmap
in these cases. The good results in both the Cleveland plot
and its transitions, demonstrates that instanced meshes can
represent well data even with its limitations.

Ordinal line chart’s had good results in evolution under-
standing and value comparison, yet the identification of the
exact values return poor results, and should be rethought if
used in a real-context. Oppositely, stacked bars idiom had
lower results in all questions, except for proportion value
distinction. The idiom was found confusing by users in the
feedback question, which affect their data comprehension and
should either not be considered an adequate idiom or also
rethought. It was possible to verify that the idioms, which were
achieved better results and were less demanding cognitively,
were the most known idioms in the profile questionnaire.

The most suitable transitions of the suggested idiom’s
combinations can be found in table VI. The ones with no
statistical differences are identified with an asterisk. The tran-
sitions that got better results implement less visual elements
for the most part, and in further work this should be taken
into consideration. It is important to say that the depicted
transitions are not necessarily the best transitions, just the best
found alternatives.

Idiom HM OL BC
CP - Growing Bars Pilot Lines
HM - Line Morphing Stacking Bars
OL Cell Morphing Stacking Bars*

ABLE VI
RESULTING TRANSITIONS TABLE

V. CONCLUSION

To extend the Graceful degradation technique to ordinal
data, we implemented various idioms and transitions between
them, focused on the analysis of this data type. The visual-
ization allowed a flexible selection of connected task-oriented
idioms, as well as their width and timespan. From this selec-
tion, the visualization is capable to adapt to different datasets,
providing different levels of detail. All the representations
were implemented using WebGL, migrating the initial work to
a performance enhancer technologies, rendering objects with
the help of the GPU.

The evaluation phase split the tests in two. The first proved
the proposed architecture provided a smooth visualization that
could display information indefinitely. The second part tested
the designed representations through user testing, finding the
idioms that could effectively depict ordinal data and those who
could not, and the transitions which portrayed the change in
aggregation level.

The new developed system lacks user interactivity, which is
a very valuable in information systems, and should be treated

as a crucial feature to implement. Some idioms still require
improvements, in the ordinal line chart’s case it would be a
restructuring of its scale. If stacked bars is to be kept, its
logic as to be deeply altered. More studying of the transitions
is required to understand the impact of its width and timespan
on the users comprehension.

[1]
[2]

[3]

[4]
[5]

[7]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

REFERENCES

Filipa Castanheira, Daniel Mendes, and Daniel Gongalves. “FastViz -
Visualizando Big Data em Evolug¢do Dindmica”. In: 2020.

S. Cheng, K. Mueller, and W. Xu. “A framework to visualize temporal
behavioral relationships in streaming multivariate data”. In: 2016 New
York Scientific Data Summit (NYSDS). 2016. po1: 10.1109/NYSDS.
2016.7747808.

O. Daae Lampe and H. Hauser. “Interactive visualization of streaming
data with Kernel Density Estimation”. In: 2011 IEEE Pacific Visual-
ization Symposium. 2011. DOI: 10.1109/PACIFICVIS.2011.5742387.
Remco Chang Daniel E. Kee Liz Salowitz. “’Comparing Interactive
Web-Based Visualization Rendering Techniques™”. In: (2012).
Mohammad S.Alam Evgeniy Yur’evich Gorodov Vasiliy Vasil’evich
Gubarev. “Analytical Review of Data Visualization Methods in Appli-
cation to Big Data”. In: Russia: Journal of Electrical and Computer
Engineering, 2013. DOI: 10.1155/2013/969458.

N. Ferreira et al. “Visual Exploration of Big Spatio-Temporal Urban
Data: A Study of New York City Taxi Trips”. In: IEEE Transactions
on Visualization and Computer Graphics (2013). DOI: 10.1109/TVCG.
2013.226.

T. Fujiwara et al. “An Incremental Dimensionality Reduction Method
for Visualizing Streaming Multidimensional Data”. In: /EEE Transac-
tions on Visualization and Computer Graphics (2020). DO1: 10.1109/
TVCG.2019.2934433.

Y. Hashimoto and R. Matsushita. “Heat Map Scope Technique for
Stacked Time-series Data Visualization”. In: 2012 16th International
Conference on Information Visualisation. DOI: 10.1109/1V.2012.53.
Valen E Johnson and James H Albert. Ordinal data modeling. Statistics
for Social Science and Behavorial Sciences. New York: Springer, 1999.
DOI: 10.1007/b98832. URL: https://cds.cern.ch/record/1608780.
Florian Mansmann et al. “StreamSqueeze: a dynamic stream visu-
alization for monitoring of event data”. In: Visualization and Data
Analysis 2012. International Society for Optics and Photonics. SPIE.
DpoI: 10.1117/12.912372.

Peter McLachlan et al. “LiveRAC: Interactive Visual Exploration
of System Management Time-Series Data”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI
’08. Florence, Italy: Association for Computing Machinery, 2008.
ISBN: 9781605580111. DoI: 10.1145/1357054.1357286.

Tiago Pereira, Daniel Mendes, and Daniel Gongalves. “VisMillion and
change”. In: 2019.

Gongalo Pires, Daniel Mendes, and Daniel Gongalves. “VisMillion: A
novel interactive visualization technique for real-time big data”. In:
2017 IEEE International Congress on Big Data (BigData Congress).
INESC-ID Lisboa, 2019. por: 10.1109/BigDataCongress.2017.49.
Joris Sansen et al. “Visual Exploration of Large Multidimensional Data
Using Parallel Coordinates on Big Data Infrastructure”. In: Informatics
3 (2017). 1SSN: 2227-9709. pol: 10.3390/informatics4030021. URL:
http://dx.doi.org/10.3390/informatics4030021.

Sye-Min Chan et al. “Maintaining interactivity while exploring massive
time series”. In: 2008 IEEE Symposium on Visual Analytics Science
and Technology. DOI: 10.1109/VAST.2008.4677357.

Ralf Krestel Tim Repke. “Topic-aware Network Visualization to Ex-
plore Large Email Corpora”. In: EDBT/ICDT Workshops 2018, 2018.
Jonas Traub et al. “I2: Interactive Real-Time Visualization for Stream-
ing Data”. In: EDBT, 2017.

Biye Jiang Zhicheng Liu and Jeffrey Heer. “imMens: Real-time Visual
Querying of Big Data”. In: Eurographics Conference on Visualization
(EuroVis) 2013, 2013. por: 10.1111/cgf.12129.

