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Abstract 

The work presented in this thesis belongs to the scientific field of electronic design automation, with a 

special focus on the automatic sizing of radio-frequency integrated circuit blocks. With the help of deep 

learning and, more specifically, artificial neural networks, a new approach is introduced and discussed.  

Machine and deep learning techniques are now being applied at different design levels of analog/radio 

frequency integrated circuits, from modelling to test, to learn any nonlinear input-output relationships. 

These new techniques are also challenging the conventional optimization-based sizing strategies, by 

creating models that map from the device’s sizes to the specifications, or the opposite. This is done by 

replacing or complementing the time-consuming simulator in-the-loop.  

The approach proposed in this work is based on a supervised learning scenario using artificial neural 

networks both for classification and regression. A convergence classifier will be used to predict if a 

certain simulation is likely to converge or not, and a frequency guess predictor to predict the oscillating 

frequency. This method will be implemented and tested on voltage-controlled oscillators’ optimizations, 

by learning from a dataset of previous performances obtained by the simulator. The studied voltage-

controlled oscillator circuit topologies are evaluated under extreme operation, i.e., Process, Voltage and 

Temperature corners. It is expected that these networks filter and discard solutions with no valuable 

information for the optimization loop, and thus, greatly reducing the overall time of the optimization 

process. 

The result is a model that can predict non desired solutions, resulting in gains of almost 20% in overall 

simulation time, by discarding non valuable points. And it is able to correctly predict oscillatory 

frequencies, as the difference between these ones and the ones given by the simulator, reach values 

of mean absolute percentage error under 12%. Additionally, the use of this model does not compromise 

the results, as the ones obtained are very similar to the ones obtained without its use, and even better 

in some cases. The model demonstrates to be feasible for different optimization specifications, as well 

as for other examples of Voltage-Controlled Oscillators. The gains are similar, as the model is able to 

save 10% and 17%, respectively, and the results very promising, resulting in a model with a strong level 

of generalization. 
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Resumo 

O trabalho apresentado neste relatório pertence ao ramo científico da automação de projeto eletrónico, 

com um foco especial na automação do dimensionamento de circuitos integrados de radiofrequência. 

Com a ajuda de técnicas de aprendizagem profunda, e mais especificamente, redes neuronais 

artificiais, é apresentada e discutida uma nova abordagem.  

Diferentes técnicas de aprendizagem profunda estão agora a ser aplicadas a diferentes níveis do 

projeto de circuitos integrados analógicos e radiofrequência, desde a modelação ao teste, para 

aprender relações não lineares entre entradas e saídas. Estas novas técnicas desafiam também as 

estratégias convencionais de dimensionamento baseadas em otimização, criando modelos que 

mapeiam desde os tamanhos do dispositivo até às suas performances, ou o oposto. Isto é feito 

substituindo ou complementando o simulador presente no ciclo de otimização, cujo tempo de execução 

é geralmente elevado. 

A abordagem proposta neste trabalho é baseada num processo de aprendizagem supervisionada, 

utilizando redes neuronais artificiais tanto para classificação como para regressão. Um classificador de 

convergência será usado para prever se um certo dimensionamento é provável que convirja durante a 

simulação, e uma rede de regressão estima a frequência para o qual esse dimensionamento deverá 

oscilar. Este método será implementado e testado numa ferramenta de otimização de osciladores 

controlados por tensão, analisando soluções anteriores cujas performances foram obtidas no 

simulador. Estas topologia de circuitos são avaliadas sob uma análise de condições extremas de 

funcionamento, sendo que as consideradas são temperatura, processo e tensão. Espera-se que estas 

redes filtrem e descartem soluções não viáveis, tendo um impacto significativo na redução do tempo 

total do ciclo de otimização. 

O resultado é um modelo capaz de prever soluções não viáveis, resultando em reduções de cerca de 

20% no tempo global de simulação. E é capaz de prever corretamente e frequências de oscilação, 

sendo que as diferenças entre estas e as obtidas pelo simulador atingem valores de erro percentual 

médio absoluto inferiores a 12%. Adicionalmente, o uso deste modelo não compromete os resultados, 

sendo os obtidos muito semelhantes aos obtidos sem a sua utilização, e até atingindo melhores 

resultados em alguns casos. O modelo também demonstra viabilidade para diferentes especificações 

de otimização, bem como para a sua aplicação quase direta em outros osciladores controlados por 

tensão. Os ganhos são semelhantes, sendo que o modelo consegue economizar 10% e 17%, 

respetivamente, e os resultados muito promissores. Resultando assim, num modelo com um forte nível 

de generalização. 
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Otimização Automática de Dimensionamento, Oscilador Controlado por Tensão, Redes Neuronais 
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Chapter 1 

Introduction 

This chapter presents an introduction to analog Integrated Circuit (IC) design with special attention to 

the challenges that come with the current optimization-based sizing methodologies. Besides, it is 

introduced the concept of Machine Learning (ML), and the possible use of Artificial Intelligence (AI) to 

automate analog IC sizing is analysed, more specifically analog and Radio Frequency (RF) devices or 

circuits. 

1.1 Motivation 

In the present day, the IC industry has, maybe now more than ever, a huge demand for electronic 

devices, not only in the consumer electronics markets but also in other industries such as medical, 

automotive, and security. Despite Moore’s Law not really being observed anymore, the evolution of IC 

is still clearly observable every year, with designers building systems that are increasingly more 

complex, power-efficient, and integrated. These systems often have a combination of analog and digital 

sections, where most components are integrated into a single chip originating Mixed-Signal (MS) 

Systems on a Chip (SoCs). 

Most ICs are implemented using digital or digital signal processing circuitry. However, analog circuits 

are the bridge between digital circuitry and physical devices with a nonstop increase in connectivity 

needs. Even though analog circuits only occupy a small fraction in MS SoCs, they require more effort 

to be built, as shown in Figure 1.1. Besides, the time to market and development costs make of electronic 

systems design a challenging task, being, therefore, fundamental to accelerate their design as much as 

possible. 
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Figure 1.1 - Analog and Digital IC blocks. Reprinted from [1]  

With Very Large Scale Integration (VLSI) technologies being broadly improved, it gave room for the 

growth of the global IC market, which was worth $412.3 billion in 2019, is expected to grow to $502.94 

billion by 2023, growing at a compound annual growth rate of 5.09% [2], with analog/RF components 

being present in more than 50% of the total IC shipments yearly. 
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Electronic Design Automation (EDA) tools and design methodologies have been made available to cope 

with new capabilities offered by the integration technologies. However, there is still a huge discrepancy 

between the tools available for analog and digital IC design. The gap between the number of existing 

EDA tools for digital and analog circuits is usually explained by the fact that the digital market is much 

larger, absolving the available resources. It is also easier to express a digital system, which can be 

represented naturally in terms of Boolean representation, whereas, on the analog side, their design is 

less systematic, more knowledge-based, and more heuristic [3]. Even though analog circuits only 

occupy a small fraction of systems, they are responsible for design errors and expensive reruns. 

Therefore, economic pressure has motivated the pursuit of better methodologies to accelerate analog 

design.  

The automation level for analog IC has been improving in the last years, being a field of profound 

academic and industrial research activity, which produces significant advances [4]. However, it is still 

far from the push-button stage, which leads to designers exploring the solution space almost manually 

as there are no standard advanced analog EDA tools and methodologies to automate the analog IC 

design flow. 

On top of that, with predictions that more than half of new businesses will run on the Internet Of Things 

(IoT) and advances in telecommunications, such as the 5th generation broadband or 5G for short, there 

will be a huge demand for devices and sensors, opening doors to advances in areas such as healthcare, 

education, resource management, transportation, agriculture, and many other areas. Not only that, but 

there has also been an increase in the amount of data that is being continuously generated, resulting in 

new challenges within every part of the networks. Consequently, there is high pressure in today’s market 

for large communication rates, extensive bandwidths, and ultralow-power consumptions. This is where 

RF ICs come in hand, playing a crucial role. This demand stresses out the problem which resides in the 

remarkable difficulty of RF and Millimeter Wave (mmWave) IC design in deep nanometric integration 

technologies for both IoT and 5G, due to their high complexity and demanding performances. 

Aggravated by the need to fulfill these at minimal costs and under frightful time-to-market constraints. 

Some of the design difficulties lie in the exceptionally wide range of frequencies and dynamic ranges 

involved, but also: 

• Their dependence on non-reliable models of passive devices; 

• At gigahertz frequencies, there is a huge impact of layout parasitics; 

• Their integration in deep nanometer technologies that are bearing variability issues and non-

idealities which have never been experienced in older technology nodes. 

One major objective for the design of modern RF ICs is to avoid the costs of redesign cycles, to diminish 

the post-fabrication tuning, and pursue first-pass fabrication success. Until now, the circuit designers 

were able to carry this flow manually thanks to the vast Computer Aided Design (CAD) tools provided 

by companies, but this method is no longer manageable due to the number of complex interactions and 

the sub-optimal RF designs that come with it. 
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1.2 Analog Circuit Sizing Flow 

Over the past few years, the entire IC implementation from digital flow to graphic design system design 

flows, where one uses primarily stand-alone synthesis, placement, and routing algorithms to IC 

construction and analysis flows for design closure, has gone through significant changes. When it comes 

to analog design flow, most of the time when designing an Analog Mixed Signal (AMS) IC manually, the 

designer still follows the steps introduced by Gielen and Rutenbar [5], illustrated in Figure 1.2. The 

methodology consists of a series of top-down design steps that are repeated from the system-level to 

the device-level, and bottom-up layout generation and verification.                    

With the adoption of a hierarchical top-down design methodology, it became possible to explore complex 

system architectures, leading to a better overall system optimization at a higher abstraction level, even 

before doing more complex implementations at the circuit or device-level. Within this design 

methodology, an effort is made to find problems earlier in the AMS design flow to increase the success 

odds, while also having less or no overall time-consuming redesign iterations [6]. However, the increase 

of impact of layout parasitics and process disparities with the advances in technologies pushes the need 

to have many iterations in real-world designs. The number of hierarchy levels in this design flow is 

dependent on how complex is the system being handled, and despite not having a generally accepted 

representation for the design of the architecture, there are usually two design paths: 

• Top-down electrical synthesis path, which includes the selection of the topology, translation 

of the specifications (or circuit sizing at lowest levels), and design verification;  

• Bottom-up physical synthesis path, which includes layout generation and extraction, followed 

by verification of the specifications. 
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Figure 1.2 - Steps when designing AMS IC manually. Reprinted from [7] 

https://en.wikipedia.org/wiki/Routing_(EDA)
https://en.wikipedia.org/wiki/Design_closure
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Specifically, the step of determining the most suitable system or circuit topology is called Topology 

Selection. This one aim to meet the specifications given at the current hierarchy level, where the 

topology can be chosen from a set of available topologies or synthesized.   

Specification Translation is the task encharged to map the high-level block specifications into 

independent specifications for each sub-blocks. This task culminates in-circuit sizing at the lowest level, 

where the sub-blocks are single devices. This stage is verified with the use of simulations. At higher 

levels in the design hierarchy, simulations are behavioural since no device-level sizing is accessible, 

wherein the lowest levels, device’s sizes are available, so electrical simulations are used. Each block 

carries its specifications to the following level of the hierarchy, repeating this process until the top-down 

electrical synthesis flow is finished. 

With advances not only in EDA tools for RF circuit designs but also in the development of RF process 

design kits, the productivity of RF engineers has seen major improvements. However, typical RF design 

is still influenced by the heavy work of design-tuning, where the design experience plays an especially 

important role [8].  Conventional analog IC design is particularly time-consuming due to the complicated 

nonlinear relationship between the design parameters and device/circuit/system specifications. The idea 

behind using ML techniques in analog/RF circuit design is to generate functional models of 

devices/circuits/systems that accurately mimic their functional behaviours and exploit them for different 

contexts.  

The EDA community has been extremely helpful in overcoming some of these issues related to the 

design of RF IC, by offering optimization-based sizing methodologies. These tools use algorithms that 

automate the design space exploration, wherein industrial and academic levels the most accepted ones 

use a circuit simulator as the evaluation engine; in other words, simulation-based sizing. A scheme of a 

simulation-based sizing approach used to optimize the design of a RF IC is illustrated in Figure 1.3.    

Simulator
in-the-loop

Evaluated 
Circuits  

Performances

...

...

Optimization Engine

Candidate Circuit 
Sizing Solutions

 

Figure 1.3 - Flow of a simulation-based RF IC sizing optimization 
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1.3 Objectives 

This work has as a primary goal to accelerate the sizing optimization process of Voltage-Controlled 

Oscillators (VCOs) using ML techniques. 

VCOs play an essential role in modern RF IC, being an open research and development topic. For 

instance, in IoT applications where the demand for Ultralow-Power (ULP) radios is significant, VCOs 

are extremely relevant design blocks [9]. Besides requirements such as phase noise and power 

consumption, the intrinsic tradeoff specifications, such as the frequency tuning range and frequency 

pushing due to the supply voltage variation, also need to be carefully considered in a practical design. 

Building a realistic analysis of the design tradeoffs is a challenging task, as multiple tuning modes deliver 

a vast number of conflicting performance figures that need to be balanced. Adding further complexity, 

the impact of the process variations or parasitic layout structures turns the optimal balance of the design 

tradeoffs beyond human capabilities.  

Form the analysis of state-of-the-art sizing tools available for analog IC and RF design automation 

described in Chapter 2 of this dissertation, simulation-based sizing optimization tools are widely 

accepted approaches as they keep the solutions’ accuracy high. Still, some challenges arise when 

designing complex VCO circuit topologies using simulation-based sizing optimization: 

• In some cases, the simulator is unable to converge to the guessed oscillation frequency, 

whereas in others, the simulation attempts to converge infinitely; 

• The increase of simulation time of extracted netlists as opposed to the pre-layout one makes it 

harder to decide when to put a timeout on convergence attempts; 

• As it is needed to provide a guessed oscillation frequency  to the Steady State (SST), this one, 

is strongly correlated with the convergence analysis, promising designs may still be lost without 

simulating multiple guesses.  

As described in [10], the optimization of a VCO using Mentor Graphics’ ELDO [11] to simulate the circuit 

resulted in 59, 423 and 287 optimal sizing solutions for 3 different design targets, each taking about 100 

hours in an Intel-Xeon-CPU E5-2630-v3@2.40 GHz with 64 GB of RAM using eight cores for parallel 

evaluation. Therefore, reducing the evaluation engine’s workload, the simulator, which is the most time-

consuming step in this optimization process, is extremely valuable.  

Figure 1.3 depicts an optimization flow where each sizing solution can be simulated for extreme 

operations, suffering the challenges previously mentioned. The work will explore deep learning to 

enhance the optimization loop process two-fold. First, by building a classifier that predicts if the 

candidate solution’s simulation is likely to converge, avoiding wasting computational time in non-

convergent candidate solutions; and second, a regressor will predict the oscillating frequency guess that 

should be used in the simulation, improving the convergence rate of the simulator. It is desired that 

these models have high generalization capabilities, in order to be able to reuse them for different VCO 

circuit topologies. This aspect will be taken account in the development of these models. 
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1.4 Achievements 

With the development of this work, it was produced a piece of software, in Python, that accomplishes 

the objective of identifying the valid configurations for simulation. This software trains, and produces 

ANNs capable of analysing a candidate circuit sizing solution, and identifying if it has value or not, and 

thus if it should be discarded or given to the simulator. Additionally, they are also able to guess the 

oscillatory frequency. The trained ANNs, are introduced and applied in an optimization flow, the AIDA 

framework, an analog integrated circuit design automation environment [12]. The ANNs are connected 

in a way that, it enhances this flow by receiving the sizing solutions and then sending the promising ones 

to the simulator, therefore, they reduce the workload of the simulator and support it on its convergence, 

thus the overall process time. Furthermore, these ANNs prove to be useful in, not only optimizing a 

specific circuit, but also for new constraints regarding the same one, and also for a different VCO, 

demonstrating a good level of generalization. 

After having done a carefully analysis, the results obtained demonstrate to be very optimal, being able 

to accelerate the sizing optimization process of VCOs, by diminishing the workload of the simulator. On 

top of that, when comparing these results with the ones obtained without using the ANNs, the results 

are very similar, which show that the results were not compromised. The topmost achievement is, to 

bring this work to an even wider approach, where the ANNs would be able to be introduced in any VCO 

optimization, being its train done as the process occurs, hence saving additional time.  

As a complementary of this thesis, is expected that a public scientific paper abording all the work here 

introduced and explained, be produced and published.  

1.5 Organization 

This report is structured as follows:  

• Chapter 2 presents the state-of-the-art on analog IC sizing, presenting the work that exists 

nowadays, its advantages and disadvantages. After that, an overview of ML and some of its 

methodologies is made to estimate their applicability to analog IC automation; 

• Chapter 3 presents the plan and methodologies of the proposed work, describing the 

development of the ANNs; 

• Chapter 4 presents the study of the training process of the ANNs for two VCOs, presenting its 

results and analysis; 

• Chapter 5 presents the results of the implementation of the ANNs in the design of the circuits, 

where the results are analysed and discussed; 

• Chapter 6 presents the final remarks of the work and a brief discussion on future research 

directions. 
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Chapter 2 

State-of-the-art 

This chapter presents the state-of-the-art analog IC sizing automation methodologies. In the last two 

decades, the main tools used to automate the analog/RF circuit sizing are divided into two categories, 

knowledge-based and optimization-based. This classification is shown in Figure 2.1. 

A brief introduction about ML is presented, how did it appear, why, and the demands that make its use 

so appealing. The methods to evaluate data will be discussed, their advantages and disadvantages, 

and the most appropriate one to use will also be presented. 

2.1 Knowledge-based Sizing 

For knowledge-based, tools like IDAC [13] and BLADES [14] have tried to systematize the design by 

making use of a design plan obtained from expert knowledge. These tools produce a pre-designed plan 

with the use of design equations and a design strategy that build component sizes that meet the 

performance requirements. This approach had good results to automatic analog IC sizing, being its main 

advantage of the short execution time. However, the process of deriving the design plan is complex and 

requires a lot of time. The unceasing supervision required to keep the design plan up to date with 

advances in technologies and the fact that the results obtained are not perfect makes this approach only 

suitable as a first-cut-design. 

2.2 Optimization-based Sizing 

Aiming for optimality, the next generation of sizing tools have been applying optimization techniques to 

analog RF IC sizing, which can be further classified into equation-based or simulation-based when 

considering the method used to evaluate the circuit’s performance.  

 

Figure 2.1 - Automatic circuit sizing approaches: (a) knowledge-based; 

(b) optimization-based. Reprinted from [15]  
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2.2.1 Equation-Based Evaluation 

These methods use analytic design equations to describe the circuit performance. To resolve the 

degrees of freedom, tools such as OPASYN [16] and CADICS [17] were used, performing rule-based 

topology selection. However, the design equations still had to be deduced and ordered by hand, 

therefore, the symbolic simulator ISAAC [18] was developed to automatically produce, in a less complex 

way, design equations used to evaluate the circuit performance, while also reducing the introduction 

time for new circuit schematics. In [4], a synthesis experiment for a pulse detector frontend, which 

consists of a charge-sensitive amplifier and a 4-stage pulse-shaping amplifier, was conducted. Circuit 

synthesis can be described as the automatic process to determine the dimensions of the devices, such 

that the resultant circuit achieves the specifications of a given designer. The results are showcased in 

Table 2.1, showing a reduction in power consumption with a factor of 6. 

Table 2.1 - Results of a synthesis experiment 

 

The problem of using these methods is that the mapping of design characteristics by analytic equations 

is not straightforward and the approximations introduced in the equations result in poor accuracy.   

2.2.2 Simulation-Based Evaluation 

Most of the used tools have a simulation-based approach to evaluate the circuit’s performance, retaining 

its main advantage of the generality and easy-and-accurate model. However, SPICE-based circuit 

synthesis’s cost becomes too much time consuming due to the need to run many simulations to achieve 

the targeted performances. 

In [12] this approach was addressed, where an analog IC circuit design automation environment, AIDA, 

is presented. This one implements a design flow from a circuit-level specification to a physical layout 

description, in which AIDA-C performs an automated circuit-level synthesis. AIDA-C is a tool with a 

multiobjective multi-constraint optimization approach that takes corners and the electrical simulator as 

an evaluation engine to address robust design requirements. Corner analysis is one of the most used 

techniques for analog IC design centering. It corresponds to a worst-case approach in which a sizing 

solution for a given circuit topology is simulated over multiple combinations of parameter variations, 

such as process, power supply, and temperature. AIDA was used to design several analog and RF 

circuits, where the results are compared and validated by industrial simulators and analysis tools such 

as ELDO and SPECTRE.  

Performance Specification Manual Synthesis 

peaking time <1.5µs 1.1µs 1.1µs 

counting rate >200Khz 200Khz 294Khz 

noise < 1000rms e- 750rms e- 905rms e- 

gain 20V/fC 20V/fC 21V/fC 

output range > -1...1 V -1...1 V -1.5...1.5 V 

power minimal 40mW 7mW 

area minimal 0.7mm2 0.6mm2 
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The AIDA-C architecture is based on a multiobjective evolutionary optimization kernel NSGA-II [19] 

using the simulator as an evaluation engine. The circuit test benches and the circuit itself are the 

designers’ inputs, in the form of SPICE netlist(s), that have as parameters the optimization variables 

and provide the means to measure the circuit’s performance. The designer is the one who defines 

ranges for the optimization variables, design constraints, and the goals of the optimization. The general 

flow of these techniques is shown in Figure 2.2. 

 

The architecture represents the number of candidate circuit sizing solutions, P, proposed by the 

optimization engine, where each one is a series of possible combinations of design variables. It is an 

iterative process, wherein in each iteration, the framework simulates the several test benches, K, 

affected by each sizing of P, to extract the desired measures. There are several commercially available 

solutions to choose the simulator, for instance, Cadence’s SPECTRE, Synopsys’ ELDO, or Mentor 

Graphics’ HSPICE. It is also possible to combine measures from different test benches into composed 

expressions, thanks to a measure-processing interface, which can be used as targets of the constrained 

multiobjective optimization problem. 

 

Simulation-based evaluation has been used in a lot of actual works that aim to optimize RF circuits, 

being some of the most recent ones shown in Table 2.2. 

 

 

Figure 2.2 - Results of a synthesis experiment. Reprinted from [9] 
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Table 2.2 - Summary of Simulation-Based RF optimization 

 

As each simulation made within an optimization-based loop is a time-consuming process, there has 

been a development in techniques to reduce the workload of the simulator. Particularly, Support Vector 

Machine (SVM) classifiers and ANN models have been extremely popular when addressing this 

problem. 

2.3 Simulation-based Enhanced by ML 

For many years, humans have been trying to develop machines to help them in daily tasks, to reduce 

their workload, and to achieve better results. As the advances in technologies kept increasing, the need 

to develop more complex and automated machines kept growing. This led to the birth of ML. ML is an 

area of AI that aims at building an expert system, focusing on the statistical properties of data.   

The concept of ML was coined in 1959 by Arthur Samuel, having its foundations from probabilistic and 

statistical theorems such as the Probability Theory by Thomas Bayes. The first ANN was introduced in 

1951 but only became relevant after Frank Rosenblatt’s perceptron [26] and back-propagation [27], in 

1958 and 1986, respectively. 

One crucial characteristic of ML systems is their different categories, which depend on the amount and 

type of supervision. There are currently three different supervised levels, supervised learning, 

unsupervised learning, and semi-supervised learning. 

Supervised Learning 

For these models, the dataset used must have some observations and the expected results for those, 

called labels. These labels can further divide this method into two problem-solving techniques, 

classification, and regression.  

A classification problem is when the output variable is part of a group, for instance, “dog” or “not dog”, 

where regression is a case where the output variable is a real value, such as the cost of a house. Some 

examples of important supervised learning algorithms are linear regression, logistic regression, decision 

trees, SVMs, and ANNs. 

 

Reference Method Contribution 

[20], 2012 HSPICE and CALIBRE 
Solves the limitations of parasitic-included equivalent 

circuit models and predefined layout templates 

[21], 2014 ELDO and HSPICE Optimize both phase noise and power consumption 

[22], 2016 HSPICE-RF Layout-induced parasitic aware RF circuit sizing tool 

[23], 2017 
Electromagnetic 

simulations 
Two-step design methodology 

[24], 2018 HSPICE-RF 
Parasitic-aware multi-objective RF circuit synthesis 

tool and performance space exploration 

[25], 2019 HSPICE-RF 
Exploits physical based parasitic circuit models for 

passive components 

https://en.wikipedia.org/wiki/Arthur_Samuel
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Unsupervised learning 

For these models, the research use data that has not been labelled yet, aiming to create models that 

can draw inferences from datasets to describe hidden structures. The problems that his method targets 

can be further divided into clustering and association. 

A clustering problem is characterized by the disclosure of the inherent groupings in the data, for 

instance, grouping people based on their age, where an association problem aims to discover relations 

rules within the data, such as people which buy X also tend to buy Y. Some examples of relevant 

algorithms are principal component analysis, K-means, and mixture models.  

Semi-supervised learning 

For most of the data like image processing and text processing, there is an abundant supply of 

unlabelled data, making it necessary for human experts to label this data manually, being this a very 

hard-working task. Semi-supervised learning appears as a more recent approach and is halfway 

between supervised and unsupervised learning making use of both labelled data and unlabelled data. 

Some examples of relevant algorithms are deep belief networks and autoencoders.  

There have been made advances in technologies, which made it possible to have another type of 

optimization-based sizing tool, the numerical-model-based. These tools use macro models, for example, 

ANN or SVM, to accelerate the evaluation of the circuit’s performance, reducing the high execution times 

caused by using only the electrical simulation inside the optimization loop, especially at the system-

level. 

2.3.1 Enhanced by Support Vector Machine 

SVM is a supervised learning algorithm for data separation, that make use of linear combinations to 

produce a boundary that maximizes the margin between classes. This algorithm is especially good if 

the data is linearly separable, as for nonlinear patterns a kernel trick is used, allowing the SVM to create 

this boundary in a higher dimension hyperplane. 

In the work presented in [15], a SVM classifier is used in a multiobjective case to enhance the robustness 

of the solution. An analog IC sizing tool, GENOM-POF, was used to illustrate the methodology, and to 

support the effect of corner cases on the Pareto Optimal Front (POF). The SVM is used to create 

feasibility models that diminish the design search space during the optimization process, hence reducing 

the number of required evaluations. This approach was validated by using benchmark examples 

consisting of two different circuits, a single ended folded cascode amplifier and a fully differential 

telescopic amplifier. 

The functional feasibility regions used to train the feasibility model were defined by functional constraints 

where the training data used to train the model, was obtained using fractional design of experiments. 

The sampled points obtained were sorted into 3 classes, feasible, quasi-feasible, and infeasible. Finally, 

the evaluation was made, where the model classifies the individuals based on their classes, discarding 

the unfeasible ones. 
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The results showed that the models had absolute gains ranging from 10 to 20% in terms of the overall 

reduction on the number of required evaluations and larger gains in terms of time consumption. As the 

electrical simulation is more time consuming than the SVM model evaluation, it allows an efficient 

diminishing of the design search space. 

In the work presented in [28], an SVM is also used to identify the feasibility design space of analog 

circuits to reduce a large amount of the entire design space, sampling only the points considered to be 

feasible and their neighbours. After choosing the right parameters of SVM’s, the resulting model can 

have 100% accuracy on the training data. So, the difficulty relies on the generalization ability when 

facing an independent validation data set. To tackle this issue, three accuracy metrics were presented: 

Overall accuracy, percentage of false negatives, and percentage of false positives. These metrics are 

presented in equations 2.1, 2.2, and 2.3, respectively. 

𝑃𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡
 (2.1) 

𝑃𝑓𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡
 (2.2) 

𝑃𝑓𝑝 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2.3) 

To validate this method, two circuits were used as a case study, an Operational Transconductance 

Amplifier (OTA), and a low-voltage double balanced mixer. With the discard of the predicted negative 

values, the coverage of the feasibility design space by the committee, and it was always above 99% for 

both circuits, and the rate of feasible designs that the committee excluded from being sampled was in 

the order of 10-4. Finally, the computational time was also reduced, where the results show between 

59% and 71% less of that used by previous approaches.  

The problem of using SVMs is that the tunning of hyper-parameters and the selection of the right kernel 

is quite difficult. SVMs also have a poor performance when faced with big datasets and a high number 

of features.  

2.3.2 Enhanced by Artificial Neural Networks 

ANN, or simply called neural network, is an algorithm based on the way the human brain analyses and 

processes information. ANN consist of node layers, one input layer, one output layer, and at least one, 

hidden layer. Each layer connects to the next one through links with its associated weight and threshold. 

ANNs can build effective end-to-end ML systems, being an exceptionally flexible construct. Learning 

methods have been derived from ANNs such as Deep learning, which is extremely useful when a lot of 

data is available.  

In the work [29], presented in 2003, a neural network-based methodology is used to create fast and 

efficient models for estimating the performance parameters of Complementary Metal-Oxide-

Semiconductor (CMOS) operational amplifier topologies. The results of both efficiency and accuracy of 

the obtained performance models were demonstrated in a generic algorithm-based circuit synthesis 
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system. This tool is based on performance constraints that are defined by the user and aim to optimize 

a fitness function. The validation of the performance parameters of the synthesized circuits is done with 

SPICE simulations and then compared to the ones predicted by the neural network models. 

The data used to train the models was generated directly from SPICE, therefore being able to provide 

values of accuracy like the ones obtained by SPICE simulations The ANN were categorized by three 

layers, one input layer, one output layer, and one hidden layer. To obtain the best generalization and 

accuracy results, the number of hidden layer neurons was alternated between 8 and 14. As activation 

functions, the hyperbolic tangent sigmoid function and the linear function was used for all hidden layer 

nodes and the output layer, respectively. 

The ANN models showed to be much faster at collecting the data when comparing with having to collect 

data directly from SPICE, having a speedup factor of around 40,000 times, and the models proved to 

be able to capture nonlinear behaviour, with no need to require any knowledge or equations describing 

the internal structure of the op-amp, and this approach also proved to be generic and extensible, having 

the possibility to be used for other op-amp topologies.  

In other works, some methodologies have been trying to diminish this issue by replacing this simulator 

with ANNs. 

In the work presented in [30], it is used DNNs to replace SPICE. In addition to a Multiobjective 

Optimization (MOO), which is commonly used in analog circuits to identify the tradeoffs imposed by the 

designer specifications by using POFs, is used a Single-Objective Optimization (SOO). The ANN was 

trained using data obtained in the MOO phase, therefore requiring no additional step for its training. The 

ANN replaces the simulator in the later phase, in the SOO phase, reducing the performance evaluation 

time. 

To verify this method, a two-stage amplifier and a folded cascode OTA circuit was used, having its 

results showcased in Table 2.3.  

 

 

Time Accuracy 

SPICE 

[min] 

Nets 

[min] 

Improvement 

[%] 
 Gain Bandwidth 

Phase 
Margin 

Power 

646.71 23.35 96.39 
µerror (%) 0.01362 0.00437 0.08254 0.00716 

σerror(%) 0.10612 0.04452 0.18208 0.05252 

Time Accuracy 

SPICE 

[min] 

Nets 

[min] 

Improvement 

[%] 
 Gain Bandwidth 

Phase 
Margin 

Power 

800.7 27.07 96.62 
µerror (%) 0.00466 0.00502 0.00721 0.0456 

σerror(%) 0.0173 0.01064 0.06115 0.10109 

Table 2.3 - Results for two-stage amplifier and folded cascode OTA 



14 
 

Even though, the results obtained by avoiding time-consuming circuit simulations show that the 

evaluation speed increases substantially, there is a loss in accuracy that can only be recovered by 

resorting to the simulator in later stages of the optimization [31][32]. Additionally, these models are 

trained over the entire design space, spending relevant resources, and making use of combinations that 

would not be evaluated otherwise.  

In another work [33], an ANN is also used to replace the simulator, however, to determine circuit 

performance instead of simulations, using generated data by preceding generations to train ANN that 

would otherwise be discarded. The main advantages that come with this work, is that there is no need 

for a data acquisition step to train ANNs, as these are trained within a classical simulation-based 

optimization tool, making it possible to use this approach for every new topology without loss of 

generality for all analog circuits. A Single Stage Amplifier and a Folded Cascode OTA circuit were used 

to validate this method. The results showed that the errors had values below 1%, and reductions in 

execution times by up to 64.8%, resulting in a 2.8x speed-up. 

In [34] DNNs are used as a method to boost the optimizer’s sample efficiency. With the use of an oracle, 

a comparison could be made between two designs, in terms of each design constraint, as a method to 

the selection of new designs. Since DNNs are especially good at approximating complex functions and 

have a good generalization to unseen samples, a DNN model is derived to imitate the conduct of such 

an oracle, which is in fact a simulator. 

2.4 Other works on ML and Analog/RF Sizing 

2.4.1 Predicting sizes from performances 

The use of ANNs to find device sizing in analog IC is proving up to be a widely accepted approach and 

its use can learn and speculate circuit sizing when asked for some target specifications [35][36]. In [37] 

an ANN is developed to give the channel widths of all the transistors in a circuit when given the output 

specifications by the designer. The training phase data was performed with different SPICE parameters 

from the ones used in the test data to show the ability to give the transistor sizes of a circuit for new 

unknown technology, having no dependency on the SPICE parameters. As a method of validation, two 

circuits were used, current mirrors and a CMOS differential amplifier. For the first one, a general 

regression neural network was used, and the results showed that it can estimate the current mirror 

circuits transistor sizes for never seen technologies, having a 94% accuracy. For the second one, a 

multilayer perceptron and the results had an accuracy of 90%. 

In [38] to produce the sizing for a low noise amplifier, several ANNs are put in sequential order, having 

as input the intended performance. The results have shown good prediction accuracy, however, the 

train and tune of such a model have proven to be exceedingly difficult. Having only used 277 handmade 

sizing solutions for the training phase, this one still needed an outer loop to acquire the model’s 

hyperparameters, which reflected in a train of over 5 hours on such a short dataset. In [39] the sizing for 

an amplifier is also predicted using ANNs when given its specifications. However, in this one, the model 

and training phases are different since the test was only performed on 10 samples from the original 
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dataset, and there is not made evaluation on the performance and usability of the model for unknown 

target specifications.        

2.4.2 Reinforcement learning 

This method uses models to make a sequence of decisions. The agent observes and interacts with an 

uncertain, potentially complex environment by selecting and executing actions, following a trial-and-

error approach, getting rewards or penalties according to what action it performs, as shown in Figure 

2.3. The agent is trained to learn a policy that maximizes the expected outcome of the actions over time. 

These methods have been used to play complex board games or, for instance, in an autonomous vehicle 

to put safety first or minimize ride time. 

 

Figure 2.3 - Reinforcement learning interaction in agent-environment 

This method has been used in alternating current optimization in [40], [41], and [42]. With the use of 

deep learning, an agent is trained, having no need for previous knowledge about optimizing circuits.  

2.4.3 Other works 

In the work [43], presented in 2019, a feed-forward time-delay ANN is used to address one of the biggest 

concerns in today’s SoC design and verification, power consumption. Analysing power consumption is 

still an extremely hard task because of the dependency on time-consuming low-level simulations. The 

implementation of the ANN comes to increase the functional models of AMS blocks regarding 

information about their transient power consumption, where this one is trained and then translated into 

a behavioural modelling language that is tolerant to industrial circuit simulators. All of this, without the 

need to have manual interaction. To validate this approach, a low power relaxation oscillator was used, 

and the results confirm that the energy consumption has come close to the considered time range, 

having an error of only 2.7%, while the needed simulation time has diminished. 

2.5 Conclusion 

As seen, ML and ANNs have been successfully used in the field of analog IC design automation. The 

Table 2.4 sums up all the contributions and applications discussed along this Section. While having the 

simulator as the evaluation engine is beneficial in both generality and accuracy, it suffers from 

demanding execution times. Researchers have been using ML to reduce the workload of the simulator, 

and both SVM and ANNs have shown to be very useful when optimizing simulation-based techniques. 
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In [15] and [18] SVMs try to reduce the number of points simulated, and therefore the workload of the 

simulator, however, it is hard to tune the hyperparameters on SVM and to choose the right kernel. 

Furthermore, the poorly performance when handling big datasets and high number of features, makes 

ANNs the option chosen in this work. In [30], [31], and [32], ANNs are used to replace the simulator, 

and even though the results show increasing evaluation speeds, there is a loss in accuracy and an 

excessive use of relevant resources. Thus, this makes the choice to use ANNs in this work, with the 

intent to enhance the optimization-based sizing, in an attempt to complement the circuit simulator used. 

Table 2.4 - Summary of Related Work Techniques used to automate analog circuit sizing 

 

  

Reference Application Method Overview 

[12], 2016 Simulation-based Evaluation HSPICE and CALIBRE 
Automation circuit design by 

automating circuit synthesis and 
layout 

[20][21][22][23][24][25], 
2012 - 2019 

Simulation-based Evaluation 
Electromagnetic, ELDO, 
HSPICE and Post-layout 

simulations 

Optimization of RF circuits using 
a simulator as evaluation engine 

[15], 2013 
Simulation-based Enhanced 

by SVM 
SVM classifier 

SVM used in multiobjective 
design method to automate 

synthesis circuit 

[28], 2005 
Simulation-based Enhanced 

by SVM 
SVM classifier 

SVM used to identify the 
feasibility design space, 

eliminating many points of the 
design space 

[29], 2003 
Simulation-based Enhanced 

by ANN 
ANN 

ANN used to create fast and 
efficient models to estimate 
performances parameters 

[30], 2020 
Simulation-based Enhanced 

by ANN 
DNN 

DNN used to replace SPICE 
and reduce the synthesis time 

[31][32], 2002 - 2003 
Simulation-based Enhanced 

by ANN 
ANN 

ANN used to automate the 
design flow and create models 
for large analog design space 

[33], 2019 
Simulation-based Enhanced 

by ANN 
ANN Determine circuit performances 

[34], 2019 
Simulation-based Enhanced 

by ANN 
DNN 

Reduces the number of 
simulations, boosting the 

optimizer’s sample efficiency 

[35][36], 2018 - 2019 Predicting devices size DL and ANN 
Generates a model that maps 

specifications to sizings 

[37], 2008 Predicting devices size ANN 
Determines the sizes of 

transistors by the designer 
specifications 

[38], 2015 Predicting devices size ANN 
Determines parameters values, 

by using several ANNs 

[39], 2017 Predicting devices size ANN 
Prediction of an amplifier sizing, 
by using only a small amount of 

data on the testing phase 

[43], 2019 Other Application TDNN 
Enhances functional models of 

AMS blocks 
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Chapter 3 

Architecture and Implementation 

The work proposes the development of ANNs, namely DNNs, to enhance the current analog RF IC 

sizing optimization methodologies, given the sizing of the devices. The goal is to reduce the total effort 

of the evaluation engine, i.e., the simulator, by reducing the number of candidate circuit sizing solutions 

that are actually simulated. This is accomplished with the use of two ANNs, one classifier, and one 

regressor. As this work focuses on VCO circuits, the combination of these two will try to predict whether 

a certain solution can generate all the performances metrics, i.e., if it will “converge”, and when this is 

the case, at what frequency does the circuit oscillates.  

The optimization process is described in Figure 3.1, where the DNNs play the filter role of selecting from 

the candidate circuits the most likely to be useful to be presented to the simulator.  

Simulator
in-the-loop

Optimization Engine

Candidate Circuit 
Sizing Solutions

...
Classification 

ANN

Evaluated  
Circuits  

Performances

Potentially Feasible 
Sizing Solutions and 

fosc Guesses

Regression 

ANN

...

...
...

 

Figure 3.1 - Proposed Optimization 

3.1 Circuit used and dataset definition 

The development of the ANNs will be used, initially, to accelerate the optimization sizing process of a 

complex dual-mode class C/D VCO described in [10], where a schematic of the circuit is shown in Figure 

3.2.  



18 
 

  

Figure 3.2 - Dual-mode class C/D VCO schematic reprinted from [10] 

 

This circuit contains 43 devices, and there are 28 optimization/design variables used in [10], such as 

devices’ widths, lengths, and number of fingers, whose sizes must be chosen in order to meet the 

desired circuit performances. The list of the optimization variables is shown in Table 3.1. 

Table 3.1 - Optimization variables 

 

 

 

 

 

 

 

 

 

 

 

These optimization variables (which impact the sizing of the different devices) will be used as inputs for 

the ANNs, being these ones evaluated for 9 different tesbenches variations, i.e., typical and extreme 

conditions. These different testbenches for extreme conditions are called PVT corners and are outlined 

in Table 3.2. 

 

Variable Units Min Grid Max 

Ind_radius µm 15 5 90 

Ind_nturns - 1 1 6 

Ind_spacing µm 2 1 4 

Ind_width µm 3 1 30 

mccl, m1l nm 60 20 240 

mccw, m1w µm 0.6 0.2 6 

mccnf, m1nf - 1 1 32 

mccm - 1 1 100 

moscapw µm 0.4 0.2 3.2 

moscapl µm 0.2 0.2 3.2 

mimvw, mimvl, mim1w µm 2 0.2 20 

r1l, r2l, r3l, r4l µm 1 0.2 10 

r1m, r2m, r3m, r4m - 1 1 20 

nfn1, nfn2, nfp1, nfp2 - 1 1 100 
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Table 3.2 – PVT Corners considered 

 

 

 

 

 

 

 

 

Each sizing combination will be simulated for each PVT corner and, a worst-case tunning range 

optimization is considered. The circuit is desired to oscillate between 3.9GHz and 4.8GHz, therefore the 

circuit will be optimized for two tunning modes, b0000 and b1111, for the values of 3.9GHz and 4.8GHz, 

respectively, generating for each simulation the performances illustrated in Table 3.3. This will result in 

18 simulations, 9 for each tunning mode, where each one produces 10 performances values. 

Table 3.3 - Performances considered 

 

 

 

 

 

 

 

 

3.2 Feature Engineering 

When developing a ML system, one of the main challenges is the process of extracting features from 

the raw input data. This is where feature engineering arises, having as its main goals the preparation of 

the proper input dataset, according to the ML algorithms requirements, and the improvement of the 

models created.   

When training an ANN, the system can only have satisfactory results if the training data contains enough 

relevant features. Feature selection is the process of selecting only the most important features from 

the dataset, taking out the non-relevant ones.  

Name Process Voltage Temperature 

tt TT 0.35V 25°C 

ff FF 0.35V 25°C 

fs FS 0.35V 25°C 

sf SF 0.35V 25°C 

ss SS 0.35V 25°C 

300mV TT 0.3V 25°C 

400mV TT 0.4V 25°C 

M40dC TT 0.35V -40°C 

85dC TT 0.35V 85°C 

Measure Units Description 

fosc GHz Oscillation frequency 

PN@10kHz dBc/Hz Phase noise at 10kHz 

PN@100kHz dBc/Hz Phase noise at 100kHz 

PN@1MHz dBc/Hz Phase noise at 1MHz 

PN@10MHz dBc/Hz Phase noise at 10MHz 

Power mW Power consumption 

FOM@10kHz dBc/Hz Figure-of-merit at 10kHz 

FOM@100kHz dBc/Hz Figure-of-merit at 100kHz 

FOM@1MHz dBc/Hz Figure-of-merit at 1MHz 

FOM@10MHz dBc/Hz Figure-of-merit at 10MHz 
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The scale and distribution of the data are also very important to bear in mind since this may be different 

for each variable. Some features may have different scales while others may not even have units. These 

variations may be an issue during the training stage when performing updates to the parameters. To 

solve this, it can be applied to some scaling methods such as min-max and standardization. 

Min-max scaling makes a certain unscaled feature have a value ranging from 0 to 1. This is obtained 

through 3.1, where x is the feature and x’ the resulting scaled feature: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (3. 1) 

In standardization, a feature is modelled as a normal distribution, centered in 0 with a unitary standard 

deviation. This is done through: 

𝑥′ =
𝑥 −  𝜇

𝜎
(3.2) 

where μ and σ are the mean of the unscaled feature and the standard deviation, respectively. 

On top of that, it is also necessary to prepare the dataset for each ANN. The tunning mode must be 

added to the input features, and for the regression ANN the PVT corner as well. Also, for the 

classification ANN, there is the need to label each PVT corner, corresponding to a binary classification 

of “converges” or not. To do this, the 10 performances for each PVT corner will have to be grouped up 

and according to the values of the performances the group will be labelled as “converge” or not, i.e., if 

there is at least one value that is equal to 0 or non-defined then it is labelled as “not converges”, 

otherwise it is labelled as “converges”. This process of data preparation must be done before training 

the ANNs. 

3.3 ANNs structure and training 

For this work, the two ANNs that are going to be developed have similar architectures, with some small 

differences. 

The classification will have, n neurons, the device sizings and the tuning mode, and y neurons as output 

for each Process Voltage Temperature (PVT) corner considered, as shown in Figure 3.3. With these 

inputs, the ANN will be able to predict if a given candidate circuit sizing solution should be simulated.  
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Figure 3.3 – Structure of the Classification ANN 

 

Whereas the regression, besides having the same inputs as the classification, have one additional input, 

the corner to be considered. The output will determine the oscillatory frequency for that specific corner 

and tuning mode, as shown in Figure 3.4. 

 

Figure 3.4 – Structure of the Regression ANN 
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The output may be represented by the general function, where the selection of the activation function 

and the update of the adequate weight values represent the learning process: 

𝑌 = 𝜙 (∑(𝑤𝑖 ∗ 𝑥𝑖)

𝑛

𝑖=1

+ 𝑏) (3.3) 

ϕ is an activation function, which is a hyperparameter that will be further detailed and discussed in 

Section 3.3.3, w the weight of each neuron link, n the number of inputs, and b, the neuron’s bias, which 

is often associated with an extra bias feature, normally corresponding to x0 = 1, with an associated 

weight of  w0. 

Each ANN will produce a different output. The classification receives the device sizings and the tuning 

mode and will do a classification of “converges” or “not converges”, which is the classification of each 

possible candidate circuit sizing solution. Each output is classified based on the values of the 

performances produced, for each corner considered. If the values produced are all different than 0 it is 

classified as “converge”, otherwise as “not converge” and discarded. 

The regression receives the same inputs, plus the corner to be evaluated, and the output produced is a 

prediction of the oscillatory frequency. This regression will be executed only for the solutions that are 

classified as “converge”, since there is no point on predicting the oscillatory frequency for solutions that 

will not be simulated. 

The target solution will have a general behaviour for the circuit analysed, independently of the designer 

constraints, since the solution is only dependent on the device sizing information. The trained solution 

will be able to be reused on all different optimizations for the same circuit. 

3.3.1 Training the ANNs 

When training the ANNs, in every instance, the algorithm measures the network’s output error, the 

difference between the target value and the predicted ones and computes the contribution that each 

neuron in the last hidden layer had to each output neuron’s error. Then, the impact of the error from 

each neuron in the previously hidden layer is measured, until the algorithm reaches the first layer, the 

input layer. This logic of following the reverse path is done to compute the error gradient across all the 

connection weights, by propagating the error gradient backward. The error is evaluated via a defined 

loss function, L, that in order to be minimized the weights must be updated, by defining the error’s 

derivative 
𝑑𝐿

𝑑𝑤𝑖𝑗
, where i is the weight associated to the neuron j. 

When choosing the loss function, one must choose to which problem it refers to. Since this work will 

classify points into two classes, a variation of categorical crossentropy will be used, where the loss 

function is equal to the average of the categorical crossentropy, called binary crossentropy, calculating 

the loss by using 3.4. 

𝐿 = −
1

𝑛
∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔 𝑦̂𝑖 + (1 − 𝑦𝑖) ∗ log(1 − 𝑦̂𝑖)

𝑛

𝑖=1

 (3.4) 
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On the other hand, when considering regression, where the value of the frequency is predicted, Mean 

Squared Error (MSE) is the most appropriate function to use. After arriving to a frequency value, the 

average squared difference between the real frequency and the one predicted is calculated, being the 

loss calculated by 3.5. 

𝐿 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (3.5) 

The size of the dataset influences the approach and number of examples to be used in the training of 

the model and the calculation of the loss in each iteration. Having datasets that can go from 26000 to 

92000 examples, the approach that will be addressed is to use mini-batch gradient descent, where the 

number of batches is chosen, performing the model’s gradient on small random sets of instances. 

Having no exact formula that says the perfect batch size, the approach that will be conducted is to start 

by using small batches and gradually increase its number. 

In order to minimize the cost function and finding optimal values for any model’s parameters, the 

optimization algorithm with more potential is Adam. Adam has three hyperparameters which are 

showcased in 3.6, 3.7, and 3.8, respectively.  

𝑚𝑡+1 =
𝛽1𝑚𝑡 + (1 − 𝛽1)𝛻𝐿(𝑤𝑡)

1 − 𝛽1

 (3.6) 

𝑣𝑡+1 =
𝛽2𝑣𝑡 + (1 − 𝛽2)𝛻𝐿(𝑤𝑡)2

1 − 𝛽2

  (3.7) 

𝑤𝑡+1 = 𝑤𝑡  −  
𝜂𝑚𝑡

√𝑣𝑡 +  𝜖
 (3.8) 

Even though it has three hyperparameters, these ones have default values that tend to perform well 

[44], therefore, there is no need to tune them. The default values typically correspond to β1  =  0.9, β2  =

 0.999, and ϵ to a small value such as 10-8. 

Adam works well for disperse data, has a fast convergence rate, and it usually finds the optimal solution. 

However, if needed as an alternative optimization algorithm, RMSProp will be considered. The training 

is briefly illustrated in Figure 3.5. 
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Figure 3.5 - ANNs Training Scheme   

 

3.3.2 Validation 

To assess the performance of the model it is necessary to do a model validation. This assessment will 

be executed by splitting the dataset into train, validation, and test data. On the training phase, the fitted 

model is used to predict the responses for the observations in a portion of the training set called the 

validation dataset, providing an unbiased evaluation of the model. Finally, the test set is used to evaluate 

the final model fit.  

One problem that may occur when training, is overfitting and underfitting. Overfitting occurs when a 

model is over adjusted to the given training data. On the other hand, underfit occurs when the model is 

not complex enough. For a model to be good, it must have a good generic relationship between the 

input and output data. Thus, to tackle the issue of overfitting, if identified, some regularization techniques 

will be used, such as early stopping and dropout.  

Early stopping is an efficient option to avoid overfitting, by interrupting the training when the performance 

starts to decrease on the validation sets. As iterations are made, the model generated learns and the 

prediction error on the validation set gets lower. This method is shown in Figure 3.6, where after a certain 

amount of training steps the model starts to become overfit. 

 

 

 

 

 

 

Figure 3.6 – Early stopping reprinted from [45] 

Early 

Stop 
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Dropout has proven to perform efficiently [46], showing results of 2% accuracy boost, which in a model 

that already has 95% accuracy corresponds to an almost 40% reduction in the error rate. For each 

training step, every neuron, except for the output ones, has a probability p of being momentary dropped 

from the network. This means that for one specific step, the dropped neurons are enabled to receive 

and produce connections, being available again for the next steps. Dropout tends to take some time to 

find convergence, but the resulting model, when tuned accordingly, turns to be well worth the time and 

effort.  

3.3.3 Model tuning 

Even though ANNs are very flexible, one of their major disadvantages is the number of hyperparameters 

to be tuned. In this section, the most important ones and the ones that will be tuned will be discussed 

and the approach to finding the best values for each one will be addressed. 

Hidden layers 

The complexity of the ANN is influenced by the number of hidden layers used. As more hidden layers 

are used, more does the complexity of the model increases, which often results in good results, but also 

does the model tend to overfit the training set. Additionally, it also increases the time and computational 

effort for the training stage. As there is no formula to choose the right hidden layers, to begin, one single 

hidden layer will be implemented, and they will be incremented until the accuracy keeps going up, until 

the point where it cannot get higher, meaning that the model generated overfits. 

Number of Neurons 

Obviously, the number of neurons in the input and output layers is determined by the number of features 

and the type of output pretended. In this work, the number of inputs will be the number of the devices 

sizings, plus the tunning mode, and one output for each corner analysed, for the classification. The 

regression will have one more input, a corner. The output will be the prediction of the oscillatory 

frequency. And thus, for the VCO shown in Figure 3.2, the number of inputs for the classification and 

regression, will be 29 and 30, respectively, with 9 and 1 outputs, respectively, corresponding to a 

classification and a regression for each TT or PVT corner, as shown in Table 3.2.  

Having this established, the hyperparameter to be tuned is the number of neurons in the hidden layers. 

The first hidden layer will have Z neurons and then follow a common practise that consists of decreasing 

the number of neurons for each layer that follows, where many low-level features are merged into far 

fewer high-level features.  

However, another approach that can be used is to use the same number of neurons for all hidden layers, 

reducing this way the complexity of tuning this hyperparameter. Since there is not a formula that says 

the perfect number of neurons per layer, the approach that will be conducted is to gradually increase 

the number of neurons until the point where the model starts overfitting.   
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Learning Rate 

One important hyperparameter is the learning rate. Learning rate dictates how fast does the model 

respond to the estimated error in each weight update and the ability to converge to a minimum. Setting 

this value is a hard task, having a high value makes the model rapidly adapt to new data but rapidly 

forgetting about the old one, on the other hand, having a low value makes the system learn more slowly, 

nonetheless makes this one less sensitive to noise in the data. 

The process of choosing the most appropriate learning rate is not a very well defined one, but rather a 

trial-and-error, where the approach to follow is, to begin with, a high value and decrease this one until 

reaching a point of no improvement. 

Activation Functions 

An activation function decides if a neuron should be activated or not. In regression, when obtaining the 

frequencies, where the output is a real value, it will be used as the activation function a linear function 

𝑓(𝑧)  =  𝑧, illustrated in Figure 3.7. 

 

Figure 3.7 - Linear function 

 

However, for the output of the classification and the hidden layers of both the ANNs, it is necessary to 

have activation functions that produce non-linearity in the output of a neuron, since the neuron does not 

know the bounds of its output which can reach values ranging from -∞ to +∞. 

Regarding the classification, the sigmoid function, shown in Figure 3.8, is a prominent function to be 

used, having the ability to map the input values of a neuron to a value that goes from 0 to 1. This function 

solves cases of values that reach values too high, by setting a limit, being a good function to use in 

classification problems. 
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Figure 3.8 - Sigmoid function 

 

As discussed in [47], there are other good candidate activation functions that surpass the sigmoid 

function when addressing DNNs. One is a variation of the Rectified Linear Unit (ReLU) called leaky 

ReLU, illustrated in Figure 3.9. This one solves the dying ReLU problem, that happens in some cases 

where neurons stop outputting values other than 0, since when the gradient of the ReLU function is 0, 

it will no longer respond to changes in the error. It is computed through 𝑓(𝑧)  =  𝑚𝑎𝑥(0, 𝑧), where no 

saturation occurs for positive values. Having this said, this will be the function to be used on the hidden 

layers for the regression. 

 

Figure 3.9 - Leaky ReLU function 

 

3.3 Conclusions 

In this chapter, a carefully study of the implemented models was exposed. The circuit to be optimized, 

a Class-C/D VCO, was presented, and the dataset defined, where each optimization/design variable is 

showed and the conditions for each simulation introduced. Furthermore, the classification and 

regression ANNs were presented, it’s hyperparameters presented and explained in detailed, as well as 
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the choice of the loss functions and activation functions to test and use. In the next Section, the results 

of the training of the ANNs will be analysed, and the training further explored, step by step. 
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Chapter 4 

ANNs Training 

In this chapter, different ANN approaches are analysed and tested. Two circuits were used as a case 

study, where for each one was built a classification and a regression ANN, and its different 

hyperparameters tuned. All ANNs were implemented using Python language with the use of different 

ML libraries such as TensorFlow [48] and Keras [49]. The code was executed on an Intel® Core™ i5-

8600K 6 cores CPU 3.60 GHz with 16 GB of RAM.  

4.1 Class-C/D VCO 

This section describes how the dataset is studied and dealt with, and how the models arise from this 

study and how its results are maximized. Firstly, the results of the models for the class-C/D VCO circuit 

are presented. This circuit is optimized for Ultralow-Power IoT and Ultralow-Phase-Noise Cellular 

Applications, as previously presented on Section 3.1. 

4.1.1 Dataset analysis 

Analysing the dataset provided for this circuit, some pre-processing had to be done. The dataset 

contains 92115 rows of data, where for each one, it is given a combination of the 28 device sizings and 

its resulting 180 performance values, 90 for each tuning mode. To start off, following the logic from the 

previous chapter, for both classification and regression, the tuning mode is considered as an input, 

therefore, each possible combination of device sizings is replicated and a column is added containing 

the tuning mode considered, resulting on twice as many rows, i.e., 184230 rows of data. Then, the 

following actions differ for each ANN:  

• Classification: For the classification, in each row, the 10 values of performances generated for 

each corner are analysed, in order to be label the corresponding corner as “converge” or “not 

converge”. To do so, each corner is examined and if it has a value different than NaN for every 

performance metric, then this one is labelled as “converge”, otherwise “not converge”. Having 

done this for every row, the dataset for the ANN is ready, arising on a total of 184230 rows and 

38 columns, 28 device sizings and the tuning mode for the inputs, and the 9 corners for the 

outputs. This process is illustrated in Figure 4.1; 
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• Regression: Additionally, for this ANN the dataset had to go through more actions. Since this 

ANN will only be used in a specific event in case the Classification assumes that a certain corner 

converges, this one only needs to be fed information about data that is labelled as converges. 

Bearing this in mind, each corner is considered as input, therefore, each row of data is 

replicated, but in this case 9 times, so that for each possible combination of sizing variables 

there is an oscillatory frequency guess, as it is shown in Figure 4.2. Finally, after a careful 

analysis, the data had to go through a final procedure, the remove of outliers. After this step, 

the dataset is ready to be used for training the ANNs. Table 4.1 showcases the data and its 

details having outliers, and after having these ones removed.  

 

Table 4.1 – Frequency distribution with and without outliers 

 

 

 

 

 

 

 

 

 

  

 Outliers Without outliers 

Max. oscillatory frequency 1.63E+16 6.47E+09 

Min oscillatory frequency -1.03E+02 1.07E+09 

Standard Deviation 1.71E+13 7.93E+08 

Mean 4.16E+10 4.21E+09 

Quantile 0.25 3.58E+09 3.59E+09 

Quantile 0.5 4.14E+09 4.14E+09 

Quantile 0.75 4.89E+09 4.88E+09 

Figure 4.1 – Pre-Process of Classification Dataset 



31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2 Classification ANN study 

Having the dataset prepared, it can be used to program and train the ANNs. Firstly, the data is divided 

into train and test data with a ratio of 80% and 20%, respectively, and in order to be sure that the results 

are consistent with different data, this is firstly shuffled, randomly. The metrics used to evaluate the 

model were: 

• Loss, which results on the difference between the real value and the predicted one;  

• Binary accuracy which computes how often predictions equal labels. For example, a value of 

50% means that for the 18 PVT corners, the model is able to correctly predict the state of half 

of them, i.e., if they converge or not;  

• Recall which states what proportion of actual positives were identified correctly. In this case, 

the value represents the amount of correctly identified corners that converge, or not converge. 

Tuning the different hyperparameters, as part of the training process of the model, is a critical process 

to achieve the best model. Even though there is interaction between hyperparameters when tunning an 

ANN there is no established order to follow and each of the hyperparameter can be changed 

independently. The order followed in this work is illustrated in Figure 4.3. 

As a starting point, learning rate is the first hyperparameter to tune since is one of the most important 

factors as it will deeply impact the number of experimentations [50]. The batch size is the one 

succeeding, since that will largely affect the time of training on future experiments. Following, the 

activation functions and the number of hidden layers, and number of neurons per layer should be tunned 

as well. To ensure the best model structure possible, and to cease, the normalization is the last one to 

Figure 4.2 - Pre-Process of Regression Dataset 
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tune. This one does not have a strong dependency with the remaining ones, and therefore, it can be 

tunned as the last one.  

The initial hyperparameters were tuned with a batch size as 32, ReLU as the activation functions for the 

hidden layers and sigmoid for the output ones, a simple architecture of an ANN with two hidden layers 

with 200 neurons per layer and MinMax with a range going from 0 to 1 as the normalization technique. 

 

Learning Rate 

The learning rate controls how much does the model changes in response to the estimated error, 

therefore the higher it is the faster the model changes and the faster it moves toward a minimum of a 

loss function. However, if the value is too high the minimum of the loss function can be lost, hence one 

needs to start with a relatively small value and then start decreasing it. 

The results on Table 4.2 shows that the value of 0.003 is the one with the lower training and validation 

loss and highest training and validation accuracy. Even though the values of the training and validation 

recall are not the highest, achieving values of 99.13% and 98.87, respectively, the overall results make 

0.003 the optimum value. 

 

 

 

 

 

Figure 4.3 – Order of the tuning hyperparameters 
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 Table 4.2 – Learning Rate evolution with 32 batch size, ReLU and sigmoid activation functions, two hidden layers and 

200 neurons per layer, and MinMax of 0 to 1 

  

Batch Size 

As mentioned in chapter 3, the approach used to tune this hyperparameter would be to use mini-batch 

gradient descent, where the number of batches used would be neither the total number of samples, 

neither just one, but instead a value that would be in between these two.  

As the Table 4.3 showcases, with the use of a 256 batch size the model achieves the lowest validation 

loss, and also the highest validation accuracy. Even though, it doesn’t surpass other values in the other 

metrics, for example, the training loss of using a 128 batch size is only 0.1017, the values of 0.1055 and 

98.79% in validation loss and accuracy, respectively, and also the fact that the use of a bigger batch 

size reduces the time of training, makes the value of 256 batch size being the one chose to be used. 

Table 4.3 – Batch Size evolution with 0.003 learning rate, ReLU and sigmoid activation functions, two hidden layers and 

200 neurons per layer and MinMax of 0 to 1 

 

Activation Functions 

 When choosing the right activation functions, one must consider both the hidden layers and the output 

layers. Table 4.4 shows the results regarding the use of different activation functions in the hidden 

layers, where Table 4.5 shows the results in the output layers. 

The results, show that for the hidden layers the sigmoid function, achieves slightly lower values in both 

the training and validation recall, with values of 99.10% and 98.90%, as all other functions surpass this 

one, apart from the ReLU. However, the best results, both in loss and in accuracy, are achieved by this 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

0.009 0.1022 0.1117 0.9654 0.9628 99.36% 99.25% 

0.007 0.1051 0.1140 0.9636 0.9604 98.18% 98.03% 

0.005 0.0935 0.1049 0.9686 0.9652 99.41% 99.25% 

0.003 0.0862 0.0990 0.9726 0.9678 99.13% 98.87% 

0.0009 0.0881 0.0992 0.9716 0.9675 98.89% 98.68% 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

32 0.1148 0.1176 0.9615 0.9604 99.07% 91.09% 

64 0.1219 0.1276 0.9559 0.9546 99.51% 99.47% 

128 0.1017 0.1064 0.9660 0.9641 98.49% 98.38% 

256 0.1025 0.1055 0.9653 0.9642 98.79% 98.73% 

512 0.1046 0.1090 0.9641 0.9627 84.28% 98.10% 
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function, making it the best function to use in the hidden layers. As for the output layers, the same is 

observed as the sigmoid function only fails to perform better in the recall metric, with a margin that does 

not reaches 1%, both in training and validation, which makes the sigmoid the function to use also for the 

output layers. 

Table 4.4 – Hidden Layers Activation Functions evolution with 0.003 learning rate, 256 batch size, two hidden layers 

and 200 neurons per layer and MinMax of 0 to 1 

 

Table 4.5 - Output Layers Activation Functions evolution with 0.003 learning rate, 256 batch size, two hidden layers and 

200 neurons per layer and MinMax of 0 to 1 

 

Number of layers and neurons 

The number of neurons to tune, obviously only apply to the ones present in the hidden layers, since the 

ones in the input correspond to the number of sizings plus the tunning mode, and the output to the 

number of corners. The approach was to increase the number of layers and neurons per layer gradually 

until the best results are obtained. As the Table 4.6 shows, when using three layers with 200, 200 and 

250 neurons, respectively, the best values of loss and accuracy are achieved, only failing behind in 

recall, with values of 99.11% and 98.95%, for training and validation, respectively. The model will use 

three layers with 200, 200 and 250 neurons, respectively. 

 

 

 

 

 

 

 

 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

ReLU 0.0925 0.1052 0.9686 0.9642 98.50% 98.26% 

Leaky 
ReLU 

0.0953 0.1047 0.9674 0.9639 99.40% 99.31% 

Elu 0.0983 0.1022 0.9669 0.9656 99.23% 99.15% 

Tanh 0.1008 0.1100 0.9657 0.9617 99.25% 99.12% 

Sigmoid 0.0887 0.1010 0.9711 0.9667 99.10% 98.90% 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

Sigmoid 0.0859 0.0920 0.9722 0.9701 99.10% 98.95% 

SoftMax 1.9660 1.9679 0.0958 0.0958 99.77% 99.78% 
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Table 4.6 – Number of layers and neurons evolution with 0.003 learning rate, 256 batch size, sigmoid activation 

functions, and MinMax of 0 to 1 

 

Normalization 

Finally, different ranges of MinMax and its use were tuned and compared, arriving at the results shown 

in Table 4.7. The values of loss and accuracy showed to be the best when using MinMax with a range 

going from 0 to 1, making the slight margins of the values of recall when using different ranges, not too 

problematic, and therefore the choice of using MinMax with the range mentioned. 

Table 4.7 – Normalization evolution with 0.003 learning rate, 256 batch size, sigmoid activation functions, and three 

hidden layers with 200, 200 and 250 neurons per layer, respectively 

 

 

4.1.3 Classification ANN final model 

The training process led to a model with its tuned hyperparameters described in Table 4.8 and the loss 

and accuracy of both training validation shown in Figure 4.4 and Figure 4.5. By analysing the loss graphs 

as the epochs start increasing, the loss curve starts decreasing achieving its best result on the last 

epochs. At this point, the training curve starts to get lower than the validation one, hence the need to 

stop rests there, otherwise the model would start to overfit. As for the accuracy graphs, the same results 

are observed, as the epochs increase the value gets better, in this case it goes higher, which means 

that the model learns to predict the status of the corners more correctly. This is proven by the value of 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

200/200 0.0910 0.1028 0.9693 0.9648 99.29% 99.16% 

200/200/150 0.0876 0.0987 0.9719 0.9677 99.14% 98.98% 

200/200/175 0.0879 0.0983 0.9716 0.9673 98.87% 98.65% 

200/200/200 0.0873 0.0977 0.9715 0.9678 99.01% 98.83% 

200/200/225 0.0864 0.0968 0.9721 0.9682 98.76% 98.54% 

200/200/250 0.0851 0.0941 0.9730 0.9694 99.11% 98.95% 

200/200/275 0.0851 0.0955 0.9730 0.9687 99.01% 98.80% 

200/200/250/
200 

0.0900 0.0982 0.9709 0.9679 98.90% 98.72% 

 
Training 

Loss 
Validation 

Loss 

Training 
Binary 

accuracy 

Validation 
Binary 

accuracy 

Training 
Recall 

Validation 
Recall 

No MinMax 0.1785 0.1927 0.9372 0.9319 98.67% 98.38% 

MinMax 
(0,1) 

0.0852 0.0963 0.9727 0.9686 99.13% 98.87% 

MinMax 
(0.5,1.5) 

0.0993 0.1038 0.9679 0.9666 99.06% 99.02% 

MinMax 
(1,2) 

0.1080 0.1115 0.9629 0.9613 99.29% 99.25% 
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the binary accuracy, meaning that the model only fails to predict a very low number of cases, less than 

5%, where a corner does converge or not. Therefore, the probability of the model to discard a valuable 

point or use a non-one, is low.     

 Table 4.8 – Summary of the Classification Model 

  Hyperparameter Value 

Input Layer 1 Layer (29 neurons) 

Hidden Layers 
3 Layers 

(200,200,250 neurons) 

Output Layer 1 Layer (9 neurons) 

Activation Functions Sigmoid 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss Function Binary Crossentropy 

Learning Rate 0.003 

Epochs 200 

Batch Size 256 

Normalization Min Max (0,1) 

Figure 4.4 – Training and validation loss Figure 4.5 - Training and validation accuracy 



37 
 

Furthermore, to emphasize the validity of the model two more metrics were used, precision and F1 

score. Precision shows the portion of correct positive identifications, while F1 is an overall measure of 

a model’s accuracy that in case of a higher value, it means that there is a low number of false positives 

and false negatives, hence showing that the model is correctly identifying the classes. The formula of 

precision and F1 score are shown in 4.1 and 4.2, respectively, and its results on Table 4.9. 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑣𝑖𝑡𝑒𝑠
 (4.1) 

F1 score =
 2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑣𝑖𝑡𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4.2) 

 

Table 4.9 – Train and Test Precision and F1 score results 

 

 

 

 

4.1.4 Regression results 

The training process is almost the same as the one considered for the classification, however this ANN 

needs to be more accurate since it is trying to predict a real value, the oscillating frequency. Therefore, 

more metrics were used and a deeper study to the results was made. The metrics used to evaluate the 

model were: 

• Loss, that results on the difference between the real value and the predicted one by using the 

function MSE;  

• Mean Absolute Error (MAE), which gives the mean of the absolute values of the prediction 

errors;  

• Mean Absolute Percentage Error (MAPE), a measure of how accurate the model is. 

As a starting point, the same logic was used as before, therefore the hyperparameters were tuned with 

a batch size 32, leaky ReLU as the activation functions, MinMax with a range going from 0 to 1 as the 

normalization technique and two hidden layers with 200 neurons per layer. 

Learning Rate 

Following the same logic, the learning rate started as a relatively small value and then gradually 

decrease it until finding the best value. Analysing the Table 4.10, the best values of MSE and MAE come 

from the use of a value of 0.0008, and so this value was the one chosen. 

 Train Test 

Precision 0.979 0.977 

F1 score 0.985 0.983 
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Table 4.10 – Learning Rate evolution with 32 batch size, leaky ReLU activation functions, two hidden layers and 200 

neurons per layer, and MinMax of 0 to 1 

 

Analysing the results, it is possible to observe that the values of the MAPE were too high, and therefore 

the order of the tuning of the hyperparameters could not follow the order used before, hence 

normalization had to be taken in consideration immediately. 

Normalization 

After inspecting the results obtained from using and changing the parameters of MinMax, these ones 

rapidly changed. As Table 4.11 shows, the best results of MSE and MAE come from using MinMax with 

a range of 0 to 1. However, the MAPE values are too high, and so, MinMax was used with a range of 1 

to 2, since overall, it has the best results, achieving the lowest values of MAPE and MSE. 

 

Table 4.11 – Normalization evolution with 0.0008 learning rate, 32 batch size, leaky ReLU activation functions, two 

hidden layers and 200 neurons per layer 

 

Batch Size 

The approach used to tune this hyperparameter, was also to use mini-batch gradient descent, where 

one can see that the best results of all metrics, MSE, MAE, and MAPE, are obtained from using a batch 

size of 256, as seen in Table 4.12 

 

 

 

 
Training 

MSE 
Validation 

MSE 
Training 

MAE 
Validation 

MAE 
Training 
MAPE 

Validation 
MAPE 

0.004 0.0021 0.0021 0.0292 0.0293 122.10 9.2120 

0.0008 0.0009 0.0009 0.0170 0.0170 152.46 7.6622 

0.0007 0.0011 0.0011 0.0212 0.0212 180.91 6.7929 

0.0006 0.0015 0.0015 0.0268 0.0267 288.66 13.586 

0.0005 0.0009 0.0008 0.0173 0.0173 72.251 361.88 

 
Training 

MSE 
Validation 

MSE 
Training 

MAE 
Validation 

MAE 
Training 
MAPE 

Validation 
MAPE 

No MinMax 0.1896 0.1889 0.3106 0.3108 177.45 203.70 

MinMax 
(0,1) 

0.0008 0.0007 0.0172 0.0172 99.090 224.68 

MinMax 
(0.5,1.5) 

0.0011 0.0011 0.0197 0.0196 2.0301 2.0290 

MinMax 
(1,2) 

0.0011 0.0011 0.0199 0.0199 1.3332 1.3327 
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Table 4.12 – Batch size evolution with 0.0008 learning rate, leaky ReLU activation functions, two hidden layers and 200 

neurons per layer and MinMax of 1 to 2 

 

Activation Functions 

As opposed to the classification ANN, in the regression it was only necessary to tune the activation 

function in the hidden layers, since the output layer would have a linear function, because the output 

values are numerical and non-negative, and do not need to suffer any transformation. Hence, different 

functions for the hidden layers were tested, where the Table 4.13 shows that, when using the Leaky 

ReLU function, the best values for every metric are obtained. 

Table 4.13 – Activation Functions evolution with 0.0008 learning rate, 256 batch size, two hidden layers and 200 

neurons per layer and MinMax of 1 to 2 

  

Number of layers and neurons 

Finally, the number of layers and neurons per layer were tuned, having arrived at the conclusion that 

two layers with 200 and 150 neurons per layer, respectively, was the best option, as the lowest values 

of MSE, MAE, and MAPE are obtained, as showed in Table 4.14. 

 

 

 

 

 

 

 

 

 

 
Training 

MSE 
Validation 

MSE 
Training 

MAE 
Validation 

MAE 
Training 
MAPE 

Validation 
MAPE 

32 0.0012 0.0012 0.0224 0.0225 1.4365 1.4402 

64 0.0010 0.0010 0.0190 0.0191 1.2736 1.2816 

128 0.0011 0.0011 0.0217 0.0218 1.4686 1.4709 

256 0.0009 0.0009 0.0189 0.0189 1.2590 1.2591 

512 0.0011 0.0011 0.0231 0.0231 1.5500 1.5499 

 
Training 

MSE 
Validation 

MSE 
Training 

MAE 
Validation 

MAE 
Training 
MAPE 

Validation 
MAPE 

Leaky 
ReLU 

0.0006 0.0006 0.0131 0.0132 0.8554 0.8635 

ReLU 0.0008 0.0009 0.0189 0.0190 1.2472 1.2529 

Sigmoid 0.0008 0.0008 0.0175 0.0175 1.1448 1.1430 
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 Table 4.14 – Number of layers and neurons evolution with 0.0008 learning rate, 256 batch size, leaky ReLU activation 

functions, and MinMax of 1 to 2 

 

4.1.5 Regression ANN final model 

Having tested and tuned all the hyperparameters, the ANN responsible for the regression was trained 

and its architecture and parameters are showed in the Table 4.15. The results of the metrics used for 

both the training and validation are shown in the Figure 4.6, Figure 4.7, and Figure 4.8. Analysing the 

graphs, the model learns to predict the oscillatory frequency, having a lower error value as the epochs 

keep increasing, up to the point where the model stops training since an overfit would occur if it would 

continue. 

Table 4.15 – Summary of the Regression Model 

 

 

  

 
Training 

MSE 
Validation 

MSE 
Training 

MAE 
Validation 

MAE 
Training 
MAPE 

Validation 
MAPE 

200/125 0.0005 0.0006 0.0121 0.0121 0.7928 0.7964 

200/150 0.0005 0.0005 0.0100 0.0101 0.6486 0.6525 

200/175 0.0005 0.0005 0.0117 0.0117 0.7511 0.7532 

200/200 0.0007 0.0007 0.0139 0.0139 0.8601 0.8640 

200/150/75 0.0007 0.0007 0.0149 0.0150 0.9514 0.9587 

200/150/100 0.0006 0.0006 0.0124 0.0123 0.7749 0.7708 

200/150/125 0.0007 0.0007 0.0164 0.0164 1.0659 1.0679 

200/150/150 0.0006 0.0006 0.0129 0.0129 0.8454 0.8489 

Hyperparameter Value 

Input Layer 1 Layer (30 neurons) 

Hidden Layers 
2 Layers 

(200,150 neurons) 

Output Layer 1 Layer (1 neuron) 

Activation Functions Leaky ReLU and Linear 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss Function MSE 

Learning Rate 0.0008 

Epochs 100 

Batch Size 256 

Normalization Min Max (1,2) 
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Additionally, by analysing the histograms in Figure 4.9 and Figure 4.10, it is possible to see that the 

values predicted by the model when facing the test data, do not differ to a great extent from the real 

values. In addition, a detailed analysis was conducted and the results from the worst, medium and best 

MAPE results, as well as the predicted values and the real ones, are presented in Table 4.16, showing 

that, even though the worst results are still high, the overall results show that the ANN can predict with 

a strong assurance the oscillatory frequency value. Therefore, it is reasonable to assume that the 

model’s training was successful. 

 

 

 

Figure 4.6 - Training and validation MSE 

Figure 4.7 - Training and validation MAE Figure 4.8 - Training and validation MAPE 

https://www.wordhippo.com/what-is/another-word-for/to_a_great_extent.html
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Table 4.16 – Test MAPE results and difference between predicted frequency values and real ones 

 

  

  Test MAPE 
Test 

Prediction 
Normalized 

Test Prediction 

De-Normalized 

Real Value 

Normalized 

Real Value 

De-Normalized 

Worst Values 

9.22e+01 1.93e+00 6.08e+09 1.00E+00 1.09E+09 

8.68e+01 1.91e+00 5.96e+09 1.02E+00 1.17E+09 

8.60e+01 1.93e+00 6.09e+09 1.04E+00 1.27E+09 

8.41e+01 1.87e+00 5.77e+09 1.02E+00 1.16E+09 

8.22e+01 1.84e+00 5.62e+09 1.01E+00 1.13E+09 

Medium 
Values 

5.97e-01 1.47e+00 3.62e+09 1.46E+00 3.57E+09 

5.97e-01 1.73e+00 5.00e+09 1.72E+00 4.95E+09 

5.97e-01 1.77e+00 5.21e+09 1.78E+00 5.27E+09 

5.97e-01 1.67e+00 4.69+09 1.66E+00 4.64E+09 

5.97e-01 1.49e+00 3.73e+09 1.48E+00 3.68E+09 

Best Values 

2.08e-05 1.57e+00 4.17e+09 1.57E+00 4.17E+09 

2.00e-05 1.70e+00 4.82e+09 1.70E+00 4.82E+09 

1.69e-05 1.46e+00 3.54e+09 1.46E+00 3.54E+09 

1.65e-05 1.60e+00 4.32e+09 1.60E+00 4.32E+09 

1.64e-05 1.93e+00 5.01e+09 1.00E+00 1.09E+09 

Figure 4.10 – Predicted Frequency Values Figure 4.9 – Real Frequency Values 
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4.2 Ultralow-Power Complementary Class-B/C Hybrid-Mode VCO 

In this section, the results regarding another circuit, Ultralow-Power Complementary Class-B/C Hybrid-

Mode VCO, illustrated in Figure 4.11, are presented, following the logic that was used in the previous 

section. This circuit was designed for 4.2 to 5.1 GHz Ultralow-Power in a 65-nm CMOS node, having a 

total of 22 optimization variables, being simulated for 9 different testbenches variations [51]. For this 

new circuit, the objective is to use the same model as the one used before. Nonetheless, new models 

have also been trained with its specific hyperparameters for this circuit topology, and the results are 

compared with the first models from Section 4.1. If the results are similar, the need to develop a new 

model for every different VCO circuit topology can be bypassed. 

 

 

 

 

 

 

 

 

 

 

4.2.1 Dataset analysis 

The logic that was used was a resemblance of the one used for the previous circuit, as described in 

Section 4.1.1, hence a pre-processing was done to the dataset that contained 26108 rows of data, 

resulting on a dataset of 52216 for the classification ANN and a 469944 for the regression. 

 

4.2.2 Classification results 

The tunning of the hyperparameters was made, using the same logic used in Section 4.1.2, and so the 

study was deliberately omitted, having the final model summarized in the Table 4.17. The evolution of 

the loss and accuracy of the used model are shown in Figure 4.12 and in Figure 4.14 and the results 

with the same hyperparameters, used in Section 4.1.3, in Figure 4.13 and Figure 4.15. Additionally, in 

Table 4.18 the values of loss and accuracy, for both the training and test dataset, between both models, 

show that results are marginally different. This analysis allows the selection of the first model for both 

circuits, hence there is no specific need for using different models for both circuits, providing a more 

generic model ready to be used. Nonetheless, for the purpose of achieving the best results on this work, 

the second model which was tuned specifically for this circuit was the one chosen. 

 

Figure 4.11 – Ultralow-Power Complementary Class-B/C Hybrid-Mode VCO topology. 
Reprinted from [51] 
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Table 4.17 – Summary of the Classification Model 

   Hyperparameter Value 

Input Layer 1 Layer (23 neurons) 

Hidden Layers 
3 Layers 

(225,225,200 neurons) 

Output Layer 1 Layer (9 neurons) 

Activation Functions Sigmoid 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss Function Binary Crossentropy 

Learning Rate 0.003 

Epochs 200 

Batch Size 32 

Normalization MinMax (0,1) 

Figure 4.12 - Training and validation loss with model 
tuned for Class B/C VCO 

Figure 4.13 - Training and validation loss with Plug 
and Play from Section 4.1.3 

Figure 4.15 - Training and validation accuracy with 
Plug and Play from Section 4.1.3 

 

Figure 4.14 - Training and validation accuracy 
with model tuned for Class B/C VCO 
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 Table 4.18 – Training and Test Loss and accuracy between the two models 

 

As aforementioned in the previous circuit, in Section 4.1, in this one it was also used precision and F1 

score to ensure the viability of the used model, where its results are shown in the Table 4.19. 

 Table 4.19 – Train and Test Precision and F1 score Results for model tuned for Class B/C VCO 

 

 

  

 

4.2.3 Regression results 

 To conclude, the results for the regression ANN are presented, where once more the study of this one 

was also omitted, since it followed the same logic in Section 4.1.4, where it is possible to observe the 

model summarized in the Table 4.18, and the evolution of the values of the metrics used for both the 

training and validation are shown in the Figure 4.16, Figure 4.18, and Figure 4.20, while the ones used 

in the previous circuit, in Section 4.1.5, in Figure 4.17, Figure 4.19, and Figure 4.21. And in Table 4.21 

the values between train and test for both models. As expected, the results prove that the same model 

used for the first circuit in Section 4.1, could also be used for this one. For this work the best tunned 

model for this circuit was the one chosen. 

 Table 4.20 – Resume of the Regression Model 

 

 

 Training Loss Test Loss 
Training Binary 

Accuracy 
Test Binary Accuracy 

Plug and Play 
model from 

Section 4.1.2 

2.10e-01 2.35e-01 9.12e-01 9.00e-01 

Model tuned for 
Class B/C VCO 

1.87e-01 2.35e-01 9.23e-01 9.01e-01 

 Train Test  

Precision 9.29 e-01 9.16 e-01 

F1 score 9.50 e-01 9.35 e-01 

Hyperparameter Value 

Input Layer 1 Layer (24 neurons) 

Hidden Layers 
3 Layers 

(200,150,125 neurons) 

Output Layer 1 Layer (1 neuron) 

Activation Functions Leaky ReLU and Linear 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss Function MSE 

Learning Rate 0.0008 

Epochs 100 

Batch Size 512 

Normalization MinMax (0.5,1.5) 
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Figure 4.17 - Training and validation MSE with Plug 

and Play from Section 4.1.5 

Figure 4.19 - Training and validation MAE with Plug 
and Play from Section 4.1.5 

Figure 4.16 - Training and validation MSE with 
model tuned for Class B/C VCO 

Figure 4.18 - Training and validation MAE with 
model tuned for Class B/C VCO 

Figure 4.21 - Training and validation MAPE with Plug 
and Play from Section 4.1.5 

Figure 4.20 - Training and validation MAPE with 
model tuned for Class B/C VCO 
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Table 4.21 - Training and Test MSE, MAE and MAPE between the two models 

  

4.3 Conclusion 

It was shown in this chapter the process of training the ANNs and the tuning of the hyperparameters, 

step by step. Furthermore, the dataset was studied, and its preparation discussed, being this process 

unique for each ANN. For the circuit, Class-C/D VCO, the results shown are promising, showing good 

performances in the samples outside the training set, i.e., unseen data. For the circuit, ULP Class-B/C 

VCO, while the results are satisfactory, they have worst precision and F1 score than the first example 

regarding the classification, and worst MAE and MAPE regarding the regression. This can be explained, 

as the dataset for the ULP Class-B/C VCO circuit is considerably smaller when compared with the first 

circuit, i.e., 26108 and 184230 samples, respectively. 

Thanks to the second study, it was proven that the time spent on studying the model for one circuit, 

does not need to be wasted for a second one, since the model has a high level of generalization, and 

so is able to present very optimal results when applied to a different VCO. Having all set up, the ANNs 

were implemented in the design of the circuits.  

  

 
Training 

MSE 
Test MSE 

Training 
MAE 

Test MAE 
Training 
MAPE 

Test MAPE 

Previous 
Model 

2.53E-04 2.38E-04 1.21E-02 1.21E-02 8.44E-01 8.43E-01 

Used Model 1.16E-04 1.25E-04 7.75E-03 7.79E-03 8.80E-01 8.87E-01 
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Chapter 5 

AIDA Implementation 

This chapter synthetises the procedure and the results of the implementation of the ANNs in the AIDA 

framework, the tool that carries the optimization of the circuits, as introduced in Section 1.4. This tool, 

AIDA, is an environment that implements a fully automatic approach, going from a circuit-level 

specification up to a physical layout description. This work will focus only on the AIDA-C component, 

which is based on a multi-objective multi-constraint optimization kernel. 

The comparison and analysis between the results, obtained with and without the use of ANNs, is 

performed and discussed. The results of the two circuits previously introduced in Chapter 4 will be 

carried, starting with the Class-C/D VCO. 

5.1 Implementation in AIDA 

This section describes all the tests and adjustments that were made in order to obtain the most 

significant results. To test different approaches, a different threshold, used to determine if the points will 

be presented to the simulator, was tested and the results analysed. Not only did the threshold came 

from the usage of the classification ANN, but also from the regression one, as illustrated in Figure 5.1  

Simulator
in-the-loop

Optimization Engine

Candidate Circuit 
Sizing Solutions

...
Classification 

ANN

Evaluated  
Circuits  

Performances

Potentially Feasible 
Sizing Solutions and 

fosc Guesses

Regression 

ANN

...

...
...

Threshold

 

The classification ANN discards a point (i.e., a candidate sizing solution) based on the value set on the 

threshold, i.e., if the percentage of corners that are predicted to converge is lower than the value set, 

then the point is discarded. With the study of the predicted oscillatory frequency, it was possible to 

conclude that when these values were predicted to be negative, even if the classification predicted many 

corners to converge, the simulator would not be able to obtain values from that point. Therefore, in case 

of negative values given by the regression ANN, the point in study will not be sent through the simulator. 

The functioning of this threshold is illustrated in Figure 5.2, where it is possible to see that thanks to the 

Figure 5.1 – Introduction of Threshold in the Optimization Flow 
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classification and regression ANN, certain points are filtered and discarded in case of the precited 

number of corners to converge not meeting the value set up by the threshold or in case the predicted 

oscillatory frequency is negative. 

 

To assess the validation of the results using the ANNs, a reference with the results of the optimization 

without ANNs, has been established and all the results were challenged against the reference. As a 

starting point, the original POF obtained was analysed and its points have been presented in raw to the 

ANNs. The outcome of the ANNs showed that all the points in the POF were also validated with the 

ANNs, and therefore would be presented to the simulator. 

To start the experiments, the threshold was set to 50%, and to make the conditions identical, it was used 

the same configuration of the optimization without the ANNs, using a population of 256 elements and a 

total of 150 generations, and the results were obtained with and without the use of the Regression ANN. 

5.1.1 50%Threshold  

To start off, the directive to allow the points to be simulated, was a naive approach starting with a 50% 

threshold, meaning that if the classification ANN predicts, for a given point, that more than half the PVT 

Figure 5.2 – Threshold function in detail 
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corners converge, then that point is simulated, otherwise discarded. With this defined, an optimization 

was conducted, and the points simulated and discarded computed, arriving to the ratio of points 

simulated and not simulated illustrated in Figure 5.3. This graph shows that, from the total points that 

were supposed to be simulated, 18.65% of them were discarded by the ANNs, meaning that almost 

20% of the total time required for the optimization was saved with the use of ANNs. Since the 

optimization without the use of these models lasted 25 days, with the use of these, almost 5 days were 

economized.   

 

 

 

 

 

 

 

 

 

 

 

With these results, a deeper analysis was conducted to test the efficiency of the values of oscillatory 

frequency predicted by the regression ANN. To do so, the evolution of the predicted oscillatory frequency 

along the generations of the points was studied and the difference between those and the ones given 

by the simulator was outputted using the MAPE formula. For the purpose of this study, a sample of 5 

random points was taken, for every generation studied.  
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Figure 5.3 – Ratio of points discarded using a value of 50% threshold 
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To start, the results for the first generation were computed, being those presented in Figure 5.4, where 

the MAPE has some high values, reaching even values of 41.55% discrepancy for one point. This means 

that the predicted values were considerably far from the ones given by the simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

As the optimization evolve, the values given by the regression ANN start to get closer and the MAPE 

values start to decrease, never reaching values higher than 14%, as it is observed in Figure 5.5, where 

the results were made using the values obtained from the 75th generation. 

 

 

 

 

 

 

 

 

 

 

Finally, the results of the last generation, i.e., the 5 random points from the 150th generation show very 

promising figures, achieving MAPE values lower than 6%, meaning that the regression ANN learns to 

predict more correctly the oscillatory frequency values as the generations progress, as it is possible to 

observe in Figure 5.6. 
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Figure 5.4 – MAPE values from 5 random points of the first generation using a 50% threshold 

Figure 5.5 - MAPE values from 5 random points of the 75th generation using a 50% threshold 
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By inspecting the results, it is possible to conclude that, the error between the value predicted by the 

regression ANN is high as the optimization begins, but decreases over generations, culminating to 

values relatively close to the ones given by the simulator. It is also deduced that, along the graphs, the 

corner SS is the one with the highest error, and the one that the ANN misses most, suggesting that this 

might be the hardest condition to evaluate the circuit. 

5.1.2 Impact of the regression ANN   

To prove the value and use of the regression ANN, this one was removed from the implementation, and 

another optimization with the same characteristics, a population of 256 elements that were optimized 

for 150 generations, was conducted. This led to a discard of almost 30% of the total points that would 

be simulated, as 28.23% of the total points were discarded, which was higher than the previous results, 

as the Figure 5.7 shows. This increase in points discarded can be explained since, without the 

regression ANN, the simulator was not able to come up with the best oscillatory frequencies, and so the 

points that progressed during the evolution of the generations, were not so optimized, hence more 

solutions were discarded by the classification ANN. 
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Figure 5.6 - MAPE from 5 random points of the 150th generation using a 50% threshold 
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The optimal points for each optimization, with and without the use of the regression ANN, were retrieved 

and a POF was obtained. These two POFs were then compared against the POF obtained without the 

use of the ANNs, considered the reference, as depicted in Figure 5.8. As the results show, the use of 

the regression ANN proves to be valuable since that, even though its corresponding POF shows that 

the solutions obtained have better results in terms of phase noise, however, in terms of power the results 

are considerably worse, never achieving values lower than 1.30E-03. Where with the use of the 

regression, the POF obtained is very similar to the reference one.  Some solutions have worse values 

of power, however there are some that achieve values lower than 9.00E-04, and better results in terms 

of phase noise, reaching values of -136.00. Therefore, the use of the regression ANN proves to be 

essential, as it helps the simulator to converge thanks to the predicted value of the oscillatory frequency. 
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Figure 5.7 – Ratio of points discarded without the use of the regression ANN 

Figure 5.8 – Comparison of POFs obtained with a value of 50% threshold and with and without the regression ANN 
versus the original  
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5.1.3 75%Threshold  

Next, the threshold was defined to 75%, being this value more rigid and so it is expected that the number 

of points discarded is higher. The same configuration for the optimization was used, and so the points 

simulated were computed, reaching to the ratio showcased in Figure 5.9. As expected, the efficiency of 

the classification ANN was higher, as the points discarded were higher than the results before, reaching 

a value of 19.65% of points discarded from the total points that would be fed to the simulator.  

 

 

 

 

 

 

 

 

To verify the results, the MAPE values along the evolution of the generations was measured, being 

presented on Figure 5.10, Figure 5.11, and Figure 5.12 the results for the first, 75th and 150th generation, 

respectively.   
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Figure 5.9 - Ratio of points discarded using a value of 75% threshold 

Figure 5.10 – MAPE values from 5 random points of the first generation using a 75% threshold 
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As expected, the MAPE values kept decreasing as the generations increased, starting at values of 37% 

up to the point of reaching values under 12%. Even though the results are not as optimal as the ones in 

the Section 5.1.1, the regression ANN is able to efficiently predict the oscillatory frequency, even with a 

higher value of threshold. To conclude, the resulting POF was extracted and again compared with the 

reference one as illustrated in Figure 5.13. The results show that the points obtained were again very 

similar to the references one, even reaching values of power and phase noise better than the reference 

one. In terms of power, all the values are lower than 7.91E-04, and lower than -134.19 in terms of phase 

noise.   

 

 

Figure 5.11 – MAPE values from 5 random points of the 75th generation using a 75% threshold 

Figure 5.12 – MAPE values from 5 random points of the 150th generation using a 75% threshold 
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To sum up, the results show that the ANNs are accomplishing what is expected, discarding unwanted 

solutions, being each ANN indispensable. They show apt to perform optimizations in less time, without 

compromising the results. Next the threshold is set up with an even higher and more eager value, to 

achieve better results, as the value is set to 90% and 100%. 

5.1.4 90 and 100% Threshold 

After setting the threshold with a higher value, the same logic and optimization configuration was used 

as before, and so the number of points that were discarded, from the total number, were extracted, and 

as the results in Figure 5.14 show, the number were lower than the ones obtained from use of a 75% 

threshold.  

 

 

Figure 5.13 – POF obtained with 75% threshold  

Figure 5.14 – Ratio of points discarded with 90% and 100% threshold 
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From the inspection of the POFs obtained in Figure 5.15 and Figure 5.16, it is possible to conclude that 

the results were worse, as the POFs obtained are further away from the reference one. With a 90% 

value of threshold, some points have good values of phase noise, however the values of power are too 

high, whereas with a 100% the values of power and phase noise are considerably worse. 

 

 

Therefore, not only were the number of points discarded lower, but also the values of the optimization 

worse, which led to the conclusion that the value set to the threshold was too high, and so it wasn’t 

favourable to use high values. Having tested different values for the threshold, the best results arrived 

from the value of 75%, and so this was the value used for the following tests. 

5.1.5 Analysis of the points fed to the simulator 

Having tested several values for the threshold, the points that were forwarded to the simulator by the 

ANNs were studied to have a deeper understanding of the differences between what the ANNs predicted 

and the outcome of the simulator, and to understand if there was some PVT corner which was harder 

to predict or evaluate. Hence, for an optimization produced by a value of 75% threshold, points that were 

sent to the simulator were analysed along the evolution of the generations. 

Figure 5.15 - POF obtained with 90% threshold 

Figure 5.16 - POF obtained with 100% threshold 
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Starting with the ones obtained from the first generation, there were 15 points that were fed to the 

simulator. From those, the ANNs predicted that all those points would converge in all PVT corners, apart 

from three points, where they would fail to converge in one specific corner, for each point. These would 

miss two times for the ff corner, one in the first tunning mode, one in the second, and one time in the ss 

corner in the second tunning mode. However, the simulator did not manage to obtain values from more 

than only those three corners, and on more occasions, as the Figure 5.17 shows the frequency of the 

non-simulated PVT corners.  

  

 

 

 

 

 

 

 

 

 

 

 

Advancing to the 75th generation, there were fewer differences in the output of the ANNs and the 

simulator. Analysing the 23 points that the ANNs fed to the simulator, this one predicted that one point 

would fail in the ss corner for the second tunning mode, where the simulator failed to simulate for three 

corners, and in one more occasion for the corner that the ANNs predicted, as the Figure 5.18 shows. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 – Difference between the prediction of the classification ANN and the output of the 
simulator for the first generation 

Figure 5.18 - Difference between the prediction of the classification ANN and the output of the 
simulator for the 75th generation 
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Finally, in the 150th generation, the ANNs predicted that 24 points should be simulated, with zero cases 

of corners not converging, where the simulator failed to obtain values in seven of those points, and in 

seven different corners. The ss corner in the second tuning mode was the one which missed the most 

cases, as observed in Figure 5.19. 

  

 

 

 

 

 

 

 

 

From an earlier analysis of the dataset, it was possible to obtain the number of points that converged 

for each PVT corner. The Table 5.1 showcase these results, and it can be concluded that the corner ss, 

for both tunning modes, is the one with the highest number of NaN, meaning that this one is the most 

difficult corner to retrieve the performance values. Additionally, in the second tunning mode this happens 

more often, reaching to almost half of the cases. This explains why the ANNs predict that corner to fail 

more often. Furthermore, it also explains why the simulator shows to have more difficulties obtaining 

values from that corner, since this corner presents to be the hardest to get values from.  

Table 5-1 – Percentage of converged points for each corner 

 

The results led up to the conclusion that, the points that the ANNs predict that should be simulated, in 

some cases, the simulator gives different outputs, however, this tends to happen less often as the 

generations progress. Additionally, the most difficult corner to obtain values is the ss corner in the 

second tuning mode, which explains why the ANNs fails more often in those cases, and why the MAPE 

values were higher in those corners. 

 tt ff fs sf ss 300mV 400mV m40dC 85dC 

b0000 87462 87200 87881 88407 79130 82206 89449 87094 86678 

%Total 94.95% 94.66% 95.40% 95.97% 85.90% 89.24% 97.11% 94.55% 94.10% 

b1111 85143 84631 86717 82049 52680 76735 89021 82377 87513 

%Total 92.43% 91.88% 94.14% 89.07% 57.19% 83.30% 96.64% 89.43% 95.00% 

Figure 5.19 - Difference between the prediction of the classification ANN and the output of the 
simulator for the 150th generation 
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5.1.6 New Specifications 

To prove the efficiency of the ANNs with different changes within the same circuit, a new test was made, 

and the same ANNs that were trained for the previous specifications, were faced upon a new setup 

where the specifications for the circuit were slightly different. For this setup, the circuit was meant to 

operate at 2.4GHz, having a range of frequency from 2.3GHz to 2.5GHz, and the constraints of the 

phase noise were changed, being the new ones tighter in 5dBc/Hz. 

Having all prepared, a new optimization was ran, using a population of 256 elements for 200 

generations, and the ratio of the points simulated and discarded was produced as Figure 5.20 illustrates. 

The number of points discarded was low, having a value of only 9.51%, which can indicate immediately 

that the efficiency of the ANNs were poorer. 

 

 

 

 

 

 

 

 

 

 

Even with a low number of points discarded, the optimal points obtained could present good values, and 

so the POF was retrieved and compared with the one obtained without the use of the ANNs. Analysing 

the results, one can observe that the POF obtained while using the ANNs has better results in term of 

phase noise, as the solutions are always lower than -138.50. However, that's not the case when looking 

at power. The values are higher, achieving results that don’t get lower than 6.00E-04, while the ones 

without using the ANNs, are lower, where the values of power never reach 5.00E-04, as observed in 

Figure 5.21. 
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Figure 5.20 – Ratio of points discarded for the new specifications 
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Ultimately, the results are acceptable, with a reduction of almost 10% of the time, which corresponds to 

a reduction of almost 3 days since the optimization took about 26 days to complete without the use of 

ANNs. Even though, the POFs are slightly distanced, the optimal points retrieved proved to be better 

regarding the phase noise, with slight inferior results in power. This can lead to the deduction that, the 

ANNs do perform well when facing different specifications, and so, is possible to use already trained 

ANNs for different configurations for the circuit that they were trained for.      

5.2 Ultralow-Power Complementary Class-B/C Hybrid-Mode VCO 

Results 

Finally, the ANNs were implemented in the second circuit, the Class-B/C VCO. The same approach was 

used as the one used in Section 5.1, and so it was performed an optimization and the number of points 

that were simulated were extracted. For this circuit, the configurations were changed, as the ones used 

without using the ANNs were also modified, and so, a generation of 256 points was used, and it was 

performed an optimization for 97 generations. As Figure 5.22 shows, from the total points that were 

simulated, 17.27% were discarded, being this number close to the 19.65% that was obtained for the first 

circuit, the Class-C/D VCO, with a value of also 75% threshold. Since the optimization without using 

ANNs took 25 days, by using these ones, more than 4 days were economized.  

Figure 5.21 – POF obtained with the new specifications  
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To prove the validity of the results, the POF was obtained, and it was compared against the one without 

the use of ANNs, named reference, as showed in Figure 5.23 .The results show to be very promising, 

as the values of power obtained are lower, being close 1.50E-04, as the ones obtained without using 

the ANNs are more close to 2.00E-04. Regarding phase noise, the results are very similar, even 

recording three points that reach values lower than –130.55, whereas in the reference POF the results 

never get lower than this value. 

 

 

  

Figure 5.22 - Ratio of points discarded for the new circuit  

Figure 5.23 - POF obtained for the Class-B/C 
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Chapter 6 

Conclusions 

This chapter exposes not only the conclusions of the work done for this dissertation, but also the aim of 

the project for further optimizations and use of ANNs applied to analog IC sizing. 

The work here exhibited, showed an approach to optimize the sizing of analog IC circuits with the help 

of two ANNs, one classification and one regression. They both proved to be essential, as the use of the 

classification and regression ANN discard unwanted solutions, and the use of the last one makes the 

results even more accurate and approximate to the ones obtained at the first place, therefore reducing 

the whole optimization process. 

Two circuits, with the same constraints, were studied, and its design optimized.  

The first one was a Class-C/D, where thanks to the ANNs, it was possible to reduce almost 20% of the 

optimization process, without compromising the results. The optimal points obtained were very similar, 

even better in some cases, to the ones retrieved without using the ANNs. For the same circuit, the ANNs 

also proved to work for different specifications, however with less efficiency, as the time saved was close 

to 10%, and the solutions obtained better in some cases, but worse in other. 

A second circuit, an Ultralow-Power Complementary Class-B/C Hybrid-Mode VCO, was analysed and 

optimized, having the intention to use the same ANNs used for the previous circuit, the Class-C/D. To 

do so, a careful study was again made, using the same logic used for the previous circuit, and the new 

models obtained were discussed and compared with the previous ones. The results were marginally 

different, proving that, there is no need to spend time training new ANNs, and so emphasizing the 

generalization of these ones. The design of this circuit, was successful, reducing almost as much time 

as for the first circuit, and its optimal points showed very promising results.  

To sum up, the results proved that the ANNs not only show to be very useful when designing a circuit, 

but also, for a different one, of the same type, without having the need to do an additional train of the 

ANNs. However, the results for a different specification fall somehow short of the ones expected, as the 

model implemented is not able to achieve its best results. 

6.1 Future work 

This dissertation  proved that the use of ANNs reduce the time to design an analog IC, even if the effort 

required for their training must be taken in consideration. Having this thought in mind, it is possible to 

take a step further. 

First of all, even though the ANNs prove to have a high level of generalization towards different types of 

VCOs, there is still required time to train these ones. A future objective would be to reduce this time, 

which would be possible with additional computation resources. In this dissertation, the training of the 

ANNs, was performed with human interaction, where each hyperparameter was optimized manually.  
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On a future perspective, this process could be optimized by using algorithms finding the best values for 

the hyperparameters, resulting on an even further reduction in time.  

On a second approach, the training of this ANNs was executed using a dataset that was given, so this 

one was already known and well defined. However, with the ANN architecture well defined, the 

implementation of the models can be used without the need for the complete dataset at the beginning, 

and therefore the train of the ANNs would not be done before, but as part and during the optimization 

process. This would work in a dynamic way, such that the ANNs could be implemented in the 

optimization loop, and they would be trained during its process, resulting at first, on using only the normal 

procedure, without the ANNs, and as soon as the accuracy of the ANNs would be high enough, they 

would start to be used and therefore to reduce the optimization time.  

One challenge that comes with this approach, is the flexibility that the ANNs would have to show when 

facing small samples of data and be trained fast and accurate enough for the process to be worth its 

implementation. 
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