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Abstract—Gamification is the application of game design
elements in non-gaming contexts. In the context of education,
experiments with gamified environments have reported an in-
crease in students’ motivation and engagement when compared
to non-gamified experiences. GameCourse is the system used in
Multimedia Content Production (MCP), a MSc course at Instituto
Superior Técnico, to provide students a gamified experience.
Still, even using such techniques, an underlying problem per-
sists: education often operates under a “one-size-fits-all” model.
To better address the students’ individual needs, we turned
GameCourse into an adaptive gamification environment, with the
implementation of a profiler that divides students into clusters,
so that the system can adapt to each student cluster. This also
included creating a predictor for the ideal number of clusters,
as well as a new type of leaderboard, more suitable for a certain
type of students.

Keywords—Gamification; Education; Adaptive Gamification;
Player Profiling

I. INTRODUCTION

Over the years, there has been an interest in finding solutions
for the different problems associated with education. One
of the biggest challenges is knowing how to keep students
interested and motivated in learning the courses’ materials.
As teaching techniques evolved, a promising concept that has
been introduced and explored over the previous years is the
concept of Gamification.

Gamification is “the integration of game-based mechanics,
aesthetics and game thinking to engage people, motivate
action, promote learning, and solve problems, in non-game
contexts” [1]. With its growing popularity, gamification has
been applied in several different contexts, such as healthcare
[2] and fitness [3], as well as education [4]. Previous ex-
periences with Gamification in the field of education have
reported an increase in students’ motivation and engagement
when compared to non-gamified experiences. One of those
cases is the Multimedia Content Production (MCP), a MSc
course for the Information Systems and Computer Engineering
field at Instituto Superior Técnico (IST). This course uses
GameCourse, a framework that incorporates game elements
such as badges and a leaderboard to motivate students to learn
the course materials and reach higher levels in the game, which
ultimately translates to their final grade.

Even using novel educational techniques such as gamifica-
tion, an underlying problem persists in systems such as the
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GameCourse: education often operates under a “one-size-fits-
all” model where the learning process is the same for every
student, disregarding their singular needs and preferences both
as learners and, in the particular case of gamification, as
players. To this effect, Adaptive Gamification started being
studied. It is a form of gamification that includes processes
for adapting the system based on a player model. With this
adaptiveness, the learning process could potentially be more
inclusive and effective.

The goal of our work was to provide GameCourse the
capabilities to adapt to its users in a meaningful and effective
manner. We implemented a way for profiling students using
machine learning techniques, based on the work by Nabizadeh
et al. [5]. Because we divide students into clusters, we also
implemented two ways of discovering the best ideal number
of clusters based. Finally, we started exploring what to show
to different students by designing and creating a new type of
leaderboard.

II. RELATED WORK

A. Gamification

Gamification is the application of game design elements
in non-gaming contexts [1]. It has been applied in several
different contexts, such as healthcare [2] and fitness [3].
Another context where gamification has been successfully
applied is education [4]. According to Furdu et al. [1],
applying gamification in learning environments provides a
better learning experience, by combining having fun with
learning. It is also a way of providing instant feedback since
gamification provides metrics that facilitate knowing how a
participant is progressing. Furthermore, it makes for a better
learning environment because students can evolve at their own
pace, as well as choose the assignments at their own will
to obtain enough points to pass the course [1]. Gamification
is particularly useful in producing desired behavior change
through the formation of habits by reinforcing the reward and
emotional response of the users, thus requiring fewer cognitive
resources each time the desired activity is reproduced [6].

However, in many cases where the application of gamifica-
tion fails it is because the processes have been inappropriately
gamified. This may be due to the lack of understanding of what
gamification is, how it works and, more specifically, how to
design gamification experiences that inspire player behavior
changes and result in desirable outcomes [6].



B. Player Profiling

In order to implement a system that is capable of adapting
to its users in a meaningful and effective manner, we must first
know how to categorize them into “player types”. These player
types work as a synthesis of the users’ exhibited behavior
towards games. Ferro et al. describe player types as being the
same synthetization as personality types, with the difference
being the context in which they are applied [7].

While some authors believe that personality traits - which
influence how someone experiences and perceives the world
- are more relevant than player types [7], others have also
studied the impact of learning styles - how someone receives,
interacts with, and integrates educational materials - on aca-
demic achievements and overall experience of gamification, in
comparison to the impact of personality traits [8]. An example
of categorization by learning styles is Felder’s Index of Learn-
ing Styles (ILS) [9], which categorizes students according to
their learning preferences on four dimensions.

When it comes to personality traits, the most used model is
the Five Factor Model (FFM), also known as the OCEAN
model or the Big Five model. As complete as this model
is, one of the problems that researches often come across is
having a limited time to survey participants. For this reason,
briefer measures of the FFM have been developed. One of
those measures is the Ten Item Personality Measure (TIPI), a
10-item measure of the FFM [10].

In the realm of player types, the most well-known player
typology model is Bartle’s player type classification [11]. The
latest version of this model divides players into eight cate-
gories (Opportunists, Planners, Scientists, Hackers, Network-
ers, Friends, Griefers, Politicians). However, Bartle’s model
is bound to a specific game genre and may not work in other
contexts such as gamification [12]. Then came one of the most
recent contributions in this area: BrainHex. Besides not being
related to a specific game genre, this model allows players
to have both a main type and subtype, and it includes a list
of oppositions to each player type. Additionally, there is an
online questionnaire for this model. Not convinced that video
game focused player types were a good fit for gamification,
Marczeweski [13] developed the User Type Hexad. The idea
that “people cannot be broken down into simple individual
categories” [13] led him to create a model where the three
user types - Intrinsic User, Player User, and Disruptor User -
can each be divided into four sub-types.

C. Adaptive Gamification

Personalized gamification can be described as the cus-
tomization of the game elements, the interaction mechanics,
the tasks, or the game rules for each user, according to their
preferences [14]. According to Todello et al. [14], personal-
ization can be implemented in two ways: as a customization
(also referred to as user-initiated personalization), where the
user selects the elements that they wish to use, or as an
automatic adaptation (also referred to as system-initiated per-
sonalization), where the system takes the initiative to select

the elements for each user - with or without some user input
in the process.

Giving the users the freedom to add or remove elements
is particularly useful when the system does not have any
information about a student when they first start using it, as
this provides an insight on users’ preferences. This is known
as a cold-start problem [15]. Nevertheless, it appears that
users may not be aware of the gaming features that motivate
them the most to use the environment, thus, adaptation should
not be based on explicit user choices, but rather on indirect
measurements through, for example, interaction traces [12].

One approach is to profile users and have set configurations
for each type of player profile. Mora et al. textcolorred[10]
first surveyed participants to assign them to the group that
would better fit them, according to their Hexad user type. The
engine included an assignment function that would link each
student to the most fitting group: alpha, beta, delta, or gamma.
Each of the four groups had a different Trello dashboard to
sign in to, which means that students belonging to the same
group would have the same view of the system.

An alternative approach is to calculate preferences using
the product of two matrices. Monterrat et al. [16] and Lavoué
et al. [12] both tested this approach in a very similar way.
To determine a student’s preference for each feature (R), they
calculate the product between the preference of each BrainHex
player type for each feature (i.e. game design element) (A) and
the users’ score for each BrainHex player type (B) (Fig. 1).
Nonetheless, this procedure could be used with other profiling
methods, such as profiling based on personality traits. The
features shown to each user will then correspond to the
features with the highest scores for that user.

Fig. 1. An example of linear model R = B A [16].

Machine learning algorithms can also be useful for clas-
sifying students based on their level of participation. Mbabu
et al. [17] developed a platform that uses machine learning
techniques to adapt to students’ learning behavior. Due to the
small dataset in this study, K-means was used for clustering
students. The system initially does not know which cluster
each student belongs to. As the user interacts with the system,
the adaptive engine evaluates traits and behavior and passes
this data to the classifier. A pre-study was done from logs
of an e-learning platform to be the training data for the
machine learning algorithms used and four main clusters were
identified. Each main cluster was given their own set of game
elements that would better fit them.

III. BACKGROUND

GameCourse is a framework that incorporates various game
elements with the goal of motivating students to engage in



course activities. A GameCourseUser with admin privileges is
the only user who can create courses, activate and deactivate
users, and change admin permissions. A CourseUser repre-
sents a GameCourseUser inside a specific course. CourseUsers
can have different roles in a specific course, which determines
the permissions they have in the course. The default roles are
“Student” and “Teacher”, but other roles can be created.

GameCourse provides a set of modules that can be disabled
or enabled at any time for each course (Fig. 2). Each module
brings with it new entities and concepts relevant for the
gamified experience like badges, skills, and Experience Points
(XP), among others. The resulting vocabulary, referred to as
the Expression Language (EL), can be used in expressions
when designing views and writing rules.

Fig. 2. GameCourse modules.

By enabling the Views module, Teachers can create custom
views. These views can then be used to create pages accessible
by other CourseUsers (Fig. 3). At the beginning of this work,
the views and game elements accessible by each student were
the same, although it was already possible to present distinct
views to different users, based on their role.

Fig. 3. Student profile page.

Students have many ways of working towards their grade
and this is represented by participations, which can then lead

to students being awarded XP. All actions that count towards
earning XP take place outside of GameCourse. This led to
the implementation of the Plugin module that can access,
parse, and insert external data into GameCourse’s database
as participations.

After getting students’ participations into the system, Game-
Course then transforms these them into awards. Like any
game, GameCourse has rules that dictate what conditions must
be met in order for the student to get a certain reward. The
component that acts as a rule system inside GameCourse is
GameRules.

With GameCourse being used in multiple iterations of the
MCP course, it was possible to study student behavior and
evolution, and compare the results of each year. Barata et al.
[18] collected student data from three consecutive terms of
MCP. Cluster analysis was performed based on student behav-
ior and performance measures which included, for example,
online participation, lecture attendance, and evaluation results.
A total of six different clusters were identified, but only four of
them were observed in the third iteration of the course. These
four clusters were: Achievers, Regular students, Halfhearted
students, and Underachievers. Performance-wise, both Achiev-
ers and Regular students performed the best, with Halfhearted
students performing below average and Underachievers having
the worst performance. Participation-wise, the ranking is the
same but there is a bigger gap between Achievers and Regular
students, with Achievers participating significantly more. As
a result of these differences, Achievers and Regular students
tend to occupy the top positions of the leaderboard, followed
by Halfhearted students and, lastly, the Underachievers. The
clusters also differ in which activities they chose to partake in
the most.

The latest effort in understanding how different students be-
have in and interact with gamified environments, with analysis
made in the context of MCP while using GameCourse, comes
from Nabizadeh et al. [19]. Over a ten-year period, student
data was collected and analyzed. Taking into account student
performance, they used the elbow technique [20] to identify
the optimal number of clusters and determined that number
to be four, consistent with previous results. To determine
the cluster that each student belonged to, the amount of
accumulated XP per day was used as attributes for the cluster
analysis later performed using the K-means algorithm [21]. It
is important to note that one of the conclusions they came
to was that there wasn’t any correlation between students’
clusters and their BrainHex player types [22].

IV. DEVELOPMENT

A. Profiler

The key component when building an adaptive system is
the profiler. To implement a system that can adapt to its users
in a meaningful and effective manner, it must first know how
to categorize them. For our work, we decided that the best
solution would be to use the same approach as Nabizadeh et
al. [19], developed specifically for MCP.



Because we wanted to automatize the process, we imple-
mented the procedure into a Python script. We refer to the
algorithm for determining the cluster each student belongs
to as the profiler. The profiler requires three arguments to
be given: the course ID, the number of clusters, and the
minimum cluster size. Both the accumulated XP from the
first step and the data that later composes the Main data are
represented using dictionaries, and we iterate over the awards
and participations from the course identified by the course
ID, to collect the necessary data. We then sort the keys in the
dictionary containing the data for Main data, which correspond
to days. Afterwards, we iterate over each day to transform
the data in the dictionary into a Dataframe (from the pandas
library [23]), that will represent the Main data. The next step
is to drop the constant features, using the “VarianceThreshold”
feature selector from the scikit-learn library [24]. To normalize
the resulting Dataframe, we use the “MinMaxScaler” from the
same library.

At this point in the execution, the data preprocessing phase
has been concluded. The step that follows this phase is to
generate the number of clusters (n) that the profiler was given
as an input, using the K-Means algorithm, for which we used
“KMeans” from the scikit-learn library [24]. If any of the
clusters doesn’t reach the minimum cluster size (given as
input), we generate n - 1 clusters instead. To balance the Main
data, we use the “SMOTE” class methods from the imblearn
library [25], which allow us to perform oversampling using
SMOTE. It is then time to detect the most important features
in the balanced Main data with the Boruta algorithm. We chose
to take advantage of the “BorutaPy” class from the boruta
library [26] for this step, with a maximum of 2000 iterations.
Finally, for the last step, we use the “RandomForestRegressor”
class from the scikit-learn library [24], with a maximum depth
of 10. Once the results are ready, they are written into a file
called “[course ID] – results.txt”. The output written to this
file consists in the cluster centre for each cluster and the cluster
that each student belongs to.

B. Predictor

We wanted to make this feature as appealing to all courses
as possible, and it would be hard to determine the ideal
number of clusters for other courses. We anticipated professors
wouldn’t know which number to choose or even choose a
number that would lead to unsuccessful results, so we decided
to create a way of advising professors on how many clusters
to create. We implemented two options based on the two most
well-known methods for predicting the best number of clusters
for K-Means. Those two methods are the Elbow method [27]
(also used by Nabizadeh et al. [5]), and the Silhouette method
[28].

Like the approach taken for the profiler, we implemented a
Python script we’ll refer to as the predictor. The predictor
requires two arguments to be given: the course ID, and
a character representing the method we wish to use: “e”
for the elbow method and “s” for the silhouette method.
The prediction is made based on the XP that each student

accumulated thus far, since this is the data that is fed into
K-Means in the profiler.

Before explaining how we implemented each of the meth-
ods, it is important to explain how these methods work. To
determine the ideal number of clusters, it is necessary to
calculate a score for each number of clusters, and then decide
the best number of clusters based on those scores. This means
that we had to choose which numbers we wanted to test for.
We decided it didn’t make sense to test for less than two
clusters (because the students would remain indistinguishable),
and for more than ten clusters, due to the contexts in which
GameCourse is currently used. Plus, the bigger the array of
numbers of clusters we test for, the more overhead we add to
the execution. The procedure then becomes similar for both
methods: for each number of clusters, we apply the k-means
algorithm to the data (using “KMeans” from the scikit-learn
library [24] as in the profiler), and we then calculate the scores.
Each score is stored in a list.

In the case of the elbow method, each score is the sum of
squared distances of samples to their closest cluster center and
is given by an attribute - inertia - from the “KMeans” class.
We then create an instance of the “KneeLocator” class from
the kneed library [29], that receives the list of scores. This
class has an attribute – elbow – which indicates the elbow
point that corresponds to the number of clusters which has
achieved the best score.

For the silhouette method, each score is given by the silhou-
ette coefficient, which we calculate using “silhouette score”
from the scikit-learn library [24]. The recommended number
of clusters is the one that gets the highest score.

Similarly to the profiler, the predictor writes its output
(i.e., the recommended number of clusters) to a file called
“[course ID] – prediction.txt”.

C. Representing Clusters

Users can have multiple roles inside a course, the default
ones being “Teacher” and “Student”. This is how we individu-
alize a group of users, so that we can give each role the proper
permissions and show them the correct views. Since those
roles can be assigned or removed at any time, our solution
is to represent the different clusters as roles. When a student
is assigned to a cluster, besides keeping the “Student” role,
they receive the role that represents that cluster. If the student
is moved to another cluster, that previous role is removed
and a new role is assigned. Because we need to be able to
differentiate the “cluster roles” from the other roles, we create
them as children of a role called “Profiling” (Fig. 4), the latter
being a child of the “Student” role. The views can then be
generated with the aspects that match the most specific role
possible.

It is important to note that, although the “Achiever”, “Regu-
lar”, “Halfhearted”, and “Underachiever” roles are at the same
level of the hierarchy, the way we represented them in Fig. 4
was intentional, since their order as children of the “Profiling
Role” is important. This order will determine the name of
the clusters, based on the cluster centers – the average of



Fig. 4. Role hierarchy diagram.

all points (elements) belonging to each cluster [30]. In this
case, the cluster with the highest center will be represented
by role “Achiever”, the runner up by role “Regular”, and so
on. Because the names and order of the clusters is determined
by the children of the “Profiling” role, professors can choose
the names and create as many clusters (roles) as they wish.
If these roles are not created prior to running the profiler, the
names and order shown in Fig. 4 are used by default. If these
names aren’t enough, we give the remaining clusters default
names: “Cluster1”, “Cluster2”, and so on.

D. Profiling Module

To encapsulate the new functionalities, we created the
Profiling module. Because this is a brand-new module, we
had to create a configuration page where the new profiling
features can be used. When designing this page, our goal
was to provide data regarding students’ profiles but, more
importantly, to show that data in a meaningful and easily
interpretable way.

Once students have been assigned to clusters, it is possible
to build a Sankey diagram showing the flow between clusters
and how the number of students in each cluster evolved
over time (Fig. 5). Because professors can run the profiler
multiple times throughout the semester, this diagram is a visual
representation of how students are performing in the course
at specific points in time, which provides useful feedback
for professors. This diagram was implemented using the
Highcharts library [31] for Javascript.

Fig. 5. Module Profiling’s configuration page.

The page also contains a section with the tools and settings
for running the profiler and the predictor, as well as a table
showing the cluster history for each active user (Fig. 6). This
table can be sorted by each of the columns.

Fig. 6. Partial interface of the Profiling module’s configuration page.

Professors can choose the number of clusters and the
minimum cluster size in the designated input spaces shown
in Fig. 6. The default values that appear on the User Interface
(UI) for both of these fields is four, because these were the
values determined by Nabizadeh et al. for MCP [5]. The
Application Program Interface (API) call to run the profiler
makes the profiler start executing in the background and
immediately returns so that the UI doesn’t freeze waiting for
a response. The status will indicate that the profiler is running
(Fig. 7), and the “Run” button is replaced by a “Refresh”
button to check if results are ready for viewing (Fig. 8).

Fig. 7. Status label when the profiler is running.

Fig. 8. Set of buttons when the profiler is running.

Professors can exit the page and even exit the system safely.
Once results are ready, a new column is added to the history
table, as shown in Fig. 9. Professors can then choose, for
each student, between assigning the cluster determined by the
profiler or assigning any of the other available clusters. Users
can cancel (deletes the results), submit (assigns students to
the chosen clusters), and save (saves chosen clusters to an
auxiliary database table without submitting) these results. Until
the user either cancels or submits, results aren’t deleted, and
it is not possible to re-run the profiler.

To run the predictor, we give professors the option to choose
the method they want to use (Fig. 10). Like the approach we
took for the profiler, the predictor runs as a background process
so that, in the meantime, the user can freely exit or interact
with the system. The output is saved in a file once it’s ready,
but, while the prediction is underway, the user is not able to
re-run the predictor and can only use the “Refresh” button to
check if the results are ready (Fig. 11).



Fig. 9. History table with results from the profiler.

Fig. 10. Predictor method selection.

Once the best number of clusters is determined, the user is
informed of the result and must decide if the advised number
of clusters should be used for the next time the profiler is ran
(Fig. 12). If so, the value on the input box for the number of
clusters gets replaced.

E. Towards differentiated leaderboards

As a game design element, a leaderboard consists of “a
visual display that ranks players according to their accom-
plishments” [32]. With leaderboards being one of the most
used game design elements in Gamification, they have been the
subject of numerous studies over the years. Mixed results on
how effective leaderboards are at motivating people have led to
trying to understand how different people are affected by this
game design element, and how different types of leaderboards
may appeal to different people.

It has been concluded that users get different levels of
satisfaction depending on the position in which they are placed
on the leaderbeard, with optimal positions being the second,
fourth, and just above the bottom-three positions (e.g., seventh
position if ten users are presented) [33]. This is what originally
prompted us to explore different leaderboard designs. There
are two main types of leaderboards. The leaderboard used in
GameCourse (Fig. 13) is considered an infinite (or absolute)
leaderboard, since it displays all users and their scores [34].
As Fig. 13 shows, seeing the positions below sixth requires
scrolling down. The second type of leaderboard is the no-
disincentive (or relative) leaderboard, where “users only see
their rank as compared with the users ranked below and above
them” [34]. At first, we thought about creating a different
leaderboard design for each cluster we had in MCP. However,
we reached the conclusion that, for individual leaderboards,
these two designs would suffice. The no-disincentive would
be much more suitable for students on the bottom positions
(Halfhearted students and Underachivers), and the infinite

Fig. 11. Refresh button when the predictor is running.

Fig. 12. Predictor results modal.

leaderboard is already suitable for the students in the top
positions (Achievers). The reason why we don’t advise show-
ing a no-disincentive leaderboard to every student is because
students in the top positions may draw more motivation from
seeing exactly how many students are behind them and how
close they are to the top.

Fig. 13. GameCourse’s infinite leaderboard.

Once we decided to provide the option to have no-
disincentive leaderboards in GameCourse, we needed to decide
the best configuration. The student viewing the leaderboard
must appear right in the middle of the leaderboard [35], but
we had to decide how many students to show above and below
them. We based our decision on the conclusions drawn by
Sun et al. [33]. Since the levels of satisfaction are higher for
users placing second, fourth, or just above the bottom-three
positions, we decided that the best option would be to show
the three students above, and three students bellow the viewing
student. With this approach, the user is visually always in
the fourth position, as well as in the position just above the
bottom-three positions. We show the original position next
to the students’ names, since we don’t want to mislead the
students into thinking that they are in a position they aren’t
in. The resulting leaderboard is shown in Fig. 14.

V. EVALUATION

We decided to test the performance of the profiler script to
find out if we had introduced any unnecessary complexity.
The approach that was taken consisted in collecting time
samples of how long the profiler took to finish executing



Fig. 14. New no-disincentive leaderboard.

and provide an output. Those time samples were collected
for different numbers of students, for different numbers of
attributes, and for different numbers of participations, since we
wanted to assess how each of these three variables impacted
the execution time. For each of these three tests, we ran the
profiler twenty times for each value of the variable under test,
with both the number of clusters and the minimum cluster size
set to four. The values presented below are the average time
of each set of samples.

Fig. 15 shows how the execution time varied according
to the number of students. We were careful to maintain
the number of attributes, since it was inevitable to increase
the number of participations and awards due to the profiler
ignoring students who don’t have participations and awards.
Our goal was to simulate the data at the end of the semester for
different numbers of students. We can conclude, as expected,
that increasing the number of students does increase the
execution time.

Fig. 15. Profiler execution time by number of students.

According to the documentation for the scikit-learn library
that was used, k-means’ average complexity is given by
O(k ·n ·T ), where k is the number of clusters, n is the number
of samples, and T is the number of iterations. However,
according to David et al. [36], the worst-case complexity is
given by O(n(k+2/p)), where k is the number of clusters, n is
the number of samples, and p is the number of features. In our
case, the number of features used in k-means is always one
(i.e, the accumulated XP), the number of samples corresponds
to the number of students, and the number of clusters was
kept at four. With this information, we can conclude that

the values correspond to what would be expected, and no
additional complexity has been introduced when it comes to
the manipulation of students, since the time complexity never
goes beyond the worst-case complexity (i.e., O(n6)).

After collecting the time samples for different numbers of
students, we set out to test how the number of participations
influenced the execution time of the profiler. Fig. 16 shows
the results of this experiment, and we can observe that the
time increases in a seemingly linear way, as the number
of participations increases. Because participations aren’t the
only attributes taken into account, as explained in IV-A, we
were interested in exploring the relation between the number
of attributes and the execution time. Because the number
of attributes is determined by the number of participations,
awards, and days, we varied these values while maintaining
the values as realistic as possible. This was achieved by using
data from MCP at the end of the semester and deleting the data
from entire days until we got the desired number of attributes
to conduct each round of tests. The results, presented in
Fig. 17, show that an increase in the number of attributes does
lead to a longer execution time. There seems to be a higher
increase in time when we go from having 1000 attributes to
having 1100 attributes.

Fig. 16. Profiler execution time by number of participations.

Fig. 17. Profiler execution time by number of attributes.

Both the number of participations and the number attributes
appear to have a similar impact on the execution time, which
was to be expected since the participations are one of the
components that make up the attributes, together with the



awards and the XP accumulated on each day since the first
award or participation. The time complexity for the Boruta
algorithm O(P · N), where P and N are, respectively, the
number of attributes and objects (in this case, students) [37].
Solé et al. [38] state that the computational complexity for a
Random Forest of size T and maximum depth D is O(T ·D).
Because the maximum depth is always the same, and we
maintained the number of students, we expected the time
complexity to be linear. The slope resulting from only varying
the number of participations is closest to the slope of a linear
time complexity than the slope resulting from varying the
number of attributes. Nevertheless, the slope resulting from
varying the number of attributes approximates more to that of a
linear time complexity, or even a logarithmic time complexity,
than that of a super-linear time complexity (e.g., O(n2)). We
can conclude that the observed time complexities are within
our expectations.

A. Unit and Integration Tests

To evaluate the correctness of the new Profiling module, we
created a test suite using the most popular testing framework
for PHP: PHPUnit [39]. We start tests with completely empty
database tables and the test classes have the responsibility of
both setting up before tests and cleaning up afterwards so that
every test starts with a clean environment. Additionally, these
tests are completely automatic. With one simple command
in the terminal, it is possible to run a single test case or
the full test suites. The tests amount to a total of 86 tests.
These tests cover both unit testing and integration testing. For
integration testing we use a bottom-up integration approach,
meaning that we begin by testing the components having the
fewest dependencies and follow that order throughout.

VI. CONCLUSION AND FUTURE WORK

We stated out this project with the goal of transforming
GameCourse into a system with adaptive capabilities. The key
to achieving this was creating a profiling script – the profiler
–, so that the system could make an informed and effective
adaptation to its users. We also focused on providing support
to the professors by advising them on the ideal number of
clusters to divide students into – the predictor.

This culminated in the creation of the Profiling module.
Once we could profile the students, by dividing them into
clusters, the next step was to start creating new versions of the
existing game elements, better-fitting for the types of students
who the former elements weren’t ideal for. We took the first
step by creating a no-disincentive leaderboard that can be
shown to designated users instead of the infinite leaderboard
that existed in GameCourse.

To assess whether we had achieved our goals, we performed
benchmark tests to evaluate the performance of the system
and unit and integration tests to evaluate the correctness of
the resulting implementation. In the end, we can confidently
say that we’ve achieved our goal of providing GameCourse
the capabilities of profiling and adapting to its users.

Our work has opened the doors to finding creative ways
of designing gamified environments tailored to meet students’
needs, using GameCourse. We have already taken the first step
by creating a new type of leaderboard, but further investigation
should be done on what to show to different students based
on their cluster. Those differences should be focused on the
visual game elements, such as the leaderboard and the profile,
and not on game elements that directly influence the final
grade such as the badges, skills, and rules, as this could lead
to students finding the game unfair. We already know, from
previous studies [5] [18], some characteristics of each cluster
and what sets them apart from the others, but we have yet
to know what they would like to see, for example, on their
profile page.

The algorithm we based our profiler on was developed in
the context on MCP, but further studies should be conducted
to assess how accurate it is for other courses. Other algorithms
could be created and integrated into GameCourse, so that there
are multiple types of profilers that professors can choose from,
like they can already do for the predictor.

As far as the Profiling module configuration page is con-
cerned, it would be helpful, in the future, to show users the
progress of the profiler and the predictor when either one of
them are running.

Lastly, there should be more communication between the
system and the students. There already exists a module – “No-
tifications” module – that was no longer used nor functional
in the start of our work. It was used to notify students of
the awards that they had won since the last time they had
been active in GameCourse. This could be the starting point
to develop notifications that are targeted at different clusters
of students, offering suggestions on, for example, what skill
to do next, or words of encouragement, like showing how
close a student is to getting a badge or placing higher on the
leaderboard.
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