
1

Deep Learning-based Video Coding: Benchmarking

and One Step Forward

Helena Oliveira

Instituto Superior Técnico, Universidade de Lisboa - Instituto de Telecomunicações, Lisboa, Portugal

Abstract— Video coding is the process that takes raw,

original, digital video data and codes it into a binary

representation, targeting efficient compression by exploiting the

spatial, temporal, statistical and perceptual redundancies. Until

recently, video coding was exclusively performed with

traditional video coding methods that target the exploitation of

these redundancies with handcrafted algorithms. Lately,

however, deep learning methods, and namely attention models,

have shown great results for tasks related to computer vision

and image processing, so it is only natural that this novel

technology is also applied to other signal processing challenges

like image and video coding. This paper reviews several state-of-

the-art deep learning-based video coding solutions and provides

a solid and meaningful benchmarking for some of the reviewed

solutions with publicly available software against the most

recent traditional video codec (VVC), to provide awareness into

the current performance of these video codecs. Afterwards, the

second objective of this paper is to improve a deep learning-

based solution. As such, the training of the chosen codec (RLVC)

will be replicated to guarantee the ability to replicate results, so

that later this solution can be extended with an attention model.

While the results achieved with the final extended codec do not

yet show consistent improvement overall, since the integration

of attention models into video coding solution is still a novel

research path, promising developments are expected in the

future.

Keywords— video coding, compression efficiency, deep

learning, neural networks, attention models

I. INTRODUCTION

Visual communications have a fundamental role in Human
societies. In the digital era, this has led to the explosion of
digital image and video-based applications and services,
notably following the democratization of image and video
acquisition, storage, and streaming. For this explosion to
happen, video coding standards have been fundamental and
have been evolving over the years to offer increasing
compression efficiency, notably the more recent Advanced
Video Coding (H.264/AVC), High Efficiency Video Coding
(HEVC) and Versatile Video Coding (VVC) standards. The
maturity and high performance of these video coding
standards and the associated ecosystems have been
fundamental during the recent COVID-19 pandemic, as video-
based services and communications had an essential role on
the mitigation of its negative impacts. These video coding
standards include some key coding modules, notably motion
estimation, temporal and spatial prediction, transform,
quantization, and entropy coding, which have been carefully
handcrafted, targeting the highest compression efficiency for
the target range of rates/qualities in a widespread set of
applications and services.

Recently, the multimedia arena has been shaken by the
impact of deep learning (DL)-based technologies, notably for

computer vision tasks, e.g., classification, detection, and
recognition, with above human performance levels often
achieved. In this context, it was just a question of time for DL-
based tools to enter the image and video coding arenas since it
is impossible to ignore its potential benefits regarding
conventional coding approaches. DL-based coding solutions
create the so-called latent representation, containing the most
important learned content features to describe the input data,
following a training process where a loss function controls the
DL-based model optimization. The training process is at the
heart of the DL-based media representation paradigm,
especially when the goal is to have a single compressed
representation, which is efficient both for fidelity decoding as
well as computer vision tasks, e.g., classification and
recognition, since these goals are both important for an
increasing number of application scenarios.

One of the most recent developments in DL is related to
attention models, which are techniques for neural networks
(NN) that enable them to process complex inputs and focus on
specific aspects of these inputs [1], which have already been
exploited to solve some problems with great success, e.g.,
Neural Machine Translation. The first DL-based attention
models were designed to be integrated into architectures based
on Recurrent Neural Networks (RNN), with the goal of
improving the performance of Natural Language Processing
(NLP) tasks [2], which highly depend on temporal
correlations, and have since proven to be a great addition; so
much so that solutions based only on attention models, like the
Transformer [3], have shown remarkable results. Recently,
attention models have been applied with large success to
computer vision tasks [4] [5], notably video classification [6].
Thus, since attention models have been created to deal with
temporal data and have already been applied successfully to
image and video classification tasks, this paper speculates that
they might come to also have positive impact on DL-based
video coding solutions.

Recent works have shown that besides the competitive
image and video compression performances, DL-based coding
solutions allow extending the utility of the compressed
representations by offering three key advantages: i) a single
efficient (compressed) representation for both humans and
machines, e.g. autonomous vehicles; ii) reduction of the
complexity resources associated to computer vision tasks as
already starting from compressed domain features, thus at
least partly skipping feature extraction (from decoded
content); and iii) better analysis accuracy by allowing the
computer vision tasks to use the compressed domain features
extracted from the original image/video data instead of
extracting them from the lossy decoded image/video as for
conventional coding solutions where feature extraction
happens after full decoding.

2

In this context, the first objective of this paper is to
perform a solid, meaningful, and extensive benchmarking of
the compression performance of some recent DL-based video
coding solutions regarding the most powerful and recent
conventional video coding solution, the VVC standard [7].
This comparison will be performed under the largely adopted
JVET defined Common Test Conditions (CTC) and
evaluation procedures for NN-based video coding technology
[8]. This type of novel performance comparison is critical to
know in a reliable way how far some recent DL-based video
coding solutions are from the well-established conventional
video coding solutions in terms of compression performance.
The second objective of this paper is to improve a deep
learning-based video coding solution from the literature, so-
called Recurrent Learned Video Compression (RLVC), by
extending it with an attention model and analyzing the
preliminary compression results.

To achieve its purposes, this paper is organized as follows:
Section II offers a brief description of the assessed DL-based
video coding solutions. Next, Section III describes the adopted
test conditions and evaluation procedures, Section IV presents
and analyzes the performance benchmarking results. Section
V describes the training process and then analyses the
replication of results achieved with the new obtained RLVC
models, and Section VI will report on the preliminary results
of the integration of an attention model into the RLVC.
Finally, Section VII concludes the paper.

II. SELECTED LEARNING-BASED VIDEO CODECS

This section describes the selected DL-based video codecs
which will be benchmarked in this paper. This set of codecs
was determined by the publicly available software as only
results available in published papers would not be enough to
perform a solid comparison under common test conditions.
This means all performance results later presented for the
JVET conditions have been generated in the context of this
paper, which represents a major, novel contribution.

A. Deep Video Compression (DVC)

The DVC [9] DL-based video coding solution adopts a
classical, hybrid video coding architecture, where each
module is replaced by a DL-based tool, thus originating a one-
to-one correspondence between the classical coding modules
and the DL-based models, see Figure 1.

Figure 1: Traditional video coding architecture (left); DVC

architecture (right) [9].

In the DVC, motion estimation is performed using a
Convolutional Neural Network (CNN) to extract the optical
flow, always from the previously decoded frame. The
resulting residual information is coded using a CNN-based
encoder-decoder network and the motion-associated latents
are quantized to save rate while still reaching a good enough
motion representation. The decoded optical flow is used to
warp the previous decoded frame to estimate the motion
compensated prediction for the current frame. However, since
the motion compensated frame has artifacts, it is processed by
a CNN, together with the previous decoded frame and the

decoded optical flow, to obtain a refined prediction frame.
Lastly, the prediction residual is compressed into a latent
representation using a non-linear NN [10], which is quantized
to obtain several Rate-Distortion (RD) points. The whole DVC
architecture is trained with a RD loss function, using as end-
to-end distortion metric the Mean Square Error (MSE)
between the original and decoded frames, while the bitrate is
estimated using a rate estimation module.

The OpenDVC implementation of this coding solution
made available by Yang et al. is used in Section IV for
performance assessment [11][12]. The OpenDVC
implementation offers two different DL-based models: one
trained using MSE as the distortion metric, and another trained
using (1 – MS-SSIM) as the distortion metric. The several
DVC DL-based models are trained in a progressive manner,
starting with the motion estimation network, which is trained
using a distortion-only loss function; after, the motion
compression, motion compensation and the full end-to-end
networks are trained using a RD loss function.

B. Hierarchical Learned Video Compression (HLVC)

The HLVC [13] DL-based video coding solution adopts a
hierarchical coding architecture inside a Group of Pictures
(GOP). At the decoder, the frames are decoded and enhanced
using a recurrent network to increase the decoded frames’
quality, see Figure 2.

 The first HLVC layer includes the first and last frames of
the GOP, which are coded with a state-of-the-art image coding
solution, at the highest quality. The second HLVC layer codes
the middle frame of the GOP with medium quality, using a NN
for bi-directional prediction, and the frames at the edge of the
GOP as anchors. The third and last HLVC layer codes the
remaining frames of the GOP with lower quality, using the
closest already decoded frame as anchor (from the first or
second layers); only uni-directional (temporal) prediction and
a single motion map are used to code two adjacent frames. At
the decoder side, after each frame is decoded by the
corresponding layer, all frames are processed by an
enhancement RNN which leverages on the frames with better
quality to improve the quality of the remaining frames.

Each NN in HLVC is trained separately. The networks at
the encoder and decoder sides use an RD loss function, while
the recurrent enhancement network is trained with a distortion
only loss function; since it is applied only at the decoder, rate
is not an issue. The HLVC networks were trained with both
MSE and (1 – MS-SSIM) distortion, to obtain two different
coding models. The HLVC software implementation is
publicly available [14], and can be used in the so-called fast
and slow modes. While the fast mode has predefined networks
for the coding process, the slow mode tries different network
models to encode each frame and selects the one with the best
result to achieve the best possible RD performance at the cost

Figure 2: HLVC architecture, illustration for the first GOP [13].

3

of increasing computational complexity; this is the coding
mode used in Section IV for performance assessment.

C. Recurrent Learned Video Compression (RLVC)

The RLVC [15] DL-based video coding solution includes
two recurrent auto-encoders (RAE) and two recurrent
probability models (RPM), two of each for dealing with
motion and residue information, see Figure 3. Due to its
recurrent nature, the RAE allows using temporal information
from several frames at a time; in this context, previous inputs
are given as cell and hidden states and used by the ConvLSTM
layer to help generate the latent representation for the current
frame, instead of choosing only specific frames as anchors like
most DL-based video codecs. The RPM networks model the
probability mass function of the obtained latent
representations, based on previous iterations; this information
is then applied to adaptive arithmetic coding.

In the RLVC codec, the first frame of each GOP is coded
with a state-of-the-art image coding solution, either DL-based
or conventional. For the remaining frames, motion estimation
is performed using a pyramid optical flow network [16]. The
RAE codes the estimated motion, considering the cell and
hidden states passed on, which express inputs from previous
frames; the decoded motion estimation is applied to create a
motion compensated prediction. Next, the residual between
the original and motion compensated frames is obtained and
coded using another RAE. The RPM is used to recurrently
predict the temporally conditional probability mass function,
to reduce the rate when entropy coding the latent
representations.

Figure 3: RLVC architeture [15].

The RLVC codec is trained in a progressive manner. First,
the motion estimation network is trained with a distortion only
loss function; after, the RAE and motion compensation
networks are trained using a RD loss function and, finally, the
full network is trained end-to-end with a RD loss function. The
RLVC is trained with two different distortion metrics, notably
MSE and (1 – MS-SSIM), thus obtaining two different coding
models. The RLVC software has been made publicly available
by the authors and is used in Section IV for performance
assessment [17].

III. TEST CONDITIONS AND EVALUATION PROCEDURES

This section will describe the test conditions and
evaluation procedures adopted for the performance
benchmarking exercise targeted in this paper, which are
largely those specified by JVET in the document “JVET
common test conditions and evaluation procedures for neural
network-based video coding technology”, called JVET NN
CTC in the following [8].

A. Test Material and Coding Rates

The selected video test materials correspond to the key
classes recommended in the JVET NN CTC [8], as shown in
Table 1. All original videos are in the YUV color space with
4:2:0 subsampling; there are sequences at 8 and 10-bit per
sample, which has required some software adaptations for the
learning-based codecs. For the DL-based coding solutions, the
various rates are obtained with four models trained for several
bitrates using MSE-RGB in the loss function (since the JVET
NN CTC uses PSNR as quality metric), while for VVC the
quantization steps specified in the JVET NN CTC [8] are used.

Table 1: Test video sequences and characteristics.

B. Coding Benchmarks and Pipelines

The benchmark for this performance assessment is,
naturally, the Versatile Video Coding (VVC) standard [7], the
most recent and efficient representative of a succession of
video coding standards based on the so-called hybrid coding
architecture. This is naturally a very challenging
benchmarking for the DL-based coding solutions, which are
just emerging and did not have yet time to mature; however,
this is also the most relevant benchmark to assess the
performance gap between the technologies under comparison.
In this context, three VVC coding configurations will be used:
i) VVC Random Access (RA); ii) VVC Low Delay P (only P
frames); and iii) VVC Intra. The VVC reference software
version 11 [18] has been used for VVC coding using the JVET
provided configurations [8]. According to JVET NN CTC [8],
VVC coding must be performed at 10-bit depth even if the
content is available at 8-bit since this improves the VVC
compression performance. This implies that the 8-bit videos
had to be converted to 10-bit videos, in this case by adding two
bits as ‘10’, i.e., in the central bin position.

To perform a fair benchmarking, the same had to happen
with the DL-based codecs which were not prepared to code
10-bit videos; in this context, the software for the three
selected DL-based codecs had to be upgraded to code videos
at 10-bit instead of the previous 8-bit depth used in the original
implementation; in this process, it was confirmed that the
compression performance was improved for the selected
quality metrics. Therefore, since the DL-based codecs need
RGB input, the YUV, 4:2:0 8-bit depth video sequences were
first converted to 10-bit depth as described above, and after the
RGB frames (16-bit PNG format) were obtained using ffmpeg
following the BT.709 recommendation. After DL-based
coding, the decoded 10-bit RGB frames were converted to 10-
bit YUV frames as recommended by the JVET NN CTC for
quality assessment.

C. Performance Metrics

For the test quality metrics it was decided to adopt PSNR-
Y as recommended by the JVET NN CTC [8] and VMAF [19]

Class Sequence Name
Nº of

Frames
Frame

Rate
Bit-

depth
Spatial

Resolution

B

MarketPlace 600 60 10 1920×1080

RitualDance 600 60 10 1920×1080

Cactus 500 50 8 1920×1080

BasketballDrive 500 50 8 1920×1080

BQTerrace 600 60 8 1920×1080

C

RaceHorses 300 30 8 832×480

BQMall 600 60 8 832×480

PartyScene 500 50 8 832×480

BasketballDrill 500 50 8 832×480

D

RaceHorses 300 30 8 416×240

BQSquare 600 60 8 416×240

BlowingBubbles 500 50 8 416×240

BasketballPass 500 50 8 416×240

4

due to its recent popularity for video quality assessment. The
distortion metrics used for training are those referred in the
previous section and selected by the respective authors since
no retraining has been performed. As usual, the rate is
measured in bits per second. For both metrics, BD-Rate values
will be presented to express the rate savings/losses regarding
the selected reference codec, in this case the VVC Low Delay
P configuration; this choice was motivated by the need to have
a good overlapping of rates and qualities among the assessed
codecs to obtain reliable BD-Rate values.

As requested by the JVET NN CTC, all quality metrics
computation happened at 10-bit and thus all video sequences
originally at 8-bit depth were converted to 10-bit depth for
quality metrics computation; remind that all coding is
performed at 10-bit depth.

IV. PERFORMANCE RESULTS AND ANALYSIS

This section presents the RD performance results and BD-
Rates for the test conditions defined in the previous section.

A. RD Performance by Codec and Sequence

For a better visualization of the codecs’ RD performance,
this section includes the RD performance charts for the Class
D test sequences, both for the PSNR-Y and VMAF quality
metrics, see Figure 4. These charts allow to make some first
qualitative observations, notably: i) VVC Inter codecs
(excluding VVC Intra) are clearly still the best in RD
performance; ii) the VVC Inter to DL-based codecs quality
gap seems to be shorter for the VMAF metric; and iii) the
quality growth with rate is much faster for the VMAF metric.
The RD performance gap for VMAF is much shorter than for
PSNR-Y what is a great sign considering the better VMAF
correlation with perceptual quality.

B. Overall BD-Rate Performance

Table 2 and Table 3 include the PSNR-Y and VMAF BD-
Rates respectively, using as anchor the VVC Low Delay P
configuration. It is important to note that the RLVC BD-Rate
results in [15] are rather different from those presented here
for three main reasons: i) the quality metric in [15] is an
uncommon PSNR-RGB based on the pixel-level average MSE
for the R, G and B components and not the common PSNR-Y
or PSNR-YUV metrics; ii) in [15], RLVC is compared with
theHEVC standard with the coding performed with the x.265
software (and not with the VVC standard using the VVC
reference software as in this paper); and iii) the x.265 software
is run at its ‘LDP VERY FAST’ configuration what may bring
some performance penalty to reduce the complexity. These

differences clearly demonstrate why a solid benchmarking
needs clear, well-defined conditions, metrics, and pipelines as
in this paper. The RD performance results in the tables allow
to derive the following conclusions:

• The best performing DL-based codec is the RLVC,

followed by the HLVC and the OpenDVC. The RLVC

modelling of temporal dependencies using recurrent

networks (e.g., ConvLSTM) brings performance benefits,

due to its capability of making efficient predictions and

tracking long-term dependencies, i.e., not only considering

data of the past decoded frame.

• All DL-based codecs perform much better than VVC Intra

but much worse than VVC RA. The best performing DL-

based codec, RLVC, is outperformed by the VVC Low

Delay P configuration performance (remind they both use

Low Delay P settings). This means that DL-based tools

exploiting the temporal correlation in a more efficient way

are still needed.

• For the DL-based codecs, the VMAF BD-Rate is smaller

than the corresponding PSNR-Y BD-Rate. Since VMAF is

better correlated with human perception than the PSNR-Y

mathematical fidelity measure, it means lower rate losses

can be achieved if perception is considered. This is expected

as DL-based codecs usually perform better for perceptual

quality metrics where mathematical fidelity is not the target.

In summary, while the DL-based codecs do not yet

perform at the same level of VVC, their RD performance is

very promising considering these codecs are just emerging,

while VVC has had decades of research efforts behind it.

Table 2: PSNR-Y BD-Rate (%): VVC Low Delay P as reference.

 VVC

Intra

VVC

RA
RLVC HLVC

Open

DVC

C

l

a

s

s

B

MarketPlace 370,81 -31,41 230,73 310,29 384,78

RitualDance 245,68 -21,72 186,73 258,01 295,17

Cactus 571,07 -22,57 333,68 467,64 546,12

BasketballDrive 166,29 -24,83 258,84 320,54 425,50

BQTerrace 493,17 -23,91 533,63 549,76 856,76

Average 369,40 -24,89 308,72 381,25 501,66

C

l

a

s

s

C

RaceHorses 136,6 -18,2 224,4 297,8 348,3

BQMall 447,2 -28,7 189,1 302,4 365,1

PartyScene 509,2 -25,8 212,3 367,5 400,7

BasketballDrill 413,4 -17,2 230,3 312,1 398,2

Average 376,6 -22,5 214,0 320,0 378,0

C

l

a

Basketball

Pass
160,6 -21,1 110,5 175,4 206,1

BQSquare 762,0 -37,6 345,4 401,9 725,2

Figure 4: PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences.

5

s

s

D

Blowing

Bubbles
515,8 -36,5 153,0 232,9 300,2

RaceHorses 170,9 -36,7 120,9 198,2 212,6

Average 402,3 -33,0 182,5 252,1 361,0

Table 3: VMAF BD-Rate (%): VVC Low Delay P as reference.

 VVC

Intra

VVC

RA
RLVC HLVC

Open

DVC

C

l

a

s

s

B

MarketPlace - -28,42 197,33 259,56 383,42

RitualDance - -19,63 163,85 259,56 285,45

Cactus - -14,79 460,26 639,97 659,85

Basketball

Drive
- -26,83 218,39 317,82 401,50

BQTerrace - 22,38 744,90 704,39 1 111,81

Average - -13,46 356,95 436,26 568,41

C

l

a

s

s

C

RaceHorses 1 767,9 -21.12 170,1 301,4 318,5

BQMall 1 114,4 -18,7 135,3 246,3 287,1

PartyScene 794,3 -18,0 176,2 299,0 331,7

Basketball

Drill
458,8 -6,9 186,4 287,9 318,3

Average 1 033,9 -14,5 167,0 283,6 313,9

C

l

a

s

s

D

Basketball

Pass
213,8 -19,5 78,2 156,9 184,6

BQSquare 1 603,5 -35,3 340,1 452,3 674,1

Blowing

Bubbles
699,2 -32,9 131,3 184,0 263,0

RaceHorses 519,7 -14,0 93,0 185,8 210,9

Average 759,0 -25,4 160,7 244,8 333,2

V. RLVC TRAINING AND PERFORMANCE VALIDATION

Considering the achieved results in Section IV, the DL-
based video codec chosen to be improved was the RLVC, due
to being the codec that achieved the best RD performance
during the extensive benchmarking. Thus, this section will
present the methodology used to train the RLVC models [15]
(reviewed in Section II) with the key target to replicate, with
the new trained RLVC models, the performance results
obtained with the trained models made available by the RLVC
authors. These models will be referred as ‘Newly Trained
RLVC’ models, and the associated performance replication
and validation of these models is essential to guarantee that the
RLVC can be trained as intended, to then proceed with its
improvement with these obtained results as a foundation for
comparison. Given the complexity and time constraints, the
RLVC training and performance replication have only been
performed for the PSNR-RGB metric.

A. Training Conditions and Dataset

As mentioned earlier, the RLVC has six main modules that
require training: 1) Motion estimation network [16]; 2)
Motion RAE; 3) Motion compensation network, which has
two main modules: the warping network, followed by the
artifact smoothing network; 4) Residue RAE; 5) Motion RPM;
and 6) Residue RPM.

The dataset used for training is the Vimeo-90k septuplet
[20], which consists of 91701 video sequences, each with
seven frames, with a 448×256 spatial resolution. Each time the
frames are loaded for training, they are randomly cropped
down to a 256×256 spatial resolution. Since MSE-RGB will
be the metric used for distortion, the first frame of every
training sequence will be Intra coded with the HEVC-based
BPG codec, so that the training process can use the already
decoded Intra frame as anchor, in the same way as when
performing the coding process. The pre-trained models for the
motion estimation network are used, but these weights will
continue to be updated during the end-to-end training.

B. RLVC Training Phases

As mentioned in Section II, the RLVC model is trained
progressively with several different loss functions and neural

networks. The RLVC training strategy proposed by the
authors includes three phases as follows:

Phase 1 – Frame by Frame Training
The first training phase employs three different loss

functions and a progressive involvement of all the RLVC NN
modules with the exception of the RPMs (for entropy coding).
The distinct characteristic of this first training phase is that its
loss functions only use sequences of two frames (frame pairs)
to train the networks, thus the naming “Frame by Frame”;
however, the ConvLSTM cell and hidden states are passed
from one training iteration to the next, so the recurrency is still
used in this training stage.

Every loss function in this phase is a rate-distortion loss
function with the form 𝜆𝐷 + 𝑅, where the λ dictates the final
quality and rate trade-off achieved for the video frames. The
first loss function considers only the MSE-RGB between the
original frame and the frame obtained after the warping
network and the bitrate produced with the motion RAE. The
second loss function considers the MSE-RGB between the
original frame and the frame obtained after the artifact
smoothing network, and the bitrate produced by the motion
RAE. The third and last loss function considers the MSE-RGB
between the original frame and the final decoded frame
(obtained after the addition of the residual processed by the
residue RAE), and the bitrate produced by the motion and
residue RAEs.

This first training phase has 700 000 iterations, and the
first loss function is used until iteration 20 000, the second loss
function from iteration 20 000 to 40 000, and the third loss
functions from iteration 40 000 until the end of training. At
each training iteration, a pair of frames is processed, and the
second frame is encoded and decoded with the RLVC
architecture, based on the previous decoded frame and the
ConvLSTM states, if there are any (for the first pair of frames
from a sequence the ConvLSTM states are null); the distortion
and bitrate obtained for the second frame are used in the loss
function. For the first 100 000 iterations, only the first pair of
frames from four random training sequences is loaded into a
batch, and as such, the ConvLSTM states are re-initialized at
every iteration, and a new batch is also loaded at every
iteration. After iteration 100 000, each batch consists of four
7-frame sequences, and as such a new batch and the
ConvLSTM states are only re-initialized after 6 iterations,
since each iteration processes a pair of frames from the
training sequences and then the next iteration processes the
next pair.

Phase 2 – Frame Sequence Training
Since all the neural networks involved in the generation of

the latent representations (both RAEs, motion estimation, and
motion compensation networks) are initialized and pre-trained
in Phase 1, Phase 2 performs the fine-tuning of these models
using all seven frames of the training sequences. The loss
function considers the cumulative MSE-RGB between the
original frame and decoded frame for all frames in the training
sequence (except the first Intra-coded frame), and the
cumulative bitrate obtained for the coding of the whole
sequence.

This training phase only has 150 000 iterations, but at each
iteration the whole training sequence (7 frames) which is
loaded in the batch is processed, and the cumulative distortion
and bitrate are used in the loss function. The ConvLSTM states
are initialized with each new training iteration, and a new
batch of sequences is also loaded.

Phase 3 – RPM Training:

6

Lastly, the RPM networks are trained, namely the motion
and residue RPMs. The RPM training uses the already
established models for the remaining networks (obtained at the
end of Phase 2) and trains only the RPMs, maintaining all the
other models fixed. The two RPMs are trained separately in
this phase to allow for faster and less complex training for the
rest of the neural network modules in Phases 1 and 2. Since
the remaining network weights are not updated in this phase,
the RPM training is rather quick.

The RPM training consists of only 20 000 iterations, and
the loss functions are only rate-based functions, and consider
only the bitrate produced by the motion RPM or the residue
RPM, since they are trained separately.

C. Training Analysis

This subsection will analyze the three training phases
defined earlier. All models were trained with a NVIDIA Tesla
V100 GPU, with 32GB of memory.

Phase 1 – Frame by Frame Training
With the used GPU, this training phase takes

approximately 150 hours (6 days and 6 hours) to train each
model. The evolution of the last loss function used in Phase 1
can be observed in Figure 5.

As previously described, Phase 1 of training uses three
different loss functions in succession, therefore until iteration
40 000 the training is not being optimized for the loss function
displayed in Figure 5. From iteration 40 000, a sharp drop can
be seen, as expected; however, after iteration 100 000, there is
a slight deterioration of the loss function values, which may be
explained by the change in the number of frames loaded into
each batch, which after iteration 100 000 starts using the
whole 7-frame sequences, instead of only the first pair from
each sequence, therefore, the RLVC starts leveraging the use
of the ConvLSTM layer in this part of the training.

Figure 5: Evolution of the third loss function used in Phase 1 of
training.

Phase 2 – Frame Sequence Training
With the used GPU, the second training phase takes

roughly 112 hours (4 days and 16 hours) to train each model.
Figure 6 shows the evolution of the loss function used in Phase
2 of training.

This phase of training is rather different from Phase 1,
since it performs fine-tuning and, as such, the progress to be
made is smaller and it is harder to optimize the loss function.
In this case, the smoothed curve of the loss function provides
a more straightforward insight into the training trend while it
makes it easier to perceive the clear downward trend in the loss
function. The values of this loss function have large variations,
as observed in Figure 6, but it is important to note that this loss
function begins with a much smaller value than that of Phase
1, so every variation is more noticeable than in the previous

training phase. Also, since this loss function considers the
cumulative distortion and rate, any variation in the network
weights that causes a negative progress will have much more
impact in the loss function of Phase 2 than it would in the loss
function of Phase 1, which considers only the distortion and
rate for one frame at a time.

Phase 3 – RPM Training
The last training phase is rather fast, relatively to the

previous training phases, since the models being trained in this
phase, the RPMs, are smaller than the set of networks trained
in the earlier phases. This phase of training takes grossly 24
hours, for each RPM of each model. Figure 7 and Figure 8
show the evolution of both loss functions used for the training
of each of the RPMs (motion and residue, respectively). This
training phase progresses rather quickly and with a clear loss
function trend, given that it only considers the bitrate, and the
only weights to update are those for the RPMs, which means
there are less weights to set, and therefore less elements to
provoke instability.

Figure 7: Evolution of Phase 3 loss function to train the motion
RPM.

Figure 8: Evolution of Phase 3 loss function to train the residue
RPM.

Figure 6: Evolution of the loss function used in Phase 2 of
training.

7

D. Performance Validation

 After completing all the training phases described
previously, the Newly Trained RLVC models were used to
meet the key objective of this section: to replicate the RD
performance obtained with the pre-trained RLVC models
provided by the RLVC authors and, thus, to validate the
Newly Trained RLVC models as a sound starting point for the
improvement of the RLVC framework (and software). The
Newly Trained RLVC models were used to obtain RD
performance results for the RLVC codec, notably for the Class
C and D JVET video sequences, under the same testing
conditions as used for the RD performance results obtained
with the original, pre-trained RLVC models, which have been
reported in Section IV. Additionally, other RLVC
configurations for the training phases were studied, with the
purpose of determining if any time costly training phase could
be skipped or shortened to less iterations with the goal to
reduce the overall (large) training time.

Besides the ‘Original RVLC Models’, the RLVC training
configurations studied were:

• Newly Trained RLVC: Trained under the same precise

conditions as suggested by the RLVC authors [15] to very

closely replicate the original RD performance results.

• RLVC Configuration 1 – Phase 1 RAEs: For this

configuration, Phase 2 is completely skipped. All neural

networks (except the RPMs) are only trained with Phase 1,

and then the RPMs are trained from the networks obtained

at the end of Phase 1.

• RLVC Configuration 2 – Phase 1 RAEs Shortened: This

configuration is similar to Configuration 1, but the training

is cut short at iteration 300 000 and the RPMs are trained

from the models obtained at this iteration.

• RLVC Configuration 2 – Phase 1 RAEs Shortened: This

configuration is similar to Configuration 2, but the training

decreases even more, and only trains until iteration 200 000

and the RPMs are trained from the models obtained at this

iteration.

Figure 9 shows the PSNR-Y and VMAF RD performance
for the Class D JVET videos, for the four target qualities using
the PSNR-RGB metric as the training quality metric for the
following configurations: i) Original RLVC Models (in dark
blue); ii) Newly Trained RLVC Models (in light blue); iii)
RLVC Configuration 1 (in dark red); iv) RLVC Configuration

2 (in orange); and v) RLVC Configuration 3 (in yellow). From
the results in Figure 9, it is possible to observe:

• Newly Trained RLVC models versus Original RLVC

models: The Newly Trained RLVC models can achieve a

similar, and even better, RD performance as the Original

RLVC models provided by the authors. Even though the

training followed the recommendations by the RLVC

authors, there are several aspects that may account for the

slight differences in performance obtained. Since the neural

networks weights are initialized randomly, the starting point

for the training of the Newly Trained RLVC models may be

different than the starting point of the pre-trained RLVC

models; therefore, both models can be optimizing towards

rather different minima, which may lead to rather different

models and, therefore, slightly different, and in this case

better, RD performance.

• PSNR-Y versus VMAF: For the VMAF metric, there is a

clear decrease in quality when Phase 2 of training is

skipped, which is not so evident with the PSNR-Y metric.

For the VMAF metric, there is also a smaller gap in quality

between the results obtained with the Newly Trained RLVC

models and the RLVC Configuration 3 than there is for the

PSNR-Y quality metric.

• New RLVC models versus Configuration 1 models:

Comparing the Newly Trained RLVC models with

Configuration 1 models, a slight RD performance variation

may be noted. With the VMAF quality metric, all sequences

show a faintly worse RD performance when Phase 2 is

skipped. For the PSNR-Y metric, the results show that the

Configuration 1 RD performance is similar to the Newly

Trained RLVC models for the lower qualities, but worse for

the higher qualities. For the lower qualities, the

Configuration 1 results have worse quality but smaller

bitrate compared with the Newly Trained RLVC models,

which ultimately makes the curves align in this part of the

chart; however, for the highest qualities of the RLVC

Configuration 1, the PSNR-Y starts to worsen, thus creating

a gap between the two curves.

• Configuration 1 models versus Configuration 2 and 3

models: Both training Configurations 2 and 3 are proven to

always be worse than the remaining configurations, which

implies that the training should, at least, not be stopped too

early in Phase 1. From Configuration 2 to Configuration 3,

a slight decrease in RD performance can be noted, which is

Figure 9: PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences, with the Newly Trained RLVC models.

8

due to the fewer 100 000 iterations that Configuration 3

performs in Phase 1.

In summary, it may be concluded that it is possible to
appropriately train the RLVC models, i.e., the ‘Newly Trained
RLVC Models’, and thus to ‘control’ the RLVC framework in
training and testing. This implies that a reliable starting point
and benchmark for the next potential improvements to the
RLVC architecture is available. Moreover, the study of
simpler training configurations for the RLVC model allows
concluding that skipping and/or shortening the original
training phases is not advisable, as the RLVC RD performance
would be penalized.

VI. RLVC WITH ATTENTION MODEL: A PRELIMINARY

STUDY

After careful thought on the best way to extend the RLVC
architecture to improve its RD performance, the tool that
seemed most worthwhile were the attention models.

Attention models were firstly devised and used to improve
RNN-based architectures [2], which deal with temporal data,
specifically containing gated units similar to LSTM cells; thus
it is known that attention models and RNNs work well
together, and the RLVC is an RNN-based architecture.
Attention models have also been incorporated into
architectures with RNNs to solve computer vision tasks and
have shown improvements [21], thus indicating that attention
models may also be of use for tasks involving data such as
images and video. As such, the idea was integrating an
attention model into the RLVC, since it is an RNN-based
model, which is where the attention models first started being
used. Since, overtime, several different types of attention
models have been designed and implemented, the attention
model chosen to extend the RLVC architecture will be
motivated and described.

This section will firstly describe the attention model used
to extend the RLVC architecture [15], with the goal of
improving the codec’s RD performance. Then, the
incorporation of the attention model in the RLVC architecture
and the associated training process will be presented, and
lastly the preliminary RD performance of the extended RLVC
(X-RLVC) architecture will be examined and compared to the
Newly Trained RLVC model RD performance achieved in
Section V. Because DL-based video coding research is very
computationally intensive, all experiments, especially the
training, take a significant amount of time. This has prevented
to go in this paper beyond a preliminary study of RVLC with
attention models.

A. Selected Attention Model

The incorporated attention model was the so-called
Convolutional Block Attention Module (CBAM) [22]. This
attention model is simple but effective and was designed to be
easily integrated into any CNN architecture. The CBAM was
created and tested to improve architectures that perform image
classification, and has shown to offer competitive results [22].
These capabilities may be also important in aiding the RLVC
framework to learn which inputs it should dedicate more
attention in order to achieve a better RD performance. In
practice, an attention model is applied to an input to identify
which of its parts should be given more emphasis, i.e.,
attention, which translates into multiplying those inputs by
higher weights, and the less important inputs by lower
weights, so their values can stand out if they should be given
more attention, or be drowned out if they are less significant.

Figure 10 shows the architecture of the selected CBAM
model. This attention model considers two different types of
attention: channel wise attention and spatial wise attention.
The CBAM takes the input tensor, which is three-dimensional
(an image in RBG channels, or a feature map of an image
already passed through some convolutional layers, which will
add depth), and processes the set of input features along the
various tensor channels (channel attention module) first and
then processes the features along the tensor channel axis
(spatial attention module). Both attention modules are
characterized by a set of weights that are applied to the input,
by multiplication, thus embedding into each part of the input
its associated significance.

Figure 10: CBAM architecture [22].

B. RLVC Extended Architecture

For the modification of the RLVC architecture, the CBAM
module was placed in the motion and residue RAEs. The
RAEs perform the most important operations in the codec,
since they encode and decode the motion and residue
information, defining the final quality, while taking into
consideration information from past frames in the video
sequence. Thus, by inserting the attention model in the RAEs,
the encoder-decoder architecture should receive additional
assistance in detecting which information should be
considered most important, either to encode, or to pass along
to the next pair of processed frames, through the ConvLSTM
layer states. To study the different impacts of the CBAM
module in the RLVC codec, two different positions for the
model, within the RAEs, were studied. Other positions could
also have been studied if time had allowed.

• Position 1 – Before Quantization: In this case, the CBAM

module is placed immediately before the quantization of the

latent representations, i.e., after all the RAE layers, see

Figure 11.

• Position 2 – Before ConvLSTM: In this case, the CBAM

module is placed before the ConvLSTM layer at the encoder

side of the RAE, see Figure 12.

Figure 11: Modified RAE architecture with CBAM in Position 1.

Figure 12: Modified RAE architecture with CBAM in Position 2.

The remaining RLVC architecture, notably the motion
estimation and motion estimation networks, and both RPM
networks, was not changed at all.

C. Training Process

The training of the X-RLVC model will basically include
the same phases described in Section V for the original RLVC
model, with the eventual addition of some new phases
associated to the CBAM training. Since the Newly Trained
RLVC models from Section V are available, they will be used
in some training configurations as starting models for the

9

additional training of the X-RLVC with CBAM; this means in
practice that the X-RLVC models may refine and extend the
previously available RLVC models to avoid starting the
training from the beginning. While there are many interesting
training configurations, the initially chosen configurations to
train both positions of the CBAM were:

• Training Configuration 1 (TC1) – Square One with

Phase 1: The X-RLVC is trained from the start, following

exactly the same training as described in Section V.

• Training Configuration 2 (TC2) – Phase 1 Refinement:

The X-RLVC performs Phase 1 training, but only using the

third loss function, and the weights obtained at the end of

Phase 1 training from Section V are used to initialize all

models of the X-RLVC at the beginning of training, except

the CBAM which is initialized randomly. The RPM

networks are trained from the models obtained at the end of

this refinement.

• Training Configuration 3 (TC3) – Phase 2 Refinement:

In this configuration the X-RLVC performs Phase 2

training, and the X-RLVC models are initialized from the

RLVC models obtained at the end of Phase 2 in Section V,

except for the CBAM which is initialized randomly. The

RPM networks are trained from the models obtained after

the refinement.

D. Performance Results and Analysis

Figure 13 shows the obtained preliminary RD performance
results for the Class D test videos, for both PSNR-Y and
VMAF quality metrics. From the preliminary results shown in
Figure 13, it is possible to observe that there is a quality
deterioration problem for the highest quality model (λ=2048),
when the CBAM is in Position 1 of the X-RLVC, which
sometimes achieves even worse quality than that obtained
with the model for λ=512. When the loss function produced
by the training of this model is examined, it can be observed
that it did not progress as expected, and that the loss function
evolution is quite erratic and unstable, even more so than the
training example shown in Section V. To avoid this quality
deterioration problem, several options were considered, and
some implemented:

• Smaller Learning Rate: The learning rate used for the

training of the highest quality model was reduced by 10,

compared to the learning rate used for the remaining

qualities, with the objective of making the network training

take smaller steps, and thus, oppose the erratic evolution of

the loss function.

• Residual Connection: Similarly to what is performed in

[23], a residual connection is applied around the CBAM.

The residual connection should allow the gradients to flow

backwards through the network while skipping the CBAM

layers, and thus enable deeper networks to be trained

without the risk of vanishing or exploding gradients.

• Initialization from λ=1024 model, with CBAM: Instead

of initiating the training from the RLVC model for λ=2048,

obtained in Section V, training can be initiated from the

model obtained after training the X-RLVC for λ=1024, i.e.,

the previous RD point, where the quality deterioration

problem does not exist. This strategy was not implemented.

Despite the strategies listed above, the training of X-RLVC
with the CBAM in Position 1 and forhyperparameter λ=2048
was not successful, and the quality degradation can still be
observed. Examining the remaining preliminary RD
performance curves presented in Figure 13, the following
conclusions are reached:

• RLVC versus X-RLVC: Generally, neither version of the

X-RLVC models with any training configuration provide

better RD performance results over the Newly Trained

RLVC models in a consistent way. The X-RLVC Position

1 shows improvement for some rate points, mainly λ=512,

and in some cases for λ=1024, but shows worse RD

performance for the highest quality model. The X-RLVC

Position 2 has a consistently worse RD performance than

the Newly Trained RLVC models.

• X-RLVC Position 1 versus X-RLVC Position 2: The X-

RLVC Position 1 shows more promising RD performance

improvements, but the X-RLVC Position 2 results are more

consistent. X-RLVC in Position 1 shows consistent, even

if minor, improvement over the New RLVC models for the

λ values 512 and 1024. Also for this case, the X-RLVC

model with λ=256 proves to have a similar performance as

the New RLVC model for the same quality. However, the

gains for these RD points do not make up for the poor

performance achieved with the λ=2048 model (highest

rate). For X-RLVC Position 2, the lowest quality model

(λ=256) is not available, since during training it suffered

from the exploding gradient problem, and there were no

computing resources to initiate training again. The

Figure 13: PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences, with the Newly Trained RLVC models

and the X-RLVC models.

10

remaining quality models achieved for the X-RLVC

Position 2 do not show overall improvements over the New

RLVC models, but for some sequences demonstrate a

similar RD performance for the higher quality models.

Overall, the X-RLVC Position 1 would be more promising

if the quality degradation problem for the highest rate could

be solved.

• X-RLVC Position 1 Top Quality Problems: It is difficult

to obtain good results for the X-RLVC model with the

hyperparameter λ=2048, when the CBAM is situated in

Position 1, even after the strategies mentioned earlier were

applied. The larger values of the loss function make the

training of this model more unstable and, coupled with an

attention model, the combination is prone to erratic and

unpredictable training, which can lead to lower

performance, as observed for the X-RLVC with the CBAM

in Position 1, trained in Configuration 1.

From the obtained preliminary RD performance results
with the X-RLVC models, it can be concluded that the
insertion of the selected attention model in the RLVC
architecture in the previously described positions and its
subsequent training does not overall improve the RLVC
performance. While some improvements happen for specific
rate points, the gains are not consistent to claim an overall
performance improvement.

VII. FINAL REMARKS

DL-based tools are coming to the multimedia coding
arena, notably targeting image and video coding. This paper
offers the first solid performance study on DL-based video
coding, using the JVET NN CTC, and including the most
recent conventional coding benchmark, VVC. The main
conclusion is that the RD performance gap is currently still
large (although lower for perceptual quality metrics) and thus
future improvements are still needed to reduce this gap as it
occurred for DL-based image coding.

Finally, this paper offers some preliminary performance
results for an extended RLVC solution, notably for several
CBAM positions within the RLVC architecture, and for
different training strategies. These preliminary experiments
did not yet allow obtaining clear RD performance gains with
the extended RLVC since many ideas and associated
experiments could not be tested due to the time and
computational constraints. However, attention model biased
coding approaches are likely to succeed in the future and will
be a hot topic of work in the associated research community
in the near future since they have great potential to provide
performance improvements.

In summary, the main objectives of this paper were to
perform the benchmarking of the current DL-based video
coding models against conventional coding technology,
provided in Section IV, and to design, implement and train a
DL-based video codec extended with an attention model,
based on an already existing architecture from the literature,
which would hopefully provide some RD performance
improvement. While this second objective was not fully
achieved, significant steps have been made in that direction.

REFERENCES

[1] DeepAI, “Attention Models.” [Online]. Available:
https://deepai.org/machine-learning-glossary-and-terms/attention-

models. [Accessed: 19-Oct-2021].

[2] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural Machine

Translation by Jointly Learning to Align and Translate,” in 3rd
International Conference on Learning Representations, San

Diego, CA, USA, 2015.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,”

in Advances in Neural Information Processing Systems, Long

Beach, CA, USA, 2017, pp. 5998–6008.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X.

Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S.

Gelly, J. Uszkoreit, and N. Houlsby, “An Image Is Worth 16x16

Words: Transformers for Image Recognition at Scale,” in
International Conference on Learning Representations, Virtual,

2021.

[5] S. Atito, M. Awais, and J. Kittler, “SiT: Self-supervised vIsion

Transformer,” ArXiv Prepr. arXiv2104.03602, 2021.

[6] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C.
Schmid, “ViViT: A Video Vision Transformer,” ArXiv Prepr.

arXiv2103.15691, 2021.

[7] B. Bross, J. Chen, J. R. Ohm, G. J. Sullivan, and Y. K. Wang,

“Developments in International Video Coding Standardization
After AVC, With an Overview of Versatile Video Coding (VVC),”

Proc. IEEE, vol. 109, no. 9, pp. 1463–1493, 2021.

[8] JVET, “Common Test Conditions and Evaluation Procedures for

Neural Network-based Video Coding Technology,” Doc. JVET-

U2016-r1. 2021.

[9] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC:

An End-to-End Deep Video Compression Framework,” in IEEE

Conference on Computer Vision and Pattern Recognition, Long

Beach, CA, USA, 2019, pp. 11006–11015.

[10] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,

“Variational Image Compression With a Scale Hyperprior,” in 6th
International Conference on Learning Representations,

Vancouver, BC, Canada, 2018.

[11] R. Yang, L. Van Gool, and R. Timofte, “OpenDVC - An Open

Source Implementation of the DVC Video Compression Method,”

ArXiv Prepr. arXiv2006.15862, 2020.

[12] R. Yang, L. Van Gool, and R. Timofte, “OpenDVC Software

Implementation.” [Online]. Available:

https://github.com/RenYang-home/OpenDVC. [Accessed: 01-

Mar-2021].

[13] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for

Video Compression With Hierarchical Quality and Recurrent

Enhancement,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 6627–

6636.

[14] R. Yang, L. Van Gool, and R. Timofte, “HLVC Software

Implementation.” [Online]. Available:
https://github.com/RenYang-home/HLVC. [Accessed: 01-Mar-

2021].

[15] R. Yang, F. Menzter, L. Van Gool, and R. Timofte, “Learning for

Video Compression With Recurrent Auto-Encoder and Recurrent
Probability Model,” IEEE J. Sel. Top. Signal Process., vol. 15, no.

2, pp. 388–401, 2021.

[16] A. Ranjan and M. J. Black, “Optical Flow Estimation Using a

Spatial Pyramid Network,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, Hawaii,

USA, 2017, pp. 4161–4170.

[17] R. Yang, F. Menzter, L. Van Gool, and R. Timofte, “RLVC

Software Implementation.” [Online]. Available:
https://github.com/RenYang-home/RLVC. [Accessed: 01-Mar-

2021].

[18] JVET, “VVCSoftware_VTM.” [Online]. Available:

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-

/releases#VTM-11.0. [Accessed: 01-Mar-2021].

[19] Z. Li, C. Bampis, J. Novak, A. Aaron, K. Swanson, A. Moorthy,

and J. Cock, “VMAF: The Journey Continues,” Netflix Technol.

Blog, vol. 25, 2018.

[20] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video
Enhancement With Task-oriented Flow,” Int. J. Comput. Vis., vol.

127, no. 8, pp. 1106–1125, 2019.

[21] F. Wang and D. M. J. Tax, “Survey on the Attention Based RNN

Model and Its Applications in Computer Vision,” ArXiv Prepr.

arXiv1601.06823, vol. arXiv:1601, 2016.

[22] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM:

Convolutional Block Attention Module,” in European Conference

on Computer Vision, Munich, Germany, 2018, pp. 3–19.

[23] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian, “Deep Residual
Learning for Image Recognition,” in IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA,

2016, pp. 770–778.

