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Abstract— Video coding is the process that takes raw, 

original, digital video data and codes it into a binary 

representation, targeting efficient compression by exploiting the 

spatial, temporal, statistical and perceptual redundancies. Until 

recently, video coding was exclusively performed with 

traditional video coding methods that target the exploitation of 

these redundancies with handcrafted algorithms. Lately, 

however, deep learning methods, and namely attention models, 

have shown great results for tasks related to computer vision 

and image processing, so it is only natural that this novel 

technology is also applied to other signal processing challenges 

like image and video coding. This paper reviews several state-of-

the-art deep learning-based video coding solutions and provides 

a solid and meaningful benchmarking for some of the reviewed 

solutions with publicly available software against the most 

recent traditional video codec (VVC), to provide awareness into 

the current performance of these video codecs. Afterwards, the 

second objective of this paper is to improve a deep learning-

based solution. As such, the training of the chosen codec (RLVC) 

will be replicated to guarantee the ability to replicate results, so 

that later this solution can be extended with an attention model. 

While the results achieved with the final extended codec do not 

yet show consistent improvement overall, since the integration 

of attention models into video coding solution is still a novel 

research path, promising developments are expected in the 

future. 
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I. INTRODUCTION 

Visual communications have a fundamental role in Human 
societies. In the digital era, this has led to the explosion of 
digital image and video-based applications and services, 
notably following the democratization of image and video 
acquisition, storage, and streaming. For this explosion to 
happen, video coding standards have been fundamental and 
have been evolving over the years to offer increasing 
compression efficiency, notably the more recent Advanced 
Video Coding (H.264/AVC), High Efficiency Video Coding 
(HEVC) and Versatile Video Coding (VVC) standards. The 
maturity and high performance of these video coding 
standards and the associated ecosystems have been 
fundamental during the recent COVID-19 pandemic, as video-
based services and communications had an essential role on 
the mitigation of its negative impacts. These video coding 
standards include some key coding modules, notably motion 
estimation, temporal and spatial prediction, transform, 
quantization, and entropy coding, which have been carefully 
handcrafted, targeting the highest compression efficiency for 
the target range of rates/qualities in a widespread set of 
applications and services.    

Recently, the multimedia arena has been shaken by the 
impact of deep learning (DL)-based technologies, notably for 

computer vision tasks, e.g., classification, detection, and 
recognition, with above human performance levels often 
achieved. In this context, it was just a question of time for DL-
based tools to enter the image and video coding arenas since it 
is impossible to ignore its potential benefits regarding 
conventional coding approaches. DL-based coding solutions 
create the so-called latent representation, containing the most 
important learned content features to describe the input data, 
following a training process where a loss function controls the 
DL-based model optimization. The training process is at the 
heart of the DL-based media representation paradigm, 
especially when the goal is to have a single compressed 
representation, which is efficient both for fidelity decoding as 
well as computer vision tasks, e.g., classification and 
recognition, since these goals are both important for an 
increasing number of application scenarios. 

One of the most recent developments in DL is related to 
attention models, which are techniques for neural networks 
(NN) that enable them to process complex inputs and focus on 
specific aspects of these inputs [1], which have already been 
exploited to solve some problems with great success, e.g., 
Neural Machine Translation. The first DL-based attention 
models were designed to be integrated into architectures based 
on Recurrent Neural Networks (RNN), with the goal of 
improving the performance of Natural Language Processing 
(NLP) tasks [2], which highly depend on temporal 
correlations, and have since proven to be a great addition; so 
much so that solutions based only on attention models, like the 
Transformer [3], have shown remarkable results. Recently, 
attention models have been applied with large success to 
computer vision tasks [4] [5], notably video classification [6]. 
Thus, since attention models have been created to deal with 
temporal data and have already been applied successfully to 
image and video classification tasks, this paper speculates that 
they might come to also have positive impact on DL-based 
video coding solutions. 

Recent works have shown that besides the competitive 
image and video compression performances, DL-based coding 
solutions allow extending the utility of the compressed 
representations by offering three key advantages: i) a single 
efficient (compressed) representation for both humans and 
machines, e.g. autonomous vehicles; ii) reduction of the 
complexity resources associated to computer vision tasks as 
already starting from compressed domain features, thus at 
least partly skipping feature extraction (from decoded 
content); and iii) better analysis accuracy by allowing the 
computer vision tasks to use the compressed domain features 
extracted from the original image/video data instead of 
extracting them from the lossy decoded image/video as for 
conventional coding solutions where feature extraction 
happens after full decoding. 
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In this context, the first objective of this paper is to 
perform a solid, meaningful, and extensive benchmarking of 
the compression performance of some recent DL-based video 
coding solutions regarding the most powerful and recent 
conventional video coding solution, the VVC standard [7]. 
This comparison will be performed under the largely adopted 
JVET defined Common Test Conditions (CTC) and 
evaluation procedures for NN-based video coding technology 
[8]. This type of novel performance comparison is critical to 
know in a reliable way how far some recent DL-based video 
coding solutions are from the well-established conventional 
video coding solutions in terms of compression performance. 
The second objective of this paper is to improve a deep 
learning-based video coding solution from the literature, so-
called Recurrent Learned Video Compression (RLVC), by 
extending it with an attention model and analyzing the 
preliminary compression results. 

To achieve its purposes, this paper is organized as follows: 
Section II offers a brief description of the assessed DL-based 
video coding solutions. Next, Section III describes the adopted 
test conditions and evaluation procedures, Section IV presents 
and analyzes the performance benchmarking results. Section 
V describes the training process and then analyses the 
replication of results achieved with the new obtained RLVC 
models, and Section VI will report on the preliminary results 
of the integration of an attention model into the RLVC. 
Finally, Section VII concludes the paper. 

II. SELECTED LEARNING-BASED VIDEO CODECS 

This section describes the selected DL-based video codecs 
which will be benchmarked in this paper. This set of codecs 
was determined by the publicly available software as only 
results available in published papers would not be enough to 
perform a solid comparison under common test conditions. 
This means all performance results later presented for the 
JVET conditions have been generated in the context of this 
paper, which represents a major, novel contribution.   

A. Deep Video Compression (DVC)  

The DVC [9] DL-based video coding solution adopts a 
classical, hybrid video coding architecture, where each 
module is replaced by a DL-based tool, thus originating a one-
to-one correspondence between the classical coding modules 
and the DL-based models, see Figure 1. 

 

Figure 1: Traditional video coding architecture (left); DVC 

architecture (right) [9]. 

In the DVC, motion estimation is performed using a 
Convolutional Neural Network (CNN) to extract the optical 
flow, always from the previously decoded frame. The 
resulting residual information is coded using a CNN-based 
encoder-decoder network and the motion-associated latents 
are quantized to save rate while still reaching a good enough 
motion representation. The decoded optical flow is used to 
warp the previous decoded frame to estimate the motion 
compensated prediction for the current frame. However, since 
the motion compensated frame has artifacts, it is processed by 
a CNN, together with the previous decoded frame and the 

decoded optical flow, to obtain a refined prediction frame. 
Lastly, the prediction residual is compressed into a latent 
representation using a non-linear NN [10], which is quantized 
to obtain several Rate-Distortion (RD) points. The whole DVC 
architecture is trained with a RD loss function, using as end-
to-end distortion metric the Mean Square Error (MSE) 
between the original and decoded frames, while the bitrate is 
estimated using a rate estimation module. 

The OpenDVC implementation of this coding solution 
made available by Yang et al. is used in Section IV for 
performance assessment [11][12]. The OpenDVC 
implementation offers two different DL-based models: one 
trained using MSE as the distortion metric, and another trained 
using (1 – MS-SSIM) as the distortion metric. The several 
DVC DL-based models are trained in a progressive manner, 
starting with the motion estimation network, which is trained 
using a distortion-only loss function; after, the motion 
compression, motion compensation and the full end-to-end 
networks are trained using a RD loss function.  

B. Hierarchical Learned Video Compression (HLVC)  

The HLVC [13] DL-based video coding solution adopts a 
hierarchical coding architecture inside a Group of Pictures 
(GOP). At the decoder, the frames are decoded and enhanced 
using a recurrent network to increase the decoded frames’ 
quality, see Figure 2. 

 The first HLVC layer includes the first and last frames of 
the GOP, which are coded with a state-of-the-art image coding 
solution, at the highest quality. The second HLVC layer codes 
the middle frame of the GOP with medium quality, using a NN 
for bi-directional prediction, and the frames at the edge of the 
GOP as anchors. The third and last HLVC layer codes the 
remaining frames of the GOP with lower quality, using the 
closest already decoded frame as anchor (from the first or 
second layers); only uni-directional (temporal) prediction and 
a single motion map are used to code two adjacent frames. At 
the decoder side, after each frame is decoded by the 
corresponding layer, all frames are processed by an 
enhancement RNN which leverages on the frames with better 
quality to improve the quality of the remaining frames. 

Each NN in HLVC is trained separately. The networks at 
the encoder and decoder sides use an RD loss function, while 
the recurrent enhancement network is trained with a distortion 
only loss function; since it is applied only at the decoder, rate 
is not an issue. The HLVC networks were trained with both 
MSE and (1 – MS-SSIM) distortion, to obtain two different 
coding models. The HLVC software implementation is 
publicly available [14], and can be used in the so-called fast 
and slow modes. While the fast mode has predefined networks 
for the coding process, the slow mode tries different network 
models to encode each frame and selects the one with the best 
result to achieve the best possible RD performance at the cost 

 

Figure 2: HLVC architecture, illustration for the first GOP [13]. 
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of increasing computational complexity; this is the coding 
mode used in Section IV for performance assessment. 

C. Recurrent Learned Video Compression (RLVC)  

The RLVC [15] DL-based video coding solution includes  
two recurrent auto-encoders (RAE) and two recurrent 
probability models (RPM), two of each for dealing with 
motion and residue information, see Figure 3. Due to its 
recurrent nature, the RAE allows using temporal information 
from several frames at a time; in this context, previous inputs 
are given as cell and hidden states and used by the ConvLSTM 
layer to help generate the latent representation for the current 
frame, instead of choosing only specific frames as anchors like 
most DL-based video codecs. The RPM networks model the 
probability mass function of the obtained latent 
representations, based on previous iterations; this information 
is then applied to adaptive arithmetic coding. 

In the RLVC codec, the first frame of each GOP is coded 
with a state-of-the-art image coding solution, either DL-based 
or conventional. For the remaining frames, motion estimation 
is performed using a pyramid optical flow network [16]. The 
RAE codes the estimated motion, considering the cell and 
hidden states passed on, which express inputs from previous 
frames; the decoded motion estimation is applied to create a 
motion compensated prediction. Next, the residual between 
the original and motion compensated frames is obtained and 
coded using another RAE. The RPM is used to recurrently 
predict the temporally conditional probability mass function, 
to reduce the rate when entropy coding the latent 
representations. 

 

Figure 3: RLVC architeture [15]. 

The RLVC codec is trained in a progressive manner. First, 
the motion estimation network is trained with a distortion only 
loss function; after, the RAE and motion compensation 
networks are trained using a RD loss function and, finally, the 
full network is trained end-to-end with a RD loss function. The 
RLVC is trained with two different distortion metrics, notably 
MSE and (1 – MS-SSIM), thus obtaining two different coding 
models. The RLVC software has been made publicly available 
by the authors and is used in Section IV for performance 
assessment [17]. 

III. TEST CONDITIONS AND EVALUATION PROCEDURES 

This section will describe the test conditions and 
evaluation procedures adopted for the performance 
benchmarking exercise targeted in this paper, which are 
largely those specified by JVET in the document “JVET 
common test conditions and evaluation procedures for neural 
network-based video coding technology”, called JVET NN 
CTC in the following [8].  

A. Test Material and Coding Rates 

The selected video test materials correspond to the key 
classes recommended in the JVET NN CTC [8], as shown in 
Table 1. All original videos are in the YUV color space with 
4:2:0 subsampling; there are sequences at 8 and 10-bit per 
sample, which has required some software adaptations for the 
learning-based codecs. For the DL-based coding solutions, the 
various rates are obtained with four models trained for several 
bitrates using MSE-RGB in the loss function (since the JVET 
NN CTC uses PSNR as quality metric), while for VVC the 
quantization steps specified in the JVET NN CTC [8] are used. 

Table 1: Test video sequences and characteristics. 

B.  Coding Benchmarks and Pipelines  

The benchmark for this performance assessment is, 
naturally, the Versatile Video Coding (VVC) standard [7], the 
most recent and efficient representative of a succession of 
video coding standards based on the so-called hybrid coding 
architecture. This is naturally a very challenging 
benchmarking for the DL-based coding solutions, which are 
just emerging and did not have yet time to mature; however, 
this is also the most relevant benchmark to assess the 
performance gap between the technologies under comparison.  
In this context, three VVC coding configurations will be used: 
i) VVC Random Access (RA); ii) VVC Low Delay P (only P 
frames); and iii) VVC Intra. The VVC reference software 
version 11 [18] has been used for VVC coding using the JVET 
provided configurations [8]. According to JVET NN CTC [8], 
VVC coding  must be performed at 10-bit depth even if the 
content is available at 8-bit since this improves the VVC 
compression performance. This implies that the 8-bit videos 
had to be converted to 10-bit videos, in this case by adding two 
bits as ‘10’, i.e., in the central bin position.  

To perform a fair benchmarking, the same had to happen 
with the DL-based codecs which were not prepared to code 
10-bit videos; in this context, the software for the three 
selected DL-based codecs had to be upgraded to code videos 
at 10-bit instead of the previous 8-bit depth used in the original 
implementation; in this process, it was confirmed that the 
compression performance was improved for the selected 
quality metrics. Therefore, since the DL-based codecs need 
RGB input, the YUV, 4:2:0 8-bit depth video sequences were 
first converted to 10-bit depth as described above, and after the 
RGB frames (16-bit PNG format) were obtained using ffmpeg 
following the BT.709 recommendation. After DL-based 
coding, the decoded 10-bit RGB frames were converted to 10-
bit YUV frames as recommended by the JVET NN CTC for 
quality assessment. 

C. Performance Metrics 

For the test quality metrics it was decided to adopt PSNR-
Y as recommended by the JVET NN CTC [8] and VMAF [19] 

Class Sequence Name 
Nº of 

Frames 
Frame 

Rate 
Bit-

depth 
Spatial 

Resolution 

B 

MarketPlace  600  60  10  1920×1080  

RitualDance  600  60  10  1920×1080  

Cactus  500  50  8  1920×1080  

BasketballDrive  500  50  8  1920×1080  

BQTerrace  600  60  8  1920×1080  

C 

RaceHorses  300  30  8  832×480  

BQMall  600  60  8  832×480  

PartyScene  500  50  8  832×480  

BasketballDrill  500  50  8  832×480  

D 

RaceHorses  300  30  8  416×240  

BQSquare  600  60  8  416×240  

BlowingBubbles  500  50  8  416×240  

BasketballPass  500  50  8  416×240  
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due to its recent popularity for video quality assessment. The 
distortion metrics used for training are those referred in the 
previous section and selected by the respective authors since 
no retraining has been performed. As usual, the rate is 
measured in bits per second. For both metrics, BD-Rate values 
will be presented to express the rate savings/losses regarding 
the selected reference codec, in this case the VVC Low Delay 
P configuration; this choice was motivated by the need to have 
a good overlapping of rates and qualities among the assessed 
codecs to obtain reliable BD-Rate values.  

As requested by the JVET NN CTC, all quality metrics 
computation happened at 10-bit and thus all video sequences 
originally at 8-bit depth were converted to 10-bit depth for 
quality metrics computation; remind that all coding is 
performed at 10-bit depth.  

IV. PERFORMANCE RESULTS AND ANALYSIS 

This section presents the RD performance results and BD-
Rates for the test conditions defined in the previous section. 

A. RD Performance by Codec and Sequence 

For a better visualization of the codecs’ RD performance, 
this section includes the RD performance charts for the Class 
D test sequences, both for the PSNR-Y and VMAF quality 
metrics, see Figure 4. These charts allow to make some first 
qualitative observations, notably: i) VVC Inter codecs 
(excluding VVC Intra) are clearly still the best in RD 
performance; ii) the VVC Inter to DL-based codecs quality 
gap seems to be shorter for the VMAF metric; and iii) the 
quality growth with rate is much faster for the VMAF metric. 
The RD performance gap for VMAF is much shorter than for 
PSNR-Y what is a great sign considering the better VMAF 
correlation with perceptual quality. 

B. Overall BD-Rate Performance 

Table 2 and Table 3 include the PSNR-Y and VMAF BD-
Rates respectively, using as anchor the VVC Low Delay P 
configuration. It is important to note that the RLVC BD-Rate 
results in [15] are rather different from those presented here 
for three main reasons: i) the quality metric in [15] is an 
uncommon PSNR-RGB based on the pixel-level average MSE 
for the R, G and B components and not the common PSNR-Y 
or PSNR-YUV metrics; ii) in [15], RLVC is compared with 
theHEVC standard with the coding performed with the x.265 
software (and not with the VVC standard using the VVC 
reference software as in this paper); and iii) the x.265 software 
is run at its ‘LDP VERY FAST’ configuration what may bring 
some performance penalty to reduce the complexity. These 

differences clearly demonstrate why a solid benchmarking 
needs clear, well-defined conditions, metrics, and pipelines as 
in this paper. The RD performance results in the tables allow 
to derive the following conclusions: 

• The best performing DL-based codec is the RLVC, 

followed by the HLVC and the OpenDVC. The RLVC 

modelling of temporal dependencies using recurrent 

networks (e.g., ConvLSTM) brings performance benefits, 

due to its capability of making efficient predictions and 

tracking long-term dependencies, i.e., not only considering 

data of the past decoded frame. 

• All DL-based codecs perform much better than VVC Intra 

but much worse than VVC RA. The best performing DL-

based codec, RLVC, is outperformed by the VVC Low 

Delay P configuration performance (remind they both use 

Low Delay P settings). This means that DL-based tools 

exploiting the temporal correlation in a more efficient way 

are still needed. 

• For the DL-based codecs, the VMAF BD-Rate is smaller 

than the corresponding PSNR-Y BD-Rate. Since VMAF is 

better correlated with human perception than the PSNR-Y 

mathematical fidelity measure, it means lower rate losses 

can be achieved if perception is considered. This is expected 

as DL-based codecs usually perform better for perceptual 

quality metrics where mathematical fidelity is not the target. 

In summary, while the DL-based codecs do not yet 

perform at the same level of VVC, their RD performance is 

very promising considering these codecs are just emerging, 

while VVC has had decades of research efforts behind it.   

Table 2: PSNR-Y BD-Rate (%): VVC Low Delay P as reference. 

 VVC 

Intra 

VVC 

RA 
RLVC HLVC 

Open 

DVC 

C

l

a

s

s 

 

B 

MarketPlace  370,81 -31,41 230,73 310,29 384,78 

RitualDance  245,68 -21,72 186,73 258,01 295,17 

Cactus  571,07 -22,57 333,68 467,64 546,12 

BasketballDrive  166,29 -24,83 258,84 320,54 425,50 

BQTerrace  493,17 -23,91 533,63 549,76 856,76 

Average 369,40 -24,89 308,72 381,25 501,66 

C

l

a

s

s 

 

C 

RaceHorses 136,6 -18,2 224,4 297,8 348,3 

BQMall 447,2 -28,7 189,1 302,4 365,1 

PartyScene 509,2 -25,8 212,3 367,5 400,7 

BasketballDrill 413,4 -17,2 230,3 312,1 398,2 

Average 376,6 -22,5 214,0 320,0 378,0 

C

l

a

Basketball 

Pass 
160,6 -21,1 110,5 175,4 206,1 

BQSquare 762,0 -37,6 345,4 401,9 725,2 

    

    

Figure 4: PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences. 
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s

s  

 

D 

Blowing 

Bubbles 
515,8 -36,5 153,0 232,9 300,2 

RaceHorses 170,9 -36,7 120,9 198,2 212,6 

Average 402,3 -33,0 182,5 252,1 361,0 

Table 3: VMAF BD-Rate (%): VVC Low Delay P as reference. 

 VVC 

Intra 

VVC 

RA 
RLVC HLVC 

Open 

DVC 

C

l

a

s

s 

 

B 

MarketPlace  - -28,42 197,33 259,56 383,42 

RitualDance  - -19,63 163,85 259,56 285,45 

Cactus  - -14,79 460,26 639,97 659,85 

Basketball 

Drive  
- -26,83 218,39 317,82 401,50 

BQTerrace - 22,38 744,90 704,39 1 111,81 

Average - -13,46 356,95 436,26 568,41 

C

l

a

s

s   

C 

RaceHorses 1 767,9 -21.12 170,1 301,4 318,5 

BQMall 1 114,4 -18,7 135,3 246,3 287,1 

PartyScene 794,3 -18,0 176,2 299,0 331,7 

Basketball 

Drill 
458,8 -6,9 186,4 287,9 318,3 

Average 1 033,9 -14,5 167,0 283,6 313,9 

C

l

a

s

s  

D 

Basketball 

Pass 
213,8 -19,5 78,2 156,9 184,6 

BQSquare 1 603,5 -35,3 340,1 452,3 674,1 

Blowing 

Bubbles 
699,2 -32,9 131,3 184,0 263,0 

RaceHorses 519,7 -14,0 93,0 185,8 210,9 

Average 759,0 -25,4 160,7 244,8 333,2 

 

V. RLVC TRAINING AND PERFORMANCE VALIDATION 

Considering the achieved results in Section IV, the DL-
based video codec chosen to be improved was the RLVC, due 
to being the codec that achieved the best RD performance 
during the extensive benchmarking. Thus, this section will 
present the methodology used to train the RLVC models [15] 
(reviewed in Section II) with the key target to replicate, with 
the new trained RLVC models, the performance results 
obtained with the trained models made available by the RLVC 
authors. These models will be referred as ‘Newly Trained 
RLVC’ models, and the associated performance replication 
and validation of these models is essential to guarantee that the 
RLVC can be trained as intended, to then proceed with its 
improvement with these obtained results as a foundation for 
comparison. Given the complexity and time constraints, the 
RLVC training and performance replication have only been 
performed for the PSNR-RGB metric. 

A. Training Conditions and Dataset 

As mentioned earlier, the RLVC has six main modules that 
require training: 1) Motion estimation network [16];  2) 
Motion RAE; 3) Motion compensation network, which has 
two main modules: the warping network, followed by the 
artifact smoothing network; 4) Residue RAE; 5) Motion RPM; 
and 6) Residue RPM. 

The dataset used for training is the Vimeo-90k septuplet 
[20], which consists of 91701 video sequences, each with 
seven frames, with a 448×256 spatial resolution. Each time the 
frames are loaded for training, they are randomly cropped 
down to a 256×256 spatial resolution. Since MSE-RGB will 
be the metric used for distortion, the first frame of every 
training sequence will be Intra coded with the HEVC-based 
BPG codec, so that the training process can use the already 
decoded Intra frame as anchor, in the same way as when 
performing the coding process. The pre-trained models for the 
motion estimation network are used, but these weights will 
continue to be updated during the end-to-end training. 

B. RLVC Training Phases 

As mentioned in Section II, the RLVC model is trained 
progressively with several different loss functions and neural 

networks. The RLVC training strategy proposed by the 
authors includes three phases as follows: 

Phase 1 – Frame by Frame Training  
The first training phase employs three different loss 

functions and a progressive involvement of all the RLVC NN 
modules with the exception of the RPMs (for entropy coding). 
The distinct characteristic of this first training phase is that its 
loss functions only use sequences of two frames (frame pairs) 
to train the networks, thus the naming “Frame by Frame”; 
however, the ConvLSTM cell and hidden states  are passed 
from one training iteration to the next, so the recurrency is still 
used in this training stage. 

Every loss function in this phase is a rate-distortion loss 
function with the form 𝜆𝐷 + 𝑅, where the λ dictates the final 
quality and rate trade-off achieved for the video frames. The 
first loss function considers only the MSE-RGB between the 
original frame and the frame obtained after the warping 
network and the bitrate produced with the motion RAE. The 
second loss function considers the MSE-RGB between the 
original frame and the frame obtained after the artifact 
smoothing network, and the bitrate produced by the motion 
RAE. The third and last loss function considers the MSE-RGB 
between the original frame and the final decoded frame 
(obtained after the addition of the residual processed by the 
residue RAE), and the bitrate produced by the motion and 
residue RAEs. 

This first training phase has 700 000 iterations, and the 
first loss function is used until iteration 20 000, the second loss 
function from iteration 20 000 to 40 000, and the third loss 
functions from iteration 40 000 until the end of training. At 
each training iteration, a pair of frames is processed, and the 
second frame is encoded and decoded with the RLVC 
architecture, based on the previous decoded frame and the 
ConvLSTM states, if there are any (for the first pair of frames 
from a sequence the ConvLSTM states are null); the distortion 
and bitrate obtained for the second frame are used in the loss 
function. For the first 100 000 iterations, only the first pair of 
frames from four random training sequences is loaded into a 
batch, and as such, the ConvLSTM states are re-initialized at 
every iteration, and a new batch is also loaded at every 
iteration. After iteration 100 000, each batch consists of four 
7-frame sequences, and as such a new batch and the 
ConvLSTM states are only re-initialized after 6 iterations, 
since each iteration processes a pair of frames from the 
training sequences and then the next iteration processes the 
next pair. 

Phase 2 – Frame Sequence Training   
Since all the neural networks involved in the generation of 

the latent representations (both RAEs, motion estimation, and 
motion compensation networks) are initialized and pre-trained 
in Phase 1, Phase 2 performs the fine-tuning of these models 
using all seven frames of the training sequences. The loss 
function considers the cumulative MSE-RGB between the 
original frame and decoded frame for all frames in the training 
sequence (except the first Intra-coded frame), and the 
cumulative bitrate obtained for the coding of the whole 
sequence. 

This training phase only has 150 000 iterations, but at each 
iteration the whole training sequence (7 frames) which is 
loaded in the batch is processed, and the cumulative distortion 
and bitrate are used in the loss function. The ConvLSTM states 
are initialized with each new training iteration, and a new 
batch of sequences is also loaded. 

Phase 3 – RPM Training:  
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Lastly, the RPM networks are trained, namely the motion 
and residue RPMs. The RPM training uses the already 
established models for the remaining networks (obtained at the 
end of Phase 2) and trains only the RPMs, maintaining all the 
other models fixed. The two RPMs are trained separately in 
this phase to allow for faster and less complex training for the 
rest of the neural network modules in Phases 1 and 2. Since 
the remaining network weights are not updated in this phase, 
the RPM training is rather quick. 

The RPM training consists of only 20 000 iterations, and 
the loss functions are only rate-based functions, and consider 
only the bitrate produced by the motion RPM or the residue 
RPM, since they are trained separately.  

C. Training Analysis 

This subsection will analyze the three training phases 
defined earlier. All models were trained with a NVIDIA Tesla 
V100 GPU, with 32GB of memory. 

Phase 1 – Frame by Frame Training 
With the used GPU, this training phase takes 

approximately 150 hours (6 days and 6 hours) to train each 
model. The evolution of the last loss function used in Phase 1 
can be observed in Figure 5. 

As previously described, Phase 1 of training uses three 
different loss functions in succession, therefore until iteration 
40 000 the training is not being optimized for the loss function 
displayed in Figure 5. From iteration 40 000, a sharp drop can 
be seen, as expected; however, after iteration 100 000, there is 
a slight deterioration of the loss function values, which may be 
explained by the change in the number of frames loaded into 
each batch, which after iteration 100 000 starts using the 
whole 7-frame sequences, instead of only the first pair from 
each sequence, therefore, the RLVC starts leveraging the use 
of the ConvLSTM layer in this part of the training. 

 

Figure 5: Evolution of the third loss function used in Phase 1 of 
training. 

Phase 2 – Frame Sequence Training 
With the used GPU, the second training phase takes 

roughly 112 hours (4 days and 16 hours) to train each model. 
Figure 6 shows the evolution of the loss function used in Phase 
2 of training. 

This phase of training is rather different from Phase 1, 
since it performs fine-tuning and, as such, the progress to be 
made is smaller and it is harder to optimize the loss function. 
In this case, the smoothed curve of the loss function provides 
a more straightforward insight into the training trend while it  
makes it easier to perceive the clear downward trend in the loss 
function. The values of this loss function have large variations, 
as observed in Figure 6, but it is important to note that this loss 
function begins with a much smaller value than that of Phase 
1, so every variation is more noticeable than in the previous 

training phase. Also, since this loss function considers the 
cumulative distortion and rate, any variation in the network 
weights that causes a negative progress will have much more 
impact in the loss function of Phase 2 than it would in the loss 
function of Phase 1, which considers only the distortion and 
rate for one frame at a time. 

Phase 3 – RPM Training 
The last training phase is rather fast, relatively to the 

previous training phases, since the models being trained in this 
phase, the RPMs, are smaller than the set of networks trained 
in the earlier phases. This phase of training takes grossly 24 
hours, for each RPM of each model. Figure 7 and Figure 8 
show the evolution of both loss functions used for the training 
of each of the RPMs (motion and residue, respectively). This 
training phase progresses rather quickly and with a clear loss 
function trend, given that it only considers the bitrate, and the 
only weights to update are those for the RPMs, which means 
there are less weights to set, and therefore less elements to 
provoke instability. 

 

Figure 7: Evolution of Phase 3 loss function to train the motion 
RPM. 

 

Figure 8: Evolution of Phase 3 loss function to train the residue 
RPM. 

 

Figure 6: Evolution of the loss function used in Phase 2 of 
training. 
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D. Performance Validation 

 After completing all the training phases described 
previously, the Newly Trained RLVC models were used to 
meet the key objective of this section: to replicate the RD 
performance obtained with the pre-trained RLVC models 
provided by the RLVC authors and, thus, to validate the 
Newly Trained RLVC models as a sound starting point for the 
improvement of the RLVC framework (and software). The 
Newly Trained RLVC models were used to obtain RD 
performance results for the RLVC codec, notably for the Class 
C and D JVET video sequences, under the same testing 
conditions as used for the RD performance results obtained 
with the original, pre-trained RLVC models, which have been 
reported in Section IV. Additionally, other RLVC 
configurations for the training phases were studied, with the 
purpose of determining if any time costly training phase could 
be skipped or shortened to  less iterations with the goal to 
reduce the overall (large) training time. 

Besides the ‘Original RVLC Models’, the RLVC training 
configurations studied were: 

• Newly Trained RLVC: Trained under the same precise 

conditions as suggested by the RLVC authors [15] to very 

closely replicate the original RD performance results. 

• RLVC Configuration 1 – Phase 1 RAEs: For this 

configuration, Phase 2 is completely skipped. All neural 

networks (except the RPMs) are only trained with Phase 1, 

and then the RPMs are trained from the networks obtained 

at the end of Phase 1. 

• RLVC Configuration 2 – Phase 1 RAEs Shortened: This 

configuration is similar to Configuration 1, but the training 

is cut short at iteration 300 000 and the RPMs are trained 

from the models obtained at this iteration. 

• RLVC Configuration 2 – Phase 1 RAEs Shortened: This 

configuration is similar to Configuration 2, but the training 

decreases even more, and only trains until iteration 200 000 

and the RPMs are trained from the models obtained at this 

iteration. 

Figure 9 shows the PSNR-Y and VMAF RD performance 
for the Class D JVET videos,  for the four target qualities using 
the PSNR-RGB metric as the training quality metric for the 
following configurations: i) Original RLVC Models (in dark 
blue); ii) Newly Trained RLVC Models (in light blue); iii) 
RLVC Configuration 1 (in dark red); iv) RLVC Configuration 

2 (in orange); and v) RLVC Configuration 3 (in yellow). From 
the results in Figure 9, it is possible to observe: 

• Newly Trained RLVC models versus Original RLVC 

models: The Newly Trained RLVC models can achieve a 

similar, and even better, RD performance as the Original 

RLVC models provided by the authors. Even though the 

training followed the recommendations by the RLVC 

authors, there are several aspects that may account for the 

slight differences in performance obtained. Since the neural 

networks weights are initialized randomly, the starting point 

for the training of the Newly Trained RLVC models may be 

different than the starting point of the pre-trained RLVC 

models; therefore, both models can be optimizing towards 

rather different minima, which may lead to rather different 

models and, therefore, slightly different, and in this case 

better, RD performance. 

• PSNR-Y versus VMAF: For the VMAF metric, there is a 

clear decrease in quality when Phase 2 of training is 

skipped, which is not so evident with the PSNR-Y metric. 

For the VMAF metric, there is also a smaller gap in quality 

between the results obtained with the Newly Trained RLVC 

models and the RLVC Configuration 3 than there is for the 

PSNR-Y quality metric. 

• New RLVC models versus Configuration 1 models: 

Comparing the Newly Trained RLVC models with 

Configuration 1 models, a slight RD performance variation 

may be noted. With the VMAF quality metric, all sequences 

show a faintly worse RD performance when Phase 2 is 

skipped. For the PSNR-Y metric, the results show that the 

Configuration 1 RD performance is similar to the Newly 

Trained RLVC models for the lower qualities, but worse for 

the higher qualities. For the lower qualities, the 

Configuration 1 results have worse quality but smaller 

bitrate compared with the Newly Trained RLVC models, 

which ultimately makes the curves align in this part of the 

chart; however, for the highest qualities of the RLVC 

Configuration 1, the PSNR-Y starts to worsen, thus creating 

a gap between the two curves. 

• Configuration 1 models versus Configuration 2 and 3 

models: Both training Configurations 2 and 3 are proven to 

always be worse than the remaining configurations, which 

implies that the training should, at least, not be stopped too 

early in Phase 1. From Configuration 2 to Configuration 3, 

a slight decrease in RD performance can be noted, which is 

    

    

Figure 9: PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences, with the Newly Trained RLVC models. 
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due to the fewer 100 000 iterations that Configuration 3 

performs in Phase 1. 

In summary, it may be concluded that it is possible to 
appropriately train the RLVC models, i.e., the ‘Newly Trained 
RLVC Models’, and thus to ‘control’ the RLVC framework in 
training and testing. This implies that a reliable starting point 
and benchmark for the next potential improvements to the 
RLVC architecture is available. Moreover, the study of 
simpler training configurations for the RLVC model allows 
concluding that skipping and/or shortening the original 
training phases is not advisable, as the RLVC RD performance  
would be penalized. 

VI. RLVC WITH ATTENTION MODEL: A PRELIMINARY 

STUDY 

After careful thought on the best way to extend the RLVC 
architecture to improve its RD performance, the tool that 
seemed most worthwhile were the attention models. 

Attention models were firstly devised and used to improve 
RNN-based architectures [2], which deal with temporal data, 
specifically containing gated units similar to LSTM cells; thus 
it is known that attention models and RNNs work well 
together, and the RLVC is an RNN-based architecture. 
Attention models have also been incorporated into 
architectures with RNNs to solve computer vision tasks and 
have shown improvements [21], thus indicating that attention 
models may also be of use for tasks involving data such as 
images and video. As such, the idea was integrating an 
attention model into the RLVC, since it is an RNN-based 
model, which is where the attention models first started being 
used. Since, overtime, several different types of attention 
models have been designed and implemented, the attention 
model chosen to extend the RLVC architecture will be 
motivated and described. 

This section will firstly describe the attention model used 
to extend the RLVC architecture [15], with the goal of 
improving the codec’s RD performance. Then, the 
incorporation of the attention model in the RLVC architecture 
and the associated training process will be presented, and 
lastly the preliminary RD performance of the extended RLVC 
(X-RLVC) architecture will be examined and compared to the 
Newly Trained RLVC model RD performance achieved in 
Section V. Because DL-based video coding research is very 
computationally intensive, all experiments, especially the 
training, take a significant amount of time. This has prevented 
to go in this paper beyond a preliminary study of RVLC with 
attention models. 

A. Selected Attention Model 

The incorporated attention model was the so-called 
Convolutional Block Attention Module (CBAM) [22]. This 
attention model is simple but effective and was designed to be 
easily integrated into any CNN architecture. The CBAM was 
created and tested to improve architectures that perform image 
classification, and has shown to offer competitive results [22]. 
These capabilities may be also important in aiding the RLVC 
framework to learn which inputs it should dedicate more 
attention  in order to achieve a better RD performance. In 
practice, an attention model is applied to an input to identify 
which of its parts should be given more emphasis, i.e., 
attention, which translates into multiplying those inputs by 
higher weights, and the less important inputs by lower 
weights, so their values can stand out if they should be given 
more attention, or be drowned out if they are less significant. 

Figure 10 shows the architecture of the selected CBAM 
model. This attention model considers two different types of 
attention: channel wise attention and spatial wise attention. 
The CBAM takes the input tensor, which is three-dimensional 
(an image in RBG channels, or a feature map of an image 
already passed through some convolutional layers, which will 
add depth), and processes the set of input features along the 
various tensor channels  (channel attention module) first and 
then processes the features along the tensor channel axis 
(spatial attention module). Both attention modules are 
characterized by a set of weights that are applied to the input, 
by multiplication, thus embedding into each part of the input 
its associated significance. 

 

Figure 10: CBAM architecture [22]. 

B. RLVC Extended Architecture 

For the modification of the RLVC architecture, the CBAM 
module was placed in the motion and residue RAEs. The 
RAEs perform the most important operations in the codec, 
since they encode and decode the motion and residue 
information, defining the final quality, while taking into 
consideration information from past frames in the video 
sequence. Thus, by inserting the attention model in the RAEs, 
the encoder-decoder architecture should receive additional 
assistance in detecting which information should be 
considered most important, either to encode, or to pass along 
to the next pair of processed frames, through the ConvLSTM 
layer states. To study the different impacts of the CBAM 
module in the RLVC codec, two different positions for the 
model, within the RAEs, were studied. Other positions could 
also have been studied if time had allowed. 

• Position 1 – Before Quantization: In this case, the CBAM 

module is placed immediately before the quantization of the 

latent representations, i.e., after all the RAE layers, see 

Figure 11. 

• Position 2 – Before ConvLSTM: In this case, the CBAM 

module is placed before the ConvLSTM layer at the encoder 

side of the RAE, see Figure 12. 

 

Figure 11: Modified RAE architecture with CBAM in Position 1. 

 

Figure 12: Modified RAE architecture with CBAM in Position 2. 

The remaining RLVC architecture, notably the motion 
estimation and motion estimation networks, and both RPM 
networks, was not changed at all. 

C. Training Process 

The training of the X-RLVC model will basically include 
the same phases described in Section V for the original RLVC 
model, with the eventual addition of some new phases 
associated to the CBAM training. Since the Newly Trained 
RLVC models from Section V are available, they will be used 
in some training configurations as starting models for the 



9 
 

additional training of the X-RLVC with CBAM; this means in 
practice that the X-RLVC models may refine and extend the 
previously available RLVC models to avoid starting the 
training from the beginning. While there are many interesting 
training configurations, the initially chosen configurations to 
train both positions of the CBAM were: 

• Training Configuration 1 (TC1) – Square One with 

Phase 1: The X-RLVC is trained from the start, following 

exactly the same training as described in Section V. 

• Training Configuration 2 (TC2) – Phase 1 Refinement: 

The X-RLVC performs Phase 1 training, but only using the 

third loss function, and the weights obtained at the end of 

Phase 1 training from Section V are used to initialize all 

models of the X-RLVC at the beginning of training, except 

the CBAM which is initialized randomly. The RPM 

networks are trained from the models obtained at the end of 

this refinement. 

• Training Configuration 3 (TC3) – Phase 2 Refinement: 

In this configuration the X-RLVC performs Phase 2 

training, and the X-RLVC models are initialized from the 

RLVC models obtained at the end of Phase 2 in Section V, 

except for the CBAM which is initialized randomly. The 

RPM networks are trained from the models obtained after 

the refinement. 

D. Performance Results and Analysis 

Figure 13 shows the obtained preliminary RD performance 
results for the Class D test videos, for both PSNR-Y and 
VMAF quality metrics. From the preliminary results shown in 
Figure 13, it is possible to observe that there is a quality 
deterioration problem for the highest quality model (λ=2048), 
when the CBAM is in Position 1 of the X-RLVC, which 
sometimes achieves even worse quality than that obtained 
with the model for λ=512. When the loss function produced 
by the training of this model is examined, it can be observed 
that it did not progress as expected, and that the loss function 
evolution is quite erratic and unstable, even more so than the 
training example shown in Section V. To avoid this quality 
deterioration problem, several options were considered, and 
some implemented:  

• Smaller Learning Rate: The learning rate used for the 

training of the highest quality model was reduced by 10, 

compared to the learning rate used for the remaining 

qualities, with the objective of making the network training 

take smaller steps, and thus, oppose the erratic evolution of 

the loss function.  

• Residual Connection: Similarly to what is performed in 

[23], a residual connection is applied around the CBAM. 

The residual connection should allow the gradients to flow 

backwards through the network while skipping the CBAM 

layers, and thus enable deeper networks to be trained 

without the risk of vanishing or exploding gradients.  

• Initialization from λ=1024 model, with CBAM: Instead 

of initiating the training from the RLVC model for λ=2048, 

obtained in Section V, training can be initiated from the 

model obtained after training the X-RLVC for λ=1024, i.e., 

the previous RD point, where the quality deterioration 

problem does not exist. This strategy was not implemented. 

Despite the strategies listed above, the training of X-RLVC 
with the CBAM in Position 1 and forhyperparameter  λ=2048 
was not successful, and the quality degradation can still be 
observed. Examining the remaining preliminary RD 
performance curves presented in Figure 13, the following 
conclusions are reached: 

• RLVC versus X-RLVC: Generally, neither version of the 

X-RLVC models with any training configuration provide 

better RD performance results over the Newly Trained 

RLVC models in a consistent way. The X-RLVC Position 

1 shows improvement for some rate points, mainly λ=512, 

and in some cases for λ=1024, but shows worse RD 

performance for the highest quality model. The X-RLVC 

Position 2 has a consistently worse RD performance than 

the Newly Trained RLVC models.  

• X-RLVC Position 1 versus X-RLVC Position 2: The X-

RLVC Position 1 shows more promising RD performance 

improvements, but the X-RLVC Position 2 results are more 

consistent.  X-RLVC in Position 1 shows consistent, even 

if minor, improvement over the New RLVC models for the 

λ values 512 and 1024. Also for this case, the X-RLVC 

model with λ=256 proves to have a similar performance as 

the New RLVC model for the same quality. However, the 

gains for these RD points do not make up for the poor 

performance achieved with the λ=2048 model (highest 

rate). For X-RLVC Position 2, the lowest quality model 

(λ=256) is not available, since during training it suffered 

from the exploding gradient problem, and there were no 

computing resources to initiate training again. The 

    

    

Figure 13:  PSNR-Y (top) and VMAF (bottom) RD performance for the Class D video sequences, with the Newly Trained RLVC models 

and the X-RLVC models.  
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remaining quality models achieved for the X-RLVC 

Position 2 do not show overall improvements over the New 

RLVC models, but for some sequences demonstrate a 

similar RD performance for the higher quality models. 

Overall, the X-RLVC Position 1 would be more promising 

if the quality degradation problem for the highest rate could 

be solved.  

• X-RLVC Position 1 Top Quality Problems:  It is difficult 

to obtain good results for the X-RLVC model with the 

hyperparameter λ=2048, when the CBAM is situated in 

Position 1, even after the strategies mentioned earlier were 

applied. The larger values of the loss function make the 

training of this model more unstable and, coupled with an 

attention model, the combination is prone to erratic and 

unpredictable training, which can lead to lower 

performance, as observed for the X-RLVC with the CBAM 

in Position 1, trained in Configuration 1. 

From the obtained preliminary RD performance results 
with the X-RLVC models, it can be concluded that the 
insertion of the selected attention model in the RLVC 
architecture in the previously described positions and its 
subsequent training does not overall improve the RLVC 
performance. While some improvements happen for specific 
rate points, the gains are not consistent to claim an overall 
performance improvement. 

VII. FINAL REMARKS 

DL-based tools are coming to the multimedia coding 
arena, notably targeting image and video coding. This paper 
offers the first solid performance study on DL-based video 
coding, using the JVET NN CTC, and including the most 
recent conventional coding benchmark, VVC. The main 
conclusion is that the RD performance gap is currently still 
large (although lower for perceptual quality metrics) and thus 
future improvements are still needed to reduce this gap as it 
occurred for DL-based image coding.  

Finally, this paper offers some preliminary performance 
results for an extended RLVC solution, notably for several 
CBAM positions within the RLVC architecture, and for 
different training strategies. These preliminary experiments 
did not yet allow obtaining clear RD performance gains with 
the extended RLVC since many ideas and associated 
experiments could not be tested due to the time and 
computational constraints. However, attention model biased 
coding approaches are likely to succeed in the future and will 
be a hot topic of work in the associated research community 
in the near future since they have great potential to provide 
performance improvements. 

In summary, the main objectives of this paper were to 
perform the benchmarking of the current DL-based video 
coding models against conventional coding technology, 
provided in Section IV, and to design, implement and train a 
DL-based video codec extended with an attention model, 
based on an already existing architecture from the literature, 
which would hopefully provide some RD performance 
improvement. While this second objective was not fully 
achieved, significant steps have been made in that direction.  
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