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Abstract

Wind turbines are complex dynamic systems, with coupled effects from multiple fields. More accurate
CFD simulations require the motion of the different parts of the structure to be captured, which can be
impracticable using only a single grid. On that matter Sliding and Overset Grids are two well-known
methods that enable the discretization of the domain with multiple meshes. Since the grids can move
relatively to one another, body motion can be incorporated, with successful implementations already
existent. Nevertheless, no literature can be found assessing their impact on the solution’s accuracy
in these flows. Therefore, the goal is to apply Verification procedures to three test cases, so that
discretization errors can be probed in isolation and the methods compared. The first is a Poiseuille
flow, with known analytical solution, yet inexpensive to test multiple parameters. The second is a novel
analytical solution of a wind turbine flow, designed with the Method of Manufactured Solutions. The
final test case is the NREL 5MW wind turbine, to test the procedures in a practical scenario. Each test
case has a parameter sensitivity test performed, with the respective conclusions used as inputs to the
next one. The results suggest that Sliding Grids are suitable to be applied in the CFD simulation of
wind turbine rotors, whereas Overset tends to present additional implementation difficulties and higher
errors. Moreover, pressure oscillations at the interfaces, due to the mass imbalance introduced by these
methods, are found to be minimized with interpolation schemes of at least second order.
Keywords: Sliding Grids, Overset Grids, Verification, Wind Turbines, CFD

1. Introduction
Sliding Grids (SG) and Overset Grids (OG) are

two Computational Fluid Dynamics (CFD) meth-
ods for discretizing the domain with several sub-
grids, with the potential of enabling complex body
motion in unsteady simulations. Their fundamental
difference lies on the sub-grid placement, fitted into
each other (SG) [1, 2] or overlapped (OG) [3, 4],
which ends up impacting the information transfer
mechanism that couples them.

During the last few years both methods have been
especially useful in many areas, including the sim-
ulation of floating offshore wind turbines (FOWT),
where a Sliding Grid might be used to accommo-
date the motion of the rotor and an Overset Grid to
capture the overall movement of the platform with
the ocean waves, as in Tran and Kim [5]. However,
very few studies exist comparing SG with OG, de-
spite their versatility and interchangeability in var-
ious situations [6, 7]. Even within the available lit-
erature, authors tend to mostly focus on practical
test cases, with no Verification performed. Instead,
they usually aim at assessing modelling errors only,
through Validation procedures. Therefore, a de-

tailed analysis is necessary, where the flow analyt-
ical solution is known, so that discretization errors
can be evaluated in isolation. This analysis should
also include a parameter sensitivity test, with the
goal of producing a set of good practices when ap-
plying these methods in wind turbine CFD simula-
tions.

Therefore, this work will focus in applying Verifi-
cation procedures [8] on wind turbine related flows.
Its structure comprises three test cases. The first is
a Poiseuille flow, one of the few analytical solutions
of the Navier-Stokes (NS) equations, which is inex-
pensive to run and enables a large number of pa-
rameters to be tested. Next, the solution of a wind
turbine flow is designed, based on the Method of
Manufactured Solutions, which is then forced to be-
come the exact solution of the flow governing equa-
tions - therefore, allowing errors to be assessed in
a wind turbine-like flow, resembling its main fea-
tures. Finally, the CFD aerodynamic analysis of
the NREL 5MW [9] rotor is performed, to further
test the conclusions obtained with the other test
cases and apply both SG and OG techniques in a
relevant industrial scenario.
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2. Numerical Methods
2.1. ReFRESCO

ReFRESCO [10] is a CFD solver based on a
finite-volume discretization with cell-centered col-
located variables and unstructured grids, capable
of handling hanging nodes. It solves the unsteady,
multi-phase and incompressible Reynolds-Averaged
Navier-Stokes equations, in addition to turbulence
models. Moreover, it has the capability to simulate
moving objects through the use of Sliding Grids [2]
and more recently the Overset Grids method [4].

2.2. Sliding Grids
Sliding Grids [1] are based on the discretization

of the domain with grids fitted into one another,
sharing common interfaces, as it is exemplified in
Figure 1. This characteristic restricts the sub-grid’s
motion to simple translation or rotation. Regard-
ing the inter-grid communication process, the tech-
nique implemented in ReFRESCO, and used in the
present work, is based on Halo Cells (HC) [2].

Figure 1: Example of sub-grid placement with Slid-
ing Grids. Domain mesh (red) has hole to fit Circle
mesh (black).

The method of Halo Cells, exemplified in Figure
2, projects a virtual cell from one domain into the
other. This new cell does not add to the flow’s linear
system of equations to be solved. Instead, it acts as
a Dirichlet boundary condition, as its value is de-
termined by interpolation from a set of neighbour
donor cells. The coupling is then satisfied through
the calculation of fluxes between the halo and the
parent cell. It is important to note that this method
does not conserve mass, as the interpolation is per-
formed independently in both directions.

2.3. Overset Grids
The Overset Grids’ [3] purpose is similar to SG,

but since they only need to overlap, as presented in
Figure 3, the requirements for grid generation are
looser and the possible motions for the meshes are
virtually unlimited.

Nevertheless, that same overlap requires addi-
tional treatment, namely the definition of the Do-

Parent Cell

Halo Cell

Donor Cell

Interpolation

Flux Halo-Parent Cell

Figure 2: Example of inter-grid communication in
Sliding Grids.

Figure 3: Example of sub-grid placement with
Overset Grids. Domain grid (red) is overlapped
with Circle mesh (black).

main Connectivity Information (DCI), which as-
signs to each cell in the domain one of three possible
status: In, Fringe or Hole Cell. In Cells are regu-
lar, active cells in the domain. Hole Cells concern
the ones that are ignored by the solver, since they
are substituted by cells of another sub-grid that is
overlapping that region or because they are just
outside the domain. Finally, two layers of Fringe
cells (implementation dependent) are placed in be-
tween the two other types of cells, or at the over-
lapping sub-grid’s boundary, to receive the interpo-
lated information from neighbour donor cells and
therefore couple the different sub-grids. The vector
containing all the cells’ status is typically known as
IBLANK [3]. An example of this classification is
presented in Figure 4.

2.4. Interpolation Schemes
In both SG and OG methods interpolation is nec-

essary to couple the sub-grids. A set of donor cells
is assigned for each Halo/Fringe cell, based on the
interpolation scheme requirements. A large number
of schemes exist, in this work, however, only some of
the ones present in ReFRESCO are explored. The
reader is referred to the work of Lemaire et al. [4]
for a more detailed overview of each:

• Nearest Cell (1st order accurate): The in-
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Figure 4: Example of inter-grid communication in
Overset Grids.

terpolated quantities have the exact same value
as the single donor cell;

• Inverse Distance (1st order accurate):
The interpolated value is an average of an ar-
bitrary number of cloud points, weighted with
the inverse of the distance to the recipient cell
(the farther, the lower the weight);

• Nearest Cell Gradient (2nd order accu-
rate): The interpolated value is calculated
based on a Taylor Series expansion, truncated
to the first order term. The linear approxima-
tion is obtained by using the single donor cell’s
gradient;

• Least Squares (n-th order accurate): The
interpolated value is calculated with a poly-
nomial of degree n − 1, over defined by a set
of donor cells. The resulting system is then
solved through least squares minimization, ob-
taining the polynomial coefficients that best fit
the data points. Then, the polynomial value is
probed at the recipient cell’s center location.

2.5. Verification
The Verification methodologies adopted in the

present work are based on the work of Eça and
Hoekstra [8]. They aim at assessing if a given
set of equations are being solved correctly based
on the methods selected and implemented to solve
them. Under the concept of Verification, two sub-
categories exist.

The first is Code Verification, where the error is
evaluated by knowing the exact solution, enabling
implementation and code errors to be assessed. It is
assumed that the error can be described by a power
series expansion and that error sources, other than
discretization ones, are negligible,

log (e(φ)) = log (α) + pac log (hi) (1)

where e(φ) is the discretization error of a flow quan-
tity φ, α the error level, pac the observed order of
accuracy and hi = (Nfinest/Ni)

1/n the grid refine-
ment level, in which Ni represents the cell count

of a mesh and n the number of spatial dimensions.
Equation (1) is used to fit a linear equation through
the error data points, in the Least Squares sense, in
which the obtained slope represents an estimation
for pac. The authors [8] recommend at least four
grid refinements to be used.

The second is Solution Verification, where the er-
ror is just estimated, which occurs most of the time
when no analytical solution is known. It aims at
quantifying the accuracy and uncertainty of the ob-
tained solution. For brevity, the uncertainty esti-
mation procedures are not detailed since they are
only relevant for the last test case. Yet, the reader
is referred to the work of Eça and Hoekstra [8] for
more detailed information on the Verification pro-
cedures adopted.

2.6. Method of Manufactured Solutions
To perform Code Verification, and probe the er-

rors in the domain, analytical solutions of the flow
governing equations are necessary. Nevertheless,
that is not possible most of the time, thus why the
equations are being solved numerically in the first
place. Moreover, while some trivial solutions can
be obtained, as the Poiseuille flow in the case of
the Navier-Stokes equations, they result from vari-
ous simplifications. Therefore, many of the terms of
the governing equations end up not being exercised.

In order to circumvent this, the Method of Manu-
factured Solutions (MMS) is proposed, based on the
work of Roache [11]. It enables arbitrarily complex
flows to become the analytical solution of the gov-
erning equations through the following procedure:

1. Design a set of single, continuous functions de-
scribing each of the flow quantities of interest;

2. Substitute them in the governing equations,
which originates source terms that balance the
equations;

3. Provide the source terms to the CFD solver;

4. The initial set of manufactured equations ends
up becoming the exact solution of the flow in
the CFD simulation, due to the source terms.

Conceptually, this is a very simple method, yet
with great potential, since it enables Code Verifi-
cation of arbitrarily complex flows. It should be
noted that since this is a purely mathematical exer-
cise, flow realism is not strictly necessary. However,
at least the main features of the target flow should
be recreated to ensure that the necessary terms of
the governing equations are being activated.

The open-source software pyMMS [12] is used in
the present work, which receives as input the set of
equations describing the flow quantities, calculates
the source terms and outputs a FORTRAN file to
be provided to ReFRESCO.
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3. Test Cases
In order to compare the SG and OG methods,

three test cases are performed: a Poiseuille flow, a
Manufactured Solution of a wind turbine flow and
the aerodynamic analysis of the rotor of the NREL
5MW wind turbine. These represent flows with
progressively resemblance to a wind turbine sim-
ulation. At the same time the computational cost
also increases, however the preliminary conclusions
obtained at the end of each test case are used as
inputs to the next one, to narrow down the number
of parameters analyzed and therefore save compu-
tational resources.

3.1. Poiseuille Flow
The first test case comprises one of the few ana-

lytical solutions of the Navier-Stokes equations, the
Poiseuille flow [4]. It is a 2D steady flow, driven by
an axial pressure gradient, with boundary layer de-
velopment in between two infinite planes separated
by a distance h. In Figure 5 a schematic of the
flow’s velocity profile can be visualized, including
the domain’s dimensions and the boundary condi-
tions used.

Figure 5: Poiseuille flow: Domain characteristics
and boundary conditions.

The analytical solutions of the flow for velocity
and pressure are, assuming a pressure gradient of
8µ,

vx(y) = 4hy
(

1− y

h

)
(2)

and
p(x) = −8µ(x− L) + pout (3)

where µ = 0.1 kg m−1 s−1 is the dynamic viscosity,
h = 1.0 m the distance between planes, L = 2.0 m
the domain’s length and pout = 1.0 Pa the outlet
pressure.

To test the SG and OG techniques it is necessary
to decompose the domain in at least two sub-grids.
Hence, a Circle mesh is used in the center of the
domain, with a radius R = 0.25. It is able to ro-
tate over its center, to resemble the mesh around a
wind turbine’s rotor geometry, despite the different
orientation with the flow due to it being 2D. In the
case of SG, Figure 1, the Domain’s sub-grid (red)
needed to have a hole cut, so that the Circle mesh

(black) could fit. On the other hand, the creation
of the OG, in Figure 3, was much simpler, since
the Domain grid could be purely cartesian and the
Circle mesh was just overlapped on top of it.

Therefore, three different types of sub-grids were
created, all of which were systematically refined,
with the respective characteristics presented in Ta-
ble 1. Note that all meshes had the same target cell
size in the same refinement level.

Table 1: Poiseuille flow: Description of grid refine-
ments for SG configuration. OG values are not pre-
sented since they are similar. Grid refinement hi
calculated based on Domain grid cell count.

Grid Domain Size Cell Count (SG) hi

G1 20 x 10 249 16
G2 40 x 20 908 8
G3 80 x 40 3 428 4
G4 160 x 80 13 268 2
G5 320 x 160 52 148 1

Concerning the numerical setup, second order ac-
curate discretization of the convection and diffu-
sive fluxes (Central Differences) and time (Implicit
Three Time Level) were adopted. Finally, based on
an iterative study, the L∞ norm of the residuals of
all flow quantities are reduced at least until 10−9

at each time step. This yields the iterative error,
compared to the discretization one, negligible.

3.2. Wind Turbine Manufactured Solution

The second test includes the design of a Manufac-
tured Solution resembling a wind turbine flow. It
is novel since nothing similar could be found in the
literature. The NREL 5MW wind turbine geomet-
ric properties and operating conditions were used as
reference [9], including the rotor radius, Ra = 63m,
the rated wind speed, v0 = 11.4m s−1, and the rated
blade tip speed 80m s−1. In fact, an Actuator Disk
simulation was first executed in ReFRESCO with
that data, to obtain a flow solution to aid the design
process. In Figure 6 the axial velocity distribution
of that simulation is presented.

Bearing in mind that issues with velocity fields
not respecting continuity led to non-converging
CFD simulations in ReFRESCO, the final process
of designing those fields needed to take that into
consideration. Starting with the axial velocity field,
vz, based on an iterative procedure various primi-
tive functions were tested, having obtained the fol-
lowing equation to replicate the main flow features
of Figure 6,
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Figure 6: Wind Turbine MMS: Actuator Disk solu-
tion, based on NREL 5MW [9], to serve as a refer-
ence in the design process. Axial velocity using the
G4 refinement of the Domain mesh.

vz(r, z) = v0 − 0.2715 · v0 · γz(z, 0.7, 4.0) · γr(r, 1.2)

+ 0.2000 · v0 · γz(z, 0.7, 4.0) · γr(r, 2.5)

− 0.1000 · v0 · γz(z,−2.0, 1.0) · γr(r, 3.0)

(4)

where v0 = 11.4 m s−1 is the free-stream velocity.
Moreover, the blending functions

γz(z, a, b) =
1

1 + e(
z
Ra

+a)·b (5)

and
γr(r, c) = e(−c·

r
Ra

)
2

(6)

where used and tunned to model the velocity field,
where Ra = 63 m is the actuator disk/rotor radius.

In order to respect mass conservation, the con-
tinuity equation in cylindrical coordinates is rear-
ranged. Assuming that the flow is axisymmetric,
dvθ
dθ = 0, one obtains an expression for the radial
component of the velocity field from an integral of
the axial velocity previously defined,

vr =
1

r

(∫ r

0

−r ∂vz
∂z

dr

)
. (7)

While being a straightforward procedure, note that
this was a large constraint in the design process,
since Sympy, the Python’s symbolic toolbox used,
was not capable of computing the analytical solu-
tion of the integral if the vz equation was too com-
plex.

Having defined the velocity field, only pressure
is still missing. However, no equation exists explic-
itly relating velocity and pressure for incompressible
flows. Therefore, the Bernoulli’s Principle is used,

p(r, z) = H(r, z)− 1

2
ρv(r, z)2 (8)

in which an equation from pressure, p, can be di-
rectly extracted if a field of total pressure, H, is also

defined. Given the flow properties (incompressible,
steady and inviscid), it can be assumed that the
free-stream total pressure, H0, will remain constant
all over the domain, except in the wake region, since
energy is being extracted from the fluid. By dimen-
sional analysis, that total pressure drop, ∆H, can
be estimated as

∆H =
∆P

Qdisk
(9)

where ∆P is the harvested power, and Qdisk the
flow rate of the fluid passing through the turbine’s
disk. Both these properties can be numerically cal-
culated from the velocity field already defined. Af-
terwards, having calculated both H0 and Hwake =
H0 + ∆H, they can be blended over the domain,

H(r, z) =(H0 · (1− γz(z, 0.0, 4.0))+

+Hwake · γz(z, 0.0, 4.0)) · γr(r, 1.2))+

+H0 · (1− γr(r, 1.2))

(10)

from which an equation for pressure can be ob-
tained by applying Equation (8). In Figures 7, 8
and 9 the distribution of axial velocity, radial ve-
locity and pressure over the domain are presented.
Note that the harvested power, ∆P , was calculated
at 5.008 MW by numerical integration, very close
to the rated power of the NREL 5MW, used as ref-
erence.

-2.5D 0 2.5D 5D 7.5D
z

-2.5D

0

2.5D

r

9.446 9.935 10.423 10.912 11.400

vz [m/s]

Figure 7: Wind Turbine MMS: Manufactured solu-
tion of axial velocity, vz.

Regarding the cylindrical domain dimensions,
they were defined based on the NREL 5MW rotor
diameter, D = 2Ra = 126 m, as presented in Figure
10. As for the adopted boundary conditions, they
were all based on the manufactured solution, i.e.
the flow’s exact solution. The inlet, on the left of
the domain, is of Dirichlet type, whereas the outlet
on the right and the sides, on the top and bottom
of the domain, are of Neumann type.

Similarly to the Poiseuille flow, three types of
sub-grids were created, to enable the use of SG and
OG, as exemplified in Figure 11. Note that the Ro-
tor grid was dimensioned to encompass the actua-
tor disk/rotor region, with origin at (r, z) = (0, 0).
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-2.5D 0 2.5D 5D 7.5D
z
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Figure 8: Wind Turbine MMS: Manufactured solu-
tion of radial velocity, vr.
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Figure 9: Wind Turbine MMS: Manufactured solu-
tion of pressure, p.

Figure 10: Wind Turbine MMS: Domain dimen-
sions and boundary conditions.

Additionally, to perform Code Verification, a set of
four refinements was performed to each sub-grid, as
presented in Table 2.

Finally, the numerical setup was similar to the
Poiseuille flow, except for the adopted discretiza-
tion scheme of the convective fluxes, which in this
case is upwind-biased: the Limited QUICK. Never-
theless, it is still second order accurate. Moreover,
the L∞ residuals for all flow quantities were reduced
up until at least 10−6 at all time steps, which was
found to yield the iterative error negligible. The
default time step is equal to 1.09956× 10−1 s. This
value is such that the Rotor mesh advances 8 de-
grees per time step, assuming a constant operating
angular speed of 1.2698 rad s−1, based on the rated

Figure 11: Wind Turbine MMS: Example of SG
configuration. Rotor mesh (red) fitted into Domain
w/ hole grid (black). G1 refinement.

Table 2: Wind Turbine MMS: Description of grid
refinements for SG configuration. OG values are
not presented since they are similar.

Grid Domain Size Cell Count (SG) hi

G1 100 x 50 x 50 0.205 M 2.48
G2 150 x 75 x 75 0.685 M 1.66
G3 200 x 100 x 100 1.608 M 1.25
G4 250 x 125 x 125 3.131 M 1.00

operating condition of the NREL 5MW.

3.3. Wind Turbine NREL 5MW
The final test case consists of the aerodynamic

simulation of the rotor geometry of the NREL 5MW
wind turbine. It is based on the rated operating
condition on [9], the same one considered in the last
test case. While no analytical solution exists to per-
form Code Verification, it is still possible to apply
Solution Verification. The main goal is to compare
the methods in a realistic scenario. In Figure 12 the
adopted domain dimensions are presented, includ-
ing the boundary conditions.

Figure 12: Wind Turbine NREL 5MW: Domain di-
mensions and boundary conditions.

The meshes around the rotor geometry were gen-
erated using the CAD files from [13]. Cell count was
kept low, in order to reduce the computational cost,
since the main goal was not to obtain accurate aero-
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dynamic data, but only compare the grid methods.
To achieve that the dimensionless nominal distance
to the wall of the first layer of cells of the prism
layer, y+, was kept on average at 35, so that wall
functions can be used to solve the boundary layer.

Similarly to the last two test cases, three types
of sub-grids were created: Domain, Domain with
Hole and Rotor meshes. An example of the SG
grid configuration is presented in Figure 13. Each
had three grid refinements performed, with their
characteristics presented in Table 3.

Figure 13: Wind Turbine NREL 5MW: Example of
SG configuration. Front view of Rotor mesh (black)
fitted into Domain w/ hole grid (red). G1 refine-
ment.

Table 3: Wind Turbine NREL 5MW: Description
of grid refinements for SG configuration. OG values
are not presented, since they are similar.

Grid Domain Size Cell Count (SG) hi

G1 80 x 40 x 40 3.789 M 1.39
G2 100 x 50 x 50 6.523 M 1.15
G3 120 x 60 x 60 9.931 M 1.00

Regarding the adopted numerical setup, it was
the same as the MMS test case. Additionally, since
turbulence is included this time, the two-equation
model k −

√
kL is used due to its stability in

these simulations. Concerning the residuals, the L2

norms of all flow quantities were able to be reduced
until stagnation at each time step: worst case oc-
curred in grid G1 for axial velocity, vx, which was
only reduced up to 10−3. Yet, an iterative error
study was not performed to evaluate their impact.

4. Results
Given the large number of parameters tested, fo-

cus will only be provided to interpolation schemes
and their relation to mass imbalance. This param-
eter is of utmost importance, since it in known to

induce pressure fluctuations in incompressible flows,
due to their link with mass in the pressure correc-
tion equation.

In the case of unsteady quantities, the Tran-
sient Scanning Technique [14] was used to assess
the statistical uncertainty of the averages obtained.
Throughout this work that uncertainty was always
kept at least two orders of magnitude lower than
the calculated mean quantity by using long enough
simulation times.

4.1. Poiseuille Flow
All interpolation schemes presented in Section 2.4

were tested in this test case, ranging from first to
third order accurate schemes: NC1, ID1, NCG2,
LS2 and LS3 (note that the number in the end rep-
resents the scheme’s order). In Figures 14 and 15
the grid refinement plots of the pressure errors are
presented for both SG and OG, respectively, for all
interpolation schemes. They are compared with a
single cartesian grid test case, the Baseline.

101

Grid Refinement: hi

10−4

10−3

10−2

||p
n
u
m
−
p e
x
a
ct
|| 2

NC1

ID1

LS2

NCG2

LS3

Baseline

Figure 14: Poiseuille flow: Pressure errors L2 norm
vs. grid refinement. Interpolation schemes with SG.
Baseline order of convergence is pac = 1.97.
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10−4

10−3

10−2
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ID1

LS2

NCG2

LS3
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Figure 15: Poiseuille flow: Pressure errors L2 norm
vs. grid refinement. Interpolation schemes with
OG. Baseline order of convergence is pac = 1.97.

A clear correlation exists between low order in-
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terpolation schemes and higher pressure errors with
low orders of convergence (less steep slopes). In
fact, the interpolation scheme that best recovered
the Baseline order of convergence was the LS3 with
SG, which is third order accurate. On the other
hand, OG presented a tendency of performing not
as well as SG, including with the LS3 scheme. More-
over, note that all errors in grid G1 matched the
Baseline results in Overset. This was caused by lack
of Fringe cells on the Domain grid, which led to no
interpolation errors being transmitted to it. Other
flow quantities, as velocity, presented very similar
behaviors.

In Figure 16, the mass imbalance, as a percent-
age of the total mass flow rate passing through the
Circle mesh, is presented over a full rotation.

10−6
NC1

SG OG

10−6
ID1

10−6

M
as

s
Im

ba
la

nc
e

[%
]

LS2

10−6
NCG2

0.00 0.25 0.50 0.75 1.00
Full Rotations

10−6
LS3

Figure 16: Poiseuille flow: Mass imbalance vs. full
rotation of the Circle grid. Mesh G5. Mass imbal-
ance as percentage of mass flow rate going through
the Circle grid.

Overall, the amount of mass imbalance is very
small, yet still orders of magnitude higher than
what would be expected when continuity is re-
spected: around 10−13 as perceived in the Baseline.
The average mass imbalance tends to be slightly
smaller with SG when compared with the same
case in OG. Nevertheless, the mean mass imbalance
does not appear to depend on the order of accuracy
of the interpolation schemes. Instead, the spuri-
ous oscillations perceived appear to depend on it,
with the schemes of second order or higher having
a smoother mass imbalance history.

Considering that the order of accuracy of the
methods is driving most of the conclusions ob-
tained, the next test case will focus only on the best
interpolation scheme for each order: ID1, NCG2
and LS3.

4.2. Wind Turbine Manufactured Solution
Bearing in mind the results obtained in the pre-

vious test case, only three interpolation schemes

were tested. Once again, a grid refinement was per-
formed, with ID1 having poor convergence trends
and high errors for all flow quantities. On the other
hand, NCG2 performed very similarly to LS3 this
time, recovering the order of convergence of the
Baseline test case (single grid) without any signif-
icant amount of errors introduced. This reinforces
the importance of the MMS, since the Poiseuille
flow conditions are very different from a wind tur-
bine flow (low vs. high Reynolds number), leading
to potential misleading conclusions for the target
application with only the first test case. In Figure
17 a zoomed-in region near the Rotor grid is pre-
sented, with the errors of axial velocity, vz, being
plotted in log scale.

Figure 17: Wind Turbine MMS: Errors of axial ve-
locity, vz, in log scale. Zoomed-in view near the
Rotor grid region. Top row is ID1, bottom row is
LS3. First column is SG, second column is OG.

First of all, it is visually confirmed that axial ve-
locity errors are higher when using a first order ac-
curate scheme, ID1, specially in OG. On that mat-
ter, NCG2 and LS3 presented very similar results.
The errors originate in the Rotor region due to
the inter-grid communication process, and are con-
vected downstream, since this is a convection dom-
inated flow. Yet, it is perceivable a thinner wake of
errors in OG. This phenomenon is related to the in-
formation transfer mechanism, which in SG occurs
always at the interface, whereas in OG it depends
on the Fringe cell placement, which in this case are
more concentrated inside the Rotor mesh.

Next, the mass imbalance, as a percentage of
the mass flow rate passing through the Rotor, can
be analyzed in Figure 18. Once again, the mass
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imbalance introduced is relatively small, however,
this time, a relation can be perceived, with higher
order interpolation schemes having normally lower
amounts of mass imbalance. Yet, this is not gen-
eral, since the NCG2 with SG has actually a higher
value than with ID1. Moreover, the data presented
non-monotonic behaviour with grid refinement, so
further conclusions would require finer grids to be
tested.
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Figure 18: Wind Turbine MMS: Mass imbalance
vs. rotations of the Rotor grid. Mass imbalance
as percentage of mass flow rate going through the
Rotor grid.

Nevertheless, the same trend between order of
accuracy of the interpolation schemes and spuri-
ous oscillations of mass imbalance is verified once
again. These in turn are related to the pressure spu-
rious oscillations verified. For some applications, as
acoustics, cavitation and free-surfaces, these can be
highly undesirable, since the absolute value of the
pressure is crucial.

4.3. Wind Turbine NREL 5MW
Only one time step was tested, equal to

1.09956× 10−1 s, such that the rotor advances 8 de-
grees per each time step as in the MMS test case;
and one interpolation scheme, LS3, to reduce the
number of simulations. However, issues with stabil-
ity of Overset led to the adoption of half the time
step in that case - still, only grid G1 converged.
The same time step was tested with grid G1 in SG,
with no significant differences perceived. In Figure
19 the mass imbalance values over the last four full
rotations of the rotor are presented.

For the case of SG the mass imbalance is less
that 1%, with a peak per rotation. With grid re-
finement the mean value also decreases and so do
the peaks. On the other hand, the grid G1 for Over-
set presented a higher mass imbalance (> 2%) with
large spurious oscillations. This could be related
to the convergence issues faced in Overset and be-
ing caused by the information transfer mechanism
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Figure 19: Wind Turbine NREL 5MW: Mass imbal-
ance as a percentage of the mass flow rate passing
through the rotor. SG, except for red curve, which
is related to grid G1 with OG.

transfering multiple times between sub-grids a given
flow particle, thus accumulating interpolation er-
rors. Moreover, the pressure variation over time was
surveyed at multiple points, as presented in Figure
20. All probe points are radially located near the
same position as the interface (rprobe = 0.595D,
while rinterface = 0.6D).
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Figure 20: Wind Turbine NREL 5MW: Pressure
over last four rotor rotations with SG, measured
at (y, z) = (0, 0.595D). Top row: G1. Bottom row:
G3. Points with higher x are further downstream in
the wake. Black dotted line is one OG computation.

The blue curve, which oscillates three times per
rotation due to the number of blades, represents the
pressure in a point inside the rotor grid and suggests
minor differences between grid refinement G1 and
G3. However, the point immediately after, already
outside the rotor grid, presents less spurious oscilla-
tions in grid G3 than G1. Nevertheless, it is difficult
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to relate this directly to possible mass imbalance
influence, due to the fact that discretization errors
also exist. In fact, the large pressure oscillation per-
ceived at 5D represents some vortex-shedding that
was captured with grid G3, but not with grid G1.
Nonetheless, comparing one of the OG computa-
tions (black dotted line) with the equivalent one in
SG (green line), clear pressure fluctuations are per-
ceived in OG, congruent with the spurious oscilla-
tions verified before in mass imbalance. Therefore,
in the case of SG, those same oscillations might ex-
ist, but are minimal with the parameters selected.

5. Conclusions
Based on the results obtained, it is perceptible

the impact that the interpolation schemes can have
on the solution’s accuracy. On that matter first
order accurate schemes are not recommended, to
avoid additional error sources due to interpolation.
In fact, the third order accurate scheme, LS3, ap-
pears to be the best option among the ones tested,
given the low pressure oscillations perceived in the
MMS and the NREL 5MW computations with SG.

At this stage, the results seem to indicate that
SG are recommended over OG to be used in the
CFD simulation of wind turbine rotors, considering
the overall reduced quality of the solutions obtained
with OG and the difficulties faced in setting up and
running the simulations with it. Yet, future work
should focus on comparing these results with SG
implementations that respect continuity, in order
to further assess the impact of mass imbalance in
the solution.
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