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Abstract

The knowledge of the dynamic behavior of a motorcycle, allows its development and performance
improvement, mainly at the level of competition. In the present work, the dynamic behaviour of a
motorcycle is discussed, referring to limit conditions in different scenarios, and some dynamic aspects
related to the steering movement are highlighted. The formulation necessary for the construction of a
multibody model of a motorcycle is presented, where a kinematic ”driver” for steering control is also
implemented. The main external forces involved in a road vehicle are discussed and it is approached
some of the most used tire models in describing the forces involved in the contact between the tire and
the road. The detection of this contact is also described. The expressions of the kinematic quantities
necessary for the implementation of the tire model Pajecka Magic Formula are discriminated, where
its implementation is compared with the literature. The multibody model is based on the TLMO03e
electric prototype developed by the TLMoto team in IST. The motorcycle model is tested in the simple
straight-line scenario. The control of the motorcycle is presented through the implementation of an
LQR controller. A reduced model is suggested, for controlling the motorcycle in different scenarios.
Keywords: Multibody Dynamics, Motorcycle Dynamics, Pacejka Magic Formula, Motorcycle Control,

Racing Motorcycle

1. Introduction

In the framework of motorcycle dynamics, control
can be used to simulate a perfect rider in a track,
in order to reach a performance goal or to reveal
system limitations. It is also applicable on situa-
tions of overcome instant human control, such as
in driverless condition, or to support the rider in
specify trajectories.

Vehicle dynamics play an important role in the
engineering world as it is used daily for human mo-
bility and the transportation of resources. With
regard to motorcycles, they are increasingly used in
the choice of short courses. Therefore, an under-
standing of the fundamental behaviour of motorcy-
cles is required to reveal the mechanisms for control,
and to highlight the conditions of instabilities that
dangerously affect the rider’s control capabilities.
One of the aspects of the two-wheel system is that
it is an unstable system by nature, at low speeds.
It has a range of velocities in which it is self-stable,
where the necessary forces in the front wheel are
developed to self-stabilize but, for higher velocities
becomes unstable again [3]. Another aspect of two-
wheeled vehicles is the non-intuitive movement of
the steering to describe a curve [3, 19].

A typical approach to study a mechanical system
is to define it as a multibody system. A multibody

system is composed by bodies or links, which the
motion between each can be constrained by inter-
nal and external forces. The bodies are connected
by kinematic joints, formulated by kinematic con-
straints equations [12]. Among the various possibil-
ities of external forces that can act on a system, in
dynamic road vehicles, greater importance is given
to the tire’s contact with the ground. Many au-
thors present different options for contact models
[18, 5], but in order to portray the contact between
tire and road, these stand out [6, 7, 8][13]. Many
commercial software are used to preform dynamic
analysis, but the program MUBODyn-Matlab, de-
veloped and created at IST, is the one used on this
work. Since the contact between the tires and the
ground is extremely important in dynamic vehicles,
the attempt to reproduce it has been a subject of
study over the years. An analytical tire model was
proposed by [6, 7, 8], but more attention was payed
to the semi-empirical tire model developed by [13],
where a standard formula is used to calculate al-
most all forces developed in contact. Also in [13], a
specific tire model for motorcycles was developed in
order to meet the wide ranges of roll angle described
by them.

Also associated with external factors, such as
wind or the condition of the ground, motorcycles



are known to destabilize in two ways - weave and
wobble instability effects [14]. One of the ways to
study the appearance of these effects is to know the
behaviour of the motorcycle through a control sys-
tem. For this work the implementation of a virtual
driver is the focus of the control system. A con-
trol methodology is presented in [10] for a car with
four-wheel steering and application of traction and
braking torques to each one of them. The strategy
is later implemented in Matlab by [1] using a bicy-
cle model. A state-feedback control such as linear
quadratic control, is commonly used to control a
motorcycle. In [11], both feedback and feedforward
control are used to control a motorcycle by steering,
by applying a torque on it. There is no such thing
as equations that exactly describe the dynamic be-
haviour of a motorcycle. Therefore, one of the mea-
sures that can dictate a good control system, is the
choice of state variables and the simplified equa-
tions that describe the motorcycle dynamics. In [16]
can be found the derivation of simplified equations
of motion, where is later applied to motorcycle by
[11]. Describing a trajectory over a reference line is
one of the great challenges faced by many authors
on motorcycle control. A road preview is one of the
strategies used, as it is similar to the way a human
drives a vehicle [17].

This paper is structured as follows. In section
2, an overview regarding the dynamics of the mo-
torcycle is presented. For section 3, the multibody
dynamics used to simulate the motorcycle dynam-
ics is formulated, where a formulation of a steering
driver is included. The section 4 concentrates on
the implementation of the tire model and the con-
tact detection is described with detail. In section
5, the motorcycle model is formulated and it is pre-
sented the first scenario in a straight line with an
unassisted motorcycle. In section 6, the reduced
model is defined along with the implementation of
the controller and the motorcycle is finally tested
with control in some scenarios, where it is increased
the difficult of control. Lastly, in section 7, conclu-
sions are presented together with recommendations
for future work.

2. Overview of Motorcycle Dynamics
Motorcycles are an unstable vehicle by nature, due
to the fact that they must balance on two small
contact areas with the ground. The geometric pa-
rameters of the vehicle have a great importance in
motorcycle dynamics and stability, since they define
the purpose of the motorcycle. Reference works,
such as those by Cossalter [3] and Foale [19] present
a detailed description of motorcycle dynamics, the
influence of its geometry and of the many char-
acteristic phenomenons associated to acceleration,
braking, cornering and other dynamic characteris-
tics and responses.

2.1. Motorcycle Geometry

Geometric parameters are used to characterize a
motorcycle. Different sets of parameters lead to dif-
ferent dynamic behaviour, being those of the sport,
off-road or touring motorcycles distinct from each
other. Figure 1 shows some of the parameters more
important to characterize a motorcycle.
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Figure 1: Geometric parameters that characterize
a motorcycle.

p
wheelbase

Note that more stability means less maneuver-
ability, being important to maintain an equilibrium
between both in accordance to the purpose of the
motorcycle. An increase of the parameters p,t and
a, means more stability for the motorcycle.

2.2. Rectilinear Motion

A rectilinear motion of a motorcycle can be seen
as pure accelerating or braking scenarios. However,
some limits for both cases are assumed consider-
ing steady state motion for simplicity. Figure 2
shows the angular motion around the common in-
ertia axes, with origin on the center of mass of the
motorcycle frame. This reference frame is used to
describe motorcycle dynamics in general and the
particular aspects of the virtual rider dynamics of
this work, in particular.

\ Steering axis

roll axis

Figure 2: Definition of the inertia axis for the mo-
torcycle dynamics. ¢y is the roll angle and § the
steering angle.

The moments of inertia around the roll, pitch and
yaw axis are some of the most relevant mass associ-
ated parameters for the motorcycle dynamics. The



roll moment of inertia influences the "resistance” of
the motorcycle to the roll motion. Maintaining the
center of gravity position, high values of roll mo-
ment of inertia slow down the entry and exit in a
curve. Yaw moment of inertia influences the ma-
neuverability as high values of yaw moment reduce
the handling ability of the motorcycle. The pitch
inertia, together with the wheelbase, have a strong
influence on the motorcycle longitudinal dynamics,
due to its ability to use both rear and front tires for
braking/traction.

2.3. Cornering

In a cornering scenario, a motorcycle has to lean to
compensate the centrifugal forces due to the curving
of the motorcycle. Considering steady state motion
and neglecting some of the gyroscopic effects, a mo-
torcycle in cornering can be understood in plane,
simply by the force equilibrium between the cen-
trifugal and gravity forces as shown on the figure 3,
i.e., the direction of the resultant must intersect the
line on the road between the two contact patches of
the tire.

Figure 3: Motorcycle under Cornering (adapted
from [3]).

It is interesting to consider the case of a motor-
cycle entering in a curve, considering gyroscopic ef-
fects, which relates to the steering position of the
motorcycle. Say that the motorcycle is to turn to
a right curve. Contrary to the intuition, the han-
dlebars are first turned to the left producing the
effect of leaning the motorcycle to the right, due to
the lateral force on the front wheel and gyroscopic
moments. While entering the turn, the handlebars
are slowly turned to the right to ensure the proper
roll of the motorcycle in order to follow the required
trajectory, i.e, to perform the right side curving.

3. Multibody Dynamics Formulation

Assuming that the flexibility of each one of the sys-
tem components can be neglected, the analysis of
a rigid body system allows calculating the forces
acting on it. The procedure to identify the rigid
bodies and to define the constraints between them
is overviewed in order to describe the modeling fa-
cilities provided by the methodology used here. The
forces applied on the motorcycle are also discussed,

with particular interest on the contact forces of the
tires.

3.1. Coordinates of the Multibody System
A rigid body uses six independent coordinates to
represent its kinematics, being three for translation
and three for rotation. Translation and rotation of
a rigid body i is given by the position of its fixed
frame (£,1,¢) and the rotation of its axis relative
to the global frame (X,Y,Z). Using Cartesian co-
ordinates to define the position r; = [x,y,z]7 and
Euler parameters for rotation p; = [eg, e1, €2, e3]7,
in which one of the parameters is dependent [12].
The vector that defines the rigid body i position
and orientation is q; = [r], pT]7.

The position, in global coordinates, of a point P
belonging to the rigid body i, is described by vector
r; written as:

I‘IP =T +SIP =T +A[S;-P

(1)
where A; is the transformation matrix from body i
coordinates to the inertia frame coordinates.

3.2. Kinematic Constraints

The kinematic constraints, representing the restric-
tions between the relative motion of the rigid bod-
ies, are described by algebraic equations. These
constraints are used to represent mechanical joints.
By choosing the suitable kinematic joints, the be-
havior of a system of linked bodies can be modeled
to satisfy the correct system mobility. In the case of
application of this work, the motorcycle multibody
model is described by two types of joints: revolute
and translational joints [12].

Revolute joints allows for a single rotation of two
bodies around a common axis, thus preventing any
other relative motion. This means that two paral-
lel vectors on each body remain parallel after they
move, always sharing a common point. Revolute
joint has a single degree of freedom. Thus requiring
five algebraic equations to represent the kinematic
constraints.

Translational joints allow for the translation of
two bodies through a common axis while prevent-
ing any relative rotation. The translational joint is
defined by enforcing the orthogonality between dif-
ferent vectors. This joint has also a single degree
of freedom, being in this case a relative translation.
Thus requiring five algebraic equations to represent
the kinematic constraints.

For the purpose of motorcycle control, there is the
need to define one more constraint. To control the
steering with the handlebars, this constraint is de-
fined as a driver constraint in a revolute joint. Two
vectors are given, v; and v;, to regulate the angle
0 between the two bodies in a revolute joint. The
vector v; is perpendicular to the vector s;, and v;
is perpendicular to s;. Vector v; is also parallel to



v; when the two bodies are aligned, enforcing that
the steering angle ¢ is null. To manage the angle
d, a cross product is used to define the constraint
equation.

Figure 4: Driver for steering.

The driver is defined by a single algebraic con-
straint, which is the steering angle ¢, related to the
orientation of bodies i and j.

3.3. Equation of Motion

For any multi-body system, integrated with kine-
matic constraints and rigid bodies, the governing
equilibrium equations are expressed as:

[M ¥ {3} - {7 - 2a<ig> —,32q)} (2)

o, O

Here, M is the mass matrix, ®, is the Jacobian
matrix related to the kinematic constraints, { is the
accelerations vector of the system, A is the vector of
Lagrange multipliers associated to the joints reac-
tion forces, g is the force vector, y is the right-hand
side of the acceleration constraints equations, ® is
the first time derivative of the kinematic constraints
® and « and S are parameters associated with the
Baumgarte Stabilization [2].

For a rigid body i, provided that the body fixed
frame (&,n,); is fixed to its center of mass and
that the axis are coincident with its principal inertia
axis, the matrix M; is diagonal and filled with the
mass and principal inertial moments of the body,

To solve the system of equations in 2, it is nec-
essary to set initial conditions. The parameter tg is
the initial instant of time to start the simulation,
q;, = q; the initial vector of position and orienta-
tion, and q;, = ¢; the initial velocity vector.

In order to understand and computationally im-
plement the algorithm of the multibody equation of
motion, a flowchart is shown in the Figure 5. The
Baumgarte parameters are set to @ = 5 and § = 5,
proving to be good values as as suggested in [2].

3.4. Applied Forces to the Multibody System

The suspension has an important role in vehicle dy-
namics as the handling characteristics of the mo-
torcycle strongly depend on them. The most im-
portant components of the suspension systems are
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Figure 5: Flowchart of multibody dynamics pro-
gram.

translational spring-damper components. The force
developed by the suspension element is computed
through the sum of the spring and damper forces,
fK and f¢ respectively. The force felt in body i is
represented as:

fhe = (rF+f¢)u (3)
while the force on body j is the opposite of that on
the other body, since body i and j are a reaction
action pair, the forces felt in each body are equal
in magnitude, but with different signal. The unit
vector u is aligned with the attached points of each
body.

Every type of systems are integrated on a
medium, and the interaction between the system
and the medium influences the system behaviour,
beyond the internal forces developed inside the sys-
tem. This interaction can be seen in a multibody
system perspective, as external forces applied to it.
For road vehicles, the main interaction is usually
with the road, that is relatively rigid. This interac-
tion is commonly described by contact forces mod-
els [18, 5]. Contact between two bodies is often
characterized by the normal and friction forces de-
veloped in each sliding body surface, and the stiff-
ness and damping of the body that is treated as
dissipative energy.

In this work, the multibody system is a motorcy-
cle and the contact is made between the road and
the pneumatic tires, being the generic forces devel-
oped represented in Figure 6.

Figure 6: Forces and moments on pneumatic tire
due to its interaction with the road.



Among the model options, two models are con-
sidered for the implementation: an analytical model
developed by Gim and Nikravesh [6, 7, 8] and
a semi-empirical one developed by Pacejka [13].
Among these, the Pacejka tire model is the mostly
used by the industry and being its parameters avail-
able for the application foreseen here and, therefore,
it is selected to be implemented in this work.

4. Tire Forces Implementation

The tire force evaluation requires that contact is
first detected and, if it exists, that the proper kine-
matic quantities of the wheel and road are defined.
Afterwards, the tire force model is used to evaluate
the tire forces and moments. In this section, the tire
model known as Pacejka Magic Formula developed
in [13] is presented with the assumptions purposed
by Sharp [15]. The implementation of the Pace-
jka Magic Formula tire model is presented and the
demonstration of its performance compared with of
the [15]. Finally, the tire contact forces are applied
to the wheel body in which the tire is mounted.

4.1. Contact Detection

The contact detection is the first step on tire forces
calculation. The contact search consists in identify-
ing the contact patch and evaluating an indentation
between the tire geometry and road. The uneven-
ness of the ground is well described by a triangular
mesh. Each triangle is represented by three nodes
numbered counterclockwise with respect to the nor-
mal of the triangle surface u,.

For every time step in contact detection algo-
rithm, two main parts are identified. First it is
assumed a flat horizontal road, and after the search
for a triangular contact patch, all the quantities
needed for the tire model are computed if there is
penetration of the tire with the road. Second, if the
triangular contact patch found is not horizontal, the
quantities are computed again for the new triangu-
lar contact path. Figure 7 reveals all the points,
referential systems and quantities needed for better
understanding.

; Xroad

Figure 7: Axis system necessary and important
points in contact search.

Figure 7 shows that the tire can be approximated
to a toroidal body, with a revolution R3, of a crown

with radius Ry. Point G is the contact point with
the road and B the point below, belonging to the
crown surface. On the limit of the contact, B and
G are the same. In order to search for a triangu-
lar contact patch, the position of point B is firstly
defined assuming a flat horizontal road. The ma-
trix A, = [uxr uy, uzr], represents the trans-
formation matrix of the road coordinate system
(XYZ)roaa to the global coordinate system (XYZ).
If the possible triangular contact path found is
horizontal, u,, = [0 0 1]/, the penetration ¢ be-
tween the tire and the contact patch is evaluated

by performing;:
(4)

The quantities z¢ and z? are the z coordinates
of point G and B, respectively. The quantity z€ is
obtained from the expression which defines a plan

' (5)

where a, b and ¢ are the plan coefficients. Note that
x¢ = xB and y© = yB, since the triangular contact
path found is horizontal. There is penetration be-
tween the tire and the road if § > 0, otherwise the
search is initiated for the other tire and then ad-
vance for the next time step. The penetration ¢, the
position of the contact point r¢ = [xG y¢ ZG],
and the transformation matrix A, are now defined
for the case of having a horizontal contact patch.
To evaluate the penetration § for the case of
a non-horizontal contact patch, the equation 6 is
used, where the coordinate z of the normal vector
u, of the contact patch is multiplied by the equation

4, following the expression:

B
6=2z%-¢

2% =a+bxB+cyP

0=y, (2% - 2P) (6)

The contact is again verified if the rigid body
wheel penetrates the road with § > 0, as illustrated
in Figure 7. In order to compute the position of the
contact point r¥, equation 7 is given as:

r¢ =18 + ou,

(7)

For the case of the non-horizontal triangular con-
tact patch, are defined the value of the penetration
&, the position of the contact point r® and the trans-
formation matrix A,.

4.2. Kinematic Quantities for Pacejka Magic For-
mula

The computation of the kinematic quantities to
evaluate the forces acted on the tire, are common to
some model, as [6, 7, 8] and [13]. Therefore, Figure
8 shows the important angles on tire dynamics used
to compute the necessary kinematic quantities.

In order to calculate the slip quantities, it is im-
portant to understand how Pacejka defines the tire.
The tire is seen as a thin disc, where the point C,



camber angle Y A Zroaa

road patch

Figure 8: Important angles in tire dynamics.

shown in Figure 9, is the contact center point in-
tersected by the disc and road. Point §, shown in
Figure 9, is located at a distance from the wheel
center equal to the effective radius r.

thin disk

To|l Te| T

Figure 9: Location of point C, its velocity and slip
velocity on point S (adapted from [13]).

For Pacejka, the slip quantities are evaluated
around point C. To compute the position of point
sC with respect to the wheel center of mass, given
by equation 8, is considered the position of the con-

tact point G previously computed.

0
sG =55 + A, {(Ry - 6) tan ()} {1 (8)
0

The position of the contact point s¢ with respect
to the wheel center of mass is given by s¢ =r% —r,,
and vy is in fact the camber angle value expressed
by equation 13. Longitudinal slip « is given as the
quotient between the longitudinal slip velocity Vs,
and longitudinal velocity Vey:

o Vsx
max[|Vexl, evx]

9)

The longitudinal slip velocity, i.e., longitudinal
velocity of point S, is given as Vs, = Vex —V,., where
Vex is the longitudinal running velocity in point C
and V, = Q,r, the rolling velocity, where €, seen in
Figure 9, is the angular rolling velocity of the wheel.
Covering all cases, Ve, can be computed as follow,

where w,, is the angular velocity of the wheel.

1 0
Vex = (Affw)T 0p - (AZwW)T 0 ||SS|| sin(y)
0 1

(10)

For a flat (or approximately flat) road, there is no
angular variation between point S and wheel cen-
ter. Cases where the velocity V., becomes null, it
is replaced for a small quantity ey, = 1073, also to
calculate lateral slip ratio.

Lateral slip ratio a* is defined as the tangent of
the slip angle, computed as the quotient between
lateral slip velocity Vi, and longitudinal velocity of
point C. Using the modulus for V¢,, backwards
running is covered.

Vsy

o =tana -sgn(Vey) = ———————
! max|[|Vex|, evx]

(11)

Vsy can be obtained as follows:

0 0 [0
Vsy = (Al't,)" 31 — (AT(X 0 ¢ xwy)) {1
0 —Te 0

(12

The value of camber angle, the resulting angle
between the normal of the road and the thin disc,
can be computed as:

0
y = T_ arccos(ul, A, {0¢)
2 1

(13)

Performed the computation of slip quantities -
longitudinal slip «, lateral slip @* and the camber
angle y - the Pacejka Magic Formula will be used
to ensure the forces developed on the tire.

4.3. Pacejka Magic Formula

If there is contact between tire and road, the Pace-
jka Magic Formula tire model can now be applied.
The model used in this chapter is restricted for
steady-state situation. The inputs necessary for the
model are presented in the Table 1, as well as their
outputs.

Table 1: Input variables necessary for the model
and the outputs given.

Input Output
longitudinal slip ratio, « ?‘
lateral slip ratio, a* My
camber angle, y *
F M,

z MZ

The model is known by Magic Formula, because
it is the used a single standard formula to compute



different output values. Besides the input described
in the table, the formula also needs non-dimensional
parameters p, g, r and s, related to the tire used
and some operation condition, and a set of scaling
factors 4. The default values of A will be considered.

Together with the kinematic quantities calculated
in the previous section, the tire model also needs the
vertical force F, imposed on the tire as input. C, is
the radial stiffness coefficient of the tire and D, its
radial damping coefficient. The equation 14 of the
vertical force presents a different form from the one
used in [13].

F,=C,6-D.6 (14)

Proceeding to the computation of the forces vec-
tor f = [FX Fy FZ]/ and moments vector m =
[My M, M.]|’ with the use of the Pacejka Magic
Fromula expressions, the outputs of the tire model
are all defined. To work with a symmetric tire
model, the coeflicients Sgxa = SHy« = Svy« Were
set to zero [15], modifying some of the original tire
parameters. With all the inputs expressed, the vec-
tor of forces f and moments m resultant on point C
are transferred for the wheel body center of mass,
in order to incorporate the g forces vector of the
multibody system dynamics, as seen in Figure 5.

5. Multibody Model for the Motorcycle

All the multibody formulation made in Chapter 3
are used in order to characterize the rigid bodies,
kinematic joints, suspension elements and tires of
the motorcycle TLMO3e. Finally, a simple scenario
with the motorcycle model is presented.

5.1. Description of TLMO03e

TLMO3e is a racing track motorcycle developed
by TLMoto team, a group of enthusiastic students
for motorcycle engineering from Instituto Superior
Técnico. The TLMO3e is an electric motorcycle,
developed with the aim of participating in an inter-
national competition called Motostudent.

Figure 10: TLMO03e CAD.

5.2. Multibody Model

To obtain the necessary values for the multibody
model, a CAD software with the entire motorcycle
is used to have a more accurate and faster acqui-
sition of data. The data is taken considering the
motorcycle hanging, in other words, no force ap-
plied by the suspension elements, and with the de-

fault mechanical setup. The motorcycle multibody
model is composed of 6 rigid bodies where the rear
suspension is not taking into account, since it has
a very low weight. For dynamics purposes, body
3 is composed for the pilot, in a static position,
and frame. The values of the mass properties and
the principal moments of inertia were extracted for
each rigid body. For each rigid body, the local co-
ordinates system is positioned in its center of mass
and aligned with the principal axis of inertia.

The kinematic joints are responsible for giving
the bodies the desired motion between them. With
all bodies defined, the kinematic constraints are for-
mulated through the information of the constraint
joints coordinates, taken in the fixed frame of the
rigid body that is involved with the joints. For the
whole model, this one is composed by 4 revolute
joints and 1 translational joint.

The front suspension used on TLMO3e is a fork
telescopic, which is the most used, specially in
this type of motorcycles. For the rear suspension,
TLMO03e is equipped with a monoshock attached to
the frame and swingarm, being both suspensions
composed by a spring and a damper.

The slick tires used on this motorcycle are:
90/580 R17 for the front tire and 120/600 R17 for
the rear tire. The nomenclature to describe the tires
refers to their size, where the first number is the
width in millimeters, the second is the diameter of
the tire in millimeters and the third is the radius of
the rim in inches. Unfortunately, it is very difficult
to find the tire properties database, on literature,
for these tire sizes. By virtue of that, the tire pa-
rameters of 180/55 presented in section 4 were cho-
sen to represent both tires’ dynamic behaviour. Of
course, the tire properties do not fit with the size,
causing less accurate values on simulations. How-
ever, the tire parameters found on Adams software
database are complete and consistent with the ISO
system.

5.3. Scenario 1: Straight Line

To test the tire model along with the motorcycle
model, a simple straightforward trajectory was at-
tempted. In addition to post processed graphs re-
sulting from the simulation, SAGA software was
used to visualize graphically the motorcycle be-
haviour derived from the simulation. In this soft-
ware all the dynamics information of each body
is uploaded as well as the files with graphic in-
formation taken from a CAD software. Figure 11
shows the movement of the center of gravity of body
3 (Frame + Pilot) along with the trajectory pre-
scribed. Although Figure 11 is representing the in-
formation of body 3, it also represents directly the
entire motorcycle, since body 3 is its main body.
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Figure 11: 3D trajectory of body 3.

6. Motorcycle Control

The control strategy used for the motorcycle is
based on the work of [1]. In order to describe the
motorcycle reduced model, the works of [11] and
[4] were taking into account. It was decided to fol-
low the structure of the simplified motorcycle equi-
librium equations, for the motorcycle motion, pre-
sented in [11]. In the controller design, as demon-
strated by [9], a LQR controller is used for motor-
cycle controlling purposes. The simplicity of the
reduced model idea is also discussed as a way of
control over a reference line.

6.1. Description of the Motorcycle Reduced Model
The variables to represent the state of the motorcy-
cle must be defined before describing the simplified
equations for motorcycle equilibrium. As seen in
Chapter 2, motorcycle needs to lean to describe a
curve. Thus, the lean angle ¢ needs to be added to
the state vector. Using a bilinear control method-
ology, as shown by [1] and [9], the continuous-time
state-space regulator form is defined by the next
equation.

7z =Cz+Bu+Nu (15)

A more reduced model can be used to control
a motorcycle instead of those presented in [1] and
[11]. A motorcycle could only use the steering an-
gle § and the lean angle ¢ information to main-
tain equilibrium, as referred and used by [4] and
[9]. Therefore, the state vector can be reduced to:

. AT
z=[6 ¢ 6 & (16)

To control the motorcycle under a constant ve-
locity, the moments applied on the wheels are null.
For that reason, the control vector is summarized
as steering torque:

T
u= M| (17)

The motorcycle parameters used in the simplified
equations for motorcycle equilibrium are consider
with a fix value, since very small variations occur on
the motorcycle geometry after its stabilization. It

was consider the default values for i, and A founded

n [11]. Through the simplified equations of motor-
cycle equilibrium derived, the matrices C, B and N
are achieved.

6.2. Design of the Controller

In this work, the controller takes the place of the
rider with regard to the motorcycle stabilization.
Using a controller based on the methodology pro-
posed by [10] and used by [9] for control, the
continuous-time state-space regulator is defined by
equation 15.

Matrix N € R™™ represents the sum of product
of state variables by N; matrices. In this case o =1
with z; = ¢ and Ny = N4, however Ny is null.

Initial values for z are needed to initialize the
controller model, z(0) = zg. The state vector z € R"
and the control vector u € R™™  are related by the
state-feedback law:

u=-Krp(2)z (18)

Where the optimal gain matrix Kpg € R™" ig
defined in a way that equation 18 minimizes the
quadratic performance index J.

1
J= 5/ (z' Qz + u! Ru)ds (19)
to

The symmetric weighting matrices Q € R and
R € R™™ are positive semi-definite and definite
matrices, respectively. Notice the values of matrices
Q and R are set by the user and they have a major
influence on the behaviour of the controller. In this
work, Q and R are diagonal matrices. The calcu-
lation of the optimal gain Krp is done by solving
the state-dependent form of the algebraic Riccati
equation.

The motorcycle controller structure is very simi-
lar to the one presented by [1] and implemented by
[9]. This work focuses more on [9] as it treats the
controller model to reflect the motorcycle dynamics.

The controller input variables are: the time ¢,
the position vector q and the velocity vector q of
body 3 (Frame + Pilot), and a flag value. For
the output variables: the position &, velocity é and
acceleration § of the steering angle. The controller
algorithm is divided into two phases. The initializa-
tion (flag = 2), which happens at the beginning for
t =0, the steering angle and its time derivative are
initialize. In the second phase, for every time step
(flag = 1) during the motorcycle motion, it returns
the steering angle, its velocity and acceleration.

Equation 20 computes the roll angle ¢y, where is
used the entry of the transformation matrix A3(3, 2)
corresponding to the rigid body i = 3 (Frame +
Pilot).

om = arccos(—A3(3,2)) - g (20)



As known, the LQR control tries to minimize a
cost function, leading to the variables of the state
vector become as small as possible. Attending to
this, the roll angle ¢ of the state vector z, is given
by the difference of the actual roll angle ¢, and a
desired roll angle ¢ges.

& =M — Pdes (21)

6.3. Prescribe a Trajectory

Curving in a constant radius curve is the simpler
scenario to demonstrate the capability of the mo-
torcycle controller. Starting at v = 20m/s, it was
defined a desired roll angle of ¢4,y = 0.5[rad] at
t = 0.6[s], where at this time the motorcycle is
practically stable. Figure 12 shows some of the time
steps taken from SAGA software in the curve sce-
nario.

> 5 % 1

t=20]s] t=15]s] t=10]s] t=07]s]

Figure 12: Time steps in curve scenario.

In order to accomplish this curving scenario,
some modification were made. As identified by [9],
the entry C(4, 1) of the matrix C is responsible for
the steering angle’s interaction with the leaning an-
gle. To achieve better results, this entry was set
to C(4,1) = —80. Modifications to the weighting
matrix Q were necessary, leading to more weight to
the steering position. Qgiag = [100 1 1 1] and
R=[1].

Roll Angle

0 05 1 15 2 25 3 35 4
time [s]

Figure 13: Roll angle ¢y over the time in curve
scenario.

It can be observed a smooth transition until the
stabilization of the roll angle, however exist over-
shoot. The final roll angle also presents an error,
possible derived from coefficient C(4,1). It was ob-
served, when the coefficient approaches 0, the error
in the final roll angle gets very small but the over-
shoot increases significantly, leading sometimes to

an instability. When the coefficient becomes more
negative, the opposite happens. In initial simula-
tions, it was verified an oscillation of the steering.
To resolve that, the steering damper coefficient was
set to Cs = 20[Nms/rad].

Curve counter curve, or curve in S shape, raise
other challenges for the motorcycle controller. In
this scenario, the motorcycle change the roll angle
from @ges = 0.5[rad] to ¢ges = —0.5[rad] almost in
an instant. Also starting with v = 20[m/s], it was
defined a roll angle ¢4es = 0.5[rad] at t = 0.6[s] and
a desired roll angle ¢q4es = —0.5[rad] at ¢ = 3.5[s].
Also for this scenario, the values of C(4,1) = —80
was maintained as well as the values of the matrices
Q and R. The steering damper coefficient Cs =
20[Nms/rad] also remains unchanged.

Roll Angle

¢ rad
o

time [s]

Figure 14: Roll angle ¢y over the time in curve
counter curve scenario.

In the transition of roll angle values at r = 3.5[s],
as expected, the overshoot value is more salient.
The error of the roll angle is the same, even to the
left side, after the stabilization of the motorcycle.

7. Conclusions and Future Work

The concept of a semi-empirical tire model reveals
the necessity of a great amount of tire parameters
database, making it very accurate when applied to
the correct tire geometry. Unfortunately, in the lit-
erature, it was not possible to find the tire database
for the tires used, leading to compute less realist
forces and moment applied on the tires. Although,
an easy and versatile implementation of the Magic
Formula tire model is described. The next objective
of this work was the construction of the motorcycle
multibody model of TLMO03e prototype, allowing
future studies of the prototype’s dynamic aspects
in more detail.

Finally, the motorcycle dynamic behaviour was
evaluated under the conditions of the controller.
A simple reduced model is chosen to control the
motorcycle over different scenarios. Even though
the simplified equations include a tire model, this
is not consistent with the Pacejka tire model used
in the motorcycle model. This difference between



tire models, along with the imprecise tire model al-
location on the motorcycle model, may reflect in
the result of the roll angle achieved in the curve
scenarios. As stated in Chapter 6, the change of
the coefficient C(4,1) is fundamental to motorcycle
stability. A major negative value of the coefficient
results in less overshoot, but a greater error in the
roll angle. If the coefficient becomes close to zero,
stability problems can be found mainly for larger
roll angles. The vehicle motion is too sensitive to
the coefficients prescribed for the matrices Q, R and
C. A more reasonable selection of these coefficients
is still an open question that needs to be addressed.

The velocity profile of the motorcycle along the
track is a quantity that needs to be tracked in order
to achieved a least time lap. The controller must
be be further developed to enforce that selected ve-
locity profile, along the track, be achieved. The
idea of achieving a minimal time lap involves not
only an optimal trajectory, with its corresponding
optimal velocity profile, but also the tuning of the
motorcycle setup, which optimization methods are
promising tools.
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