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Abstract 
 

The work presented in this dissertation belongs to the scientific area of electronic design automation and 

addresses the automatic sizing of radio-frequency (RF) integrated circuits (ICs). 

This work explores an innovative approach to automatic circuit sizing of RF IC blocks using deep learning 

techniques and, more specifically, artificial neural networks (ANNs), to complement and improve an 

optimization-based sizing loop. In order to find all the relevant performance figures of a certain circuit sizing 

solution, the optimization loop simulates and evaluates the desired circuit topology under different process 

fabrication dispersions, as well as voltage and temperature variations, which are also known as process, 

voltage, and temperature (PVT) corner analysis. 

The ANN architecture proposed in this work is a regression-only model. The goal of this model is to estimate 

all the relevant circuit performances in PVT corners using, as input features, the circuit’s sizing and the 

accurate performance figures in typical conditions, and thus, speeding-up the optimization process by 

bypassing the time-consuming circuit simulation. This model will complement and speed-up the 

optimization loop of the AIDA tool. 

The results obtained show that the PVT estimator was able to reduce the workload of the circuit simulator 

up to 78.5% while achieving a total optimization speed-up factor of 2.92. These results proved the PVT 

estimator’s plug-and-play capabilities, being reused for optimizations with completely different targets of 

the same circuit topology, while its structure can be additionally reused for different VCO circuit topologies. 
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Resumo 
 

O trabalho apresentado nesta dissertação pertence à área científica de automação de projeto eletrónico e 

aborda o dimensionamento automático de circuitos integrados de rádio frequência.  

Este trabalho explora uma abordagem inovadora para dimensionamento automático de blocos de circuitos 

integrados de rádio frequência usando técnicas de aprendizagem profunda e, mais especificamente, redes 

neuronais artificiais para complementar e melhorar um ciclo de dimensionamento baseado em otimização. 

Para encontrar as performances para uma certa solução de dimensionamento, o ciclo de otimização simula 

o circuito em diferentes dispersões de processamento de fabrico, e ainda variações de tensão e 

temperatura, mais conhecido como análise de condições extremas de funcionamento PVT. 

A arquitetura da rede neuronal artificial proposta neste trabalho é a de um modelo de regressão. O objetivo 

do modelo é estimar os desempenhos do circuito mais relevantes nas condições extremas de 

funcionamento PVT usando, como entradas do modelo, o dimensionamento do circuito e as performances 

em condições típicas, e assim, acelerar o processo de otimização evitando simulações demoradas. Este 

modelo vai complementar e acelerar o ciclo de otimização da ferramenta AIDA. 

Os resultados obtidos mostram que o estimador de PVT foi capaz de reduzir o esforço computacional do 

simulador de circuitos até 78.5%, alcançando um fator de 2.92 de aceleração total do tempo de otimização. 

Estes resultados também mostram que o estimador de PVT pode ser reutilizado para otimizações com 

objetivos bastante distintos para a mesma topologia de circuito, enquanto que a sua estrutura pode ser 

reutilizada para diferentes topologias de circuitos VCO. 
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1 Introduction 
 

Over the last few years, the electronics industry has experienced a massive increase in the demand for 

smaller and more complex integrated systems, mainly due to the rise of portable devices. Now more than 

ever, developers are faced with the challenge of creating more powerful systems while ensuring smaller 

size and low power consumption. Technologies such as the internet of things (IoT) or 5th generation 

broadband (5G), will join millions of devices and sensors together, enabling great advances in education, 

healthcare, transportation, agriculture, amongst many other areas. All these applications continuously 

gather an increasing amount of data, posing unprecedented challenges to each element of the networks. 

Due to this, today’s market demands high communication rates, large bandwidths, and ultralow-power 

consumptions, in which radio frequency (RF) integrated circuits (ICs) play a critical role. Most of these 

systems implement a combination of both analog/RF and digital circuits in the same chip, i.e., a Mixed-

Signal (MS) Systems-on-Chip (SoC). 

 

1.1 Motivation: The Mixed-Signal Design Paradigm 
 

Although the percentage of area occupied in MS SoCs by digital circuits is larger than the area occupied 

by analog circuits, the analog parts generally require a higher effort from the circuit designer, as depicted 

in Fig. 1.1. 

   

 

 

 

 

 

 

 

The continuous nature of the signal values handled by analog circuits makes them more susceptible to 

noise and process variations than digital circuits, resulting in a design that is both more complex and time 

demanding. 

Figure 1.1 - Contrast between Analog and Digital blocks’ area of implementation in an IC and the 
corresponding effort to implement them from the perspective of a designer. Reprinted from [1] 



2 
 

Because of this, designers throughout the years have been trying to replace analog circuits with digital 

ones. However, some typical blocks cannot be replaced. A few examples are shown in the following list [2]: 

• In a system’s input, the signals captured by a sensor, microphone, or antenna must be received, 

amplified, and filtered to allow their digitalization with a good signal-to-noise and distortion ratio. 

Common applications of these circuits are in sensor interfaces, telecommunication receivers or 

sound recording; 

• In a system’s output, the processed digital signal must be converted to analog, and to drive outside 

load with low distortion, it must be strengthened. These circuits are typically utilized in 

telecommunication transmitters and speakers; 

• MS circuits like sample-and-hold, analog-to-digital converters, and frequency synthesizers. These 

blocks establish the interface between input/output sides of a system and digital processing parts 

of a SoC; 

• Voltage or current reference circuits and crystal oscillators to offer stable and absolute references 

for the circuits mentioned before. 

In addition, for IoT and 5G, the design of RF and mm-Wave ICs in deep nanometric technologies is 

becoming extremely difficult because of their high complexity, demanding performances, and their need to 

be designed and manufactured at minimal costs under strict time-to-market constraints. 

The design problems faced are not only because of the overwhelming wide range of frequencies and 

dynamic ranges involved but also due to their dependence on non-reliable models of passive devices; the 

huge negative impact of layout parasitics at high frequencies; and being integrated on deep nanometer 

technologies suffering from unprecedented variability problems and non-idealities. Avoiding costly redesign 

cycles and reducing post-fabrication tuning and compensation work on first-pass fabrication success 

became primary RF IC design objectives. Established computer-aided design (CAD) companies provide 

environments that allow circuit designers to carry this flow manually. Despite this, the classical trial and 

error method is no longer viable due to the high number of complex interactions leading to sub-optimal RF 

designs. To solve these issues and comply with the requirements above, electronic design automation 

(EDA) tools able to explore design spaces beyond human capabilities would greatly benefit designers. The 

adoption of automation mechanisms can greatly reduce circuit development time while simultaneously 

improving their performance. Unlike analog/RF IC design, plenty of EDA tools are available and established 

for the digital IC design flow. For these reasons, the development and improvement of automation tools for 

the analog design process became an extremely relevant topic of research.  

Despite the effort of the research community on this topic over the past few decades, automatic analog IC 

design tools have not yet reached the desirable state of maturity, resulting in a continuous human 

intervention throughout the whole design process. 
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To summarize, the process of designing an analog block generally requires more effort than a digital block, 

and the designer must be knowledgeable and skillful. Adapting and improving existing EDA tools will result 

in the computational support that analog/RF designers require to face the abovementioned challenges. 

1.2 Topic Overview: Analog/RF IC Design Flow 
 

Regarding the specific design flow of analog ICs, each designer/company may have its own IC design flow. 

However, in [2], Gielen and Rutenbar standardized the steps that most designers take when manually 

designing an analog or mixed-signal (AMS) IC, introducing the well-accepted design flow shown in Fig 1.2. 

This flow consists of a series of top-down design steps repeated from the system-level to the device-level 

and bottom-up layout generation and verification. 

 

 

 

 

 

 

 

 

 

 

Using a hierarchical top-down design methodology allows performing system architectural exploration, 

achieving a better overall system optimization at a higher level of abstraction before starting more specific 

implementations at the circuit or device levels. With this, one can find problems earlier in the AMS design 

flow, increasing the chances of first-time success, with fewer time-consuming redesign iterations [4]. 

In this design flow, the number of hierarchy levels may vary according to the complexity of the system being 

designed, and although there are no overall accepted representations for the architectural design, the steps 

between two hierarchical levels are: 

• Top-down electrical synthesis path, which includes topology selection, specification translation (or 

circuit sizing at the lowest level), and design verification; 

• Bottom-up physical synthesis path, that includes layout generation and detailed design verification 

(after layout extraction). 

Figure 1.2 - Hierarchical levels and design tasks of AMS IC design process. Reprinted from [3]. 



4 
 

In topology selection, the most appropriate circuit topology is determined to meet a certain number of 

specifications at the current hierarchy level. This topology can be chosen from a set of existing topologies 

or synthesized. 

Specification translation is the step where the designer maps the high-level block specifications and, given 

a certain topology, maps them into individual specifications for each of the sub-blocks. At the lowest level, 

due to these sub-blocks being single devices, this task is narrowed down to circuit sizing. Before proceeding 

down in the hierarchy, specifications translation is verified using simulation. At higher levels of the design 

flow, there is no device-level sizing available, which results in behavioral simulations. However, at lower 

levels (circuit and device-level), device sizing is available, and therefore, electrical simulations are used. 

Each block specifications are passed to the next hierarchy level, and the whole process is repeated until 

the top-down electrical synthesis flow is completed. 

To aid designers overcome the many difficulties encountered in manual sizing of analog/RF IC blocks, 

several optimization-based sizing approaches emerged. These EDA tools use several algorithms that 

explore the design space effectively, rather than iterating over designer-defined analytical equations. They 

can be used along with performance models that can capture several circuit characteristics of RF circuits. 

However, despite its increased computational effort, utilizing foundry-provided device models and a circuit 

simulator as an evaluation engine resulted in the most accurate and generally adopted approach. Most of 

the commercially available solutions that use the simulation-based architecture, e.g., Cadence’s Virtuoso 

GXL [5] or MunEDA’s DNO/GNO [6], still take a restrictive single-objective approach being used to semi-

automate the manual sizing design process. Consequently, simulation-based techniques are a continuous 

subject of research of the community to face the most recent design challenges. This will be the topic of 

research in this dissertation. 

After the top-down flow is completed at a certain level, the sizing obtained must be verified by generating 

the corresponding layout and testing its performance. If these prove to be satisfactory results, the design 

flow is finished. If not, a redesign is needed, repeating the previous steps or the whole flow again.  
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1.3 Research Objectives 
 

When analyzing the state-of-the-art sizing tools available, as presented later in Chapter 2, optimization-

based sizing proved to be the best tool in handling a vast number of different circuit complexities while 

achieving exceptional results. 

However, there are some problems that must be mandatorily addressed. The optimization-based sizing 

loop requires a considerable time to complete. For example, in [7], the optimization-based sizing loop of a 

class-C/D voltage-controlled oscillator (VCO), performed with a population of 512 elements and 200 

generations, took 50 hours to complete, and in [8], with a population of 256 elements and just 100 

generations the optimization-based sizing loop of a class-B/C VCO, took 367 hours to complete. These 

optimizations were carried in a machine with an Intel-Xeon E5-2630-v3@2.40 GHz with 64 GB of RAM 

using 8 cores for parallel evaluation. For a developer that needs to meet the stringent time-to-market 

constraints, such optimizations’ durations may not be viable, and thus, a speed-up is necessary. 

In an optimization loop, the candidate sizing solution’s relevant performances are found by simulating and 

evaluating the circuit under process fabrication dispersion and voltage and temperature variations, also 

known as PVT corner analysis, which take most of the computational effort. Therefore, the objectives of the 

work presented in this dissertation are the following: 

• Speed-up the analog/RF IC optimization-based sizing loop of the AIDA tool [9] (further explained 

in Section 2.2.2) using artificial neural networks (ANNs) to complement the simulation process, and 

therefore reducing the simulator workload; 

• The model to be developed aims at estimating circuit performance in the PVT corners using the 

circuit’s sizing and performance on typical conditions as input features; 

• Study if the model used for a particular circuit topology can be reused for optimizations with 

completely different targets of the same circuit topology (plug-and-play functionalities); 

• Analyze if the structure of the model used for a particular VCO circuit topology can be reused for 

different VCO circuit topologies (plug-and-train functionalities); 

To test these objectives, the proposed PVT estimator will be integrated on the AIDA tool and tested on 

three different circuit sizing optimizations, as detailed later in Chapter 5: a class C/D VCO for 3.5-to-4.8 

GHz and 2.3-to-2.5 GHz ranges, and finally, an ultralow power class B/C VCO.  
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1.4. Document Structure 
 

This document is organized as follows: 

• Chapter 2 presents fundamental concepts and related work in the automation of IC sizing; 

• Chapter 3 presents and describes the proposed solution to speed up an optimization loop as well 

as an overview of the ANN structure and tuning phase; 

• Chapter 4 describes the tuning phase of the PVT estimator and presents the results of the PVT 

estimator before integration in the AIDA tool; 

• Chapter 5 describes the AIDA integration of the PVT estimator and presents the results obtained 

from three different optimizations;  

• Chapter 6 presents the conclusion drawn from this work and outlines future possible developments 

to further optimize the performance and abstraction of the PVT estimator. 
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2 Background and Related Work 
 

In this chapter, the main techniques used in analog circuit sizing are analyzed and discussed. Afterwards, 

related work using machine learning (ML) techniques to enhance simulation-based optimizations will be 

presented and discussed. Finally, a brief comparison between the best techniques for this work will be 

presented and the most appropriate will be chosen. 

The main techniques used in analog circuit sizing automation for the last few decades can be divided in 

two categories: knowledge-based and optimization-based. Both sizing categories are depicted in Fig. 2.1. 

 

 

 

 

 

 

 

2.1 Knowledge-based sizing 
 

Regarding knowledge-based, tools such as IDAC [11] and BLADES [12] have attempted to systematize 

circuit design using a design plan obtained from expert knowledge. Using design equations and a design 

strategy, these tools generate a pre-designed plan that aims to obtain circuit component sizes that meet 

the performance requirements established by the designer. Despite the good results that this approach has 

achieved, being its short execution time the main advantage, the design plan generation process is 

elaborate and requires a lot of time to complete. With the fast rate of technological developments these 

tools require constant supervision to keep the design plan up to date and the results obtained not being 

optimal makes this technique only acceptable as a first-cut design. 

2.2 Optimization-based sizing 
 

Considering the strengths of knowledge-based and trying to improve its weaknesses, the next generation 

of sizing tools focused on the application of optimization techniques to analog/RF IC sizing. These can be 

categorized in two main categories regarding the method used to evaluate the circuit’s performance: 

equation-based and simulation-based. 

Figure 2.1 - Automatic circuit sizing methods: (a) knowledge-based 
and (b) optimization-based. Reprinted from [10]. 
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2.2.1 Equation-based evaluation 
 

Equation-based optimization approaches use analytic design equations to evaluate the circuit performance. 

In OPASYN [13] and later in CADICS [14] design equations still had to be done by hand, while the degrees 

of freedom were resolved implicitly by optimization. Later, with the symbolic simulator ISAAC [15], the 

(simplified) design equations were automatically generated. 

Due to their short evaluation time, these methods are, like knowledge-based sizing, only adequate for first 

cut-designs. The main problems are some design characteristics are difficult to be mapped by analytic 

equations and all the approximations introduced throughout the equations yield designs with low accuracy. 

 

2.2.2 Simulation-based evaluation 
 

These sizing methods use a circuit simulator to evaluate the circuit’s performance. The main advantages 

of this approach over the previous ones, is its generality and easy-and-accurate model, however, due to 

the long execution of SPICE-based circuit synthesis and several simulation executions, this approach 

becomes time consuming. 

One example of this approach was used in [9], where an analog IC design automation environment called 

AIDA implements a design flow from a circuit-level specification to a physical layout description. AIDA is a 

combination and integration of two in-house tools, GENOM-POF [16] and LAYGEN II [17], where the circuit 

synthesis is executed by GENOM-POF. AIDA’s architecture is shown in Fig. 2.2.  

 

 

 

 

 

 

 

 

 

This tool uses a multi-objective design methodology together with optimization-based sizing, where a corner 

analysis combined with an electrical simulator as the evaluation engine, to perform fully automated circuit-

level synthesis. AIDA environment was validated using a single-ended folded-cascode amplifier as a case 

study, where the results obtained were compared with state-of-the-art industrial simulators and analysis 

tools, such as Synopsys HSPICE [18] and Mentor Graphics’ CALIBRE [19]. 

Figure 2.2 – AIDA’s architecture. Reprinted from [9]. 
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GENOM-POF is based on the multi-objective evolutionary optimization kernel NSGA-II [20] and uses the 

industry standard circuit simulator HSPICE. The architecture is shown in Fig. 2.3. The designer’s inputs are 

the circuit and its testbench in the form of HSPICE netlist(s). These netlists must have, as parameters, the 

optimization variables and must include a method to measure the circuit’s performance. The designer also 

must define the desired range of the optimization variables, design constraints and optimization objectives. 

 

 

 

 

 

 

 

 

 

AIDA and other similar sizing methods follow the same general flow, as its enhanced version in [8], which 

can be seen in Fig. 2.4. This architecture represents P candidate circuit sizing solutions proposed by the 

optimization engine, each representing a possible combination of design variables. At each loop iteration, 

the framework simulates the K test benches for each sizing of P, extracting the corresponding circuit 

performances. For the simulation, one can choose from several output standard formats, more specifically, 

.MDL, .AEX or .MEAS, where each one has a corresponding simulator, Cadence’s Spectre [21], Mentor 

Graphics’ Eldo [22] or Synopsys’ HSPICE [18], respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 - GENOM-POF architecture based on the NSGA-II and 
using HSPICE simulator. Reprinted from [9]. 

 

Figure 2.4 - Design flow of a multi-test bench analog and RF IC sizing optimization. 
Reprinted from [8].  
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2.3 ML in simulation-based evaluation 
 

ML is a subset of Artificial Intelligence even though the latter aims at building complex systems and the 

former focus on the statistical properties of data [23]. Thomas Bayes proposed several theorems of 

probability theory on his essay on Probability Theory [24] that laid the theoretical foundations for statistical 

learning and is the cornerstone for some early ML techniques, such as Naive Bayes or Markov Chains. In 

1951, the first artificial neural machine was proposed, but ANNs only began to receive more attention from 

the community with Frank Rosenblatt’s perceptron [25] and back-propagation [26], in 1958 and 1986 

respectively, where in the latter principles of dynamic programming were introduced. In the meantime, many 

other accomplishments have been achieved, and today there are a vast number of different ML techniques 

for solving classification and regression tasks.  

In a classification problem, the main goal is to correctly categorize data. A common example is a simple 

email spam filter which assigns incoming emails to the “spam” or “not-spam” categories.  

In a regression problem, the main goal of the system is to describe one or more continuous-value dependent 

variables as functions of the data observations. An example of regression is the prediction of house prices 

given the features of the house like size, number of rooms, location, etc.  

A visual comparison between these two problems can be seen in Fig. 2.5. 

 

 

 

 

 

   

   

A critical characteristic of all ML systems is their ability to adapt properly to new, previously unseen data 

and avoid overfitting to the training data. Overfitting occurs when the system learns the detail and noise in 

the training data to the extent that it negatively impacts the performance of the system, affecting the system 

ability to generalize to new data [23][27]. 

Another critical attribute of a ML system is the amount and type of supervision. The following subsections 

refer to the different supervision categories a ML system can be categorized in. 

 

Figure 2.5 - Classification (left) vs Regression (right) problems. 
Picture taken from [28]. 
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Supervised Learning 

In supervised learning, the training data of the system includes its true solution, called a label. This label 

can be categorical, for classification problems, or a continuous value, for regression problems. A few 

examples of supervised learning algorithms are linear regression, logistic regression, decision trees, 

support vector machines (SVM) and ANNs, among others. 

Unsupervised Learning 

In unsupervised learning, the training data is unlabeled, and the goal of the system is to group data points 

based on their features. Examples of unsupervised learning algorithms are the k-means and principal 

component analysis (PCA). 

Semi-supervised learning 

Semi-supervised learning is the third category that falls between supervised learning and unsupervised 

learning, in which its training data combines a small amount of labeled data with a large amount of unlabeled 

data and the system is trained with a combination of supervised and unsupervised algorithms. Some 

algorithm examples are autoencoders and deep belief networks. 

With the recent technology advancement, the use of macro models like, ANNs or SVMs, introduced another 

type of optimization-based sizing named numerical-model based. Given the models prediction speed, using 

these tools, one can reduce the high simulation times of the loop simulator by aiding the simulator in certain 

tasks or, in a more drastic way, replacing the whole simulator. 

 

2.3.1 Speeding-up Simulation-based Sizing with ANNs 
 

Today, ANNs are quite popular in the ML world due to the increased amount of data and computing power 

available. These two factors prevented researchers from using them altogether in academic settings. Now 

with faster computer-processing, ANNs can be found in image processing, speech recognition and other 

areas where large amounts of data are available. 

They are systems based in the human brain, copying the ways we learn and make decisions. These 

networks are composed by an input and an output layer, as well as one or more hidden layers. Each one 

of these layers are a combination of neurons, where the input layer is where the data is fed to the network 

and the output layer is where the results of the algorithm are obtained. The advantages of using ANNs are 

their high-performance, capability of solving problems impossible for humans, excellent algorithm for 

regression and classification problems and capability of handling large amounts of data. Some 

disadvantages are its black-box nature, i.e., difficult for researchers to completely understand why the 



12 
 

algorithm is behaving a certain way because of how the numerical values are produced, long time to train 

the model and the large amount of data required. 

Nonetheless, ANNs can build effective end-to-end ML systems and can be used in EDA for modeling [29], 

synthesis [30], layout generation [31] or even fault testing [32]. 

In [33], a neural network-based methodology is used to estimate the performance parameters of CMOS 

Operational Amplifiers (Amp-Op) topologies. To obtain the efficiency and accuracy of the resulting 

performance models, these were used in a genetic algorithm-based circuit synthesis system. The 

performance parameters of the synthesized circuits were validated by SPICE simulations and compared 

with the ones predicted by ANN models. Training data of the model was directly generated through SPICE 

simulations to provide accurate and reliable data to the system. The ANN’s architecture had only one hidden 

layer with its number of neurons ranging from 8 to 13 to obtain good generalization and accuracy on both 

training and validation steps. However, in some performances predicted by the model, the test error reaches 

60%. 

This approach proved to be much faster compared to the traditional SPICE simulation. The genetic 

algorithm, using the ANN models, was executed 10 000 times for each of 8 performance parameter 

constraint configurations. Through SPICE simulation, each of these iterations would require 2 seconds to 

complete, which would be a total of about 44 hours for all configurations. The execution time using ANN 

models was about 10 sec for each configuration, totaling 80 sec for all configurations, which represents a 

speed-up factor of 2000. The models also proved to be capable of capturing nonlinear behavior of the 

performance characteristics of a circuit which requires a large number of simulations, but in the end the 

effort is justified when considering the reusability of the models in other Amp-Op topologies. 

In [34], an ANN with two hidden layers is used to replace a SPICE simulator. Multi-objective optimization 

(MOO) is frequently used in analog sizing to reveal the trade-offs of the design specifications with the help 

of Pareto optimal fronts (POF). A rough POF can be found in a reasonable time with MOO, but a high-

quality one requires a lot of simulator iterations which results in long synthesis times. In this paper, a method 

is presented to speed-up this process. After a MOO phase to obtain a low-quality POF, the process switches 

to a faster single-objective optimization (SOO) to complete the POF making it smoother and more 

continuous. At this phase the SPICE simulator was also replaced by an ANN which reduced the synthesis 

time even further. The training data for the ANN was the data obtained in the MOO phase.  

To validate this tool, this method was applied to the design of two circuits, a Two-Stage Amplifier and a 

Folded Cascode Operational Transconductance Amplifier (OTA). For the first circuit a speed-up factor of 

about 29.7 was obtained, which translates to a 96.6% time reduction, with a maximum error of 0.44%. As 

for the second circuit a speed-up factor of 28.3 was obtained, which represents a 96.4% time reduction, 

with a maximum error of 1.55%. All the results obtained can be seen in Table 2.1. 
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In [35], a similar method is used to accelerate a simulation-based circuit synthesizer through the use of 

ANNs to determine circuit performances instead of a SPICE simulator. Instead of training the ANN with 

simulation data beforehand and simply replacing the simulator with the trained ANN, the simulation-based 

synthesizer is left unchanged for some generations of the optimization loop and only after the ANN replaces 

the SPICE simulator. Unlike other conventional algorithms, all the data generated in the first phase is used 

as training data for the ANN instead of being discarded. The proposed circuit synthesizer structure is shown 

in Fig. 2.6. 

Table 2.1 - Results obtained for the two-stage amplifier and the folded cascode OTA 

Circuit 
Time Accuracy 

tSPICE 
(min) 

tnets 
(min) 

Improvement 
(%)  Gain Bandwidth Phase 

Margin Power 

Two-stage 
amplifier 800.70 27.07 96.62 

µerror 
(%) 0.00466 0.00502 0.00721 0.04560 

σerror 
(%) 0.01064 0.01064 0.06115 0.10109 

Folded cascode 
OTA 646.71 23.35 96.39 

µerror 
(%) 0.01362 0.00437 0.08254 0.00716 

σerror 
(%) 0.10612 0.04452 0.18208 0.05252 

 

 

 

 

 

 

 

 

 

 

 

This training data acquisition step can take a lot of time and is necessary for every new topology which is 

one of the aspects this paper tries to solve. The main innovation of this approach is that there is no separate 

data acquisition step to train the ANNs used therefore makes it possible be used for every new topology 

without loss of generality for all analog circuits. 

To validate this tool, this method was applied to the circuit synthesis phase of two circuits, a single stage 

amplifier and a Folded Cascode OTA. With only the SPICE simulator the circuit sizing of the single stage 

amplifier took 4.92 hours to complete where the optimizer iterated 100 generations. With the use of ANNs 

replacing the simulator after the first 20 generations, the execution time reduced by 64.8%, corresponding 

Figure 2.6 - a) general flow of simulation-based synthesizer b) modified flow with ANN. 
Reprinted from [35]. 
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to a speed factor of 2.84, with errors below 1%. For the Folded Cascode OTA, which presents a higher 

complexity, the original optimizer took 400 generations and 22.58 hours to complete the circuit sizing. The 

best time reduction obtained with ANNs was 50.3% with errors below 1%, where the ANN replaced the 

simulator after 155 generations. All the results obtained can be seen in Table 2.2. 

Table 2.2 - Execution times obtained for the single stage amplifier and folded cascode OTA 

Circuit Network usage Time (h) Improvement 

Single stage 
amplifier 

0% 4.92 0% 
60% 2.45 50.2% 
70% 1.99 59.6% 
80% 1.73 64.8% 

Folded cascode 
OTA 

0% 22.58 0% 
50% 12.80 43.3% 

61.25% 11.22 50.3% 
 

In [36] ANNs are used to improve the sample efficiency for several large circuits regarding their post-layout 

performance parameters. ANNs are used as an oracle, where, given two different circuit sizing solutions, 

the ANN will predict which design performs better for each individual parameter, requiring a sub-ANN for 

each parameter. This discriminator achieves at least two orders of magnitude in sample efficiency which 

represents a big reduction in number of simulations required. 

All these approaches to reduce the execution time of optimization-based sizing use ANNs to replace or 

complement the circuit simulator. The execution time is greatly reduced by avoiding time-consuming circuit 

simulations, however, to recover the accuracy lost, in [33][37] at later stages of the optimization the circuit 

simulator is reestablished. Furthermore, the ANN models are trained over the entire design space, which 

spends valuable resources modelling and evaluating large regions of unusable design combinations. In [38] 

the ANNs were also trained to replace the simulator, but the previous issue is somewhat addressed by 

applying data mining techniques to build a model that capture only significant regions of the performance 

space visited during automatic synthesis. 

 

2.4 Other works of ML and Analog/RF sizing 
 

2.4.1 Predicting sizing from performances 
 

Instead of using ANNs to find circuit performances given a certain sizing, in recent years, the opposite was 

also proposed. The use of ANNs to find a circuit sizing in analog ICs is getting rather popular nowadays, 

and they have shown some promising results when learning to predict circuit sizing when asked for some 

target performance [39][43]. In [40] an ANN is used to predict device sizes for different current sources and 

a simple differential amplifier on different technologies. In [41] the sizing of a low noise amplifier given its 

target performances is performed using various sequential ANNs. This method showed good prediction 
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accuracy, but the sequential model revealed to be difficult to tune and train. Training the model required an 

outer loop to find the hyperparameters of the model, which resulted in over 5 hours of training for a relatively 

small dataset, despite being trained with only 277 handmade sizing solutions. In [42] another example of 

predicting sizes of an amplifier given its target specifications is proposed, but the test to validate the results 

obtained was performed with only 10 samples from the original dataset, which is extremely low, and the 

performance and usability of the proposed model was not evaluated for new target specifications. 

2.4.2 Reinforcement learning 
 

Reinforcement learning (RL) aims to develop an agent that learns how to behave in a certain environment 

where the only feedback given is the reward of its actions. This interaction between agent and environment 

is depicted in Fig. 2.7. The primary goal of the agent is to maximize the notion of cumulative reward 

regarding its actions. These systems are capable of teaching robots to learn motor skills [44] or master 

complex board games like chess or Go [45]. 

  

 

 

 

 

 

 

RL can also be used in analog/RF sizing. In [47] an agent learns from trial and error how to behave like a 

circuit designer evolving itself to finally discover circuit sizes that satisfy the performance specifications. 

Another instance where RL is used for sizing is in [48], a tool named AutoCkt, a ML optimization framework 

trained using deep RL, that is capable of finding post-layout circuit parameters for a certain parameter 

specification and can also acquire knowledge about the entire circuit design space using a sparse 

subsampling technique. 

2.5 Conclusion 
 

In this chapter, different methods used in circuit optimization sizing were introduced and compared 

regarding the evaluation engine used, with emphasis on simulation-based sizing. Using a simulator as the 

evaluation engine is the most widely accepted approach, with its main advantages being its generality and 

easy-and-accurate model. The main problem with this method is how time-consuming it is. In recent works, 

the use of ML tries to address and solve this problem by introducing ANNs into the optimization phase by 

either replacing or complementing the circuit simulator, as shown in Table 2.3. 

Figure 2.7 - Interaction between agent and environment. 
Picture taken from [46]. 



16 
 

In this work, the popular and powerful usage of an ANN to enhance the optimization-based sizing by 

complementing the circuit simulator will be applied. This method will be used in circuit topologies more 

complex than the ones previously discussed in the literature, and, despite the marginal loss of accuracy 

when compared with the circuit simulator, the speed-up gained using this approach will surely boost the 

optimization performance. 

Table 2.3 - Speeding-up Simulation-based Sizing with ANNs Overview 

Reference Speed-up 
factor (up to) 

Maximum 
Error  

Number of 
Layers Method 

G. Wolfe, 2003 [33] ≈2000 60% 3 Complement/Replace simulator 

T. O. Çakıcı, 2020 [34] 29.7 1.55% 3 Replace simulator 

G. İslamoğlu, 2019 [35] 2.8 0.77% 4 & 5 Semi-replace simulator 

K. Hakhamaneshi, 2019 [36] n/r n/r 4 Replace simulator 

G. Alpaydin, 2003 [37] n/r n/r 3 Complement simulator 

Hongzhou Liu, 2002 [38] n/r ≈10000% 3 Replace simulator 

n/r – not reported 
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3 PVT Corner Performance Estimator  
 

Considering the main goals of this work and the related work presented and discussed in Chapter 2, it is 

proposed the elaboration of a PVT corner performance estimator using deep ANNs, complementing the 

circuit simulator to be used during sizing optimization. The ANNs will receive as input the performance 

figures respective to the typical conditions, i.e., TT conditions, obtained via accurate circuit simulation and 

the candidate circuit sizing solutions, and will predict the performances for the remaining PVT corners. In 

the optimization-loop of the simulation-based sizing, the PVT estimator will be located after the circuit 

simulator, as depicted in Fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

In the following sections, a brief discussion will be carried regarding the first case study and dataset that 

will be used in this work, and afterwards the proposed structure of the ANN will be presented. 

3.1 Case Study 
 

The development of the proposed tool will take part in the sizing of a complex dual-mode class C/D VCO 

presented in [7], which is presented in Fig. 3.2. In that work, instead of achieving the desired performance 

parameters with sequential SOOs, a single many-objective sizing optimization, described as “everything at 

once” optimization, is proposed to achieve the best performance boundaries while finding the optimal 

tradeoffs. The circuit simulator performed a multi-corner analysis and the optimization followed a worst-

case corner criteria on top of a worst-case tuning range optimization, taking into account two different tuning 

modes, 𝑏𝑏0000and 𝑏𝑏1111. The results pushed the circuit to its performance limits, reducing to almost half of 

Figure 3.1 - Location of the PVT estimator in the AIDA optimization loop 
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the power consumption of the original design and showed its potential for ultralow-power with more than 

93% reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

In the optimizations carried, there were 28 optimization variables that affect the sizing of 43 devices. The 

full list can be found in Table 3.1. 

Table 3.1 - Optimization variables 

Variable Units Min. Grid Max. 
ind_radius µm 15 5 90 
ind_nturns - 1 1 6 

ind_spacing µm 2 1 4 
ind_width µm 3 1 30 
mccl, m1l nm 60 20 240 

mccw, m1w µm 0.6 0.2 6 
mccnf, m1nf - 1 1 32 

mccm - 1 1 100 
moscapw µm 0.4 0.2 3.2 
moscapl µm 0.2 0.2 3.2 

mimvw, mimvl, mim1w µm 2 0.2 20 
r1l, r2l, r3l, r4l µm 1 0.2 10 

r1m, r2m, r3m, r4m - 1 1 20 
nfn1, nfn2, nfp1, nfp2 - 1 1 100 

 

A total of 18 performances were considered and three optimizations were performed with populations of 

512 elements optimized for 1000 generations. Of all the sizing solutions, the POFs of the three optimizations 

provided, in total, 769 optimal sizing solutions. Each optimization took approximately 100 hours to complete 

in an Intel-Xeon CPU E5-2630-v3@2.40 GHz with 64 GB of RAM workstation using eight cores for parallel 

evaluation, resulting in 300 hours total, i.e., more than 12 days. Once again, the main goal of the proposed 

PVT Estimator in this dissertation will be to reduce this execution time to an acceptable range. 

 

Figure 3.2 - Dual-mode class-C/D VCO 
schematic. Reprinted from [7]. 
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3.2 Dataset 
 

The source of the dataset will be simulated performances and associated sizing parameters generated by 

an optimization-based sizing of the circuit in the previous section. In total, 9 different testbench variations 

will be considered (TT, FF, FS, SF, SS, 300mV, 400mV, m40dC and 85dC) that produce 10 different 

performance figures each, and, due to the worst-case tuning range optimization (two tuning modes are 

evaluated, 𝑏𝑏0000and 𝑏𝑏1111), each sizing must be simulated 18 times, providing a total of 180 simulated 

performance figures. The full list of testbench variations can be seen in Table 3.2 and the list of 

performances in Table 3.3. 

Table 3.2 - List of testbenches variations: TT and PVT corners 

Name Process Voltage Temperature 
TT TT 0.35 V 25ºC 
FF FF 0.35 V 25ºC 
FS FS 0.35 V 25ºC 
SF SF 0.35 V 25ºC 
SS SS 0.35 V 25ºC 

300mV TT 0.3 V 25ºC 
400mV TT 0.4 V 25ºC 
m40dC TT 0.35 V -40ºC 
85dC TT 0.35 V 85ºC 

 

Table 3.3 - List of performances considered for TT and PVT corners 

Measure Units Description 
fosc GHz Oscillation frequency 

PN@10kHz dBc/Hz Phase noise at 10KHz 
PN@100kHz dBc/Hz Phase noise at 100KHz 
PN@1MHz dBc/Hz Phase noise at 1MHz 

PN@10MHz dBc/Hz Phase noise at 10MHz 
power mW Power consumption 

FOM@10kHz dBc/Hz Figure-of-merit at 10KHz 
FOM@100kHz dBc/Hz Figure-of-merit at 100KHz 
FOM@1MHz dBc/Hz Figure-of-merit at 1MHz 

FOM@10MHz dBc/Hz Figure-of-merit at 10MHz 
 

The dataset will have a total number of 48 features, where 28 of them are the optimization variables plus 

20 performance figures of the simulation in TT conditions in two different modes, i.e., 𝑏𝑏0000and 𝑏𝑏1111, and a 

total of 160 labels, i.e., the performance figures of the remaining corner variations in two different tuning 

modes. 

All this raw data has to be pre-processed before using it in the training phase of the model, so some feature 

engineering will be needed. The dataset contains small input device sizes (in the order of nanometers) 

combined with other optimization variables, which can be simple integers (for example, 𝑖𝑖𝑖𝑖𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), and 

with performance figures, which can have large values in the order of gigahertz (for example, 
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) . This combination causes the learning algorithm of the ANN to wrongly compute 

the weights associated with these small values, almost completely negating their influence on the output. 

To solve this problem, data normalization will be performed on the entirety of the dataset. Two methods 

can be used to achieve this: standardization and normalization. Standardization scales the values while 

considering standard deviation, which is beneficial to reduce the effect of outliers in the data. Normalization 

scales all values to a fixed range between, for example, 0 and 1. This scaling does not alter the features’ 

distribution, and because of the decreased standard deviations, the effect of the outliers increases. The 

formulas used for standardization and normalization are shown in (3.1) and (3.2), respectively, where 𝜇𝜇 

represents the mean value and 𝜎𝜎 the standard deviation. 

𝑧𝑧 =  
𝑥𝑥 −  𝜇𝜇
𝜎𝜎

(3.1) 

 
𝑧𝑧 =  𝑥𝑥− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
(3.2) 

 

The dataset will present some null performance values. These values won’t be fed to the network because 

they will affect the performance of the model, so firstly they must be removed. This technique in feature 

engineering is called imputation. Checking and removing duplicated rows in the dataset must also be 

performed due to its negative effect on the performance of the model. 

Another pre-processing approach to be taken will be handling outliers. This can be done using visual or 

statistical methodologies. Detecting outliers visually implies checking in a graph for outliers for each feature 

of the dataset and due to the size of this dataset, i.e., the high number of labels, this task will likely be 

performed using statistical methodologies. Outlier detection using standard deviation will be conducted, 

which simply classifies a value as an outlier if its distance to the average value of the feature is higher than 

𝑥𝑥 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. This can also be done using percentiles. 

Although many other techniques of feature engineering can be performed on the dataset, the previously 

mentioned ones will be the most important to use. After this, the dataset is ready to be fed to the network. 

3.3 ANN Development 
 

In this section, an overview of the ANN structure and training phase will be presented followed by its tuning 

process.  

3.3.1 Structure (In/Out) 
 

ANNs are structured in n + 2 layers: a single input layer, a single output layer and n hidden layers as shown 

in Fig. 3.3. Each layer has a certain number of neurons. 
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The input layer has the same number of neurons as the number of features selected for each data point in 

the dataset. Likewise, the output layer has the same number of neurons as the number of outputs desired. 

Each neuron is essentially a function that outputs y as a function of its inputs 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  as depicted in Fig. 

3.4 and demonstrated by: 

𝑦𝑦 =  𝜙𝜙��(𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑛𝑛

𝑖𝑖=1

� , (3.3) 

 

where 𝜙𝜙 is the neuron’s activation function, 𝑤𝑤𝑖𝑖  is the weight associated with the input 𝑥𝑥𝑖𝑖 and 𝑏𝑏 the neuron’s 

bias which is basically treated as the weight, 𝑤𝑤0 , of the constant input value 𝑥𝑥0 = 1. (3.3) can be rewritten 

as a simpler version: 

𝑦𝑦 =  𝜙𝜙��(𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=0

� (3.4) 

 

 

 

 

 

 

 

 

Figure 3.3 - Example of an ANN’s structure. Reprinted from [49]. 

Figure 3.4 - Artificial Neuron 
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For the case of fully connected ANNs, each neuron in a hidden layer 𝑗𝑗 will have as inputs each output of 

the previous layer 𝑗𝑗 –  1, and its own output will be an input of each neuron in layer 𝑗𝑗 +  1. If preceded by a 

layer with k neurons, the output of a certain layer j with m neurons can be described as a ℝ𝑘𝑘 →  ℝ𝑚𝑚 function 

where the output of each neuron is described by (3.4). 

Using the architecture of the fully connected ANN in Fig. 3.3 as an example, each neuron receives a certain 

number of inputs, multiplies each one of them by its corresponding weight, sums them all, passes the result 

by an activation function and outputs it. The final output is a combination of the input’s propagation through 

each layer of the network. The weights of each neuron are what the ANN needs to learn. 

In this work, the structure of the ANNs used will be similar to the one depicted in Fig. 3.3, i.e., it will be fully 

connected. Each ANN will estimate the performance figures of a specific corner for a specific tuning mode, 

so the output layer will have 10 neurons. Each ANN will receive as inputs, the sizing of the circuit, which 

consists of 28 optimization variables, and 10 performance figures of the simulation in TT conditions for its 

corresponding tuning mode, which means that the input layer will have a total 38 neurons. The number of 

hidden layers and number of nodes per hidden layer will be determined in the tuning phase. A trial and 

error approach will be taken to find the best possible solution to these two hyperparameters (further 

explained in Section 3.3.3). The structure of the ANN implemented for corner FF and tuning mode 𝑏𝑏0000 is 

shown in Fig. 3.5. 

 

Usually, the only linear activation function used in a regression-based ANN is on the output layer and the 

most used is the linear function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧, depicted in Fig. 3.6. The output of the regression model in this 

work is going to be a real value, positive or negative, so the simplest function to reach the entire real set is 

a linear function. 

Figure 3.5 - ANN structure for corner FF and tuning mode 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  



23 
 

 

 

 

 

 

 

 

 

 

 

3.3.2 Training Phase 
 

Loss Function and Backpropagation 

The learning phase of the ANN is an iterative process where the weights of each neuron are updated using 

the backpropagation algorithm. 

In each iteration, a certain input 𝑥𝑥 is fed to the network and the obtained output 𝑦𝑦� is compared to the desired 

output 𝑦𝑦 computing the error (or loss) 𝐽𝐽 between them. Because this is a regression problem, the most 

appropriate loss function is the Mean Squared Error (MSE). This loss is calculated by (3.5). 

𝐽𝐽 =  
1
𝑛𝑛

 �(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(3.5) 

The derivate of this error is propagated backwards through the network and each weight is updated, 

according to (3.6), using this value. In (3.6) and (3.7), 𝑤𝑤𝑖𝑖 represents a certain weight, 𝑤𝑤𝑖𝑖+1 represents the 

weight after the update and 𝜂𝜂 represents the learning step. 

𝑤𝑤𝑖𝑖+1 =  𝑤𝑤𝑖𝑖 − ∆𝑤𝑤 (3.6)

∆𝑤𝑤 =  �𝜂𝜂
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑤𝑤𝑖𝑖�  (3.7)
 

The training process of the ANN corresponds to an optimization problem solved using a method called 

gradient descent that iteratively finds the weights that minimize the loss function of the model. 

Optimizer 

To speed-up the training phase of the ANN one can use faster optimizers than the gradient descent. These 

variants of the gradient descent algorithm try to reduce the total number of iterations needed to reach the 

minimum solution of the loss function making the convergence less time-consuming. The most popular 

optimizer nowadays is the Adaptive Moment Estimation. This method is exceptionally appropriate for sparse 

Figure 3.6 - Linear function 𝐟𝐟(𝐳𝐳) = 𝐳𝐳 
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input data due its adaptive learning rate, while having a fast convergence. Because of these reasons, this 

will be the chosen optimizer for the model in this work. If this method doesn’t prove to be helpful while 

testing the performance of the model, Root Mean Square Prop will be used instead. 

 

3.3.3 Model Fine Tuning 
 

One problem of ANNs is the vast number of hyperparameters to be tuned, which to find the best values 

one must search them by trial and error. In this section, various hyperparameters are presented, indicating 

their influences on the network and how their best values will be found. Finally, a common problem 

encountered when training ANNs called Overfitting is presented along with its solutions. 

Number of Hidden Layers and Neurons 

The number of hidden layers directly influences the complexity of the ANN model. A large number of layers 

results in a more complex function that maps an input to its output and tends to lead to better results. 

However, it also increases the amount of computational power required and time spent to train the ANN. 

By contrast, a small number of hidden layers might lead to an ANN that is not capable of modelling a 

problem accurately. Even though more layers lead to better results, this can lead to overfitting the model to 

the training data. This combined with the reasons mentioned before, makes it so one cannot use too many 

layers in an ANN. There is no formula nor perfect method to choose the number of layers in a network. The 

used approach in this work will consist in testing and comparing, by trial and error, the results of the network 

while gradually increasing the number of layers until the accuracy of the model cannot further improve. 

While choosing the best number of layers for the network, one also must consider the number of neurons 

on each one of them. For the input and output layers this choice is simple, for each feature considered 

there must be one neuron in the input layer, and for each expected output there must be one neuron in the 

output layer. For the hidden layers, one must, once again, find the best number of neurons using a trial and 

error process. Many neurons in a hidden layer leads to more complex models which ultimately increases 

greatly the training time of the network due to the increase in amount of weights computed. 

 

Activation Functions of the Hidden Layers 

For the hidden layers of the ANN, one should use non-linear activation functions to increase its capability 

to model highly complex relationships between its input and output. The following functions will be 

experimented in the model, and their results will be compared to choose the most adequate for this work. 

The sigmoid function, shown in Fig. 3.7, can map the input values of a neuron to an output range of ]0,1[. 

This prevents cases where the output of the neuron reaches very high values which can happen when 

using an unbounded linear function. Another quality of this function is its sensibility to input changes in the 
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region near 𝑧𝑧 = 0 which results in a good separation of data. However, the responsiveness of the function 

starts to decrease when dealing with bigger input values, reaching almost a gradient value of 0, therefore 

the model can no longer update properly. 

 

 

 

 

 

 

 

 

 

 

One of the most popular activation functions nowadays is the Rectified Linear Unit (ReLU) function [50], 

shown in Fig. 3.8, computed through  𝑓𝑓(𝑧𝑧) = max (0, 𝑧𝑧). The output value of the ReLU function is equal to 

the input value for inputs greater than 0 and equal to 0 for all the other values. This non-linear function 

requires less computational power than the sigmoid function due to its simpler formula. However, the 

function is not bounded for positive input values making it susceptible to exploding output values. Despite 

this, it solves the low gradient value encountered in the sigmoid function. The main problem appears in the 

negative input value region, where the gradient equals to 0 which will stop any network update from 

happening (regarding the corresponding neuron). This problem is called the dying ReLU problem. 

To solve this problem, some variations to the ReLU were developed, such as the leaky ReLU [51] or the 

Exponential Linear Unit (ELU) [52]. The ELU introduces a smooth derivate for the negative input values 

and is determined by (3.8), where 𝛼𝛼 is a parameter to be tuned. This function is depicted in Fig. 3.8. 

𝑓𝑓(𝑧𝑧) =  �𝛼𝛼
(𝑒𝑒𝑧𝑧 − 1)  𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0

𝑧𝑧                   𝑖𝑖𝑖𝑖 𝑧𝑧 >  0 (3.8) 

Figure 3.7 - Sigmoid function 
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Learning Rate 

This hyperparameter dictates the impact of the error gradient each time a weight of the ANN is updated. If 

a high value is chosen for this parameter, the optimization algorithm may find a sub-optimal set of weights, 

or the training process becomes unstable which, worst-case scenario, can make the algorithm diverge. A 

low value of this parameter can make the training process too slow where, if given a small number of 

epochs, the algorithm doesn’t reach a minimum. Both cases are depicted in Fig. 3.9.  

The learning parameter is one of the most important hyperparameters when training an ANN due to its big 

influence on the convergence of the optimization algorithm. For this work, the tuning process of this 

hyperparameter will be a trial and error approach, starting with a big value and iteratively reduce it until no 

improvement is reached. The chosen value will be the one with the highest value with the best results due 

to having the lowest training time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 - ReLU function (left) and ELU function (right) 

Figure 3.9 - Evolution of loss function with 
different learning rates. Reprinted from [53]. 
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Overfitting and Regularization 

Overfitting is one of the main problems that one can encounter when training a ANN. It refers to a model 

that models the training data too well, i.e., the model learns the detail and noise in the training data to the 

point that it negatively impacts the performance of the model on new unseen data. Random fluctuations 

and noise present in the training data do not apply to new data so it negatively affects the ability of the 

model to generalize. 

To solve this problem, a regularization technique can be used when training the ANN. The techniques that 

are going to be tested in this work are Early Stopping [54] and Dropout [55]. 

With Early Stopping, the model will remain in the training phase until there is no improvement in the 

validation set in two consequent epochs, causing the training to stop, avoiding overfitting. 

Dropout is becoming one of the most popular regularization techniques because it solves two important 

problems in an ANN: it prevents overfitting of the model and provides a method of approximately combining 

different ANN architectures. Dropout consists in removing temporarily certain neurons from the ANN along 

with its incoming and outgoing connections. 

3.4 Conclusions 
 

In this Chapter, the proposed solution for the optimization sizing speed-up was presented. First, the main 

case study of this work was described, which consists in an optimization sizing of a class C/D VCO, and its 

corresponding dataset, that will be used to train the ANNs of the PVT Estimator, was defined, where the 

optimization variables and performance parameters were shown following a small outline of the pre-

processing necessary for the dataset. Finally, the ANNs structure was presented and the tuning phase of 

its hyperparameters was explained in detail.  
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4 Results Pre-Integration 
 

Considering the strategy that will be used to build the ANN, defined in Chapter 3, and all the different 

parameters to be tuned, the following subsections present the work regarding the programming of the ANN 

and its expected results are discussed. In order to do this, the dataset of the complex dual-mode class C/D 

VCO circuit optimization, previously defined in Chapter 3, will be used. 

Throughout this part of the work the language used to program the ANN was Python, using both Tensorflow 

[56] and Keras [57] as ML libraries. 

The starting point of the ANN architecture is the one described in Section 3.3.1, where the output layer 

contains 10 nodes, one for each performance parameter of a certain combination of tuning mode and PVT 

corner variation. The optimization was performed for 9 testbench variations which 8 represent the PVT 

corners, and 2 tuning modes, and thus, in total, 16 different ANNs will be required.  

4.1 Tuning Phase 
 

In this section the necessary pre-processing applied to the dataset will be described followed by the tuning 

parameters phase. 

Dataset 

The dataset contains 92115 data entries composed by, as described in Section 3.2, 48 features where 28 

represent the optimization variables and the other 20 represent the TT performance figures, 10 for each 

tuning mode. As for labels, the dataset contains 160 performance figures of the remaining PVT corner 

variations in two different tuning modes. 

For each different ANN, it is only needed the performance figures of one combination of corner variations 

and tuning mode, so firstly the dataset had to be divided in 16 different datasets where each dataset 

represents a different corner combination. To increase model accuracy, only the TT performance figures 

that represent the same tuning mode as the labels are kept, so the final dataset structure only contains 38 

features and 10 labels. 

Some data entries have null values on the features and/or labels, representing sizing solutions that the 

simulator couldn’t produce a meaningful performance figure. These entries had to be removed from each 

dataset to provide the best possible data to the ANNs along with duplicated rows. The division of the original 

dataset into smaller datasets and the removal process explained before is depicted in Table 4.1 and Table 

4.2, where some entries of the original dataset and dataset for FF 𝑏𝑏0000 are shown, respectively. 
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Table 4.1 - Structure of the original dataset 

Entry # 

Features (48) Labels (160) 

Design 
variables 

Performances 
TT 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

Performances 
TT 𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

Performances 
FF 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 … Performances 

m40dC 𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

Performances 
85dC 𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

0 values 🗸🗸 values 🗸🗸 values 🗸🗸 null … values 🗸🗸 null 
1 values 🗸🗸 values 🗸🗸 values 🗸🗸 values 🗸🗸 … null null 
2 values 🗸🗸 null null values 🗸🗸 … null null 
3 values 🗸🗸 values 🗸🗸 values 🗸🗸 null … null null 
… … … … … … … … 

92114 values 🗸🗸 values 🗸🗸 values 🗸🗸 values 🗸🗸 … values 🗸🗸 values 🗸🗸 
 

Table 4.2 - Structure of the dataset for FF 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

Entry # 
Original 
entry # 

Features (38) Labels (10) 

Design variables Performances TT 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 Performances FF 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

0 1 values 🗸🗸 values 🗸🗸 values 🗸🗸 
1 3 values 🗸🗸 values 🗸🗸 values 🗸🗸 
… … … … … 

83037 92114 values 🗸🗸 values 🗸🗸 values 🗸🗸 
 

Finally, the outliers present in each dataset must be removed. To do this, for each performance figure, the 

1% lowest and highest values were cut from the dataset, alongside their entire row of data. The final sizes 

of the dataset for each PTV corner ANN can be found in Table 4.3. 

Table 4.3 - Dimensions of datasets for the training of the different ANNs 

Corner 
Tuning mode 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 % total 𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 % total 
FF 81377 88.34 79300 86.09 
FS 81842 88.85 81200 88.15 
SF 82247 89.29 76794 83.37 
SS 73456 79.74 48742 52.91 

300mV 77608 84.25 69017 74.92 
400mV 81865 88.87 81342 88.30 
m40dC 81182 88.13 77103 83.70 
85dC 80707 87.62 82028 89.05 

 

Finally, all the 16 datasets were randomized, and split into two datasets:  

• Training dataset: 90% of the original dataset; 

• Test dataset: Remaining 10% of the original dataset. 

The training dataset will be used to train the ANNs while the test dataset will be used to test the models. 

As for the tuning of the ANN architecture phase, the tuning parameters phase was only performed in the 

ANN regarding the corner FF with tuning mode 𝑏𝑏0000. 
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Tuning parameters 

With the dataset ready, the ANN’s tuning parameter phase starts, as addressed in Section 3.3.3. As 

evaluation methods for the ANN’s training, three following metrics were used. MSE, defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 �(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (4.1) 

Mean Absolute Error (MAE), defined by: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 �|𝑦𝑦𝑖𝑖 −  𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (4.2) 

And finally, Mean Absolute Percentage Error (MAPE), defined by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 ��
𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (4.3) 

Due to the nature of the values that are trying to be predicted with this ANN, the error between predicted 

value and actual value must be small. Because of this, an error value lower than 1% (for the case of the 

MAPE) was chosen as a reasonable target to achieve for the accuracy of the ANN. 

Despite having three different metrics as evaluation methods, the loss function of the ANN throughout the 

tuning phase was the MSE. As stated in Section 3.3.2, this is one of the most popular loss functions in 

regression problems like the one addressed in this dissertation. A similar approach was used to choose the 

optimizer, with Adam being pointed as the most popular method. 

Regarding the batch size of the training phase, 128 was chosen as an appropriate value considering the 

size of the training dataset used.  

To solve the problem regarding the different magnitudes in the dataset explained in Section 3.2, 

normalization for a range of 1 to 2 was used. This range was chosen, over the typical 0 to 1, due to its 

influence in MAPE values, making them explode in value due to values close to 0 in the denominator of the 

MAPE formula in (4.3). 

The tuning phase of the ANN follows the strategy stated in Section 3.3.3 and the first parameters to be 

determined were: the number of layers, number of neurons per layer, and learning rate.  

To determine the adequate number of layers for the model, two studies were made, the first one using 2 

hidden layers for the model, and the second 3 hidden layers. Table 4.4 presents all the different parameters 

and their values considered in the 2 hidden layers study.  
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Table 4.4 - Different parameters and corresponding values to study 

Size of hidden layer 1 Size of hidden layer 2 Learning rate 

200, 320, 440, 560 200, 300, 400, 500 0.00005, 0.0001, 0.0005, 0.001 

 

It is common practice in ANN development that the size of a hidden layer is always equal or larger than the 

following hidden layer. Considering this, the different combinations of these parameters were studied, and 

their results are shown in table 4.5. 

The lowest values of each metric (MSE, MAE and MAPE) at both training and test phases were highlighted, 

and achieving 5 of the 6 total lowest metrics, the best combination of these parameters is: 

• Hidden layer size 1: 440 neurons 

• Hidden layer size 2: 400 neurons 

• Learning rate: 0.0001 

Given these results, a comparison with 3-hidden layer ANN architecture is carried. In this next study, the 

learning rate was set to 0.0001 considering it was the best value of the previous study. In table 4.6 is shown 

the different parameters and the values that were considered. This study follows the same rule as the 

previous one regarding the sizes of the hidden layers and its results are shown in table 4.7. 

When comparing the results of the two studies, it is clear that there is no improvement when increasing the 

number of hidden layers. The best error results with 3 hidden layers are 18% to 30% higher than the best 

results with 2 hidden layers. Considering this fact there is no need to increase the number of hidden layers 

of the ANN, so no further study is required. These values will be used for the remaining of the tuning phase.
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Table 4.5 - Results of hidden layers size/learning rate study.  
Using activation function of hidden layers: ReLU, dropout rate: 20%   

Hidden layers 
Learning 

rate 

Training loss Test loss 

#1 #2 MSE(x10-4) MAE(x10-3) MAPE MSE(x10-4) MAE(x10-3) MAPE 

200 200 

0.001 2.0271 9.0719 0.5865 2.9237 9.6342 0.6262 
0.0005 1.6593 8.4255 0.5503 2.6371 8.9969 0.5903 
0.0001 0.9633 4.9812 0.3263 2.0497 5.6614 0.3736 

0.00005 1.5778 6.3185 0.4126 2.4236 6.9236 0.4543 

320  200 

0.001 1.6222 8.4173 0.5433 2.5826 9.0382 0.5867 
0.0005 1.2829 7.7522 0.5101 2.1944 8.4498 0.5579 
0.0001 0.7502 4.2473 0.2801 1.7580 4.9959 0.3316 

0.00005 1.1752 5.3409 0.3510 1.9515 5.9199 0.3911 

320 300 

0.001 1.5518 7.4064 0.4838 2.4660 7.9911 0.5243 
0.0005 0.9664 6.0647 0.3905 1.8117 6.7411 0.4368 
0.0001 0.6854 4.0345 0.2649 1.6603 4.8014 0.3176 

0.00005 1.5619 6.6477 0.4345 2.5805 7.3492 0.4827 

440 200  

0.001 0.9685 5.9367 0.3893 1.7024 6.5298 0.4304 
0.0005 0.9217 5.7347 0.3669 1.7494 6.4228 0.4139 
0.0001 0.6052 4.0061 0.2625 1.4736 4.7756 0.3149 

0.00005 1.2531 6.3213 0.4136 2.2113 7.0737 0.4648 

440 300  

0.001 2.0921 8.0931 0.5290 3.4045 8.7485 0.5760 
0.0005 0.9115 6.3530 0.4114 1.7763 7.0825 0.4612 
0.0001 0.6586 4.0705 0.2677 1.4629 4.7683 0.3155 

0.00005 1.2429 6.0380 0.3935 2.1168 6.7248 0.4407 

440 400 

0.001 1.1995 6.0374 0.4000 2.1117 6.6899 0.4457 
0.0005 0.6916 4.7748 0.3087 1.5629 5.4907 0.3578 
0.0001 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 

0.00005 1.1603 5.4496 0.3574 2.3146 6.2074 0.4093 

560 200  

0.001 1.0060 6.2592 0.4213 1.9085 6.9229 0.4667 
0.0005 0.7292 5.0753 0.3370 1.5336 5.8173 0.3874 
0.0001 0.5895 3.8783 0.2558 1.5572 4.6842 0.3110 

0.00005 0.9646 5.0136 0.3267 1.9388 5.7902 0.3798 

560  300  

0.001 0.9744 5.2125 0.3425 2.1092 5.9488 0.3937 
0.0005 0.7596 5.2312 0.3366 1.7456 5.9887 0.3887 
0.0001 0.5920 3.9961 0.2601 1.4898 4.8121 0.3157 

0.00005 0.8541 4.6235 0.3033 1.6815 5.3325 0.3516 

560 400  

0.001 5.8195 14.5366 0.9489 6.4470 14.9806 0.9800 
0.0005 0.8302 5.4530 0.3566 1.6963 6.1971 0.4072 
0.0001 0.5769 3.8253 0.2504 1.6146 4.6759 0.3085 

0.00005 0.8927 4.9385 0.3201 1.7218 5.6835 0.3707 

560  500 

0.001 1.5522 7.6797 0.5064 2.4262 8.3103 0.5505 
0.0005 0.5916 4.2945 0.2834 1.4161 5.0691 0.3365 
0.0001 0.6000 4.5236 0.3017 1.5613 5.3601 0.3586 

0.00005 0.8585 5.3343 0.3411 1.7989 6.1322 0.3955 
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Table 4.6 - Different parameters and corresponding values to study 

Size of hidden layer 1 Size of hidden layer 2 Size of hidden layer 3 

200, 320, 440 200,300,400 200,300,400 

 

Table 4.7 - Results of hidden layers size study 
Using activation function of hidden layers: ReLU, learning rate: 0.0001 and dropout rate: 20% 

Hidden layers Training loss Test loss 

#1 #2 #3 MSE(x10-4) MAE(x10-3) MAPE MSE(x10-4) MAE(x10-3) MAPE 

200 200 200 1.9722 8.7683 0.5709 3.1234 9.4508 0.6186 
320 200 200 0.9191 5.8708 0.3796 2.0354 6.7268 0.4385 
320 300 200 1.5984 7.7507 0.5039 2.8096 8.5406 0.5586 
320 300 300 0.9735 6.1391 0.3957 2.0810 7.0175 0.4560 
440 200 200 0.7186 4.4182 0.2897 1.7230 5.2482 0.3465 
440 300 200 0.9799 5.9074 0.3852 1.9675 6.6465 0.4361 
440 300 300 0.8321 5.6166 0.3613 1.8117 6.4913 0.4210 
440 400 200 1.0870 6.4679 0.4147 2.1437 7.2971 0.4718 
440 400 300 1.1155 6.7236 0.4337 2.4101 7.6854 0.4997 
440 400 400 0.8439 5.5525 0.3570 1.8376 6.4363 0.4172 

 

The next parameter to be tuned is the activation function of the hidden layers. As stated in Section 3.3.3, 

the different activation functions considered in this study were: sigmoid, ReLU, leaky ReLU and ELU. The 

results are shown in Table 4.8. 

Table 4.8 - Results of activation function study 
Using 2 hidden layers of sizes 440 and 400, learning rate: 0.0001 and dropout rate: 20%   

Activation function 
Training loss Test loss 

MSE(x10-4) MAE(x10-3) MAPE MSE(x10-4) MAE(x10-3) MAPE 

Sigmoid 3.8048 10.4705 0.6847 4.2671 10.8543 0.7120 
ReLU 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 

leaky ReLU 0.8000 4.2949 0.2804 1.4946 4.8755 0.3204 
ELU 2.8294 8.4947 0.5537 3.4148 8.9600 0.5855 

 

As can be seen by the highlighted values, the activation function that generates the lowest error in almost 

all cases is the ReLU function, proving why it is one of the most popular activation functions when working 

with ANNs nowadays [50]. Leaky ReLU has the best MSE test loss of all 4 activation functions, but in the 

remaining values falls short to the ReLU. Regarding the sigmoid and ELU functions, these demonstrated 

weak results when comparing with the other 2 functions, getting in all metrics, values 2 times worse. This 

study proved that the best activation function for this work is the ReLU function, which will be the function 

used in the final model. 
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The last parameter to be tuned is the dropout rate, which until now was set to 20%. The different values 

and corresponding results are shown in Table 4.9. 

Table 4.9 - Results of dropout rate study 
Using 2 hidden layers of sizes 440 and 400, learning rate: 0.0001 and activation function of hidden layers: 

ReLU 

Dropout rate 
Training loss Test loss 

MSE(x10-4) MAE(x10-3) MAPE MSE(x10-4) MAE(x10-3) MAPE 

0% 1.6501 8.4134 0.5456 2.3367 8.8968 0.5786 
5% 0.5724 3.6952 0.2417 1.6456 4.6661 0.3074 
10% 0.5346 3.8489 0.2511 1.6371 4.7203 0.3105 
20% 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 
30% 0.7887 4.8243 0.3167 1.7034 5.5186 0.3647 

 

Analyzing the results, dropout rates of 5%, 10% and 20% show the best and relatively similar values 

between them while the values for dropout rate of 0% and 30% show a decrease in accuracy of the ANN. 

The worst results come from having no dropout rate at all which reveals the necessity of this regularization 

technique. A dropout rate of 20% was chosen for the final model, given that the ANN presents the best 

results with this value. 

4.2 Final Model 
 

All the parameters of the ANN are now tuned to achieve the best performance possible, and a brief 

summary of the model is shown in Table 4.10 along with the metrics of the training phase at each epoch. 

Table 4.10 - Summary of ANN 

Parameter Value 
Input layer size 38 

Hidden layer 1 size 440 
Hidden layer 2 size 400 
Output layer size 10 

Loss function Mean Squared Error 
Optimizer Adam 
Batch size 128 

Hidden layers activation function ReLU 
Learning rate 0.0001 
Dropout rate 20% 

Training epochs 300 
Validation split 20% 
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Analyzing Fig. 4.1 and Fig. 4.2, it is possible to state that the number of training epochs used for training is 

adequate due to the almost stagnation of both training and validation curves in the MAE and MAPE loss 

functions, and complete stagnation for the MSE loss function.  

 

 

The final values of the 3 metrics for all 16 ANNs are shown in Table 4.11. As can be seen by the MAPE 

values of both training and test loss, the final model in all ANNs is presenting better performance than the 

initial goal of 1% error. 

 

 

  
Figure 4.1 - MSE loss function (left) and MAE loss function (right) 

 
Figure 4.2 - MAPE loss function 
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Table 4.11 - Final model metric values  

Tuning 
mode Corner 

Training loss Test loss 

MSE(x10-4) MAE(x10-3) MAPE MSE(x10-4) MAE(x10-3) MAPE 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

FF 0.5346 3.5950 0.2344 1.5345 4.4429 0.2919 

FS 0.5046 3.7093 0.2438 1.5623 4.3444 0.2873 

SF 0.7096 3.7298 0.2441 1.2777 4.2840 0.2810 

SS 0.9830 4.3566 0.2833 1.6931 4.9340 0.3236 

300mV 0.7763 5.3615 0.3524 1.5838 5.9087 0.3919 

400mV 0.6531 4.5662 0.3061 1.0625 4.9738 0.3339 

m40dC 0.6195 4.0734 0.2665 1.1569 4.3965 0.2890 

85dC 0.6881 4.4254 0.2965 1.1435 4.8061 0.3237 

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

FF 1.2872 5.4180 0.3638 2.3003 5.9296 0.3987 

FS 0.7244 4.0943 0.2727 1.7098 4.7493 0.3163 

SF 0.8058 4.3929 0.2858 1.7478 5.0881 0.3324 

SS 1.1053 7.8992 0.5777 2.8484 11.5884 0.8384 

300mV 1.8979 7.0264 0.4585 3.4236 8.1042 0.5304 

400mV 1.7348 7.4566 0.4828 3.1930 8.4154 0.5486 

m40dC 5.9536 9.3559 0.6163 8.4010 10.8045 0.7134 

85dC 1.0614 4.5612 0.3037 1.7748 5.1120 0.3418 

 

4.3 Test Results 
 

In order to check the performance of the ANN, the prediction errors of 4 different performances were 

obtained for the points that belong to the test. These performances are: 

• Oscillation frequency; 

• Power; 

• Phase noise in 10MHz; 

• Figure of Merit in 10MHz. 

All 4 of these performances were obtained for corner FF in mode 𝑏𝑏0000. In Tables 4.12, 4.13, 4.14 and 4.15 

the results of the predictions are presented, where 5 different sets of results are shown: 

• Best: 5 lowest MAPE values; 

• 25th: 25th quantile value and the next 4 points (in order of MAPE); 

• Median: median value and the next 4 points (in order of MAPE); 

• 75th: 75th quantile value and the next 4 points (in order of MAPE); 

• Worst: 5 highest MAPE values. 
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As observable on the results, the ANN is capable of achieving extremely accurate results. In all four 

performances the best results are almost perfect predictions of the true value with errors of 0.0005% at 

most. Another great indicator of the performance of the ANN is the quantile values. The worst 25th quantile 

value of the 4 performances is an error of 0.15% which indicates that 25% of all the predictions have a 

MAPE lower or equal for that performance (phase noise for this case). The medians of all 4 performances 

also show evidence of an accurate model ANN. The worst median value, also belonging to the phase noise 

performance, shows a small error of 0.28% between prediction and real value. The same can be said for 

the 75th quantile values, where the worst one sits at 0.42% for the phase noise again. Once again, these 

results show the powerful prediction capabilities of the model as it states that 75% of the points predicted 

have 0.42% or lower error values. Now finally the worst MAPE values are the extreme situations that the 

model encountered, specifically, mostly points that belong to a range of values very different than the most 

represent ones on the dataset. This can be seen for example in the worst MAPE values of the oscillation 

frequency where real values correspond to 1.6 GHz, 7.3 GHz, 7.2 GHz, and 9.9 GHz which correspond to 

values very different than the normal band of frequency of the dataset (3.5-to-4.8 GHz).  

 

4.4 Conclusions 
 

In this Chapter, the training phase of the PVT Estimator’ ANNs for the optimization defined in Chapter 3 

was described, step by step. First the datasets for each ANN were defined along with the necessary pre-

processing to obtain the best data for their training phase. Furthermore, the tuning phase of the 

hyperparameters of the ANNs was described followed by the showcase of the final model structure. Finally, 

the test results of one of the ANNs were shown. These results show that the ANN is capable of achieving 

highly accurate results on unseen data, and therefore, are considered adequate for the remaining 

experiments conducted on this dissertation. 
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Table 4.12 - Error results of oscillation frequency for corner FF in mode 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 

Table 4.13 - Error results of power for corner FF in mode 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 

Table 4.14 - Error results of phase noise in 10MHz for corner FF in mode 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 
 

Table 4.15 - Error results of FOM in 10MHz for corner FF in mode 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

mape real (GHz) pred (GHz) mape real (GHz) pred (GHz) mape real (GHz) pred (GHz) mape real (GHz) pred (GHz) mape real (GHz) pred (GHz)
0.000001 4.863 4.863 0.075278 6.078 5.940 0.162609 4.792 4.765 0.305878 5.282 5.211 4.944724 4.155 4.891
0.000068 4.363 4.363 0.075308 4.508 4.522 0.162613 4.346 4.325 0.305967 4.923 4.898 5.264267 7.322 6.371
0.000082 4.814 4.814 0.075328 5.175 5.147 0.162647 3.137 3.091 0.305973 4.751 4.754 6.010913 7.184 6.107
0.000098 4.632 4.632 0.075337 5.353 5.278 0.162688 6.054 5.957 0.305991 5.047 5.028 6.157325 1.619 2.380
0.000104 2.535 2.535 0.075396 5.554 5.788 0.162689 5.356 5.342 0.306057 4.987 4.979 6.507957 9.852 8.512

best 25th median 75th worst

mape real (mW) pred (mW) mape real (mW) pred (mW) mape real (mW) pred (mW) mape real (mW) pred (mW) mape real (mW) pred (mW)
0.000024 1.4359 1.4359 0.074626 1.1031 1.0881 0.162755 1.8863 1.8348 0.313062 1.2639 1.2621 9.834139 1.242 2.2322
0.000065 2.6972 2.6972 0.074632 1.4189 1.4346 0.162789 2.0585 2.1066 0.313096 2.1122 2.0964 9.920227 1.1652 2.1565
0.000115 1.2918 1.2918 0.074652 1.0335 1.0405 0.162803 3.124 2.868 0.313120 1.7466 1.722 11.163885 1.1188 2.2292
0.000148 1.4345 1.4345 0.074655 1.0408 1.0333 0.162855 1.1989 1.1872 0.313153 1.5612 1.5617 12.081931 0.9818 2.1669
0.000171 2.4626 2.4626 0.074668 1.3207 1.3805 0.162883 1.7028 1.6609 0.313230 1.5466 1.5332 13.018456 2.1257 3.5516

best 25th median 75th worst

mape real pred mape real pred mape real pred mape real pred mape real pred
0.000119 -133.73 -133.73 0.153637 -132.45 -132.48 0.279812 -134.01 -133.90 0.421004 -131.99 -131.88 11.663282 -133.41 -128.99
0.000203 -134.14 -134.14 0.153716 -133.30 -133.08 0.279954 -134.42 -134.31 0.421062 -131.29 -131.18 11.963589 -132.68 -128.06
0.000247 -132.22 -132.22 0.154076 -132.37 -132.17 0.280005 -134.16 -133.25 0.421202 -134.43 -134.25 13.839280 -135.65 -130.71
0.000250 -132.14 -132.14 0.154117 -132.02 -132.01 0.280009 -129.20 -130.29 0.421402 -134.41 -134.31 14.683453 -124.36 -131.26
0.000482 -132.69 -132.69 0.154148 -129.12 -129.05 0.280018 -133.54 -133.33 0.421456 -133.24 -133.11 16.450449 -130.22 -136.98

best 25th median 75th worst

mape real pred mape real pred mape real pred mape real pred mape real pred
0.000051 183.41 183.41 0.070950 187.70 187.62 0.136466 184.86 184.83 0.216889 185.43 185.22 9.023088 162.52 167.61
0.000078 183.44 183.44 0.070956 184.86 184.64 0.136569 184.05 183.84 0.217096 181.88 181.80 12.927639 165.59 173.27
0.000137 185.86 185.86 0.070989 186.50 186.30 0.136571 179.14 177.82 0.217208 185.54 185.42 13.209411 151.36 157.33
0.000217 185.13 185.13 0.071010 186.42 186.39 0.136578 184.05 184.72 0.217265 186.54 186.44 14.978211 164.17 172.86
0.000240 186.17 186.17 0.071055 182.80 182.87 0.136634 185.81 185.64 0.217528 185.31 185.23 17.360127 163.12 173.01

best 25th median 75th worst
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5 AIDA Integration and Results 
 

In this Chapter a clear explanation of the integration in the AIDA loop of the models developed in Chapter 

4 will be presented and, the results of three different and optimizations using the modified AIDA loop will 

be shown and discussed. 

 

5.1 AIDA Integration 
 

With the ANNs for each corner and tuning mode tuned and ready to be used, the next step of this work is 

to integrate the PVT estimator into the AIDA loop. The location of the PVT estimator will follow the proposed 

solution in Chapter 3 and is presented in Fig. 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first step of the optimization loop several circuit sizing solutions are proposed by the optimization 

engine (number of solutions depends on the population defined). In the original AIDA loop, the simulator 

evaluates each of these solutions for all TT conditions and PVT corners, and outputs all the evaluated 

performances. The optimization engine receives these evaluations and ranks the solutions (population) 

according to their compliance with the objectives and constraints set for the current optimization problem. 

A brief flowchart of one generation of the original AIDA loop is shown in Fig. 5.2. 

  

Figure 5.1 - Location of the PVT estimator in the AIDA optimization loop 
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5.1.1 Simulation-based sizing with PVT estimator 
 

In the modified AIDA loop, the simulator will only need to evaluate the solutions for TT conditions. Each of 

the ANNs will receive, as input, the sizing solution and, according to its tuning mode, the performance 

figures respective to the TT conditions (previously evaluated by the simulator). With the inputs defined, 

each ANN will output the performance figures corresponding to a specific corner and tuning mode, so the 

performance figures for all PVT corners can be sent to the optimization engine for further ranking. These 

performance figures are a mix of simulated performance figures (TT corners) and predicted performance 

figures (remaining PVT corners).  

Figure 5.2 - Flow of a generation of the original AIDA loop 
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In the scope of the sizing optimization, one of these loops represents a generation of the optimizer. A brief 

flowchart of one generation of the modified loop is shown in Fig. 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Flow of a generation of the modified 
AIDA loop (modification in red) 
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The structure of the PVT estimator is further detailed in Fig. 5.4. 

  Figure 5.4 - Detailed diagram of the PVT estimator 
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In the following sections, a comparison with an exhaustive circuit sizing optimization is performed to 

determine if the optimization with the modified loop, while using the PVT estimator throughout 100% of the 

optimization, achieves adequate results. 

 

5.1.2 Class C/D VCO optimization without PVT estimator 
 

The optimization that will be utilized to compare results is the one performed to obtain the dataset used to 

train the ANNs (as described in Section 3.2). This comparison will serve as a primary filter to observe if the 

modified loop is capable of achieving feasible solutions or improving the original optimization results, while 

simultaneously accelerating the optimization with a speed-up factor of 9. This speed-up factor results from 

the optimization with the modified loop only evaluating the TT conditions for two tuning modes and the 

original optimization which evaluated both TT conditions and PVT corners for 2 different tuning modes ( 
18
2

= 9). 

The principal objective of this optimization was to minimize both power and phase noise at 10 MHz in both 

tuning modes while imposing value constraints on 7 measured performances, in both tuning modes as well. 

These optimization constraints and objectives are shown in Table 5.1. The optimization was executed 

through a total of 350 generations, took a total of 612 hours to complete and resulted in a total of 27 sizing 

solutions. In Fig. 5.5 is shown the POF evolution of the original optimization which contains the best sizing 

solutions throughout the generations, and, in Table 5.2 the values of the final POF obtained at generation 

350 are shown. 

Table 5.1 - Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Optimization 
Constraint 

Optimization 
Objective 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

fosc All GHz ≥ 4.8  
PN@10kHz All dBc/Hz ≤ -49  
PN@100kHz All dBc/Hz ≤ -76  
PN@1MHz All dBc/Hz ≤ -98  

PN@10MHz All dBc/Hz ≤ -119 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 180  

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

fosc All GHz ≤ 3.9  
PN@10kHz All dBc/Hz ≤ -55  
PN@100kHz All dBc/Hz ≤ -82  
PN@1MHz All dBc/Hz ≤ -103  

PN@10MHz All dBc/Hz ≤ -124 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 180  
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Table 5.2 - Final solutions of the original POF at generation 350 

Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case  
Power (W) 

Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

-135.02 7.9176E-04 -134.14 6.5391E-04 

-134.95 7.7265E-04 -134.08 6.5374E-04 

-134.87 7.7217E-04 -134.06 6.5373E-04 

-134.83 7.7216E-04 -134.05 6.5360E-04 

-134.69 7.7067E-04 -134.04 6.3966E-04 

-134.65 6.9143E-04 -133.94 6.3690E-04 

-134.53 6.9142E-04 -133.89 6.3685E-04 

-134.37 6.7491E-04 -133.88 6.3679E-04 

-134.32 6.7460E-04 -133.86 5.6012E-04 

-134.30 6.7454E-04 -133.09 5.3484E-04 

-134.29 6.6054E-04 -133.06 5.3225E-04 

-134.26 6.5976E-04 -132.97 5.3219E-04 

-134.23 6.5959E-04 -132.91 5.1784E-04 

-134.21 6.5394E-04   

 

Figure 5.5 - POF evolution throughout the original optimization 
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5.1.3 Class C/D VCO with PVT estimator working at 100% 
 

To obtain the best base of comparison possible, the number of generations of the now modified optimization 

was set to 350 as well, the same as the original, and, both optimization constraints and objectives were the 

same, shown in Table 5.1. The POF evolution throughout the modified loop optimization is depicted in Fig. 

5.6 alongside the final original POF. 

However, in order to ascertain if the solutions obtained are feasible or not all the circuit sizing solutions 

must be evaluated by the simulator. Unfortunately, all the solutions revealed to be unfeasible in at least 30 

of the 160 total performances. The POF values obtained in generation 350 and number of failed 

optimization constraints is shown in Table 5.3.  

As observable, the number of final solutions obtained increased substantially (from 27 to 40) and the range 

of values for both worst-case power and worst-case phase noise at 10MHz improved significantly, with 

solutions where the worst-case power achieves 2 mW, less than half of the lowest worst-case power of the 

original optimization, and also, the worst-case phase noise of all solutions decreased by at least 2 dBc/Hz. 

However, these results cannot be possibly translated into a working circuit.  

Finally, it was performed a small optimization of 20 generations with the original AIDA loop using the last 

state of the modified loop optimization as starting point, in order to confirm if feasible solutions can be found. 

However, even with this step no feasible solution was found. 

Figure 5.6 - POF evolution throughout the modified loop optimization 
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Table 5.3 - POF at generation 350 

Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case 

Power 
# Failed 

constraints 
Worst case 

Phase Noise 
10MHz (dBc/Hz) 

Worst case 
Power 

# Failed 
constraints 

-137.85 1.08E-03 30 -137.31 5.02E-04 49 

-137.82 1.08E-03 31 -137.16 4.99E-04 49 

-137.81 1.05E-03 36 -137.09 4.96E-04 49 

-137.80 1.04E-03 35 -137.00 4.96E-04 49 

-137.76 1.03E-03 36 -136.91 4.89E-04 49 

-137.74 1.02E-03 42 -136.64 4.82E-04 49 

-137.72 8.34E-04 36 -136.53 2.97E-04 51 

-137.70 8.28E-04 36 -136.50 2.97E-04 50 

-137.68 7.82E-04 35 -136.39 2.91E-04 49 

-137.67 7.65E-04 36 -136.33 2.77E-04 49 

-137.64 7.17E-04 36 -136.29 2.64E-04 54 

-137.63 7.09E-04 41 -136.18 2.64E-04 48 

-137.59 5.97E-04 44 -136.07 2.39E-04 51 

-137.56 5.97E-04 36 -136.06 2.39E-04 50 

-137.54 5.21E-04 49 -136.03 2.29E-04 48 

-137.53 5.21E-04 49 -135.87 2.10E-04 49 

-137.51 5.14E-04 49 -135.79 2.09E-04 51 

-137.47 5.10E-04 49 -135.45 2.09E-04 49 

-137.41 5.08E-04 49 -135.39 2.08E-04 55 

-137.37 5.08E-04 49 -135.30 1.99E-04 55 

 

Conclusion 

These results demonstrate one major flaw in the modified loop, it over-estimates the circuit performances, 

i.e., it makes the optimization engine search in a performance space where the circuit simply cannot operate 

in real world conditions. In order to prevent this situation, some control has to be introduced in the modified 

loop to guide the optimization into feasible regions. 
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5.1.4 PVT estimator with error controller 
 

As stated, some control has to be introduced in the loop to better guide the optimization to feasible solution 

regions. In order to achieve this, a simple error controller for each ANN used in the modified loop was 

implemented. A brief flowchart of one generation of the modified loop with the new controller is shown in 

Fig. 5.7. 

At each generation, before both candidate sizing solutions and TT performance figures are sent to the 

ANNs, first they pass through a controller that will choose which ANNs will operate at the current generation, 

i.e., which PVT corner/tuning mode combination will be simulated or predicted. 

First, the controller sends 20% of the candidate sizing solutions to be simulated and predicted at the same 

time. For PVT corner/tuning mode combination, with the output of the simulator, the controller checks if 

there are more feasible solutions than unfeasible solutions. If there are more unfeasible solutions than 

feasible solutions or the same number, the PVT corner/tuning mode combination will be simulated (instead 

of predicted) in that generation for the remaining candidate solutions. This acts as the primary filter to 

prevent the optimization of entering unfeasible regions. 

If there are more feasible solutions than unfeasible it passes to the next step. Here the controller uses the 

output of the feasible solutions from the simulator, i.e., simulated performances (from the previous step) 

and compares them to the corresponding predicted performances. The error between each performance is 

calculated and the average error of all points is obtained. If the error (MAPE) is higher than 5% the 

combination will be simulated in that generation for the rest of the candidate solutions. If is equal or lower 

than 5% the corresponding ANN will predict the PVT corner/tuning mode combination in that generation for 

the rest of the candidate solutions. 

The flow of the controller is depicted in Fig. 5.8. 
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  Figure 5.7 - Flow of a generation of the controlled modified AIDA loop (modification in red and 
controller in blue) 
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5.2 Results with controlled PVT estimator 
 

Using the new controlled PVT estimator, three different optimizations will be performed, where in each one 

a different objective of this dissertation will be analyzed: 

1. Class C/D VCO for 3.5-to-4.8 GHz: check if the controlled PVT estimator is capable of adequate 

circuit performance estimations in the PVT corners; 

2. Class C/D VCO 2.3 GHz-to-2.5 GHz: verify if the controlled PVT estimator can be directly reused 

for an optimization with completely different objectives and constraints of the same topology that 

was trained for, i.e., without re-training it (plug-and-play functionalities); 
3. ULP Class B/C VCO: verify if the same ANN structure used in the controlled PVT estimator for a 

particular circuit topology can be reused for a different VCO circuit topology (plug-and-train 

functionalities). 

Figure 5.8 - Flow of the controller for each PVT corner/tuning mode combination 
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5.2.1 Class C/D VCO for 3.5-to-4.8 GHz 
 

In this section the main objective is to compare the final POF results using the controlled PVT estimator 

with the final POF obtained in the original optimization in Fig. 5.5. The number of generations of the 

optimization using the controlled PVT estimator was set to 330 and in the last 20 generations the 

optimization was carried using the original loop shown in Fig. 5.2. The POF evolution throughout the 

optimization with the controlled PVT estimator is depicted in Fig. 5.9 alongside the final original POF. 

 

As observable, the optimization at generation 330, i.e., the optimization using the controlled PVT estimator 

finds solutions with similar worst case power and worst case phase noise at 10 MHz to the original 

optimization when comparing with the optimization using a PVT estimator working at 100% in Fig. 5.6. 

The circuit sizing solutions of the POF at generation 330 were simulated and the results show that 1 of the 

20 solutions of the POF passed all the optimization constraints and thus feasible solutions were found. 

Additionally, 2 solutions close to the optimization specifications were also found, with only 1 constraint 

failed. These results are shown in better detail in Table 5.4. This concludes that the controller was capable 

of directing the optimization to feasible performance regions, which was the main problem of the 

optimization using the PVT estimator working at 100%. 
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Figure 5.9 - POF evolution throughout the modified loop optimization with controller 
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Table 5.4 - POF at generation 330 

Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

# Failed 
Constraints 

Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

# Failed 
Constraints 

-136.78 1.57E-03 1 -134.96 9.53E-04 24 

-136.52 1.56E-03 13 -134.59 7.11E-04 23 

-136.36 1.50E-03 0 -134.32 4.96E-04 30 

-136.34 1.41E-03 1 -134.30 4.96E-04 30 

-136.29 1.26E-03 7 -134.29 4.39E-04 30 

-136.07 1.11E-03 13 -134.26 4.35E-04 30 

-135.94 1.05E-03 18 -134.18 4.31E-04 30 

-135.47 1.04E-03 13 -132.51 4.31E-04 47 

-135.19 9.79E-04 18 -132.50 4.22E-04 30 

-135.09 9.79E-04 13 -132.16 4.06E-04 36 
 

After the last 20 generations, the optimization was capable of finding 30 solutions, and because these 

generations were performed fully with the simulator, all of them are feasible. Comparing the performances 

of these solutions with the original POF, it is possible to observe that the solutions in terms of worst case 

power are worse than the original POF by at least 1 mW but regarding the worst case phase noise at 10 

MHz the optimization was capable of finding solutions with nearly less 2 dBc/Hz. The final POF is shown in 

Fig. 5.9 and the values are shown in better detail in Table 5.5.  

Table 5.5 - POF at generation 350 

Worst case  
Phase Noise 10MHz 

(dBc/Hz) 
Worst case 
Power (W) 

Worst case  
Phase Noise 10MHz 

(dBc/Hz) 
Worst case 
Power (W) 

Worst case  
Phase Noise 10MHz 

(dBc/Hz) 
Worst case 
Power (W)  

-136.86 1.65E-03 -136.43 1.42E-03 -134.17 7.97E-04 
-136.83 1.65E-03 -136.38 1.42E-03 -134.16 7.79E-04 
-136.82 1.65E-03 -136.37 1.37E-03 -133.99 7.78E-04 

-136.77 1.65E-03 -136.23 1.34E-03 -133.97 6.98E-04 

-136.73 1.65E-03 -135.78 1.33E-03 -133.79 6.98E-04 

-136.68 1.64E-03 -134.56 8.90E-04 -133.72 6.90E-04 

-136.56 1.43E-03 -134.34 8.01E-04 -133.57 6.90E-04 

-136.47 1.43E-03 -134.33 7.99E-04 -133.41 6.90E-04 

-136.46 1.43E-03 -134.31 7.98E-04 -133.36 6.89E-04 
-136.44 1.43E-03 -134.22 7.98E-04 -133.28 6.81E-04 
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The speed-up obtained with the controlled PVT estimator is calculated by using the percentage of usage 

of each ANN throughout the first 330 generation of the optimization. These values are shown in Fig. 5.10. 

While analyzing Fig. 5.10, it is possible to report that throughout the first 330 generations of the optimization 

78.5% of the original PVT corners evaluations were instead predicted using ANNs. Considering the 

simulation of the TT conditions, using the controlled PVT estimator resulted in a speed-up factor of 3.31.  

However, the total speed-up of the 350 generations is lower due to the last 20 generations of full simulation 

that must be accounted. Considering these simulations, the total speed-up factor obtained using the 

controlled PVT estimator is 2.92. 

Conclusion 

These results show that the optimization using a controlled PVT estimator is capable of finding a small 

group of feasible solutions or almost feasible solutions capable of competing in terms of performance with 

the original optimization while achieving a speed-up factor of 3.31. In the original optimization, the first 330 

generations took, approximately, 577 hours to complete, while the optimization using the PVT estimator 

only took 185 hours to complete. Using the simulator for an additional 20 generations at the end of the 

optimization achieves a more robust and broad-ranging POF, while still capable of achieving a speed-up 

factor of 2.92. With the PVT estimator, in total, the modified optimization took 16 and a half days less than 

the original optimization. The main objective of this comparison is therefore confirmed to be possible, 

proving that the PVT estimator is capable of finding adequate PVT corner circuit performance estimations. 

Figure 5.10 - Modes simulated vs predicted throughout optimization 
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5.2.2 Plug-and-play Class C/D VCO 2.3 GHz-to-2.5 GHz 
 

The main objective in this section is to determine if the controlled PVT estimator, trained and tuned for the 

optimization of Section 5.2.1, is capable of finding adequate PVT corner circuit performances estimations 

for an optimization with completely different targets of the same circuit topology. For the comparison, the 

optimization that will be used is a similar simulation-based sizing optimization of the circuit in Section 3.2 

but the range of the oscillation frequency in which the class C/D VCO will operate is now set to 2.3 GHz-to-

2.5 GHz and the optimization constraints were tighten, i.e., the maximum (or minimum) values chosen for 

the measured performances were decreased (or increased). The optimization constraints and objectives 

are shown in Table 5.6.  

Table 5.6 - Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Optimization 
Constraint 

Optimization 
Objective 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

fosc All GHz ≥ 2.5  
PN@10kHz All dBc/Hz ≤ -54  
PN@100kHz All dBc/Hz ≤ -81  
PN@1MHz All dBc/Hz ≤ -103  

PN@10MHz All dBc/Hz ≤ -124 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 185  

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

fosc All GHz ≤ 2.3  
PN@10kHz All dBc/Hz ≤ -60  
PN@100kHz All dBc/Hz ≤ -87  
PN@1MHz All dBc/Hz ≤ -108  

PN@10MHz All dBc/Hz ≤ -129 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 185  
 

First an optimization using the unmodified loop was executed only for comparison terms, however, as 

opposed to the original optimization of Section 5.1.2, the data will not be used for the training phase of the 

ANNs, given that it would defeat the purpose of the main objective of this comparison. The optimization 

executed a total of 200 generations, took a total of 350 hours to complete and resulted in a total of 13 sizing 

solutions. In Fig. 5.11 is shown the POF evolution of the original optimization which contains the best sizing 

solutions throughout the generations and in Table 5.7 is shown the values of the final POF obtained at 

generation 200. 
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Table 5.7 - Original POF at generation 200 
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Worst case  
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

-137.86 4.25E-04 
-137.85 4.24E-04 
-137.84 4.00E-04 
-137.82 3.91E-04 
-137.74 3.90E-04 
-137.72 3.69E-04 
-137.69 3.69E-04 
-137.68 3.33E-04 
-137.61 3.28E-04 
-137.59 3.28E-04 
-137.58 3.23E-04 
-137.50 3.22E-04 
-136.92 3.18E-04 

Figure 5.11 - POF evolution throughout the original optimization 
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Similar to the optimization of Section 5.2.1, the optimization using the controlled PVT estimator was 

executed for 180 generations and, after this, the optimization was carried for 20 generations using the 

original unmodified loop shown in Fig. 5.2. The POF evolution throughout this optimization is depicted in 

Fig. 5.12 alongside the final original POF for easier comparison. 

Figure 5.12 - POF evolution throughout the modified loop optimization with controller 
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were failed, if any, these were simulated. The results show that no solution passed all optimization 
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Table 5.8.  

 

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

-139.00 -138.50 -138.00 -137.50 -137.00

W
or

st
 c

as
e 

po
w

er
 (W

)

Worst case phase noise 10MHz (dB/Hz)

Generation 40
Generation 80
Generation 120
Generation 160
Generation 180
Generation 200
Original



58 
 

Table 5.8 - POF at generation 180 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

# Failed 
Constraints 

-138.41 6.44E-04 7 
-138.35 6.43E-04 2 
-138.24 6.38E-04 2 
-138.09 6.18E-04 7 
-137.77 5.88E-04 12 

 

After the last 20 generations, the optimization found 5 feasible solutions near the region of performances 

at generation 180. When comparing results, it is clear that the lowest worst case power solution found with 

PVT estimator increased by almost 3 mW which is equal to a 100% increase from the original optimization. 

However, the optimization was capable of finding solutions with 1 dBc/Hz less than the solutions in the 

original POF. These results are shown in Table 5.9. 

Table 5.9 - POF at generation 200 

 

 

 

 

 

Once again, the speed-up obtained with the controlled PVT estimator is calculated by using the percentage 

of usage of each ANN throughout the optimization. These values are shown in Fig. 5.13. 

While analyzing Fig. 5.13, it is possible to report that throughout the first 180 generations of the optimization 

74.5% of the original PVT corners evaluations were instead predicted using ANNs. Considering the 

simulation of the TT conditions, using the controlled PVT estimator resulted in a speed-up factor of 2.95. 

However, and as before, the total speed-up of the 200 generations is lower as the last 20 generations of 

full simulation must be accounted. Considering these simulations, the total speed-up factor obtained using 

the controlled PVT estimator is 2.48. 

 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

-138.63 6.43E-04 
-138.62 6.23E-04 
-138.56 6.13E-04 
-138.54 6.03E-04 
-138.06 5.98E-04 
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Conclusion 

These results show that the controlled PVT estimator is capable of finding adequate circuit sizing 

performance regions despite being trained and tuned with data from another optimization, while still being 

able to obtain a speed-up factor of 2.95. In the original optimization, the first 180 generations took, 

approximately, 315 hours to complete, while the optimization using the PVT estimator only took 107 hours 

to complete. Using the simulator for the additional 20 generations, resulted in a final POF with 5 feasible 

solutions while still being able to achieve a speed-up factor of 2.48. With the PVT estimator, in total, the 

modified optimization took 8 and a half days less than the original optimization. The final POF results 

obtained reveal feasible solutions with better performances in terms of phase noise but worse performances 

in terms of power. Due to the random nature of the optimization loop, it is not certain that these performance 

results would be replicated if the optimization would be executed again. To ascertain the competitiveness 

of these solutions in terms of performances more than, for example, 5 optimizations would have to be 

performed. However, the reduction of optimization days using the PVT estimator reveals the 

competitiveness in terms of computational time used to obtain feasible solutions.  
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Figure 5.13 - Modes simulated vs predicted throughout optimization 
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5.2.3 Plug-and-train Ultralow-Power Class B/C VCO 
 

The main objective in this section is to determine if the controlled PVT estimator, while reusing the ANN 

structure for a certain VCO circuit topology in the training phase, is capable of finding adequate PVT corner 

circuit performances estimations for a different VCO circuit topology. For the comparison, it will be used a 

simulation-based sizing optimization of an Ultralow-Power class B/C VCO, illustrated in Fig. 5.14. The full 

list of optimization variables is presented in Table 5.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 – Ultralow-Power Complementary Class B/C Hybrid-Mode VCO topology. Reprinted from [8]. 

 

Table 5.10 - Optimization variables 

Variable Units Min. Grid Max. 
irad µm 15 5 90 
itur - 1 1 6 
ispa µm 2 1 4 
iwid µm 3 1 30 

nccl, pccl nm 60 20 240 

nccf, pccf, 𝒇𝒇𝟓𝟓 𝟔𝟔� , 𝒇𝒇𝟕𝟕 𝟖𝟖�  - 1 1 32 

nccw, pccw, 𝐰𝐰𝟓𝟓
𝟔𝟔�  µm 0.6 0.2 6 

𝒍𝒍𝟕𝟕 𝟖𝟖�  nm 130 20 6000 

𝐰𝐰𝟕𝟕
𝟖𝟖�  nm 120 20 6000 

rccl µm 0.8 0.2 30 
cnv, cnh, vnv, vnh, snv - 6 2 100 

snh - 6 2 50 
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Similar to the optimization of Section 5.1.2, the principal objective was to minimize both power and phase 

noise at 10 MHz in both tuning modes while imposing value constraints on 7 measured performances, in 

both tuning modes as well. These optimization constraints are shown in Table 5.11. 

Table 5.11 - Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Optimization 
Constraint 

Optimization 
Objective 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

fosc All GHz ≥ 5.3  
PN@10kHz All dBc/Hz ≤ -55  
PN@100kHz All dBc/Hz ≤ -75  
PN@1MHz All dBc/Hz ≤ -95  

PN@10MHz All dBc/Hz ≤ -115 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 175  

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

fosc All GHz ≤ 4.6  
PN@10kHz All dBc/Hz ≤ -55  
PN@100kHz All dBc/Hz ≤ -75  
PN@1MHz All dBc/Hz ≤ -95  

PN@10MHz All dBc/Hz ≤ -115 minimize 
power All mW n/d minimize 

FOM@10MHz All dBc/Hz ≥ 175  
 

First an optimization using the unmodified loop was executed for comparison with the optimization using 

the PVT estimator and to obtain the dataset to train the ANNs. The data from the original optimization was 

collected and structured similarly to the previous dataset. To use this dataset for the training phase of the 

ANNs, the pre-processing strategy used was similar to the one described in Section 4.1, resulting in 16 

datasets clear of outliers and null values, ready to be fed to the ANNs. The structure of the ANNs that will 

be used in the PVT estimator will be one tuned in Chapter 4, used in Section 5.2.1 and 5.2.2, however, as 

observable in Table 5.10, the number of optimization variables is now 22 which forces the number of 

neurons in the input layer to change from 38 to 32 (22 optimization variables plus 10 performance figures 

in TT conditions). 

The optimization with the unmodified loop executed a total of 100 generations, took a total of 636 hours to 

complete and resulted in a total of 14 sizing solutions. In Fig. 5.15 is shown the POF evolution of this 

optimization and in Table 5.12 is shown the values of the final POF obtained at generation 100. 
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Table 5.12 - Original POF at generation 100 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

-130.56 2.91E-04 
-130.44 2.85E-04 
-129.58 2.68E-04 
-129.17 2.63E-04 
-129.04 2.55E-04 
-128.90 2.48E-04 
-128.15 2.41E-04 
-128.06 2.28E-04 
-127.80 2.11E-04 
-127.67 2.05E-04 
-127.57 2.01E-04 
-127.44 2.01E-04 
-127.42 1.95E-04 
-127.28 1.93E-04 

 

 

 

Figure 5.15 - POF evolution throughout the original optimization 
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Using the same strategy as in the previous sections, the optimization using the controlled PVT estimator 

was executed for 80 generations and, after this, the optimization was carried for 20 generations using the 

original unmodified loop shown in Fig. 5.2. The POF evolution throughout this optimization is depicted in 

Fig. 5.16 alongside the final original POF for easier comparison. 

 

As observable, the optimization at generation 80 was capable of finding 16 solutions in a performance 

region with considerable better worst case phase noise at 10 MHz than the original optimization and 

significantly lower worst case power throughout almost all solutions.  

To ascertain if the solutions found are feasible or not and how many optimization specification constraints 

were failed, if any, these were simulated. The results show that no solution passed all optimization 

specification constraints, however 5 of them achieved 6 failed constraints and 4 other achieved 12 failed 

constraints. These 9 solutions came close to feasibility which indicates that the optimization was capable 

of finding an adequate POF performance region. These results are shown in Table 5.13.  

 

 

 

 

Figure 5.16 - POF evolution throughout the modified loop optimization with controller 
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Table 5.13 - POF at generation 80 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

# Failed 
Constraints 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

# Failed 
Constraints 

-130.79 2.93E-04 12 -130.30 2.46E-04 24 

-130.78 2.68E-04 12 -130.15 2.18E-04 6 

-130.61 2.63E-04 6 -129.84 2.11E-04 6 

-130.51 2.59E-04 12 -129.74 2.02E-04 6 

-130.46 2.57E-04 18 -129.59 1.91E-04 30 

-130.45 2.54E-04 12 -129.13 1.79E-04 6 

-130.44 2.51E-04 18 -128.77 1.64E-04 24 

-130.31 2.46E-04 24 -126.99 1.60E-04 42 
 

After the last 20 generations, the optimization found 12 feasible solutions near the region of performances 

at generation 80. It is evident that both worst case phase noise at 10 MHz and worst case power improved 

substantially when comparing with the original. The lowest and highest worst case power decreased by 0.1 

mW and 0.46mW, respectively, while the lowest and highest worst case phase noise at 10 MHz decreased 

by 1.8 dBc/Hz and 0.32 dBc/Hz, respectively. These results are shown in Table 5.14. 

Table 5.14 - POF at generation 100 

Worst case 
Phase Noise 

10MHz (dBc/Hz) 
Worst case 
Power (W) 

-130.88 2.45E-04 

-130.51 2.32E-04 

-130.50 2.30E-04 

-130.42 2.26E-04 

-130.16 2.18E-04 

-129.73 2.13E-04 

-129.72 2.12E-04 

-129.64 2.04E-04 

-129.54 1.88E-04 

-129.53 1.88E-04 

-128.99 1.82E-04 

-128.99 1.82E-04 
 

Once again, the speed-up obtained with the controlled PVT estimator is calculated by using the percentage 

of usage of each ANN throughout the optimization. These values are shown in Fig. 5.17. 
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Figure 5.17 - Modes simulated vs predicted throughout optimization 

 

When analyzing Fig. 5.17, it is possible to report that throughout the first 80 generations of the optimization 

74.1% of the original PVT corners evaluations were instead predicted using ANNs. Considering the 

simulation of the TT conditions, using the controlled PVT estimator resulted in a speed-up factor of 2.92. 

However, the total speed-up of the 100 generations is lower because the last 20 generations of full 

simulation must be accounted for, and the percentage of simulation added of these generations is bigger 

when compared to the previous optimizations (20% of total optimization). Considering this, the total speed-

up factor obtained using the controlled PVT estimator is 2.11. 

Conclusion 

These results confirm that the controlled PVT estimator is capable of finding adequate circuit sizing 

performance regions despite its ANNs not being tuned for this optimization, while still being able to obtain 

a speed-up factor of 2.92. In the original optimization, the first 80 generations took, approximately, 509 

hours to complete, while the optimization using the PVT estimator only took 174 hours to complete. The 

additional 20 generations using the original unmodified loop at the end of the optimization achieves overall 

better results than the original optimization, while still capable of achieving a speed-up factor of 2.11. With 

the PVT estimator, in total, the modified optimization took almost 14 days less than the original optimization. 

Once again, this reduction reveals the competitiveness in terms of computational time used to obtain 

feasible solutions. 
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6 Conclusions and Future Work 
 

This Chapter presents the conclusions of the work done in this dissertation and outlines future possible 

developments which can possibly optimize the performance and abstraction of the PVT estimator. 

6.1 Conclusions 
In this work, it is presented an approach towards the acceleration of analog/RF IC optimization-based sizing 

loop with the help of a PVT corner performance estimator, using multiple ANNs, to complement the 

simulation process, therefore reducing the simulator workload. 

For the development of the PVT estimator, an optimization-based sizing of a Class C/D VCO for 3.9-to-4.8 

GHz was used as case study, gathering the necessary data to train the ANNs and to ascertain if the results 

of the estimations, before integration in the optimization loop, were adequate. All ANNs showed that the 

estimation error results were adequate so the integration process and discussing of final results were 

performed. 

Three different circuit optimizations were used to test the PVT estimator. The first one was the same 

optimization based-sizing of a class C/D VCO for 3.9-to-4.8 GHz used for the development of the PVT 

estimator. The PVT estimator reduced 78.5% of the simulator workload, lowering the total optimization run 

time by 16 and a half days (original run took 25 and a half days to complete). The final solution results 

showed similar performances to the original optimization, and therefore, proving that the PVT estimator is 

capable of finding adequate PVT corner performances. The second optimization was an optimization-based 

sizing of the same circuit topology as the previous one, although, the range in which the VCO operates was 

changed to 2.3-to-2.5 GHz and the optimization constraints were tightened. The PVT estimator reduced 

74.5% of the simulator workload, lowering the total optimization run time by 8 and a half days (original run 

took 14 and a half days to complete). Feasible solutions were found at the end of the optimization using the 

PVT estimator, proving its capability of being reused for optimizations with completely different targets of 

the same circuit topology its ANNs were trained to, therefore demonstrating its plug-and-play functionalities. 

The third and final experiment was an optimization-based sizing of a different VCO circuit topology, i.e., an 

ultralow power class B/C VCO. The same structure of the ANNs used in the two previous tests, was reused 

to train the ANNs in this optimization. The PVT estimator reduced 74.1% of the simulator workload, lowering 

the total optimization run time by 14 and a half days (original run took 26 and a half days to complete). 

Feasible solutions with better performances than the original optimization, were found at the end of the 

optimization using the PVT estimator, proving the capability of its ANNs reusage for a different VCO circuit 

topology, therefore demonstrating its plug-and-train functionalities. 
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6.2 Future Work 
 

This work proved that optimization loop using the PVT estimator can achieve feasible solutions, while 

obtaining great speed-ups, however it is possible to further optimize the competitiveness in both 

optimization times, quality of estimation and the overall generalization of the PVT estimator when 

implemented in different circuit topologies. 

While it was possible to prove that the modified loop can achieve feasible solutions, given the random 

nature of the optimization loop, each optimization can output different final solutions from another. 

Therefore, to check if the final solutions are indeed better or worse than the original optimization, several 

optimizations must be performed. As these optimizations would take a lot of time, several weeks or months 

should be spent on this process. 

The datasets used in this work were obtained by executing optimizations, with the unmodified loop, with an 

execution time of almost one month. Using larger datasets with a small number of null and duplicated values 

would surely increase the estimation capability of the ANNs and given that smaller error results between 

estimation and real value would make the PVT estimator controller allow the ANNs to predict more often, 

the optimization would be faster, and the final solutions would be better. 

An important aspect of the optimization with the PVT estimator is its great reduction of execution time. One 

hypothesis that it was not performed, due to time constraints, was making the execution time of the 

optimizations with the PVT estimator the same as the original ones, to verify if the final POF results would 

be better, given that in certain cases the number of generations would triple in number. A similar case 

happened in Section 5.2.3 where the POF results from the modified optimization were better than the 

original ones. 

An augmentation of the capability of generalization of the PVT estimator could be done in two different 

ways: using datasets with data from different circuit topology optimizations and making the PVT estimator 

online with the optimization. The first one surely would need a more complex structure for the ANNs used 

in the PVT estimator, however there is a possibility that the ANNs would learn more information given 

different circuit topology data. The second one is an approach that uses the ANNs in such a way that a 

training phase would not be performed prior to the integration in the loop, therefore a dataset would not be 

needed. The ANNs would simply be integrated in the loop and for the first generations the loop would be 

working without them. At each generation, the ANNs would use the data from the input and output of the 

simulator for training purposes, therefore learning the circuit topology. In each generation, the ANNs would 

estimate some candidate sizing solutions and, using the real values from the simulator, the estimation error 

would be checked. If it was low enough, the ANNs would become online on the modified loop at that start 

of the next generation, beginning the speed-up process only then. With this the total speed-up obtained 

would decreased considerably but a time-consuming optimization, to gather the data for the dataset, would 

not be needed.  
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