
Best Way to Squeeze: A Comparison of Model Compression

Techniques in Natural Language Processing

João Carlos Lopes Antunes
joao.carlos.antunes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Current research in natural language processing shows a growing number of models extensively
trained with large computational budgets, pursuing the goal of outperforming other state-of-the-art
models in test-set performance scores. However, with such computationally demanding requirements,
training these models often requires several hours, days, or worse. Furthermore, the sheer complexity
and resources required to evaluate such models prevents them from being deployed in devices with
strict resource and response latency limitations. We focus our attention on the effort required to
train and evaluate such high performing models. We analyze several of the latest proposed models,
gather information about their computational budgets, datasets used and model complexity, and apply
state-of-the-art model compression techniques to create compact versions of those models. We then
evaluate whether the trade-off between model performance and budget is worthwhile, in terms of
evaluation efficiency, model simplicity and environmental footprint.
Keywords: machine learning, neural networks, natural language processing, model compression,
model evaluation, environmental footprint

1. Introduction

Figure 1: Number of parameters of some of the
larger NLP models released between 2018 and 2019.
Source: [17]

The field of machine learning has brought a revo-
lution in performing human-like tasks through com-
puting, especially with the research and develop-
ment in neural network technology. This is es-
pecially true for recent models which are over-
whelmingly based on the Transformer [25], a neu-
ral network architecture that has revolutionized
Natural Language Processing (NLP) with its well-
performing generalization to several different NLP
tasks. This architecture favors bulky models con-

taining a big number of parameters – model weights
and coefficients that change and learn with the
training data – which require large amounts of com-
putational resources to both train and run; such
models include BERT [3] (up to 340 million param-
eters), GPT-2 [16] (up to 1.5 billion1 parameters),
Megatron-LM [19] (8.3 billion parameters), Turing-
NLG [13] (17 billion parameters), GPT-3 [1] (a
staggering 175 billion parameters), among many
others. As mentioned by Microsoft in their Turing-
NLG blog post [13], “larger natural language models
lead to better results”.

The issue with such high requirements for high-
performing language models becomes more appar-
ent once the scale of the hardware is taken in consid-
eration: fitting a model with a billion parameters
in a single advanced data-center GPU is impossi-
ble. Model parallelism circumvents this issue by
partitioning large models over several GPUs; this
same parallelism technique was used to train the
8.3 billion parameters of the Megatron-LM model
over 512 GPUs [19]. However, even with paral-
lelism, the memory consumption remains a major
problem for less advanced hardware used outside of
data-centers, especially if we consider devices with
low-end hardware (usually for portability, cost, and

1Following the U.S. convention of a billion (109).

1

Benchmark
Error
Rate

Polynomial
Cost

Exponential
Cost

CO2 $ CO2 $

SQuAD
1.1

4,621% 104 105 105 105

2% 107 107 1015 1015

1% 1010 1010 1032 1032

CoLLN
2003

6,5% 105 105 105 105

2% 1035 1035 1073 1074

1% 1053 1053 10173 10173

WMT
2014

(EN-FR)

54,4% 104 104 104 104

30% 1015 1015 1022 1022

10% 1035 1035 1099 10100

Table 1: Implications of achieving performance
benchmarks on carbon emissions (lbs) and eco-
nomic costs ($USD) from deep learning in NLP
(namely, question answering, named entity recog-
nition and machine translation) based on projec-
tions from polynomial and exponential models (the
current state-of-the-art score for each benchmark is
displayed in bold text). The carbon emissions and
economic costs of computing power usage are cal-
culated using the conversions from [20]. Adapted
from source: [22]

power consumption reasons) such as smartphones.
Another concern with executing such large mod-

els is the time they take to infer a result – the
latency of the model – which is heavily depen-
dent on the environment where the model is de-
ployed. Benchmarking tests [10] have shown that
the usage of a GPU provides substantially lower la-
tency than the usage of a CPU for model inference,
which impacts time-sensitive tasks such as auto-
completing word typing. For devices with hardware
constraints, such as smartphones, this effectively
leads to an undesirable trade-off between model ac-
curacy and response latency.

Additionally, monetary cost and environmental
footprint are often overlooked yet important costs.
A recent review [18] estimates that training a model
with 1.5 billion parameters costs around $80k2, scal-
ing up to $1.6m with proper hyperparameter tun-
ing; these figures act as a paywall for developing
new models, as not many research labs can afford
costs of this magnitude. However, we are reach-
ing a point where not even those who can make
such high monetary investments are willing to do
it: the authors of the GPT-3 model found a mis-
take when implementing the system, but decided
against fixing it since “due to the cost of training
it was not feasible to retrain the model” [1]. There
is also a considerable environmental cost in train-
ing models: a recent study [20] reported that a
fully trained BERT model emits as much CO2 as a

2Costs denoted in U.S. dollars

trans-American flight from New York to San Fran-
cisco. Not only that, but future models may bring
much more drastic effects to the environment; us-
ing projections based on current model endeavors
necessary to hit state-of-the-art benchmark results
(shown in Table 1), we can expect both the envi-
ronmental and economical cost of training a deep
learning model for NLP usage to be higher in the
order of a few magnitudes at best, or hundreds of
magnitudes at worst, not to mention the necessary
computational requirements to achieve such high
energy expenditure.

As an effort to tackle the issues explained before,
we propose a comparison of three different com-
pression techniques – knowledge distillation, weight
pruning and model quantization – when applied
on three different NLP tasks – sentiment analy-
sis, named entity recognition and dialog-driven sen-
tence generation – and compare the resulting com-
pressed models, determining whether the trade-off
between performance and resource usage is worth
it. We also propose combining two of the com-
pression techniques, quantization and pruning, to
compare the resulting compressed language models
against the separately compressed models for both
techniques. We propose a well-detailed evaluation
of every model: we display the expected validation
performance for all evaluation metrics, the final size
of the model, average training and inference time,
computing infrastructure used, model hyperparam-
eters and dataset splits, as well as a link to model
implementation code. We verify the inversely pro-
portional correlation between execution latency and
the size and complexity of the compressed model.
Furthermore, we propose a brief comparison be-
tween uncompressed and compressed models when
running in low-end hardware by testing the per-
formance of quantized models in a Raspberry Pi.
Additionally, we compare the training process in
terms of training time and power usage, as well as
estimate CO2 emissions for the same model to be
trained in a data center, to understand whether the
reduction in model size and complexity translates
to a decrease in the computational budget required
to further train and fine-tune the model, as well
as a decrease in the environmental footprint of the
overall training process.

2. Related Work

2.1. Better model evaluation and result re-
porting

An important but often overlooked part of compar-
ing the performance of language models is the way
the experiment details and consequent results are
reported. Papers often only report their best accu-
racy values, but omit important details such as the
time spent training the model, or any finely tuned

2

hyperparameter values. Not only that, but display-
ing the best accuracy values does not confidently
portray the performance of a model since accuracy
values can often vary depending on several testing
factors, such as random weight initialization. Ex-
pected validation performance [4] is calculated via
the expected accuracy value obtained from valida-
tion data, given a resource budget to train and
evaluate n models. This expected value takes in
consideration every accuracy value obtained during
model development and testing, instead of simply
reflecting the best observed value after n evalua-
tions, thus obtaining a more accurate reflection of
the overall performance of the model. Addition-
ally, by displaying the performance of the model
as a function of computational budget, we can es-
timate the resources required to attain a certain
expected performance value; this can be useful in
scenarios where the budget provided for training a
model is limited, or if there is a minimum accuracy
value required: the estimated budget for a given
performance value can be calculated, and unneces-
sary budget expenses are avoided by only spending
resources below the estimated value.

2.2. Compressing BERT
For the past couple of years, NLP research has
thoroughly taken advantage of model development
based on large pre-trained models, refining and fine-
tuning them into performing different tasks, with
one of the most widely used models as the starting
point being BERT. Despite being a very versatile
and effective model, BERT still has a large mem-
ory footprint and requires heavy computing during
inference; therefore, model compression has been an
especially important field of study for any BERT -
based models.
Q8BERT [26] is a quantized version of BERT

that achieves a 4× smaller memory footprint while
only losing less than 1% accuracy relative to the
original model; this was achieved by quantizing all
weights within the Embedding and Fully Connected
layers – which contain over 99% of the weights
present in BERT – to 8bit values. The weight quan-
tization was done during training, using a technique
called quantization-aware training : during model
fine-tuning, fake quantization [9] is used to simu-
late the value errors obtained when rounding down
floating-point numbers. These values are then back-
propagated to the model, which ends up learning
how to overcome quantization errors.
DistilBERT [17] was developed by teaching a

smaller version of BERT, reducing the amount of
layers from the regular 12 to just 6, using the avail-
able pre-trained one as a teacher. It manages to
retain 97% of the accuracy from the original model,
while being 40% smaller and 60% faster. Due to the
common dimensionality between the teacher and

the student models, the small model was able to
be initialized by directly taking layers out of the
teacher model. The authors also refer to the orthog-
onality of other model compression techniques rela-
tive to knowledge distillation; with additional prun-
ing and quantization, DistilBERT could be com-
pacted even further, but not without some expected
losses in performance. Additionally, the authors
studied the performance of the compact model on
mobile devices; two smartphone applications were
built for question answering, one using BERTBASE

and the other DistilBERT, and both were deployed
on an iPhone 7 Plus. The average inference time
was measured, with DistilBERT being 71% faster
than the base model.

2.3. Lottery Ticket Hypothesis in NLP
In recent years the NLP community focused on
building larger Transformer models, as stated be-
fore. Concurrently, the computer vision commu-
nity of researchers explored the Lottery Ticket Hy-
pothesis [6], which states that “dense, randomly-
initialized, feed-forward networks contain subnet-
works (winning tickets) that – when trained in isola-
tion – reach test accuracy comparable to the original
network in a similar number of iterations”; sim-
ply put, conventional pruning techniques can un-
veil smaller neural networks (mentioned as subnet-
works) which can be trained to reach performances
similar to the parent network.

Based on this formulation, several concurrent
studies [2, 7, 15] focused on applying the same line
of thought to BERT. The results demonstrate that
the Lottery Ticket Hypothesis holds true for NLP,
and valuable conclusions arrived from this research:

• Matching “winning ticket” subnetworks can be
found between varying values of sparsity, from
as low as 40% to as high as 90%. This means
that, for specific tasks, a model consisting of
roughly one tenth of the pre-trained BERT
model can hit similar performances;

• These subnetworks can be found with no extra
training required, by directly pruning the pre-
trained BERT model with no need for any fine-
tuning beforehand. The pruned model can still
reach a similar performance to the full model;

• For most models fine-tuned to accomplish
downstream NLP tasks, the subnetworks found
appear to be specific for that specific task, and
are unable to be transferred to other tasks.

One of the conclusions opened up new possibil-
ities: “winning tickets” found at 70% sparsity us-
ing the task originally used for pre-training BERT
(masked language modeling) were shown to be uni-
versal, showing that learning can be transferred

3

Consumption CO2e (kg)
Air travel, 1 person, NY↔SF 900
Human life, avg, 1 year 5,000
American life, avg, 1 year 16,400
Car, avg incl. fuel, 1 lifetime 57,153

Training one model (GPU)
NLP pipeline (parsing, SRL) 18

w/ tuning & experiments 35,592
Transformer (big) 87

w/ neural arch. search 284,019

Table 2: Common CO2 emissions from regular hu-
man activity, compared against the training of com-
mon NLP models. Source: [20] (converted from lbs
to kg)

to other downstream tasks while maintaining ac-
curacy. The resulting implication of a pre-trained
BERT model properly pruned down to nearly a
third of its size still being able to accomplish sim-
ilar accuracy values when fine-tuned to a down-
stream NLP task is an incredible breakthrough, es-
pecially for low-end or otherwise budget-restricted
hardware. Given the positive results, proper prun-
ing after the initial training could be seen as a sec-
ond stage of the BERT pre-training process in the
future.

2.4. Energy consumption and Carbon foot-
print

With larger and better performing models, comes
greater resource expenditure. While most NLP
models from a decade ago could be properly trained
on end-user laptops and other common hardware,
training a state-of-the-art model nowadays requires
dedicated hardware with several GPUs or TPUs,
even if the goal is just to fine-tune an already ex-
isting pre-trained model. With this in mind, and
considering that properly training and validating a
model requires many executions to experiment with
different architectures and hyperparameter config-
urations, the energy consumption is an important
(but often forgotten) evaluation detail when train-
ing a model. Reporting this detail would allow for
cost-benefit analysis between different models, es-
pecially when the model is meant to be retrained
for downstream usage, such as fine-tuning for a new
NLP task.

The amount of energy consumed by a model dur-
ing the entire training process is not only important
in terms of monetary cost, but also due to the ef-
fect it has on the environment. The European En-
vironment Agency has reported that, on average,
for every kilowatt produced per hour, the equiva-
lent of 275g of CO2 is released to the environment
as greenhouse gases [5]. However, since the most

popular cloud compute service – Amazon Web Ser-
vices – is hosted in the United States, it is more
reasonable to consider the value reported by the
U.S. Environmental Protection Agency (EPA) as
the average greenhouse gas emission for model en-
ergy consumption: 947lbs per megawatt-hour [24],
or 430g per kilowatt-hour. Considering that data
centers spend a substantial amount of energy main-
taining servers up and running, and taking in con-
sideration the impact of greenhouse gas emission on
the environment, reporting energy consumption is
an ever-increasing necessity for any trained models
nowadays.

3. Experiments

In this section, we describe our approach to evaluate
the effects of model compression, and detail our ex-
periments on applying the compression techniques
described to different NLP tasks.

3.1. Training Setup

In order to study model compression and its ef-
fect on current language models, we picked three
fundamental and widely used tasks in NLP: text
classification (in particular, sentiment analysis), se-
quence labeling (specifically, named entity recogni-
tion) and sentence generation. Across every model
trained, we used the PyTorch framework [14]. For
the models themselves, we picked BERTBASE [3] as
the pre-trained base model to accomplish the senti-
ment analysis3 and named entity recognition4 NLP
tasks, and GPT-2Small [16] for conversation-driven
sentence generation5.

To obtain the baseline from which we can com-
pare the compressed models, we will fine-tune the
pre-trained model for the task at hand.

To distill knowledge, we will create a small stu-
dent model using only the first k Transformer lay-
ers from the pre-trained model (BERTk). Af-
terwards, the previously fine-tuned uncompressed
model (used as baseline) will act as the teacher
model and perform patient knowledge distillation
(PKD) [21].

Following the Lottery Ticket Hypothesis shown
in Section 2.3, we will be pruning the pre-trained
model directly by gradually applying iterative mag-
nitude pruning (IMP), and then continue training
to recover pruning accuracy losses; from here, the
model can be fine-tuned according to the desired
task.

To perform model quantization, we will use
quantization-aware training (QAT) (detailed in Sec-
tion 2.2) during fine-tuning of the pre-trained model
for the given task. Additionally, taking advan-

3https://github.com/Uziskull/

lightning-text-classification
4https://github.com/Uziskull/BERT-NER
5https://github.com/Uziskull/lightning-convai

4

https://github.com/Uziskull/lightning-text-classification
https://github.com/Uziskull/lightning-text-classification
https://github.com/Uziskull/BERT-NER
https://github.com/Uziskull/lightning-convai

tage of the compatibility between both compres-
sion techniques, we will be using quantization-aware
training on the previously pruned model during
fine-tuning of the task.

3.1.1 Datasets

To train the language models fine-tuned on the
sentiment analysis task, we used the IMDB re-
view dataset [11] – a group of positive and nega-
tive IMDB movie reviews. For the named entity
recognition task, we made use of the CoNLL-2003
dataset [23] – a collection of phrases where every
word has a corresponding part-of-speech tag, syn-
tactic tag and named entity tag. To train and fine-
tune the GPT-2 based conversational model on the
task of sentence generation, we used the Persona-
Chat dataset [27], which is a crowd-sourced collec-
tion of over 160 thousand utterances between pairs
of personas. Additionally, to prune both BERT and
GPT-2 based models, we need to pre-train the mod-
els on the NLP tasks of masked language model-
ing and causal language modeling, respectively; we
made use of the WikiText corpus [12], a bundle of
several million tokens extracted from verified arti-
cles on Wikipedia.

3.1.2 Evaluation

We followed a quantitative approach to evaluation,
focusing on comparing the original models to their
compressed counterparts. Following a set of guide-
lines for best practices [4], for every model trained
and evaluated, we reported a description of the com-
puting infrastructure used during training, the aver-
age runtime for each approach, the details of dataset
splits, the corresponding validation performance for
each reported test result, a link to implemented
code, the response time of the model during exe-
cution, and the size of the model.

Additionally, we used heuristics related to en-
ergy consumption and environmental footprint [20]
to compare the budget required to train a model
against its compressed alternative. For every model
trained, the average GPU power draw was obtained
to calculate the power consumption of the model,
which will then be used to estimate the amount of
CO2 produced (as explained in Section 2.4). While
it is not the only component consuming energy, we
will only be focusing on the GPU power draw as it
is the main power funnel when training a model.

3.2. Testing Details
We set up a controlled testing environment by main-
taining the same testing hardware and hyperparam-
eters across models for the same tasks; all of these
testing configurations are presented in Table 3. The
framework used to train the models accurately took

Sentiment
Analysis

Named Entity
Recognition

Sentence
Generation

GPU
1080 Ti
(11GB)

TITAN X
(12GB)

1080 Ti
(11GB)

Data Splits
(tr./dev/test)

50/25/25 70/15/15 99/0.5/0.5

Epochs 5 5 3

Batch Size
(train/test)

8/8 32/8 2/1

Learning
Rate

3e-5, 1e-4,
3e-4, 5e-5

6.25e-5,
5e-5, 1e-4

Table 3: General training details for every task,
including hardware and hyperparameter configura-
tions. All settings remained the same across every
model trained in said task, whether compressed or
not.

note of the evaluation details, such as the time it
took to train and evaluate each model and the met-
rics measured during inference; the average GPU
power draw for every model trained was queried
from the NVIDIA System Management Interface
(nvidia-smi6) in parallel to the model training
itself, which gathered and registered the current
power draw of the GPU being used, with an interval
of 5 seconds.

Every model run was made deterministic by set-
ting a fixed seed for randomness, which prevented
variations in weight initialization and data order
across runs, thus limiting the variable testing details
to just the different learning rates and the differ-
ent compression techniques applied. This decision
meant that our fine-tuned models did not obtain
the best results reported by the authors of the dif-
ferent models, however this was outside the scope
of our work since our focus was set on the effects of
compression techniques themselves.

3.3. Knowledge Distillation

To compress each task-specific model, we desig-
nated the fine-tuned baseline model as the teacher
and created a smaller version of the model to be
used as the student; following the authors of the
paper regarding PKD [21], the network architec-
ture of the smaller model is identical to the base
model used for the task, but the number of hidden
layers was cut in half and only the first six layers of
pre-trained weights were used for initialization. To
train the student models, we followed the PKD-Skip
strategy outlined by the authors.

To transfer the knowledge from the teacher model
to the target student model, we took the entire
training dataset used for the student model and

6https://developer.nvidia.com/

nvidia-system-management-interface

5

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

15

17

19

21

23

25

27

29

31

X = 10% X = 20% X = 30% X = 40% X = 50% X = 60% X = 70%

P
e

rp
le

x
it
y

Y = 10000

Y = 15000

Y = 20000

Base GPT2

Figure 2: Experiment results for GPT-2 models af-
ter applying iterative magnitude pruning to X%
sparsity, by pruning 10% of the weights every Y
training steps. The models were trained on the
WikiText-103 dataset. The perplexity of the base
GPT-2 model is displayed for comparison.

ran it through the teacher model; the resulting out-
put from the intermediate and final layers was the
knowledge set to be distilled to the student model.
We were unable to perform the same teacher knowl-
edge gathering for the sentence generation task
since the resulting dataset with extra knowledge
was too large to be able to be loaded during stu-
dent training. To get around this issue, we ran
the teacher model during the student training to
get the necessary resulting values on-the-fly; while
the models were successfully distilled, the result-
ing overloading of the GPU had some drawbacks
related to training time and power spent.

3.4. Pruning

To prune every task-specific model, we first took the
pre-trained base model for each task and trained it
further while applying IMP [2], which prunes the
attention heads of the model over several train-
ing epochs. The original code supplied by the pa-
per authors only worked for BERT models, thus
some changes were made to the code to also ac-
cept and prune GPT-2. As previously mentioned,
we decided to use the WikiText [12] corpus for
the required extra training on the pre-trained base
models. There are two WikiText corpora available
for usage, WikiText-2 and WikiText-103 ; we con-
ducted a small comparison between both on a pre-
trained BERT by applying IMP to 70% sparsity
with a 10% pruning step every Y iterations, varying
between three different numbers of iterations. Our
results show that models trained and pruned using
the WikiText-103 corpus always obtained higher ac-
curacy and lower perplexity scores, so we decided
to use that corpus for the remainder of the models
trained during IMP.

To apply IMP, we followed the observed univer-
sality found for “winning tickets” (as detailed in

Section 2.3) and pruned BERT to 70% sparsity
with a 10% pruning step every Y iterations, vary-
ing the number of iterations to find which model
would display better results overall. Since the re-
search conducted on the Lottery Ticket Hypothesis
was done on BERT based models, the universality
of task transferal observed at 70% sparsity could
not be directly inferred to the GPT-2 model; as
such, we decided to conduct some extra testing to
observe what the ideal sparsity should be by apply-
ing IMP to the pre-trained GPT-2 model, pruning
the model to X% sparsity with a 10% pruning step
every Y iterations, varying both the number of it-
erations and the sparsity itself (between 10% and
70%). The results (displayed in Figure 2) show a
trend throughout all the different sparsity percent-
age models: the resulting perplexity is lowered un-
til the model becomes 30% sparse, then it steadily
begins to rise as the sparsity grows. As such, we
chose 30% sparsity as a valid sparsity percentage
for pruning GPT-2, and focused on comparing the
results from the different training iterations used
when performing IMP at that sparsity.

With both base models successfully pruned, we
decided to use the perplexity metric to choose which
model was better, since it is an evaluation method
intrinsic to the model itself and does not directly
evaluate the task at hand; this resulted in the two
chosen models being BERT pruned to 70% sparsity
with a 10% pruning step every 15000 iterations, and
GPT-2 pruned to 30% sparsity with a 10% prun-
ing step every 20000 iterations. These models were
then fine-tuned in the same manner as the baseline
models.

3.5. Quantization

Our initial approach to apply and study quantiza-
tion was to make usage of quantization-aware train-
ing; however, at the time of writing, PyTorch does
not directly support applying QAT to models that
require embedding layers, thus ruling out QAT on
Transformer architecture models such as BERT and
GPT-2. While solutions to this problem exist, all
of them require fundamental changes to the archi-
tecture of the model, which in turn make QAT a
non-versatile compression technique to apply and
place it outside of the scope of this work; with this
in mind, we decided to study dynamic quantization
(DQ) instead.

To quantize every model, we applied DQ to the
fine-tuned models used as baseline with no addi-
tional training time, since it is a post-training com-
pression technique; the weights of the models were
quantized to 8bit (using the QNNPACK 7 backend).
GPT-2 based models make use of one-dimensional
convolutions over incoming data (Conv1D layers),

7https://github.com/pytorch/QNNPACK

6

https://github.com/pytorch/QNNPACK

0,978

0,98

0,982

0,984

0,986

0,988

0,99

1 2 3 4 5

A
c
c
u

ra
c
y

Epoch

Finetune PKD

(a) Accuracy for distilled models (PKD) fine-tuned in
named entity recognition

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

1 2 3

B
L

E
U

Epoch

Finetune IMP

(b) BLEU scores for pruned models (IMP) fine-tuned
in sentence generation

Model Size (MB) Inf. Time CPU (s) Inf. Time GPU (s) Accuracy F1

Baseline 440 10.000 0.003 0.938 0.937
DQ 175 4.850 0.286 0.934 0.927

(c) Experiment results for quantized models (DQ) fine-tuned in sentiment analysis

Figure 3: Excerpt of compressed model results compared against the respective baseline models.

which are not supported by the DQ backend. In
order to be able to quantize GPT-2, every Conv1D
layer had to be swapped with Linear layers after
loading the model; while this change allowed for
GPT-2 models to be quantized, it had some nega-
tive effects on the performance of those models.

Additionally, to evaluate the performance of com-
pressed models on low-end hardware, we ran both
the baseline and the quantized models on a Rasp-
berry Pi 4 (4GB RAM) to compare the inference
time between the executed models, as well as be-
tween the models ran on the Raspberry Pi CPU
versus the ones ran on the cloud computing envi-
ronment with the dedicated GPU.

3.6. Quantization + Pruning

To test the combined effects of quantization and
pruning, we applied DQ to the models previously
pruned via IMP and evaluated the resulting mod-
els. Due to the nature of DQ, applying it to
pruned models was a simple task, although the same
workaround had to be done for the pruned GPT-
2 model. Furthermore, the quantized and pruned
models were also ran on the Raspberry Pi to com-
pare inference times.

4. Results

In this section, we review the results of the experi-
ments described in Section 3 and establish compar-
isons to the baseline models in terms of performance
and resource usage metrics.

4.1. Knowledge Distillation

For the sentiment analysis and named entity recog-
nition tasks, PKD proved to be a very effective com-
pression technique; none of the recorded metrics for
the distilled models degraded more than 1% com-
pared to the fine-tuned baseline. The expected per-
formance ranges of the compressed model and the

baseline overlap (as displayed in Figure 3(a)), im-
plying that a well-trained distilled model could out-
perform the original uncompressed model, although
this verification is outside the scope of this work.
The small size of the distilled models (270MB –
a 39% reduction) resulted in shorter training and
inference times, with the sentiment analysis task
achieving a 79% latency improvement over the base-
line model. However, PKD was detrimental to the
sentence generation task, with a severe 16.37% drop
in the BLEU score compared to the baseline. We at-
tribute this to the architecture of the student model
being too compact to properly learn from the com-
plex GPT-2 teacher model, and believe that distil-
lation could be viable for this task with a different
student model architecture. Additionally, due to
the distilling workaround described in Section 3.3,
the training time of the model was extended by
52%, consequently increasing the power spent and
estimated CO2 emissions.

4.2. Pruning

Overall, IMP showed reasonable worsening of model
quality for the sentiment analysis and named entity
recognition tasks, with no major difference in train-
ing or inference time, and consequential power ex-
penditure or CO2 emissions. On the other hand, for
sentence generation, the pruned models improved
considerably compared to the baseline (shown in
Figure 3(b)), with a substantial 13.56% increase
of the BLEU score; additionally, the training and
inference times for the pruned model are 4% and
9% smaller than the ones reported for the baseline,
which we attribute to the more efficient computa-
tion of the complex convolution layers present in
GPT-2 models, given that 30% of the weights are
set to zero.

Ultimately, no size improvement was obtained

7

Task Metrics Baseline PKD IMP DQ DQ + IMP
S

en
ti

m
en

t
A

n
a
ly

si
s Accuracy 0.938 0.931 (↓ 0.76%) 0.874 (↓ 6.90%) 0.934 (↓ 0.51%) 0.883 (↓ 5.88%)

F1 0.937 0.929 (↓ 0.82%) 0.883 (↓ 5.71%) 0.927 (↓ 1.00%) 0.881 (↓ 5.92%)
Precision 0.951 0.946 (↓ 0.56%) 0.856 (↓ 10.06%) 0.965 (↑ 1.40%) 0.900 (↓ 5.38%)

Recall 0.936 0.928 (↓ 0.85%) 0.933 (↓ 0.25%) 0.908 (↓ 2.94%) 0.884 (↓ 5.51%)

N
am

ed
E

n
ti

ty
R

ec
og

n
. Accuracy 0.988 0.985 (↓ 0.27%) 0.981 (↓ 0.68%) 0.979 (↓ 0.91%) 0.956 (↓ 3.19%)

F1 0.941 0.928 (↓ 1.38%) 0.907 (↓ 3.53%) 0.894 (↓ 5.00%) 0.775 (↓ 17.66%)
Precision 0.936 0.922 (↓ 1.54%) 0.903 (↓ 3.54%) 0.890 (↓ 4.99%) 0.798 (↓ 14.78%)

Recall 0.945 0.934 (↓ 1.21%) 0.912 (↓ 3.53%) 0.898 (↓ 4.96%) 0.768 (↓ 18.72%)

S
en

te
n

ce
G

en
er

at
io

n

BLEU 2.362 1.975 (↓ 16.37%) 2.682 (↑ 13.56%) 2.076 (↓ 12.10%) 2.373 (↑ 0.50%)
TER 1.016 1.035 (↑ 1.86%) 1.024 (↑ 0.78%) 1.016 (↓ 0.01%) 1.009 (↓ 0.68%)

BERTScore 0.852 0.849 (↓ 0.28%) 0.854 (↑ 0.24%) 0.849 (↓ 0.24%) 0.852 (↑ 0.00%)
Hits@1 0.817 0.024 (↓ 97.10%) 0.812 (↓ 0.60%) 0.809 (↓ 0.96%) 0.803 (↓ 1.72%)
Hits@5 0.977 0.140 (↓ 85.67%) 0.976 (↓ 0.10%) 0.974 (↓ 0.30%) 0.973 (↓ 0.39%)
Hits@10 0.996 0.356 (↓ 64.24%) 0.996 (↓ 0.01%) 0.995 (↓ 0.10%) 0.995 (↓ 0.07%)

Table 4: Comparison between the results of all model compression techniques, and the variance percentage
compared to the baseline results. The arrows represent whether the variance is positive or negative. Filled
cells signify the best scores between the compression techniques, and bold cells signify that the score
obtained for that compression technique is better than or equal to the baseline score.

since no method of sparse matrix representation
would allow for a smaller sized weight storage with-
out additional detrimental computational overhead
[8]; additionally, PyTorch currently offers no way of
saving or loading sparse weights.

4.3. Quantization

Unlike the other compression techniques, DQ is ap-
plied post-training; therefore, we cannot analyze
the expected validation performance development
over the training epochs, nor is there any train-
ing time or power usage to compare against. Ob-
serving the final results, we can see minor quality
degradation on the BERT based models, with the
task of sentiment analysis (displayed in Table 3(c))
only lowering its accuracy and F1 scores by 0.51%
and 1.00%, respectively. For the sentence genera-
tion task, DQ showed lowered scores overall, which
we attribute in part to the architectural change re-
quired for quantizing GPT-2 based models, previ-
ously mentioned in Section 3.5. All models showed
a reduction in model size, with BERT based mod-
els being compressed to 60% of the original model
size and GPT-2 based models ending up with a size
of 280MB (57% of the starting size); this reduc-
tion is only reflected in the size loaded in memory,
however, since there is no current way of saving or
directly loading a quantized model in PyTorch.

Regarding the CPU testing done on the Rasp-
berry Pi, there was a noticeable improvement on
inference times, with 51.50%, 59.89% and 63.10%
faster performance on the tasks of sentiment analy-
sis, named entity recognition and sentence genera-
tion, respectively. However, this inference speedup
is only seen within low-end CPU-optimized hard-
ware; GPUs manage to execute integer weight op-

erations faster than the Raspberry Pi and obtain
lower inference times for both quantized and base-
line models, with baseline models being several or-
ders of magnitude faster.

4.4. Quantization + Pruning

Quantizing the already pruned models showed a mi-
nor overall improvement to the pruned sentiment
analysis task, a major decline in quality in the
pruned named entity recognition task, and a lower-
than-expected degradation on the sentence genera-
tion task, all relative to the pruned models them-
selves. These changes were related to both the per-
formance of the pruned models, as well as the in-
fluence of quantization on the models. While the
performance of the model on CPU was still im-
proved (much like the former quantization results
show), the effects of quantizing the pruned mod-
els were somewhat inconsistent across tasks, further
confirming that quantization should only be applied
on a case-by-case basis.

4.5. Environmental Footprint

Overall, compression techniques that require lower
training time spend less energy doing so, resulting
in lower estimated CO2 emissions. DQ was ap-
plied post-training, thus having a null CO2 emission
value. For the compression techniques applied pre-
training, PKD was the one with lower energy ex-
penditure and consequential environmental impact,
due to the smaller model being able to be trained
faster; this was not the case for the sentence genera-
tion task which, due to the workaround described in
Section 3.3, spent the energy required to both train
the student model and execute the teacher model.
IMP had an ecological footprint similar to the base-

8

Original Model

Knowledge
Distillation

Is the model complex?
(has many non-linear transformations,

such as convolutions)

Yes

Pruning

No

Will the model be deployed
in low-end hardware?

Quantization
Compressed

Model

Yes No

Figure 4: A simplified flowchart guide on how to
best compress a NLP model, based on our findings.

line models, even showing smaller energy costs for
the sentence generation task, but when accounting
for the energy spent pruning the pre-trained models
to the required sparsity before fine-tuning, the esti-
mated CO2 emissions become much higher, with
increases as high as 342% (for the named entity
recognition task).

5. Conclusion

In this paper, we applied several common model
compression techniques to NLP tasks and compared
the trade-off between performance and computa-
tional resource usage. Based on our results, we
outlined a general flowchart (displayed in Figure 4)
for effectively compressing a language model; this
flowchart is based on preliminary conclusions we
drew from our study, and more research and exper-
iments would have to be done in order to generalize
this across all language models targeted for NLP
usage. Furthermore, we conclude that the usage
of model compression techniques that require ex-
tra training besides fine-tuning are noticeably detri-
mental to the ecological footprint of the model, and
compression techniques that reduce the complex-
ity and size of the model before training (or that
require no additional training, in the case of post-
training compression) should always be preferred.

For future work, we believe more extensive re-
search could be done on each of the compression
techniques, such as testing several student model
architectures for knowledge distillation and exper-
imenting with different compression schemes and
bit depths for quantization. We also believe model
compression should be fully integrated and prop-
erly implemented in popular model frameworks like

PyTorch, instead of being available only as experi-
mental features, to promote its usage across future
language models and further reduce computational
costs for training such complex models.

References
[1] T. B. Brown, B. Mann, N. Ryder, M. Sub-

biah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language Mod-
els are Few-Shot Learners. arXiv:2005.14165
[cs], July 2020. arXiv: 2005.14165.

[2] T. Chen, J. Frankle, S. Chang, S. Liu,
Y. Zhang, Z. Wang, and M. Carbin. The Lot-
tery Ticket Hypothesis for Pre-trained BERT
Networks. arXiv:2007.12223 [cs, stat], Oct.
2020. arXiv: 2007.12223.

[3] J. Devlin, M.-W. Chang, K. Lee, and
K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of
the Association for Computational Linguis-
tics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics.

[4] J. Dodge, S. Gururangan, D. Card,
R. Schwartz, and N. A. Smith. Show
Your Work: Improved Reporting of Experi-
mental Results. arXiv:1909.03004 [cs, stat],
Sept. 2019. arXiv: 1909.03004.

[5] EEA. Greenhouse gas emission intensity of
electricity generation — European Environ-
ment Agency.

[6] J. Frankle and M. Carbin. The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural
Networks. arXiv:1803.03635 [cs], Mar. 2019.
arXiv: 1803.03635.

[7] M. A. Gordon, K. Duh, and N. Andrews.
Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning.
arXiv:2002.08307 [cs], May 2020. arXiv:
2002.08307.

[8] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dry-
den, and A. Peste. Sparsity in Deep Learning:
Pruning and growth for efficient inference and
training in neural networks. arXiv:2102.00554
[cs], Jan. 2021. arXiv: 2102.00554.

9

[9] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko.
Quantization and Training of Neural Net-
works for Efficient Integer-Arithmetic-Only In-
ference. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition,
pages 2704–2713, June 2018. ISSN: 2575-7075.

[10] C. Kaiser. How much difference do GPUs make
in model serving?, Jan. 2020.

[11] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,
A. Y. Ng, and C. Potts. Learning word vec-
tors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Ore-
gon, USA, June 2011. Association for Compu-
tational Linguistics.

[12] S. Merity, C. Xiong, J. Bradbury, and
R. Socher. Pointer Sentinel Mixture Mod-
els. arXiv:1609.07843 [cs], Sept. 2016. arXiv:
1609.07843.

[13] Microsoft. Turing-NLG: A 17-billion-
parameter language model by Microsoft,
Feb. 2020.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An im-
perative style, high-performance deep learn-
ing library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019.

[15] S. Prasanna, A. Rogers, and A. Rumshisky.
When BERT Plays the Lottery, All Tickets Are
Winning. arXiv:2005.00561 [cs], Oct. 2020.
arXiv: 2005.00561.

[16] A. Radford, J. Wu, R. Child, D. Luan,
D. Amodei, and I. Sutskever. Language Models
are Unsupervised Multitask Learners, 2019.

[17] V. Sanh, L. Debut, J. Chaumond, and
T. Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs], Feb. 2020. arXiv:
1910.01108.

[18] O. Sharir, B. Peleg, and Y. Shoham. The
Cost of Training NLP Models: A Concise
Overview. arXiv:2004.08900 [cs], Apr. 2020.
arXiv: 2004.08900.

[19] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley,
J. Casper, and B. Catanzaro. Megatron-LM:
Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism.
arXiv:1909.08053 [cs], Mar. 2020. arXiv:
1909.08053.

[20] E. Strubell, A. Ganesh, and A. McCallum. En-
ergy and Policy Considerations for Deep Learn-
ing in NLP. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy,
July 2019. Association for Computational Lin-
guistics.

[21] S. Sun, Y. Cheng, Z. Gan, and J. Liu. Patient
Knowledge Distillation for BERT Model Com-
pression. arXiv:1908.09355 [cs], Aug. 2019.
arXiv: 1908.09355.

[22] N. C. Thompson, K. Greenewald, K. Lee, and
G. F. Manso. The Computational Limits of
Deep Learning. arXiv:2007.05558 [cs, stat],
July 2020. arXiv: 2007.05558.

[23] E. F. Tjong Kim Sang and F. De Meulder.
Introduction to the CoNLL-2003 shared task:
language-independent named entity recogni-
tion. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL
2003 - Volume 4, CONLL ’03, pages 142–147,
Edmonton, Canada, May 2003. Association for
Computational Linguistics.

[24] O. US EPA. Emissions & Generation Resource
Integrated Database (eGRID), July 2020.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is All you Need. Ad-
vances in Neural Information Processing Sys-
tems, 30:5998–6008, 2017.

[26] O. Zafrir, G. Boudoukh, P. Izsak, and
M. Wasserblat. Q8BERT: Quantized 8Bit
BERT. arXiv:1910.06188 [cs], Oct. 2019.
arXiv: 1910.06188.

[27] S. Zhang, E. Dinan, J. Urbanek, A. Szlam,
D. Kiela, and J. Weston. Personalizing Dia-
logue Agents: I have a dog, do you have pets
too? arXiv:1801.07243 [cs], Sept. 2018. arXiv:
1801.07243.

10

	1 Introduction
	2 Related Work
	2.1 Better model evaluation and result reporting
	2.2 Compressing BERT
	2.3 Lottery Ticket Hypothesis in NLP
	2.4 Energy consumption and Carbon footprint

	3 Experiments
	3.1 Training Setup
	3.1.1 Datasets
	3.1.2 Evaluation

	3.2 Testing Details
	3.3 Knowledge Distillation
	3.4 Pruning
	3.5 Quantization
	3.6 Quantization + Pruning

	4 Results
	4.1 Knowledge Distillation
	4.2 Pruning
	4.3 Quantization
	4.4 Quantization + Pruning
	4.5 Environmental Footprint

	5 Conclusion

