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2D RGB Head Pose Estimation For Face Occlusion
Scenarios

José Carlos Faria Celestino

Abstract—Head pose estimation, the task that deals with the
prediction of the orientation of human heads, is a challenging
Computer Vision problem that has been extensively researched
and has a wide variety of applications. Despite the many studies
carried out to achieve a more accurate pose prediction, current
state of the art systems still under perform in the presence of
occlusions. This makes them inadequate and unreliable for many
task applications in such occlusion scenarios.

This thesis proposes to study different methodologies in order
to achieve a robust head pose estimation in occlusion scenarios.
The implemented methodologies are based on the development
of personalized occluded training and testing sets and the
adaptation of deep learning network frameworks and strategies.

We show that our models improve occluded head pose estima-
tion and equal or surpass state of the art non-occluded estimation
results. We demonstrate the application of our best method in the
real-life context of Feedbot, an autonomous feeding robotic arm.
We reveal that our model performs better than a state of the
art model for the occlusions of the robotic arm, while achieving
similar performance for non-occluded estimation.

Index Terms—Head Pose Estimation; Euler Angles; Occlusion;
Neural Networks

I. INTRODUCTION

EXTENSIVELY researched over the last 25 years [1],
2D head pose estimation (HPE) is a challenging but

compelling and relevant computer vision problem, essentially
due to the wide variety of applications for which it can be used,
such as driving aid systems [2], motion capture [3] and gaze
estimation. Succinctly, this problem consists in approximately
determining the orientation of a head in a 2D image.

Despite recent advances aided by deep learning, current
state of the art systems scarcely approach one of the most
challenging and common problems in HPE, the occurrence of
facial occlusions, and underperform in such scenarios (figure
1). To address the issue, this thesis aims to study differ-
ent methods to approach the occluded head pose estimation
challenge, all based on the use of deep learning solutions
and with the aid of synthetic occluded datasets. Our purpose
is to achieve robust 2D head pose estimation for occluded
faces and extend on current works that achieve state of the
art estimation in non-occluded benchmark datasets. With this
work, we propose ways of accurately estimating the user’s
head pose regardless of the part of the face that is occluded,
and present a procedure to generate synthetic face occlusions
in any head pose dataset.

II. STATE OF THE ART

A. Model-Based Strategies

Yinguobing [4] provides a simple way which of performing
head pose estimation by using 68 detected 3D facial landmarks
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Fig. 1. Head pose problem for occlusion scenarios (Blue axis points towards
estimated face direction).

to calculate the rotation R and translation T that define the
head pose. This corresponds to solving the PnP problem [5],
which is modeled by the pinhole camera model. The authors
from [6] propose a method that similarly uses 68 landmark
prediction but also computes the pose using predicted 2D
keypoints of the head without fixed locations. They use the
Features from Accelerated Segment Test (FAST) [7] and a
pyramidal Lucas-Kanade feature tracker [8] to detect and track
the points. They use a Kalman filter to blend both keypoint
(prediction step of filter) and landmark detection (correction
step). This fusion method shows better results than either using
only keypoints or landmarks.

The work developed in [11] approaches the 3D face align-
ment and pose estimation problems as a 3D Morphable Model
(3DMM) [12] parameters regression problem. They regress the
rotation matrix and translation vector to estimate the pose in
order to avoid the ambiguity cause by the gimbal lock [13]
problem that occurs when faces get close to profile view. They
use a fast lightweight backbone convolutional neural network
and apply both a cost function with two terms, the weighted
parameter distance cost (WPDC) and the vertex distance cost
(VDC), and a landmark regressor. The cost function minimizes
the vertex distances between a fitted 3D face and the ground
truth. They also establish a 3D aided short-video-synthesis
method which helps to achieve smoother estimation results
in videos.

B. Occlusion Related Works

The authors in [14] estimate the head pose of partially
occluded faces by tracking the displacement of a face feature
with respect to the center of the head. They use CamShift
[15] to track the center of the head and a iterative Lucas-
Kanade optical flow tracker [8] to track the feature face point.
This method requires the mouth not to be occluded and it
is based on outdated software and hardware. The authors
of [16] focus on achieving robust facial landmark detection
for severe occlusions and images with large head poses.
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They use landmark visibility probabilities to measure if a
landmark is visible, and perform occlusion prediction. They
add a prior occlusion pattern loss to aid the performance
of the prediction. This work, however, does not have real-
time tracking capabilities and does not specifically focus on
estimating poses.

The method of [17] estimates facial landmark locations,
head pose and facial deformation under facial occlusions. This
procedure updates each estimation parameter based on the
previously estimated values of the others. According to the
authors, the combined framework achieves better results in
head pose estimation than other methods that use all landmarks
(as a rigid model) instead of only the ones that are visible.
However, this work only evaluates yaw angles and has low
accuracy for larger yaws.

C. Learning-Based Strategies

The authors from [18] claim that model-based methods
rely on the chosen head model and are senstive to errors in
landmark/keypoint detection. To avoid these drawbacks, they
propose using a deep learning framework to estimate the pose
directly from 2D RGB images. They input the images into
a backbone neural network and augment it with three fully-
connected layers, each one used to predict a different Euler
angle. They introduce a multi-loss approach that combines a
classification loss with a weighted regression loss for each
angle. They use a cross-entropy loss for the classification
component and a mean squared error loss for the regression
component. The classification component aids the model to
predict the vicinity of the pose and the regression component
helps it to achieve fine-grained estimation.

Another solution, FSA-Net [19], applies the soft-stage wise
regression problem defined in [20] to solve the HPE challenge.
Feature maps from input images are extracted and fused
together across several stages. Stage outputs are probabilities
distributions for the angle interval classes. Each successive
stage refines the decision within an angle interval assigned by
the previous stage. The estimated pose is given by the soft-
stage regression function, which corresponds to the sum of
the product between probability distribution and the values of
pose groups at each stage.

The method img2pose presented in [21] propose a novel
real-time capable solution to simultaneously perform face
detection and head pose estimation with 6 degrees of free-
dom (Euler rotation and 3D translation vectors) in an image
without requiring a prior face detection step. This estimation
is computationally much easier than the one of model-based
approaches which regress 68x2D=136 elements, instead of
only 6. Moreover, this pose allows to align the 3D face with
its location in an image, which eliminates the need for face
detectors.

The authors of [1] extend the multi-loss approach of
Hopenet [18] for full 360◦ yaw estimation. They generate
a new dataset with full range of yaws by combining 300W-
LP with computed Euler angle data from the CMU Panoptic
Dataset [22]. They use binary-cross entropy as for the classifi-
cation loss and introduce a new wrapped loss for the regression

component. They also utilize a lighter backbone network to
facilitate real-time applications. The modifications made to
Hopenet achieved state of the art of performance for full-range
head pose estimation.

D. Summary

We saw that the literature on the challenge of occlusion in
head pose estimation is scarce. The system in [14] requires
the mouth not to be occluded and uses outdated software
and hardware. The procedure in [16] addresses occlusions but
focuses on landmark detection and is not extended for real-
time tracking, and while the method in [17] includes pose
estimation, it only evaluates yaw angles and displays low
accuracy for large yaw values.

Model-based methods rely on the chosen head/face model
and are very sensitive to landmark detection and tracking
errors. They are also more susceptible both to self-occlusions
(extreme poses for example) and object occlusions.

Learning-based methods do not require the detection of
landmarks and therefore avoid the occlusion problem men-
tioned above, while outperforming model-based methods. For
these reasons, our work will follow a learning-based approach,
develop strategies based on some of the studied end-to-end
deep learning frameworks and adapt them to the challenge of
facial occlusions in head pose estimation.

III. GENERATING A SYNTHETIC OCCLUDED DATASET

A. Synthetic Occlusion Generation Procedure

We use current existing head pose datasets that contain
thousands of images and respective ground truth pose annota-
tions in order to generate synthetic occlusions for all images
and thus develop the new occluded datasets required for the
training and testing of the deep neural networks.

Our procedure to generate synthetic occlusions in images
is based on the use of 2D RGB color data and depth data
(camera distance to an object). To that end, we require RGB-
D cameras which combine RGB and depth sensors and are
capable of simultaneously recording the necessary data.

The first step in our procedure is to record RGB and depth
data in a video where an object occludes a person’s face. The
face is not occluded in the first frame since we need to first
detect the face in the image in order to find the depth points
that correspond to the image pixels within the face detection
box. Afterwards, we determine the face point at minimum
distance from the camera. This distance serves as a threshold
to separate the depth points that correspond to the head of the
person from those that will correspond to occlusion objects.
This procedure is exemplified in figure 2.

We implement DBSCAN [23], a density-based clustering
algorithm, to remove outliers from the selected depth points
and therefore correctly determine the threshold distance. When
this threshold is determined we can start to reproduce the
synthetic occlusions through the procedure illustrated in figure
3.

For a given occluded frame of the video, the depth points
corresponding to the RGB image points within the face
detection box are extracted. From these depth points we select
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Fig. 2. Determining threshold depth for occlusion segmentation.

Fig. 3. Synthetic occlusion generation in non-occluded images.

those that are at a shorter distance than the threshold, as they
will correspond to face occlusions. By carrying out the inverse
process and determining the RGB data for the selected depth
points, we obtain the RGB image pixels where the occlusion
object is represented.

The next step is to insert the object into a face image and
generate the proposed synthetic facial occlusion. It is necessary
to first re-scale the object image to the dimensions of the non-
occluded face image, and only then superimpose the object in
the original image.

Having determined the threshold distance that allows to
detect occlusions from depth information, and given a set of
non-occluded face images, it is possible to iterate the process
exemplified in figure 3 for each one of the images and for
each occluded frame, and therefore generate a new occluded
dataset.

B. Head Pose Datasets

We use the 300W-LP [24], BIWI [25] and AFLW2000 [26]
datasets to implement and test our methodologies.

The 300W-LP dataset consists of 61225 face samples and
respective vertically flipped versions of them for a total 122452
examples. It covers a large variation of identity, expression,
illumination conditions, pose, occlusion and face size and
provides facial landmark annotations from which it is possible
to extract the pose of the head. Despite the original purpose,
it is commonly used in the training process of head pose
estimation works [18] [1].

The BIWI dataset contains over 15000 images of 20 people
and covers about ±75 degrees yaw and ±60 degrees pitch.
It is one of the most commonly benchmarked datasets. For
each frame, it provides a depth image, the corresponding
RGB image (both 640x480 pixels), and the ground truth pose
annotation.

AFLW2000 is a dataset that contains 2000 images of
diverse head poses under challenging conditions. It contains

annotations for 3D facial landmarks from which the pose can
be extracted.

We use occluded versions of the 300W-LP dataset in train-
ing and test our methodologies in occluded and non-occluded
versions of the BIWI and AFLW datasets.

IV. METHODOLOGIES FOR HEAD POSE ESTIMATION
WITH OCCLUSIONS

A. End-to-end Multi-loss Approach With Latent Space Regres-
sion

Fig. 4. Multi-Loss head pose estimation framework with latent space
regression.

The framework is as exemplified in figure 4: A 2D RGB
image is input to any backbone network of choice. This back-
bone network is expanded with three extra fully-connected
layers which will be used to output the predictions for each
Euler angle. The output of the final layer in the backbone
network is flattened into a vector which becomes the input
for each fully-connected layer. The output for these layers
will be a vector of logits, which are raw prediction scores
(real numbers in range [−∞, +∞]) for the predicted angle
belonging to a certain angle bin of w degrees. The size of
these vectors depends on both the angle interval/span for each
bin, and the full prediction range for the given Euler angle.

Henceforward, the output of each fully-connected layers is
used in a multi-loss scheme that comprises the combination
of a classification component and a regression component
to provide an overall loss for a given Euler angle. For the
classification task, a softmax activation function plus a cross-
entropy loss (also known as categorical cross-entropy loss or
softmax loss) is applied to the n-dimensional vector output of
the fully-connected layer. The softmax function turns logits
into probabilities by computing the exponents of each bin
output and normalizing it by the sum of those exponents so
that all probabilities in the activated vector add up to 1:

S(yi) =
eyi∑n
j=1 e

yj
(1)

Afterwards the cross-entropy loss result is computed by
equation 2, where ti and S(yi) are the ground-truth (0 or 1)
and the activation result of the score for each of the C angle
classes/bins, respectively.

Lclass = CE = −
C∑
i

tilog(S(yi)) (2)

In addition to the classification loss, the regression compo-
nent is introduced to determine and regress the error between
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the predicted angle and the ground truth in degrees. It is
possible to determine the predicted angle in degrees by using
the bin probabilities obtained from softmax activation to
calculate the expectation of the given angle:

θpred = w

N∑
i=1

pi(i−
1 +N

2
) (3)

Where θpred is the predicted angle in degrees, w is the
width of the bin in degrees (3, in our case), N is the number
of bins for classification, and pi is the probability of the angle
belonging to bin i. The offset 1+N

2 shifts the bin indices to
the respective bin centres, as mentioned in [1]. The loss used
for the regression component is the mean squared error(MSE)
between the predicted angle θpred and the ground truth angle
θgt, for N predictions.

Lreg = MSE =
1

N

N∑
i=1

(θpred − θgt)
2 (4)

The classification component aims to help the model predict
the vicinity of each pose angle by classifying it in a angle
interval bin and the regression error is introduced to aid
the model in achieving fine-grained angle predictions. We
introduce an extra regression loss for the latent space of
the backbone network, specifically added to aid the model
deal with the occlusion challenge. The latent space is the
abstract multi-dimensional space that contains the highest-
level feature values. This values encode the most relevant inner
representation of the observed input data.

Our procedure is the following: Firstly, we either train or use
a pre-trained model for head pose estimation in non-occluded
images, with the same framework as figure 4 apart from the
latent space loss. Then we perform inference with this model
for each non-occluded image and store the flattened output of
the final layer in the backbone network, which corresponds to
the latent space representation for that given image. Finally, we
use the occluded dataset and train the full framework of figure
4, where La

class and La
reg are the cross-entropy classification

loss and MSE regression loss for Euler angle a (yaw, pitch
or roll), and Llatent

reg is the MSE regression loss for the latent
space.

The classification and regression loss for the Euler angles
are combined with a parameter α that allows to vary the weight
of each regression loss, and another parameter β regulates the
weight of the latent space regression loss. Overall, four losses
are used to train the model:

Lyaw = Lyawclass(y, ŷ) + αLyawreg (y, ŷ)

Lpitch = Lpitchclass(y, ŷ) + αLpitchreg (y, ŷ)

Lroll = Lrollclass(y, ŷ) + αLrollreg (y, ŷ)

Llatent = β Llatentreg (y, ŷ)

(5)

where y is the predicted value and ŷ is the ground truth for
the respective loss. The ground truth for all Euler angles is
provided in the training dataset, and the stored inference latent
space output for the non-occluded images is used as ground
truth in the latent loss. With a parameter β to weight the
influence of each loss, the total combined loss is:

Ltotal = (1− β)(Lyaw + Lpitch + Lpitch) + βLlatent (6)

B. Occluded Head Pose Estimation Through Face Reconstruc-
tion

In this method, instead of directly adapting the head pose
estimation model to deal with occlusions as we did previously,
we train an autoencoder to output reconstructed non-occluded
faces from facial occluded inputs. Autoencoders are a larger
kind of unsupervised neural network composed of a encoder
that maps the input into the code and a decoder that maps the
code into a reconstruction of the input. The idea behind this ap-
proach is to use the occlusion-free outputs of the autoencoder
as input to a trained head pose estimation network. We use
the HPE multi-loss pipeline defined in [18]. The framework
is as exemplified in figure 5.

Fig. 5. Framework for occluded head pose estimation through face recon-
struction.

Since standard autoencoders suffer from a loss of feature
information when the input dimensions are reduced in the
encoder, we base ourselves in the approach carried out by
the authors of mask2face [27] and employ the U-Net [28]
architecture as the chosen autoencoder structure. U-Net adds
connections between layers in the encoder and layers of
identical dimension in the decoder (skip connections) to pass
information directly from the encoder to the decoder. This
accelerates the learning process and reduces the information
loss. A simplified representation of the U-Net architecture is
presented in figure 6.

Fig. 6. Simplified standard U-Net architecture.

1) Reconstruction Loss: The autoencoder is trained to
minimize the reconstruction error between the predicted output
and the ground truth face without occlusion. Since the inputs
correspond to face images that we’re synthetically occluded,
we utilize the respective original non-occluded face images
as ground truth in the reconstruction loss function, Lrec. We
define this function as the combination of two losses: The l1
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the SSIM losses. The l1 loss or Mean Absolute Error (MAE)
corresponds to:

Ll1(Irec, Igt) =
1

N
∥Irec − Igt∥1

=
1

N

∑
p∈Irec,Igt

|Irec(p)− Igt(p)|
(7)

where p is a pixel, N the number of pixels in the images
and Irec,Igt are the intensity values of that pixel in the
reconstructed image and in the ground truth, respectively.

The structural similarity index measure equation (SSIM)
[29] is a metric used for the measurement of the similarity
between two images. It extracts and compares three different
measures between images: the luminance (l) , the contrast (c)
and the structure (s). The equation for this metric is obtained
by combining the three measures:

SSIM(x, y) = [l(x, y)]µ · [c(x, y)]ϕ · [s(x, y)]ψ

=
(2uxuy + c1)(2σxy + c2)

(u2
x + u2

y + c1)(σ2
x + σ2

y + c2)

(8)

where x, y are windows of both images; (ux, uy) is the average
of (x, y); (σx, σy) is the standard deviation of (x, y) ;(σ2

x, σ
2
y)

is the variance of (x, y); σxy is the covariance of x and y; c1
and c2 are constants included to avoid instability when 2

x + 2
y

and σ2
x + σ2

y are close to zero. µ > 0, ϕ > 0 and ψ > 0
are parameters used to adjust the relative importance of each
component in the index are commonly set to 1. Since the
SSIM outputs a value between 0 and 1, the loss function for
this metric applied to each image will actually be:

LSSIM (Irec, Igt) =
1
N

∑
x,y∈Irec,Igt 1− SSIM(Irec(x), Igt(y)) (9)

where x, y are windows in the image predicted by the au-
toencoder Irec and in the ground truth image Igt and N is
the number of windows. By comparing the three different
measures, SSIM becomes more capable of identifying the
differences between the structural information of sample and
reference images, which allows to better preserve the contrast
and edges from the reference image. However, it preserves
the brightness and colors worse than the l1 loss, since this loss
weights errors equally regardless of the local structure. For that
reason, we combine both losses for the image reconstruction
loss that we implement in the autoencoder:

Lrec(Irec, Igt) = Ll1(Irec, Igt) + γLSSIM (Irec, Igt) (10)

where γ is the parameter that regulates the weight of the loss
function for the SSIM metric.

C. Multi-Loss Autoencoder For Occluded Head Pose Estima-
tion

This section discusses a different approach that combines
the face reconstruction task with the estimation of the pose
in a single neural network. The pipeline of this procedure is
illustrated in figure 7.

We add a decoder to the head pose estimation encoder
network and convert the network’s structure to that of an au-
toencoder. The encoder is combined with the fully-connected

Fig. 7. Multi-loss autoencoder high-level pipeline.

layers to estimate the pose and combined with the decoder to
reconstruct the face. This way, we can merge and adapt both
tasks instead of having a different neural network for each. We
use the U-Net architecture for the designed autoencoder in this
approach as well, in particular, the ResNet-Unet architecure
described by the authors of [30] with ResNet-50 [31] as the
encoder for pose estimation.

The training plan for this procedure is as follows: In the first
stage the encoder and fully connected layers are trained for
the estimation of all three Euler angles. This training involves
the minimization of the regression and classification losses
for each angle. In the second stage, the decoder is trained
for the reconstruction of the face without the occlusion. This
training involves the minimization of the reconstruction loss
between reconstructed and non-occluded ground-truth images.
In the third and last stage, the the entire autoencoder and
fully-connected layers are trained. This training involves the
minimization of all losses involved in the first and second
stage.

The purpose of the first and second stages is to provide
good initialization for the entire framework in the third stage
and therefore aid the convergence of the learning model. The
third stage stems from both and combines them so that the
pose estimation is adapted to the reconstruction of occluded
faces.

The 1st stage involves losses Lyaw, Lpitch, Lroll defined
in section IV-A (head pose estimation training), the 2nd stage
involves the loss Lrec defined in section IV-B1 (face recon-
struction), and the 3rd stage (combined training) requires the
combined minimization of all losses (equation 11) with ρ
parameter to define the weight of angle components:

Ltotal = Lrec + ρ(Lyaw + Lpitch + Lroll) (11)

V. RESULTS AND DISCUSSION

A. Multi-loss Head Pose Estimation With Latent Space Re-
gression

We evaluate this method on both the original and syntheti-
cally occluded versions of the BIWI and AFLW2000 datasets.
We use ResNet-50 as the backbone network for this method.
All networks in this section are trained for 25 epochs and their
parameters are initialized with a pre-trained model for 300W-
LP non-occluded images provided by the authors of [18]. To
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optimize the parameters we use the Adam [32] optimization
algorithm with a learning rate of 10−5.

We train the framework defined in section IV-A using syn-
thetically occluded versions of 300W-LP. The face images are
cropped to the pre-defined input dimension of the ResNet-50
network, 224x224 pixels, and the mean and standard deviation
of ImageNet [9] is used to normalize the data. The annotations
for ground truth pose angles are converted from radians to
degrees in all datasets. We use 66 3◦ bins for classification,
within a range from −99◦ to 99◦ for each one of the Euler
angles. There are 31 images of the AFLW2000 dataset that are
not used in testing since their pose angles surpass this range.

1) Angle Regression Weight Study: We train the framework
with 5 different α parameter values to determine the best
one. The head pose estimation MAE results in synthetically
occluded and non-occluded datasets are listed in tables I
and II. We can observe that, generally, α = 2 produces
the smallest average MAE errors. In particular for occluded
images, the lowest MAE errors across all datasets correspond
to the networks trained with that parameter value. We can also
observe that the largest errors tend to occur for α = 1. This
result highlights the importance of correctly distributing their
weight. For the following tests, we use α = 2 as the weight
for the head pose multi-loss framework.

BIWI Occluded Images
Reg. Weight

(α) yaw pitch roll Avg.
MAE◦

Combined
Avg.

0.5 5.250 6.529 4.255 5.345 alpha MAE◦

1 5.333 6.916 4.036 5.495 0.5 4.7632 5.110 6.832 3.629 5.190
5 5.477 6.542 4.304 5.441 1 4.95010 5.218 7.565 4.344 5.709

Non-Occluded Images 2 4.6170.5 4.259 4.704 3.580 5.441
1 4.765 4.493 3.956 5.768 5 4.7232 4.242 4.041 3.845 4.043
5 4.474 4.043 3.494 4.004 10 4.90910 4.196 4.503 3.628 4.109

TABLE I
HEAD POSE ESTIMATION MAE ◦ TESTS WITH BIWI FOR DIFFERENT

ANGLE REGRESSION WEIGHTS (α).

AFLW2000 Occluded Images
Reg. Weight

(α) yaw pitch roll Avg.
MAE

Combined
Avg.

0.5 6.227 8.271 5.713 6.737 alpha MAE
1 6.411 8.713 6.017 7.047 0.5 6.0892 5.672 8.101 5.783 6.519
5 6.156 8.279 5.841 6.759 1 6.407510 5.4044 8.407 5.923 6.578

Non-Occluded Images 2 5.9540.5 5.281 6.544 4.497 5.441
1 5.675 6.868 4.760 5.768 5 6.10652 4.886 6.636 4.643 5.389
5 5.403 6.413 4.546 5.454 10 6.018510 4.986 6.695 4.696 5.459

TABLE II
HEAD POSE ESTIMATION MAE ◦ TESTS WITH AFLW2000 FOR

DIFFERENT ANGLE REGRESSION WEIGHTS (α).

2) Latent Space Regression Weight Study: Having deter-
mined the best α, we trained 4 different head pose estimation
networks, one for each different β, the parameter that defines

the weight of the latent and angle losses, and compared the
results with Hopenet [18]. All networks were trained for 25
epochs. We use the latent space produced by the pre-trained
model in non-occluded inference as ground truth. The datasets
for training and testing include 25 different regions of occlu-
sion. Tables III and IV display the results for each dataset. We
observe that when the latent space regression loss is not used
(β = 0), despite substantially decreasing the error for occluded
images, the results are worse for non-occluded images. This
is more evident in the BIWI dataset, where the average MAE
for non-occluded images increases by nearly 1◦. We can also
observe that as the β parameter increases, the MAE becomes
lower for both occluded images and non-occluded images. In
AFLW the non-occluded estimation results improve on the
ones of Hopenet which was trained for non-occluded images.
This confirms that introducing this loss helps not only to
achieve improved generalization for occlusions, but also to
avoid detouring from accurate non-occluded pose estimation.
While for β = 1 the average MAE errors are the best in BIWI,
we verify that this parameter leads to a worse estimation of
yaw values, which is the most varied and relevant Euler angle
in head pose estimation. β = 0.999 provides the most balanced
results in average MAE and yaw estimation.

BIWI Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 6.725 8.616 7.338 7.560 β MAE
LSR (β = 0) 5.990 7.778 4.346 6.038 HPN 5.661LSR (β = 0.5) 5.797 7.394 4.537 5.910

LSR (β = 0.990) 5.798 6.881 4.572 5.750 0 5.307LSR (β = 0.999) 5.174 6.622 4.117 5.304
LSR (β = 1) 5.429 4.823 3.467 4.573 0.5 5.102Non-Occluded Images

Hopenet 4.375 3.559 3.348 3.761 0.990 4.925LSR (β = 0) 4.940 4.873 3.911 4.575
LSR (β = 0.5) 4.413 4.910 3.556 4.293 0.999 4.669LSR (β = 0.990) 4.204 4.343 3.750 4.099

LSR (β = 0.999) 4.297 4.186 3.617 4.033 1 4.046LSR (β = 1) 4.291 3.086 3.179 3.519

TABLE III
HEAD POSE ESTIMATION MAE ◦ TESTS WITH BIWI FOR DIFFERENT

LATENT SPACE REGRESSION WEIGHTS (β). LSR STANDS FOR LATENT
SPACE REGRESSION.

AFLW2000 Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 12.438 10.277 8.586 10.434 β MAE
LSR(β = 0) 5.057 7.120 4.961 5.713 HPN 7.579LSR(β = 0.5) 4.891 6.424 4.918 5.411

LSR(β = 0.990) 4.714 6.360 4.906 5.327 0 5.220LSR(β = 0.999) 4.741 6.254 4.765 5.253
LSR(β = 1) 5.117 6.075 4.590 5.261 0.5 4.914Non-Occluded Images

Hopenet 4.965 5.250 3.956 4.724 0.990 4.882LSR(β = 0) 4.114 6.002 4.061 4.726
LSR(β = 0.5) 3.855 5.447 3.947 4.416 0.999 4.833LSR(β = 0.990) 3.709 5.517 4.083 4.436

LSR(β = 0.999) 3.813 5.420 4.003 4.412 1 4.867LSR(β = 1) 4.258 5.272 3.888 4.473
TABLE IV

HEAD POSE ESTIMATION MAE ◦ TESTS WITH AFLW2000 FOR
DIFFERENT LATENT SPACE REGRESSION WEIGHTS (β). LSR STANDS FOR

LATENT SPACE REGRESSION.
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B. Occluded Head Pose Estimation Through Face Reconstruc-
tion

We train the autoencoder for 25 epochs and use a batch
size of 116. The training and testing datasets are the same
we used in the previous approach. During the first epoch of
training the networks are trained to reconstruct the faces with
non-occluded image inputs. This is done to provide better
initialization for the following epochs, for which the model
is trained with batches of 100 occluded images and 16 non-
occluded images. The images are cropped as in the previous
approach but they are not normalized. We randomly adjust
the brightness, contrast, saturation and hue during training to
enhance the robustness of the reconstruction.

We train 3 models with distinct weights for the SSIM loss in
the reconstruction loss function defined in equation 7 (section
IV-B1). The first is setting γ = 0, which amounts to using
only the l1 loss. Afterwards we set γ = 1 and include the
SSIM loss in training. Lastly we increase the weight of the
SSIM loss in the reconstruction loss function to γ = 2.

Fig. 8. Reconstruction comparison for different loss weights.

Figure 8 displays examples of the different reconstructions
generated by each model. We observe that when only the l1
loss is used (γ = 0), the reconstructed regions are blurrier
and less detailed, with faded edges and lower contrast. The
introduction of the SSIM metric loss allows the model to better
replicate the main features of a face (mouth, nose, eyes). As
we increase the influence of this loss over the l1 loss, we
see significant improvement over the first model. Lips become
more defined, and complicated details such as the the outline
of nostrils in noses and the iris in each eye are now more
visible in the reconstruction. While the l1 loss helps to generate
good results regarding the brightness and color intensities of
the reconstructed area, the SSIM loss improves the structural
details of faces and helps to produce more fine-grained results.

In figure 9 we can observe some examples of face recon-
structions for each dataset. The quality of the reconstruction
depends on the resolution of the original image. The original
images in the BIWI dataset have lower resolution and the
faces occupy a much smaller region than they do in the other
datasets, which leads to worse reconstructions in this dataset.

We evaluate and compare the pose estimation performance
for the reconstructed images. The network and model of
Hopenet is used as the head pose estimator. The results for
each dataset are listed in tables V and VI. We can observe that
the estimation error decreases for all reconstruction models, in
both occluded and non-occluded images. The improvements
for the average MAE in occluded image range from around

Fig. 9. Examples of face reconstruction results for each dataset.

1.5◦ in BIWI to nearly 5◦ in AFLW2000. The lower reso-
lution of the images in the BIWI dataset leads to the less
improved results. It is also noticeable that the error decreases
when the SSIM loss is used (γ > 0), with the best results
corresponding to the highest weight used for this loss (γ = 2).
For AFLW2000, the average MAE head pose estimation error
for the reconstruction of occluded images with γ = 2 is less
than 1◦ higher that the one produced with the original non-
occluded images. This confirms that the extra structural fine-
grained detail added by the SSIM loss helps to lead to reduce
the error in head pose estimation.

BIWI Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 6.725 8.616 7.338 7.560 γ MAE
Rec. (γ = 0) 5.979 6.526 5.755 6.087 HPN 5.661Rec. (γ = 1) 5.755 6.306 5.852 5.971
Rec. (γ = 2) 5.847 6.323 5.727 5.966 0 4.853Non-Occluded Images

Hopenet 4.375 3.559 3.348 3.761 1 4.789Rec. (γ = 0) 4.137 3.392 3.324 3.618
Rec. (γ = 1) 4.117 3.389 3.606 3.606 2 4.792Rec. (γ = 2) 4.133 3.391 3.617 3.617

TABLE V
HEAD POSE ESTIMATION MAE◦ RESULTS FOR RECONSTRUCTED IMAGES

IN BIWI. THE RESULTS OF HOPENET CORRESPOND TO THE ORIGINAL
INPUTS TO THE NETWORK.

AFLW2000 Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 12.438 10.277 8.586 10.434 γ MAE
Rec. (γ = 0) 5.738 6.392 4.962 5.697 HPN 7.589Rec. (γ = 1) 5.674 6.196 4.812 5.560
Rec. (γ = 2) 5.546 6.138 4.690 5.458 0 5.335Non-Occluded Images

Hopenet 4.965 5.250 3.956 4.724 1 5.113Rec. (γ = 0) 4.978 5.250 3.959 4.729
Rec. (γ = 1) 4.676 5.353 3.965 4.665 2 5.058Rec. (γ = 2) 4.675 5.345 3.956 4.658

TABLE VI
HEAD POSE ESTIMATION MAE◦ RESULTS FOR RECONSTRUCTED IMAGES

IN AFLW2000. THE RESULTS OF HOPENET CORRESPOND TO THE
ORIGINAL INPUTS TO THE NETWORK.

C. Multi-Loss Autoencoder For Occluded Head Pose Estima-
tion

We trained 3 different models for this methodology. In the
first stage we use the pre-trained encoder provided by the
authors of [18] for all 3 models. The distinction between the
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models arises from the differences in the second and third
stages. For simplification, we name each model as ResUnet
1,2 and 3. In ResUnet 1, the reconstruction loss of the second
stage is applied for images normalized with ImageNet’s mean
and standard deviation. We set the parameter γ = 0, since the
SSIM loss does not work for negative values in color channels.
For the third stage, these parameters are unchanged and the
weight for pose estimation is ρ = 0.1. In both ResUnet 2 and
3 we reverse the normalization of the channels of the output
image and apply the reconstruction loss for images without
normalization. We set γ = 2 in the second and third stage.
The difference between the two models is that ρ = 0.1 in
ResUnet 2, while in ResUnet 3 we increase it to ρ = 1. The
parameter for the weight for each angle regression loss is set
to α = 2 in all models. The networks were trained for 25
epochs in each stage with 116 image batches. In ResUnet 1
and 3, we use 100 occluded and 16 non-occluded images in
each batch, and in ResUnet 2 we use only occluded images in
each batch. Tables VII and VIII list the results for all models
in each dataset.

BIWI Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 6.725 8.616 7.338 7.560 Method MAE
ResUnet 1 6.874 6.462 4.994 6.110 HPN 5.661ResUnet 2 6.192 7.218 4.335 5.922
ResUnet 3 5.377 6.318 4.564 5.420 1 5.127Non-Occluded Images
Hopenet 4.375 3.559 3.348 3.761 2 5.384ResUnet 1 4.586 4.193 3.654 4.144

ResUnet 2 4.798 4.944 3.712 4.845 3 4.747ResUnet 3 4.380 4.175 3.669 4.075

TABLE VII
HEAD POSE ESTIMATION MAE◦ RESULTS FOR RESUNET IN BIWI.

AFLW2000 Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 12.438 10.277 8.586 10.434 Method MAE
ResUnet 1 5.557 6.859 5.372 5.929 HPN 7.579ResUnet 2 5.329 6.550 4.978 5.619
ResUnet 3 5.123 6.354 4.633 5.370 1 5.304Non-Occluded Images
Hopenet 4.965 5.250 3.956 4.724 2 5.189ResUnet 1 4.237 5.623 4.173 4.678

ResUnet 2 4.380 5.669 4.196 4.758 3 5.001ResUnet 3 4.235 5.569 4.126 4.643

TABLE VIII
HEAD POSE ESTIMATION MAE◦ RESULTS FOR RESUNET IN AFLW.

By comparing the results from ResUnet 1 and ResUnet 2
we observe that training the model with the reconstruction
loss applied to images without normalization helps to produce
better HPE results in occluded images. This may be due to
the addition of the SSIM loss in ResUnet 2 which allows for
better image reconstructions and leads the network to produce
embeddings closer to those of an face image without occlusion.
However, ResUnet 2 has worse results in regards to non-
occluded pose estimation. This seems to be a consequence
of using only occluded images in the second and third stages
of training. ResUnet 3, which includes non-occluded images

in training batches, improves non-occluded results when com-
pared to both previous models. Furthermore, setting the weight
parameter for pose estimation losses to ρ = 1 leaded the
network to produce the best results for all occluded datasets,
despite using less occluded examples in batches than ResUnet
2. As a result of these improvements, we observe that ResUnet
3 has the lowest overall average MAE in both datasets.

D. Method Results Comparison and Discussion

BIWI Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 6.725 8.616 7.338 7.560 Method MAE
LSR 3 5.174 6.622 4.117 5.304 HPN 5.661LSR 4 5.429 4.823 3.467 4.573
Rec. 3 5.847 6.323 5.727 5.966 LSR 3 4.669ResUnet 3 5.377 6.317 4.564 5.420

Non-Occluded Images LSR 4 4.046Hopenet 4.375 3.559 3.348 3.761
LSR 3 4.297 4.186 3.617 4.033 Rec. 3 4.792LSR 4 4.291 3.086 3.179 3.519
Rec. 3 4.133 3.391 3.326 3.617 ResUnet 3 4.747ResUnet 3 4.380 4.175 3.669 4.075

TABLE IX
METHOD COMPARISON IN BIWI.

AFLW2000 Occluded Images

Methods yaw pitch roll Avg.
MAE

Combined
Avg.

Hopenet 12.438 10.277 8.586 10.434 beta MAE
LSR 3 4.741 6.254 4.765 5.253 HPN 7.579LSR 4 5.117 6.075 4.590 5.261
Rec. 3 5.674 6.138 4.690 5.458 LSR 3 4.833ResUnet 3 5.123 6.354 4.633 5.370

Non-Occluded Images LSR 4 4.867Hopenet 4.965 5.250 3.956 4.724
LSR 3 3.813 5.420 4.003 4.412 Rec. 3 5.058LSR 4 4.258 5.272 3.888 4.473
Rec. 3 4.675 5.345 3.956 4.658 ResUnet 3 5.001ResUnet 3 4.235 5.569 4.126 4.643

TABLE X
METHOD COMPARISON IN AFLW2000.

Tables IX and X display the head pose estimation results
in the respective dataset, for the best models of each method.
LSR 3 and 4 stand for the latent space regression methods with
a weight of β = 0.999 and β = 1, respectively. Rec. 3 stands
for the reconstruction method with a weight of γ = 2 for
the SSIM loss. We can observe that all of them substantially
reduce the head pose estimation errors in occluded images
when compared to Hopenet. The reductions in the average
MAE for occluded images range from 2◦ to 5◦. Furthermore,
they sustain accurate results for non-occluded images and in
some cases even lower the MAE of Hopenet, despite being
trained mostly or completely with occluded examples. This
is important since it was also an objective of the developed
methodologies to maintain the best accuracy possible in non-
occluded images. By comparing the different procedures we
verify that reconstructing the images to input in an head
pose estimator produces the worst results in occluded images,
specially in the BIWI dataset. This is mainly due to its
sensitivity to the lower resolution of the images in this dataset,
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which is the main disadvantage of this method. However, it
improves the head pose estimation for non-occluded images in
both datasets when compared to inputting the original image
directly in Hopenet. ResUnet 3 produces the third best results
in BIWI and AFLW occluded results, which corroborates that
combining the reconstruction of faces with the estimation of
the pose in one network leads to a model that generalizes
better for occlusions. Ultimately, the latent space regression
methodology produces the lowest occluded and global average
MAE for both BIWI and AFLW2000 datasets. Moreover,
this method allows to further decrease error in non-occluded
images when compared to Hopenet. Both these factors make
it the model that better fulfills the main purpose of achieving
the best occluded head pose estimation, while preserving
or improving on state of the art non-occluded head pose
estimation. Since in real-life applications the yaw Euler angle,
which defines if a head is turned left, center or right, is
the most varied and therefore most important angle in the
pose estimation, we consider LSR 3 to be the best for such
scenarios.

E. Testing Pose Estimation In The Feedbot Scenario

We tested our best method in the feeding context of Feedbot
[33], an autonomous feeding robot, to find out how our model
performs and compare it to Hopenet. We recorded a video
where Feedbot’s robotic arm executes the feeding task and
occludes the face of the user. We performed inference for the
entire video using both our and Hopenet’s models. Since we
do not have the ground truth pose in this testing conditions, we
carry out a qualitative analysis and evaluation in this section.

Figure 10 displays a set of occluded example frames which
show clear improvements in the head pose estimation when
compared to Hopenet. In these examples, the Hopenet is seen
to indicate head poses of opposite direction to that of which
the head is turned, namely estimating the head to be rotated
towards the left of the image when its towards the right. Our
model, on the contrary, indicates head poses much closer to
reality despite the partial occlusions, particularly improving
the yaw rotation around the green axis when compared to
Hopenet.

Fig. 10. Feedbot: Comparison between Hopenet and our model - Occluded
frames.

There are, however, frames of the video for which our
model does not exhibit the desired behaviour. Figure 11
displays some examples of large occlusions where the head
pose estimation of our model is not as accurate. Despite the
user looking straight at the camera, the estimated yaw rotation
indicates the head is slightly tilted to the left of the image.

Nonetheless, both pitch and roll estimation seem to be valid
and our model still performs better than Hopenet in these
cases.

Fig. 11. Feedbot: Comparison between Hopenet and our model - Occluded
frames (continuation).

For non-occluded frames, our model’s pose estimations are
good and identical to those of state of the art Hopenet, as seen
in figure 12. This is the desired behaviour since we intend to
improve on occluded head pose estimation, while preserving
the accuracy for non-occluded images that state of the art
works exhibit.

Fig. 12. Feedbot: Comparison between Hopenet and our model - Non-
occluded frames.

VI. CONCLUSION

A. Conclusions

In this work, we developed three different learning-based
methodologies to deal with the occlusion problem in head
pose estimation. To be able to implement and test these
approaches, we introduced a procedure to generate synthetic
occlusions in face images using an RGB-D camera. We show
how to segment occlusions based on depth data captured by
the camera and how to inpaint the occlusion in any RGB
face image. We applied this procedure to three datasets and
generated synthetically occluded versions for each one of
them.

We conceived a new multi-loss head pose estimation frame-
work combined with a latent space regression loss. We showed
how introducing and increasing the influence of this loss
improves the accuracy and generalization for occluded images
and non-occluded images. We also studied the use of an
autoencoder to reconstruct non-occluded faces from occluded
images in order to input the reconstructions to a head pose
estimation network. We demonstrate that combining an l1
and SSIM losses leads to more fine-grained face reconstruc-
tions, which contributes to achieve better estimation of head
poses. Lastly, we combined head pose estimation with face
reconstruction in a unique autoencoder which adapts both
tasks through three training stages. We saw that applying
the SSIM loss and increasing the weight of angle losses in
the overall framework leads to better pose estimation results,
which surpassed usign two separate networks.

By performing ablation studies and measuring the influence
of losses we determined the best training configurations and
models. We verified that all methodologies improved occluded
head pose estimation and equaled or surpassed the estimation



10

state of the art performance for the original non-occluded
datasets.

We carried out qualitative tests using our best model in the
real world application of the Feedbot, an autonomous assisting
feeding robot. Our model improved the head pose estimation
for the occlusions of the robotic arm when compared to a
state of the art estimation model, while achieving identical
performance without occlusions.

B. Method Limitations and Future Work

Despite achieving good results, the developed methodolo-
gies have some limitations and further work could be done to
improve them.

The RGB-D Microsoft Kinect camera has low image res-
olution (640x480 pixels) and a minimum depth range of 0.8
meters. As a consequence he segmented occlusions occupy a
small region in the image and have low resolution. An RGB-
D sensor of higher resolution would allow to generate more
natural synthetic occlusions.

ResNet-50, the encoder used in pose estimation frameworks,
is a large network with over 23 million parameters and is
therefore slower to train and requires more GPU power. A
lighter, accurate network such as EfficientNet [10], with 11
million parameters, could be used to improve this aspects.

The performance of our reconstruction models depends
on the resolution of the detected face. The face generation
capabilities of a Generative Adversarial Network could be
explored to implement a more robust model that generate
further fine-grained reconstructions.

Ultimately, we plan to implement and quantitatively evalu-
ate these head pose estimation frameworks in the autonomous
feeding Feedbot system in order to further assert their robust-
ness to occlusions of the feeding robotic arm.
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