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Abstract

One of the most common ways to detect a pathological state, through diagnosis, is by using medical
images such as in vivo confocal microscopy, fundus photography, etc. These diagnoses are demanding,
since it is needed a specialized health professional and there has been an increase of data regarding this
type of diagnoses, making it too hard to manage. This increase in data availability associated with the
increase in computational power has instigated the application of Artificial Inteligence (AI) algorithms
in this area. This study tested the hypotheses of multi-input deep learning networks for both images
of cornea and retina, to distinguish between healthy and pathological states in diabetic neuropathy and
diabetic retinopathy, respectively. It was proposed a multi-input architecture with different networks, such
as LeNet-5, AlexNet, GoogLeNet and ResNet, and different optimizers (mini-batch SGD, RMSprop,
Adam) with different learning rates (0.01, 0.001, 0.0001). All these variations were only applied in
corneal images and the one that showed a better performance was selected to be tested in retinal
images. From the corneal images trials, it was concluded that the combination that best performed
was GoogLeNet with Adam optimizer of 0.01 learning rate, since it achieved an accuracy of 99.40%
in leave-one-out cross-validation. In retinal images this architecture achieved a satisfactory accuracy
of 84.44%, although the F1-score of 0.125 showed that the model is not reliable. Nevertheless, this
study demonstrates the capability of the proposed multi-input network in the classification of healthy and
pathological state, and encourages the investigation with more images and other diseases.
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Resumo

Um dos tipos de diagnostico mais comuns é através do uso de imagens médicas, como microscopia
confocal in vivo, entre outras. Estes diagnósticos são exigentes, visto que apenas são realizados por
profissionais de saúde especializados e o aumento deste tipo de dados, dificulta a rapidez em dar
resposta. Hoje em dia, com o incremento da disponibilidade de dados e do poder computacional,
a aplicação de algoritmos de Inteligência Artificial (IA) nesta área tem se normalizado. Neste estudo
propôs-se a aplicação de redes de neuronais profundas com múltiplas entradas para imagens de córnea
e retina, para diferenciar entre estados saudáveis e patológicos na neuropatia diabética e retinopatia
diabética, respetivamente. Foram testadas, nesta arquitetura, diferentes redes neuronais como LeNet-
5, AlexNet, GoogLeNet e ResNet, e optimizadores (mini-bacth SGD, RMSprop, Adam) com diferentes
taxas de aprendizagem (0,01, 0,001, 0,0001). Todas estas combinações foram aplicadas apenas em
imagens de córnea e a que apresentou melhor desempenho foi selecionada para ser testada em im-
agens de retina. No diagnóstico de neuropatia diabética a combinação com melhor desempenho foi
a GoogLeNet com Adam de 0,01 (taxa de aprendizagem), pois obteve uma precisão de 99,40 % com
Leave-one-out cross-validation. Já no de retinopatia esta arquitetura obteve uma precisão de 84,44 %
contudo, a F1-score foi de 0,125 o que significa que o modelo não tem robustez. Desta forma este
estudo demonstra que a rede neuronal de entradas múltiplas proposta tem capacidade para diferenciar
entre estados saudável e patológico, e incita à investigação com mais dados e também em diferentes
patologias.

Palavras Chave

Deep learning, redes neuronais com multiplas entradas, Neuropatia diabética, Retinopatia diabética
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1.1 Motivation

Medical images are one of the most important types of data used for disease risk modelling, personalized

screening, diagnosis and prognosis. [1] This type of data has a high variability and specificity, since it can

differ from confocal microscopic images to computational tomography Computational Tomography (CT)

or Magnetic Resonance Image (MRI), which imposes constraints in its analysis, inducing a necessity of

specialization in different health or imaging areas. Even then, the process can be labor-intensive, time-

consuming and vulnerable to human error, due to lack of experience and/or fatigue. [2] To solve these

issues, researchers have been implementing algorithms to assist clinical judgement based on computa-

tional diagnosis. Firstly, machine learning algorithms were implemented, that fastened the process and

gave promising results. Nevertheless, they still needed manual feature selection from experts, which

was still time-consuming and prone to human error. [3]

Nowadays, the usage of deep learning algorithms is the most frequent approach; it is characterized

by an advanced knowledge-based algorithm (Convolutional Neural Network (CNN)). CNNs allow the

extraction of hidden patterns and features automatically from an image, that further on are used to

perform tasks such as organ and structure segmentation, image quality enhancement, object detection

and classification. On another note, these type of networks are able to process both single-mode medical

images, where the network has only one input, and multi-mode medical images either from different

devices or multiple anatomic sites, becoming a multi-input network, making these techniques versatile

to any type of diagnosis. Either type of network has already achieved great results in computed-aided

diagnosis systems. [4] The multi-input networks have shown to be on average more accurate than single-

input images without significant increase in computational time and resource consumption, with non-

medical data, according to the studies [5] and [6].

1.2 Goals

This dissertation focuses on the analysis of confocal images of the corneal nerve plexus, to diagnose

Diabetic Neuropathy (DN), which consists on the analysis of three non-overlaping images from different

parts of the cornea of the same eye. For this reason, multi-input network was the base of the architec-

ture conjugated with different convolutional neural networks such as Lenet-5, AlexNet, GoogLeNet and

ResNet. Besides the different architectures, different optimizers were applied in each network to identify

the one that had better accuracy, sensitivity and specificity. The most promising network would be, af-

terwards, used in retinal images, to see how it would perform in other types of data for similar diagnosis.

For retinal images the diagnosis is executed by analyzing the images of both eyes at the same time,

which is different then the diagnosis done in corneal images. Further on, the results would be compared

with literature to see the advantages and disadvantages of this method.
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1.3 Thesis outline

To achieve the goal mentioned above this thesis will firstly focus on a theoretical introduction (chapter

2) consisting in an overall view of deep learning, a description of CNNs, their challenges and respective

techniques to overcome those challenges; and also a review of the state of the art in both types of data

(corneal and retina). Then the methods, in chapter 3, are presented where there is a description of the

data and the model that is being proposed in this dissertation. Lastly, the results are described and

analysed in the Results and discussion (chapter 4); and a brief conclusion is given with a description of

the limitations of the study (chapter 5).
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2.1 Deep learning

2.1.1 Neural Networks

Since the decade of 1950 that the idea of simulating human reasoning with computers has been devel-

oped by computer scientists, the so called Artificial Inteligence (AI). However, this vision was in stand

by, until the end of the century, due to lack of data and computational power. More recently, with an

increase in data availability and the improvements in computer hardware, this field started developing

algorithms such as Machine Learning (ML) and Deep Learning (DL). [7]

One of the ML algorithms is Artificial Neural Network (ANN), this has as inspiration the biological

structure of neural networks where each neuron is equivalent to a node, in the computational network,

and the synapses between the neurons are the weights that connect those nodes. Similarly to the

brain a connection can also be strengthened if it makes ”sense” to the algorithm, i.e. is stimulated, or

weakened otherwise. [8]

Nowadays, ML is applied in most of our daily activities/objects from web searches to content filtering

on social media, as well as in products such as cameras and smartphones. Previously, ML systems

were inefficient in tasks such as pattern-recognition, so they were not appropriate to use in a big scale

in the identification of objects in images or to transcribe speech into text, these was only possible by the

integration of DL techniques. [9]

Figure 2.1: Different components of AI and their relationships. [8]

As it is illustrated by the fig.2.1, DL algorithms uses ANN as a starting point, since it is a ANN with

more then three hidden layers. The structure of these algorithms is characterized by a set of layers with

different nodes and weights that connect them, fig.2.2. These weights will be the key for the learning

process, since they will update themselves on each iteration so that the connection between those nodes

is strengthen or weakened depending on its impact in the algorithm. [10]

DL algorithms can also be referred to as representation-learning methods, since they are composed
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by simple non-linear modules that transform the input. Typically, in the first layer it is detected presence

or absence of edges, the second detects patterns, the third layer assembles the patterns found in larger

combinations, and further on the layers continue on detecting elements in combination of the previous

parts. [9]

Figure 2.2: Generic model of a deep learning neural network. [11]

The networks that are mostly used in DL are the Recurrent Neural Network (RNN) and the CNN.

RNNs are mostly used for modeling sequences, this network considers one term at a time, i.e.,

each weighted connections of the layers have an activation considering the previous time step, which

accumulates information over time.

CNNs, on the other hand, are more suitable for pattern recognition in images, as it obtains the de-

tected features for every position in the images, and after the updating of the weights in each fragment

of the image these are averaged and applied to all sets of weights. [12]

There are other types of architectures of neural networks for example the Restricted Boltzmann Ma-

chines, Radial Basis Function Networks and Simulating Basic Machine Learning with Shallow Models,

nevertheless this thesis will be more focused on Convolution Neural Networks since it is the most suited

for image analysis and classification.

2.1.2 Convolutional Neural Networks

CNNs were firstly inspired in the cat’s visual cortex, an idea developed by Hubel and Wiesel. The

cat’s visual cortex divides the visual field into specific regions that are processed by different cells and

react to different external stimulation in those regions. [13] Some cells only react to vertical orientation

of the objects (edges), others only to horizontal orientation, others to movement and then further on
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the information obtained is merged and processed by a layered architecture. [14] Considering Hubel’s

and Wiesel’s idea, the neurons of CNN are characterized for having three dimensions. The first two

dimensions are equivalent to the two-dimensions of the input (height and width), whereas the third

dimension encodes the activation volumes, this way the neurons within any layer are connected to small

regions of the neuron preceding it. [15]

The typical CNN model has 4 principal components: convolutional layer, pooling layer, fully con-

nected layer and activation functions; that will be described next. The image is given as an input to be

transformed by the network, composed with the layers above mentioned, so that it is sampled, reduced,

and analyzed to extract features and later on classify the input. [16] The CNN model can also include

other elements such as Dropout and Batch normalization.

2.1.2.A Convolutional Layer

The convolutional layer is the most important block of the CNN. As the name implies, it relies on this

layer to find the regions that connect the output (label) to the input (image). They are characterized by

kernels, small filters, that are able to learn the patterns and features. These are applied, as it is shown

in fig.2.3 by a moving window (filter), that convolves with each region of the image and gives a result as

output. Each result is placed in the filtered image (activation map), allowing the network to understand

which are the regions that most impact the output, either for classification or other tasks desired.

Figure 2.3: Example of a convolution between an input with size 7 ∗ 7 ∗ 1 and a filter with size 3 ∗ 3 ∗ 1 with stride
1. [7]

The activation map generated in the output of the layer has different dimensions than the input,

depending not only on the size of the filter, but also on the hyperparameters used. Stride determines
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the number of units/pixels by which the filter shifts in each time while being convolved, so it changes the

spatial dimensionality of the output, and also reduces overlapping. Padding, on the other hand, consists

on augmenting the border of the input or not, that concedes control, also, over the dimensions of the

output. Depth (Number of filters) can change the number of neurons and also influences the pattern

recognition accuracy. [15]

2.1.2.B Pooling Layer

The pooling layer is used to reduce the dimensions of the input gradually so that the problem gets

less complex to compute, and the feature detection becomes invariant to small translations. There are

different ways of applying the pooling layers: the max pooling, most commonly used, and the average

pooling. [17] Both approaches have as input the activation maps that are divided by smaller overlapping

regions, typically 2 ∗ 2 or 3 ∗ 3, and the output is the value of the max or the average of each of those

smaller regions, has it is illustrated in the fig.2.4. [15]

Figure 2.4: Example of a max-pooling 3 ∗ 3 applied to an activation map 7 ∗ 7 with strides 1 and 2. [7]

Contrary to convolutional layers, pooling layers work independently in each activation map, so that

id does not change the number of feature maps when a pooling layer is applied. An important aspect in

these layer is the stride, if the pooling has a size 2 ∗ 2 and a stride of 2 the small regions do not overlap.

This is not necessarily something desirable, since it has been seen that some overlapping might prevent

overfitting of the model, a term that will be discussed further. [7]
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2.1.2.C Fully Connected Layer

Fully Connected layers (FCs) are similar to the traditional neural networks (weighted sum of connections,

without the convolution operation), as it is illustrated in fig.2.2. [16] In these layers, each feature in

the last layer is connected to each hidden state, causing each node to have numerous parameters

and connections. Normally they are applied after all convolutional and pooling layers and the last one

generates the class label. For a better classification it can also provide non-linearity to the analysis by

associating the weights to active functions.

2.1.2.D Activation Functions

Activation functions are used in non-linear problems such as pattern recognition and image classifica-

tion, as mentioned above. In a single layer perceptron, the classification can be performed in such a

way that it is a simple combination between nodes and their weights, given by the expression 2.1.

y1 = w1x1 + w2x2 + b (2.1)

With the use of an activation function the y1 is applied to the function chosen and the final value is given

by the expression 2.2

y = σ(y1) (2.2)

There are different activation functions that can be applied. This study only focused on Sigmoid

and Rectified Linear Unit (ReLu) functions. Sigmoid function has similar characteristics to the synaptic

processes, it has a soft saturability and minimizes the range of the numbers between 0 and 1. It is

defined by the expression 2.3 and represented in fig.2.5.a. Although it is a good representation of

the neural synapses, this function is computationally expensive and the saturation can cause loss of

information.

f(x) =
1

1 + e−x
(2.3)

ReLu is the trendy activation function, it saturates to 0 any input less or equal to 0 and preserves the

value otherwise, given by equation 2.4 and represented by fig.2.5.b. With this function the computation

is very fast and there is no loss in higher values since there is no saturation (on values higher than

0). Nevertheless, there is still saturation in the negative side, which can become a problem for the

recognition result. [18]

f(x) = max(0, x) (2.4)

11



(a) (b)

Figure 2.5: Activation functions, (a) illustrates the Sigmoid function and (b) illustrates the ReLu. [19]

2.1.2.E Dropout

This technique is characterized for dropping some nodes randomly, removing them and all the connec-

tions that were part of the node in each training phase, fig.2.6. The fraction of units that are dropped are

given by a number between 0 and 1, being 0.5 commonly used. [20]

Figure 2.6: Model of a dropout neural network, where in the left image the standard network is represented and in
the right image is represented a thinned network where dropout was applied in each layer. [20]

The dropout is applied as a way of regularization of each hidden unit, so that the algorithm learns

from all features in different contexts and/or to prevent overfitting. [10]

2.1.2.F Batch Normalization

Batch normalization is a layer applied to reduce the covariate shifting that occurs in deep neural net-

works during training. It acts on mini-batches, that are even parts of the training and/or validation set,

obtained from the partition of the data into groups of the same size. These mini-batches allow the stan-

dardization of each feature, to learn the scope and bias so that each one has similar input distribution.

The application of this layer has shown a faster convergence and an improvement in the performance of

neural networks. [21]
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2.1.3 Challenges in DL

In the development of neural networks there are some major concerns regarding overfitting, vanishing

and exploding gradients, difficulties in convergence, local optima, computational challenges, and others

regarding its application to medical images and data.

2.1.3.A Overfitting

Overfitting is one of the main challenges due to the complexity of the networks [22] and the imple-

mentation of transfer learning or multimodal techniques [23]. This happens when the total number of

training points is smaller than the number of parameters of the network, generating an infinite number

of solutions [7]. There are some strategies to solve this issue such as region or patch-level extracting,

EarlyStoping or dropout functions, as it was mentioned. [22]

2.1.3.B Vanishing and exploding gradient

This issue can occur in networks with large number of layers, such as CNN, in which the updates

on the early layers can get too small (vanishing) or too large (exploding), due too backpropagation.

The vanishing gradient, specifically, has consequences in the convergence of the algorithm. Possible

fixing methods are ReLu activation function, adaptive learning rates, conjugate gradient methods, batch

normalization or applying certain optimizers to the algorithm, which will be discussed further. [7] [24]

2.1.3.C Computational challenges

Due to the complexity of the networks, the number of layers and number of nodes within each layer, there

is a high computational demand and time consumption when training and validating these algorithms.

[22] A way to try to reduce this time-consumption is by applying supervised or semi-supervised learning

approaches [25].

2.1.4 Loss function, Optimizers and Callbacks

For an improvement of the network and a better way of calculating the error between the output of the

network and the true classifications/results it can be used optimizers, callbacks and loss functions. The

mostly used loss function was the l2 function, it applied the mean square error between the results

and the output of the network. Although this works well in many types of data, in images it has some

limitations, since it produces visible splotchy artifacts in small errors. [26] Nowadays there are other loss

functions being tested such as Binary cross-entropy.
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2.1.4.A Binary cross-entropy

Binary cross-entropy is a good method to handle binary-labels, represented as a vector with zeros and

ones. To adopt this method, the 2.5 function is applied, where the θ is the output from the network and

yk is the true result. It is appropriate when the output layer of the network has a sigmoid as activation

function. [27] [28]

l(Θ, (x, y)) = − 1

N

N∑
k=1

(yklog(θk) + (1 − yk) ∗ log(1 − θ(yk)) (2.5)

2.1.4.B Optimizers

These algorithms determine both the training speed and the final prediction performance of the model,

controlled by hyperparameters such as learning rate, among others. The choice of the optimization

algorithm are from empirical studies and benchmarking, since there is a high diversity of networks and

applications.

The most common method is the Stochastic Gradient Descent (SGD) with momentum, it is also the sim-

plest one. It combines the gradient direction with a constant multiple of the previous parameter updates

influenced by the learning rate and momentum (hyperparameters). These determine how the weights

are updated in each iteration being the learning rate important when considering the loss between pre-

dicted and true label and momentum smoothens the noise caused by the use of batches, so that the

algorithm takes less time to converge (mini-batch SGD). Both have a range between 0 and 1 being the

last one normally close to 1 to have the best momentum [29].

Another common algorithm is the Root Mean Square Propagation (RMSprop) where the learning rate is

adapted based on the mean of the magnitudes of the gradients and afterwards divided by an exponen-

tially decaying average of squared gradients, which fastens the process. It is a better fit for non-stationary

online challenges, since it maintains a moving average of the gradients, and uses that average to esti-

mate the variance. [30] [31] [32]

Adaptive Moment Estimation (Adam) is the other common algorithm; In this case the weights are up-

dated taking into consideration an adaptive learning rate and a smoothing coefficient in each iteration.

It is a commonly used algorithm in problems with large data sets or very complex networks, since it is

computationally efficient and has little memory requirement. [33]

2.1.4.C Callbacks

Callbacks are APIs from keras, i.e., a set of definitions and protocols to build and integrate software

applications. These are included in an open-source software library for deep learning applications in

python, and allows the performance of functions in different stages of the fitting process of the network

[34]. One of the callbacks mostly used is the EarlyStoping that allows to monitor a specific metric,
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such as loss or accuracy, and stops the training if the parameter doesn’t improve in a certain number

of iterations (’patience’). These methods can prevent overfitting of the model and when combined with

overparametrized neural networks show robust capabilities. [35] [36]

2.2 Diabetic neuropathy and retinopathy

2.2.1 Description

DN and Diabetic Retinopathy (DR) are serious and common complications of type 1 and type 2 diabetes.

DN is a type of nerve damage caused by long-term high blood sugar levels and loss of neurotrophic sup-

port given by insulin. [37] The condition usually develops slowly, sometimes over the course of several

decades. Early symptoms are numbness, pain, or weakness in hands or feet. Many studies associate

this disease to morphological changes in peripheral nerve fibers, also mentioned as Diabetic Peripheral

Neuropathy (DPN), like corneal nerve fibers. [38] [39] [40] To diagnose DPN the most common technique

used is in vivo confocal microscopy. This disease is also believed that might be a previous condition to

DR, since the damage to the nerve fibers occurs before the appearance of DR. [41] DR is one of the

leading causes of visual deterioration and blindness in young adults and adults. [42] This condition is

characterized by higher permeability in the vessels and growth of new vessels and connective tissue on

the surface of the retina and into the vitreous, structures illustrated by fig. 2.7. [43] In most cases, in

the early stages, it is asymptomatic, so there is or should be a normal clinical check up of patients with

diabetes regarding the neural retinal damage and microvascular changes, to better prevent and treat

the disease as early as possible. The diagnosis of DR is normally based on functional changes such

as Electroretinography (ERG), retinal blood flow and retinal blood vessel caliber, but for early stages

imaging techniques are used such as fundus photography [44].

As it was mentioned in chapter 1, these diagnoses nowadays are performed by a clinical professional

of the area. Due to an increase in the number of cases in the last years and a consequent increase in

demand for this diagnostics, the way that they are being performed is not enough to cover the needs,

and it is also prone to human error. For this reason there has been a wave of application of different

deep learning algorithms, mainly CNNs, to automate the detection of DR and DPN. [45]
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Figure 2.7: Anatomic scheme of the eye where the cornea, retina and vitreous are represented. [46]

2.2.2 In Vivo Confocal Microscopy

This is a noninvasive imaging technique that allows the visualization and evaluation of the corneal nerve

plexus, where it is possible to obtain images like fig.2.8. Normally for the diagnosis it is taken three

Figure 2.8: Example of a in vivo confocal microscopic image from the corneal nerve plexus of a healthy patient

non-overlaping images of each eye of the patient that constitute a mosaic, so it would be beneficial if

the three images could be taken into consideration as an input in the DL algorithms. The task given

to the algorithms is essentially to find the nerves and see how damage they are, something that is

difficult to identify by someone that is not trained. Most algorithms applied have two purposes, either

corneal nerve segmentation or classification of the images in healthy or unhealthy patients. The ones

found that used mainly for segmentation purposes were [40] which was based on a CNN constituted

by encoder, information extractor and decoder that achieved values of 96% and 75% of sensitivity and
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specificity, respectively. For [47] a U-net based CNN was used and reached 85% of sensitivity. This

architecture consists of a contracting path, similar to a typical CNN, that captures the context followed

by an expansive path that integrates this context into the precise location, enabling the segmentation

of the data. [48] In parallel, the researchers also developed an algorithm for classification between

subject with DPN and healthy subjects and obtained 100% of sensitivity and 95% specificity. Lastly,

another paper that included segmentation was the [49], that applied also a U-Net-based CNN to trace

the corneal nerves automatically and then used the results has input in a simple CNN to learn the

patterns of the damaged vs. non damaged nerves and afterwards classify them. The U-net input could

be either single images or an average of the images from each subject, it achieved an accuracy of

95% on the segmentation. Regarding classification, only the [50] study was found. It was developed

a CNN composed by two components, feature extraction and classification, from which they obtained

a 96% accuracy, 98% sensitivity and 94% specificity. In this particular study they used the three non-

overlapping images of each eye as input to the network, instead of a mean or individual images, as the

others mentioned before.

2.2.3 Fundus photography

Fundus photography technique provides a high-resolution, easily reproducible image of the retina that is

useful in disease documentation and clinical studies, illustrated in fig.2.9.

Unlike the previous diagnostic technique, the DR with retinal images has usually one image for each

Figure 2.9: Example of a fundus image from the retina of an unhealthy patient and possible issues that can be
detected in these type of images

eye, and the applications of DL in this field are for classification of DR or non-DR.The task given to the

algorithms, in this case, is finding the abnormalities represented by fig.2.9. In [51] the model proposed

was an ensemble model with five deep CNNs (Resnet50, Inceptionv3, Xception, Dense - 121 and Dense

169), to be able to detect the different stages of DR. This study also varied between different ways

of organizing the data set and different optimizers and overall obtained great results regarding both

accuracy and specificity, being 80.8% and 86.72% respectively (with imbalanced data that might have
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a classification bias). On the other hand, [52] focuses in the pre-processing, they proposed a method

that followed a extraction of statistical features (average, media, RMSE...), RGB converted to gray scale

image (followed by filtering and edge detection), statistical data introduced in a Feed Forward Neural

Network (FFNN), in a Deep Neural Network (DNN) and also in VGG16model CNN for further comparison

between the 3 approaches. The results of this study showed a better classification for the DNN in both

training and validation, since the accuracies were of 89.6% and 86.3%, respectively. Another study

( [53]) was based on the GoogLeNet deep learning model and also focused in pre-processing (contrast

limited adaptive histogram equalization), which in that case improved in 29.4% the sensitivity. And

also achieved 95% sensitivity and 96% specificity, in binary classification. Lastly, [54] developed a

deep learning algorithm based in deep residual learning which learned discriminating features for DR

detection. This reached 94% sensitivity, 98% specificity.
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3.1 Data

3.1.1 Corneal nerve plexus

3.1.1.A Description of data

The data set used consisted of 252 images of healthy subjects and 252 images of pathological(type I

and II diabetes) subjects, so a total of 84 subjects were included in this study, such as figures 3.1 and

3.2. The images covered a field of 400 ∗ 400µm2 (384 ∗ 384 pixels), acquired through Heidelberg Retina

Tomograph (HRT-II) with the Rostock Cornea Module (Heidelberg Engineering GmbH, Heidelberg, Ger-

many). Image acquisition was performed in different clinical centers and each image was anonymized

to eliminate patient information. They were obtained from the supervisor Fabio Scarpa from Univeristy

of Pádua.

(a) (b)

Figure 3.1: In vivo confocal images of the cornea of a healthy patient. (a) right eye. (b) left eye

(a) (b)

Figure 3.2: In vivo confocal images of the cornea of a unhealthy patient. (a) right eye. (b) left eye

3.1.1.B Pre-processing

Due to the curvature of the cornea, problems can arise from the peripheral area of the images such as

spatial distortion partial volume effect (some structures adjacent can appear in the images), illumination

drift and blurring. So, one of the first steps included in the algorithm while reading the images into the

CNN was to shorten the external area of the images by 10 pixels, followed by a resizing by a factor of

0.7. Being the input of the network an 256 ∗ 256 image.

As it was mentioned above, the data set consists of 3 non-overlapping images for each eye, so the

data was organized randomly in sets of three to prevent bias in the result, caused by the position of the

images. Other techniques used to augment the data were flipping horizontally the images and organizing

each set of three images in different configurations, so that each set of 3 images is represented in 3
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different ways. In this way, the data set in the end is constituted of 504 blocks of 3 images (3 blocks for

each one of the eyes of 84 subjects).

3.1.2 Retina

3.1.2.A Description of data

The data set used was of 506 images of healthy subjects and 506 images of pathological subjects (mild,

moderate, severe or proliferative DR), giving a total of 506 subjects included in this study. The images

covered a field of 2592 ∗ 3888 pixels, taken under a variety of imaging conditions, from an open-source

data base [55] (fig.3.3).

(a) (b) (c) (d)

Figure 3.3: Fundus photography images of the retina. (a) right eye of a healthy patient. (b) left eye of a healthy
patient. (c) right eye of an unhealthy patient. (d) left eye of an unhealthy patient.

3.1.2.B Pre-processing

The specific images are too large to fit in a DL model, which causes memory issues in the performance,

for that reason the data was subjected to pre-processing. Firstly the image was converted to a gray scale

image, then the edges were cut, in such a way that it included practically only the area of the retina and

no background (40 pixels vertically and 1400 pixels horizontally), and lastly it was resized to a 256 ∗ 256

to better fit the model.

Regarding the network itself, this type of data has only one image of each eye for one subject. So the

images from left and right eye were given as an input to the network. In the same way has the corneal

nerve plexus data, the retinal data was also randomly organized, and augmented by flipping the images

horizontally. This way each set of 2 images were represented in 2 different ways, and the whole data set

was 1012 blocks of 2 images (2 blocks for each one of the 506 subjects).

3.2 Proposed model

3.2.1 Multi-input CNN

The present study focused on a multi-input CNN approach, inspired on the paper [5]. This different type

of architecture was influenced by the cornea nerve plexus data, leveraging the fact that these data has
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3 images from different parts of the eye that are important to determine the presence of an abnormality.

The proposed method in this paper allows the pre-processing of each image before concatenating it

into the CNN. The network is represented by the fig.3.4, in the case of confocal images, the example

matched the number of inputs, for each one of the eyes of the corneal data, so we followed the three-

input CNN and then adapted the structure to different architectures of CNNs. (The code for each of

the networks is presented in appendix A.) On another note, it was also included in the more complex

architectures Batchnormalization and dropout to decrease overfitting; and the loss function chosen was

the binary cross-entropy since the classification was binary. The networks applied were a fusion between

the multi-input CNN either with the original network, or with other networks such as LeNet-5, Alex-net,

GoogLeNet and ResNet (described below), i.e. the code was an adaptation of the ones found on the

literature to the multi-input CNN and not originals. To test the final chosen algorithm in the fundus images

(retina), it was used a two-input network, one image of each of the eyes of the subject.

3.2.2 Architecture

The three-input CNN represented, in fig.3.4, is composed by 6 convolutional and pooling layers followed

by two fully connected layers and one activation layer, which in the case of the present study had a

sigmoid function. C1-C3 were convolutional layers with size of 7 ∗ 7 with 32 kernels, followed by S1 a

pooling layer of stride 2. From S1 the outputs are all concatenated and afterwards transformed by C4 of

size 3 ∗ 3 with 16 kernels, S2 pooling layer with stride 4, C5 and C6 convolutional layer with 32 kernels

and size 3 ∗ 3 and lastly by S3 and S4 pooling layers with stride 2. From the output of S4 the data is

flattened, and a dropout layer reduces the quantity of data to prevent overfitting. Then FC1 and FC2 are

applied, the first one with 32 neurons and the second with 3, and the result is obtained through a FC

with a sigmoid activation function and 1 neuron.
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Figure 3.4: Three-input CNN from the paper [5], with the dimensions of the corneal images applied.

This network was altered, as it was mentioned before, to adapt to other types of architectures. This

had as goal observing how complex algorithms would fit in the multi-input network and if this would

improve the final results.

3.2.2.A LeNet-5

LeNet-5, was proposed by Yann LeCun in 1998, it is a convolutional network that consists of two Convo-

lutional layers, two pooling layers of 2∗2 with stride 2, and three Fully connected layers. It is mainly used

for character recognition. [56] [7] To apply LeNet-5 to the base architecture a mix between the LeNet-5,

from [57] and the original three-input architecture was performed.

The C1-C3, from fig.3.4, was replaced by a convolutional layer of size 3*3 with 6 kernels and ReLu

as activation function and S1 was also replaced by averaging pooling with stride of 2. After the con-

catenation, a Convolutional layer with 16 kernels of size 3 ∗ 3 and ReLu as activation function is applied,

followed by another average pooling layer of stride 2. The network finished with a flatten layer, a FC with

120 neurons and ReLu has activation function, another FC with 84 neurons and ReLu has activation

function, and lastly an adapted FC with only one neuron and Sigmoid as activation function.
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3.2.2.B AlexNet

AlexNet was firstly presented in the ImageNet LSVRC-2010 contest, it consisted of five convolutional

layers interspersed with five pooling layers, followed by three connected layers. This new network was

faster than the one before and introduced non-saturating neurons, dropout layers and the use of a GPU,

which allowed a faster computation. [58]

Similarly to LeNet-5, with Alex-net it was applied the example from [59] with the adaptations needed

for the model proposed. The C1-C3, from fig.3.4, was replaced by a convolutional layer of size 11 ∗ 11

with 96 kernels and ReLu as activation function, followed by a BatchNomalization layer and a Maxpooling

layer with stride of 2 and pool size of 3. Then the three different outputs are concatenated and follow the

network, fig.3.5, from the C2 until fc8 where the activation function used was the sigmoid. This layer, fc8,

is important to obtain the final classification of each block of 3 images as it was in the previous network.

Figure 3.5: Typical AlexNet CNN [60]

3.2.2.C GoogLeNet

GoogLeNet was developed in the ImageNet contest of 2014, and is ilustrated in fig.3.6. Characterized

by having 1 ∗ 1 filter in convolutional layers with ReLu activation function, sparse matrices and more

layers than the previous network, without increasing significantly the consumption of memory, power or

number of trainable parameters [16] [61]

This is only possible due to the introduction of inception blocks, a more complex architecture. The in-

ception blocks have four branches that treat the input in four different ways using either convolutional lay-

ers or convolutional followed by pooling layers and afterwards concatenate all outputs from the branches.

So as it is illustrated, this network has a first convolutional layer with 63 kernels of size 7 ∗ 7 and stride

2 and ReLu activation function, followed by a max pooling layer with size 3 ∗ 3 and stride of 2. These

first two layers were applied in the base architecture in C1-C3 and S1, as convolution and polling layers,

respectively. After the first two layers applied into each of the three inputs, they are also concatenated

and continue on in the network. Two convolutional layers with 64 and 192 kernels of sizes 1 ∗ 1 and 3 ∗ 3,
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respectively, then a Maxpooling layer of size 3 ∗ 3 and stride 2 was applied. Then there is a sequence

of inception blocks with Maxpooling layers, and before the classification, after the last inception block

an Averagepooling layer (size 7 ∗ 7), a Dropout layer (0.4 rate), a flatten layer and lastly a FC with one

neuron and a Sigmoid activation function transform the output and the classifications are obtained.(All

the convolutional layers had ReLu as activation function.) [62]

Figure 3.6: Typical GoogLeNet CNN [63]

3.2.2.D ResNet

ResNet was a network developed in the ImageNet contest of 2015 by a team of researchers of Microsoft.

This network is more complex and dense than the previous ones with numerous hidden layers, that

preserve information by using an identity mapping weight function in which the input is equal to the

output and decreases the vanishing gradient issue. [61]

It has two principal blocks: the identity block and the convolutional block (represented in fig.3.7 and

fig.3.8). The full network that was used and adapted into the base architecture is also represented by

fig.3.9

Figure 3.7: Illustration of the identity block of ResNet architecture. [64]

To better shape the ResNet to the three-input network, the ZeroPadding was not applied and the first

four layers (Convolutional, BatchNormalization, Activation and MaxPooling) were applied individually to

each input. The concatenated result, i.e. the transformed input after being concatenated, was then

26



Figure 3.8: Illustration of the convolutional block of ResNet architecture. [64]

Figure 3.9: Resnet scheme, where Conv represents convolutional layers; BatchNorm are batchnormalization lay-
ers; ReLu are activation layers; MaxPool are pooling layers; Conv Block are convolutional blocks; ID
block are identity blocks; AVGpool are pooling layers; and FC are fully connected layers. [64]

applied to the rest of the network and the classification was obtained from a FC of one neuron with a

Sigmoid activation function applied, as well as the other examples of networks mentioned.
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4.1 Performed Tests and Evaluation metrics

To fulfill the goal of the dissertation, the corneal data was introduced as firstly to a single-input CNN

and afterwards to the multi-input CNNs, described in section 3. These architectures were applied with

different optimizers and learning rates:

• Adam with learning rates of 0.0001, 0.001 and 0.01

• RMSprop with learning rates of 0.0001, 0.001 and 0.01

• Mini-batch SGD with 0.9 momentum and learning rates of 0.0001, 0.001 and 0.01

Each test was performed only one time, and it was obtained the accuracy and loss of both training and

validation for the last epoch in each, as well as the graphics of training and validation accuracy and

of training and validation loss. (This evaluation method was called Train/validation split, for further

mentions.) Afterwards the model that showed the best performance, i.e. higher validation accuracy and

lower validation loss was submitted to Leave-one-out cross-validation; and the confusion matrix was

also obtained.

Leave-one-out cross-validation is a computational expensive method to perform, but commonly used

when there is a small data set. [65] All images are used for both training and validation, in an iterative

process that maximizes the number of data used for training (all but one) without losing information

on the generalization capability of the method, since validation data are not used for training. This

step was carried out only for the model combining the best architecture, optimizer and learning rate.

In the particular case of cornea the training and validation set were altered so that only one block of

three images, equivalent to the diagnostic of one eye, was validated at a time and the remaining were

included in the training set. This way all blocks of three images were subjected to validation individually

and the measures obtained were the mean value of the validation accuracy of the last epoch in each

training/validation set.

Confusion Matrix, on the other hand, was obtained by predicting the results, of the training set, with

the best model. This method gives a matrix, as the one represented in table 4.1, whereby comparing

the results predicted with the true labels it calculates the True Positives (TP), False Positives (FP), True

Negatives (TN) and False Negatives (FN). From which is possible to obtain metrics such as accuracy,

that provides the ratio between correct predictions and the total number of predictions (4.1); sensitivity,

also called true positive rate, which measures the ratio of true positive predictions (4.2); specificity,

or true negative rate, that determines the proportion of correct negatives compared with all predicted

negatives (4.3); and F1-score, it quantifies the precision of the classifier as well as its robustness (4.4).

All these metrics are given in values between 0 and 1, although accuracy, sensitivity and specificity can

be also represented has a percentage (%). [66] [67]
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accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

sensitivity =
TP

TP + FN
(4.2)

specificity =
TN

FP + TN
(4.3)

F1 − score = 2 ∗ 1
1

TP
TP+FP

+ 1
TP

TP+FN

(4.4)

Actual values
True False

Predicted True TP FP
values False FN TN

Table 4.1: Representation of the confusion matrix.

Overall the methods applied took between 30 minutes and 1 hour with the use of GPU from google

colab, apart from leave-one-out cross-validation which took 18 hours, with a 64Gb GPU from the server

in Universitá di Padova.

4.2 Single-input CNN

To better compare the results between the proposed model and a conventional single-input CNN, it

was performed the analysis of corneal images using the example network from [68]. This network

was constituted by four convolutional and pooling layers, followed by a dropout of 0.5 and three fully

connected layers. The data set was divided 70% for training and 30% for validation. The results are

represented by fig.4.1, where it is possible to see that the last epoch had values of 88.82% accuracy,

0.2515 loss in training and 90.62% accuracy, 0.2901 loss in validation, after 61 epochs.

4.3 Train/validation split

As it was already mentioned, this method was applied for cornea with all different combinations of

optimizers, learning rates and architectures. However, in retina images it was only applied for the best

architecture found for cornea, i.e., the combination with the best results was applied for retina in similar

conditions has it was for corneal images.
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(a) (b)

Figure 4.1: Analysis of accuracy and loss in the training and validation of a single-input CNN. [68]The accuracy in
(a) and loss in (b) values are marked in the y axis and the number of epochs in the x axis.

4.3.1 Corneal images

In this section, are presented results for all combinations of architectures, optimizers and respective

learning rates. The corneal data was divided into validation, with 24 samples (8 blocks of three images),

and training set, with the remaining 480 samples (160 blocks of three images); it was also included

EarlyStoping to monitor the validation loss with a ’patience’ of 60 epochs; the batch size was 60 for

training and 24 for validation, i.e. validation had only one batch; the steps per epoch were given by the

number of samples (training/validation) divided by the batch size; with 200 epochs and EarlyStoping,

described in the previous section, as callback.

4.3.1.A Multi-input network (original)

Figure B.1, B.2 and B.3, from appendix B and table 4.2 report the results useful to evaluate the network.

Overall the performance was better for higher learning rates, in all optimizers, and the best performance

was obtained by mini-batch SGD with 0.01 learning rate. This resulted in 100% accuracy, 1.940E-04

loss in training and, 91.67% accuracy and 0.1588 loss in validation, with 61 epochs.

Table 4.2: Values from the last epoch for each optimizer applied with the architecture of the network of the study [5]

Optimizers Learning rate Accuracy Loss Val Accuracy Val Loss Last epoch
0.0001 1.0000 2.500E-03 0.1250 5.2007 61

Adam 0.001 1.0000 2.930E-04 0.5000 4.5053 61
0.01 1.0000 2.970E-04 0.9167 0.6795 63

0.0001 1.0000 4.010E-05 0.5000 5.5376 61
RMSprop 0.001 1.0000 1.890E-05 0.2500 11.2973 61

0.01 1.0000 3.230E-04 0.7917 0.4937 73
0.0001 1.0000 3.710E-02 0.25 2.1963 61

SGD 0.001 1.0000 1.500E-03 0.5000 3.9969 61
0.01 1.0000 1.940E-04 0.9167 0.1588 61
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4.3.1.B LeNet-5

As for LeNet-5 figures B.4, B.5 and B.6, from appendix B and also by the table 4.3 present the results.

The model appears to have an unsatisfactory performance in validation accuracy, probably generated

by overfitting, although during training all models seem to perform really well. Concerning the learning

rate, the results were also inconclusive since it has a constant validation accuracy in Adam optimizer, an

increase with higher learning rate in RMSprop optimizer and in mini-batch SGD the best learning rate is

given by 0.001 and the other two have the same value.

Table 4.3: Values from the last epoch for each optimizer applied with the architecture of LeNet-5 CNN.

Optimizers Learning rate Accuracy Loss Val Accuracy Val Loss Last epoch
0.0001 1.0000 2.180E-04 0.5000 2.2408 61

Adam 0.001 1.0000 8.070E-06 0.5000 7.8549 63
0.01 1.0000 7.920E-07 0.5000 11.6819 61

0.0001 1.0000 1.360E-08 0.5000 3.6244 61
RMSprop 0.001 1.0000 3.820E-09 0.6250 0.7861 61

0.01 1.0000 1.380E-09 0.6250 4.3196 68
0.0001 1.0000 1.650E-02 0.3750 1.9172 61

SGD 0.001 1.0000 5.650E-04 0.6250 1.2333 61
0.01 1.0000 2.190E-05 0.3750 5.1471 61

4.3.1.C AlexNet

Figures B.7, B.8, B.9 (appendix B) and table 4.4 describe the AlexNet results. By looking at the table,

it is possible to notice that there is an increase in validation accuracy aligned with the increase of the

learning rate. Regarding the best result it can be observed by the figures and confirmed in the table

that the best one occurred in mini-batch SGD with 0.01 learning rate, with values of 100% accuracy,

3.000E-04 loss in training, and 87.50% accuracy, 1.2767 loss in validation, after 73 epochs.

Table 4.4: Values from the last epoch for each optimizer applied with the architecture of AlexNet CNN.

Optimizers Learning rate Accuracy Loss Val Accuracy Val Loss Last epoch
0.0001 1.0000 3.300E-03 0.5000 16.8937 61

Adam 0.001 0.9976 1.010E-01 0.7500 4.7785 66
0.01 0.9643 0.3482 0.7917 1.7941 86

0.0001 0.9833 0.0789 0.6250 8.2155 61
RMSprop 0.001 0.9524 0.4485 0.3333 11.1866 63

0.01 1.0000 3.42E-05 0.7083 67.0281 135
0.0001 0.9976 0.0198 0.5000 1.9899 61

SGD 0.001 1.0000 4.710E-04 0.6250 3.1305 61
0.01 1.0000 3.000E-04 0.8750 1.2767 73
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4.3.1.D GoogLeNet

In the case of GoogLeNet, the results are given by the figures B.10, B.11, B.12 (appendix B) and

table 4.5. The optimizer that had the best performance was Adam with 0.01 learning rate, this can be

noticed in the figures and also confirmed by the table, since it achieved 99.76% accuracy, 0.0080 loss

in training, and 100% accuracy, 0.0000 loss in validation, after 89 epochs. Regarding the learning rate,

it is observed that the validation accuracy increases with the increase of the learning rate.

Table 4.5: Values from the last epoch for each optimizer applied with the architecture of GoogLeNet CNN.

Optimizers Learning rate Accuracy Loss Val Accuracy Val Loss Last epoch
0.0001 1.0000 6.230E-05 0.5000 5.7099 61

Adam 0.001 1.0000 1.780E-05 0.7917 2.2100 61
0.01 0.9976 0.0080 1.0000 0.0000 89

0.0001 1.0000 2.510E-07 0.3750 2.2920 61
RMSprop 0.001 1.0000 3.440E-08 0.5000 1.8160 61

0.01 1.0000 4.620E-07 0.7083 1 129
0.0001 1.0000 2.3000E-03 0.5000 3.4957 61

SGD 0.001 1.0000 1.620E-04 0.6250 0.9412 61
0.01 1.0000 1.740E-09 0.7083 6.7843 86

4.3.1.E ResNet

Lastly, the performance of ResNet architecture is presented by the table 4.6 and figures B.13, B.14 and

B.15. The model that best performed was the 0.01 RMSprop, as the figures illustrate and the table

corroborates, since the values obtained were 100% accuracy, 3.030E-09 loss in training and 87.50%

accuracy, 0.8005 loss in validation after 156 epochs. Concerning the learning rate, in the case of ResNet

it is also not very consistent, since only in RMSprop the validation accuracy increases with the learning

rate and the other two optimizers have the lowest value of validation accuracy when the learning rate is

0.001.

Table 4.6: Values from the last epoch for each optimizer applied with the architecture of ResNet CNN.

Optimizers Learning rate Accuracy Loss Val Accuracy Val Loss Last epoch
0.0001 1.0000 8.470E-05 0.5000 2.0261 61

Adam 0.001 1.0000 3.670E-05 0.3750 1.5761 67
0.01 1.0000 2.800E-04 0.8333 0.3634 94

0.0001 1.0000 6.4600E-08 0.2500 6.4950 61
RMSprop 0.001 1.0000 3.8200E-08 0.8134 0.7083 70

0.01 1.0000 3.6931E-09 0.8750 0.8005 156
0.0001 1.0000 2.0000E-03 0.5000 0.7152 61

SGD 0.001 1.0000 1.9900E-04 0.2500 26.5744 61
0.01 1.0000 5.0000E-04 0.7500 6.9600 95

From these results, it can be said that the GoogLeNet architecture had the best performance, con-
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sidering accuracy and loss in validation. For this reason the next results were measured using this

architecture, as well as the Adam optimizer with learning rate 0.01.

4.3.2 Retina

For retina, it was tested the GoogLeNet algorithm with Adam 0.01, as mentioned, but it was added

ReduceLROnPlateau as callback, together with Earlystopping. ReduceLROnPlateau function monitors

a quantity, in this case ’val loss’, and if no improvement is observed for a ’patience’ number of epochs

(10), the learning rate is reduced. The data was divided into validation, with 200 samples, and training

set, with the remaining 812 samples. For this task the batch size was 28 for training and 20 for validation;

the steps per epoch were given by the number of samples (training/validation) divided by the batch size.

The results regarding retinal images are represented by fig.4.2.

(a) (b)

Figure 4.2: Analysis of loss and accuracy in the training and validation of the GoogLeNet architecture with Adam
optimizer of 0.01 learning rate. The accuracy in (a) and loss in (b) values are marked in the y axis and
the number of epochs in the x axis.

The results obtained in the last epoch were 87.30% accuracy, 0.3444 loss in training and 65.17%

accuracy, 1.2765 loss in validation; it was also noticed that after 98 epochs the learning rate had reduced

to 1.0000E-05. Although the mechanisms used were with the goal to minimize overfitting, it seems that

it is still present in the results.

4.4 Leave-one-out cross-validation

From the results in the subsection below, it was tested the GoogLeNet architecture with Adam (0.01

learning rate) in the Leave-one-out cross-validation. This method, as it was described before, took a

block of three images (one eye) in each iteration as validation, so it ran 168 times in the same conditions

as the train/validation split for GoogLeNet (Adam 0.01). The mean accuracy obtained, from all last

epochs, was 99.40%, which is the best one compared also with the literature ( [50] that achieved 96%).
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4.5 Confusion matrix

As it was mentioned before, for these measurements it was taken the GoogLeNet and the Adam op-

timizer. The models were trained and the training set, in both cases, was used to predict the results.

From the comparison between the predicted results and the original labels, the confusion matrix was

then obtained.

4.5.1 Cornea

To test these data, it was only used the Adam as optimizer, with 0.01 learning rate. The confusion matrix

is represented by table 4.7

Actual values
True False

Predicted True 69 7
values False 2 74

Table 4.7: Values of confusion matrix from GoogLeNet (with Adam 0.01 learning rate) optimizer.

From this table the values of accuracy, sensitivity, specificity and F1-score were respectively 94.08%,

97.18%, 91.35% and 0.9388. These results were quite satisfactory, it shows that the model is robust

and has high accuracy, as well as sensitivity and specificity. Besides, it also achieved better results than

the ones found in the literature, except for the [50] which achieved an accuracy of 96%.

4.5.2 Retina

For retina, it was used, also the model already trained in the section train/validation split, GoogLeNet

architecture with Adam optimizer (0.01 learning rate), and ReduceLROnPlateau and EarlyStopping as

callbacks. The confusion matrix obtained is illustrated in the table 4.8.

Actual values
True False

Predicted True 2 25
values False 3 150

Table 4.8: Confusion matrix of GoogLeNet network with Adam 0.01.

The results calculated from the table were: 84.44% accuracy, 40.00% sensitivity, 85.71% specificity

and 0.125 F1-score. Although accuracy and specificity were good, F1-score show’s that the model has

very little robustness and therefore the results are not reliable.
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5.1 Limitations

Although the results were satisfactory, there were limitations to the study. Overall, the limitations of

the study included a small data set for both diagnosis. In DPN the corneal image data set was small

in number and on the characteristics of the data itself, since it only covered small regions instead of

all cornea regions. The single-input trial with corneal data was not optimized for augmentation neither

for the best architecture found. The multi-input, on the other hand, had also some optimizing issues

that should be further worked on. The train/validation split metrics were not measured in the best way,

considering that it tests the model in such a way that a different training and validation set are picked in

each iteration, so the comparison between the different networks and optimizers has not the same initial

conditions (it is random). As for the confusion matrix, it had the same data set in the training and the

testing phase, which is not ideal, since the test set should introduce new data.

Specifically regarding DR besides the lack of data, this diagnosis was for the patient, i.e. the input

images were a retinal image of each eye (two inputs), instead of three images of the same eye has

it was for cornea. This difference in inputs as well as the use of the same network might also have

impacted the results regarding accuracy and the other metrics of the model. Another factor, might have

been the pre-processing. Since the images were of higher resolution, they were shrunk to fit in the

model and turned to grayscale images, which can cause a deterioration in the quality of the data.

5.2 Conclusion

Regarding the implementation of the different algorithms to the corneal images, it can be said that

GoogLeNet (with 0.01 learning rate Adam optimizer) was the one that best performed with a mean

accuracy of 99.40% which also is better than the previous studies, mentioned in chapter 2, and then the

single-input trial. It achieved in all three different evaluation methods a high accuracy, and also achieved

higher values in sensitivity, specificity and F1-score, which confirms that the method is robust. When

comparing these results with the ones from the literature, the multi-input network outperforms them in

all cases.

For retinal images, the proposed multi-input network has been tested for the first time on a small

data set and the literature results are better then the ones obtained for both accuracy, sensitivity and

specificity. This can be due to the fact that only one type of optimizer was tested, maybe a different op-

timizer, learning rate, or type of architecture (LeNet-5, AlexNet, ResNet) should be considered. Another

approach would be to have more samples in the training set or use better mechanisms to overcome

overfitting.

Considering all mentioned above and the goal of the thesis, it can be concluded that this dissertation

obtained good results regarding the application of multi-input networks to corneal images for DPN diag-
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nosis. Although there were some limitations, the results were higher than in the literature, however it is

still needed more research with much more data and more trials to confirm the robustness of the model.

In retina, although it was not the best performance, it can be further on explored with different CNN

architectures, more data or by including transfer learning, which will tackle the overfitting issue. The

proposed model shows that multi-input networks can be very helpful in differentiating between healthy

and pathological states, in diagnosis with more than one input or even in multi-modal diagnoses. It also

encourages the investigation on different types of data and diseases.
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A
Code of Project

In this section the Python code is provided for all types of architectures named in the project (example,

LeNet-5, AlexNet, GoogLeNet and ResNet).

Listing A.1: Multi-input architecture from paper [5]

1 #C1-C3 convolutional layers

2 def branch(input_image):

3

4 x = layers.Conv2D(filters=32, kernel_size= (7,7), strides =(1,1), activation

='relu')(input_image)

5 x = layers.BatchNormalization ()(x)

6 x = layers.MaxPooling2D((2,2))(x)

7

8 return x

9

10 # network
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11

12 input_image1 = Input(shape=input_shape)

13 input_image2 = Input(shape=input_shape)

14 input_image3 = Input(shape=input_shape)

15

16 first_branch = branch(input_image1)

17 second_branch = branch(input_image2)

18 third_branch = branch(input_image3)

19

20 merge = layers.Concatenate(axis=-1)([ first_branch ,second_branch ,third_branch

])

21 my_model = layers.Conv2D(filters=16, kernel_size= (3,3), strides =(1,1),

activation='relu')(merge)

22 my_model = layers.BatchNormalization ()(my_model)

23 my_model = layers.MaxPooling2D((2,2))(my_model)

24 my_model = layers.Conv2D(filters=32, kernel_size= (3,3), strides =(1,1),

activation='relu')(my_model)

25 my_model = layers.BatchNormalization ()(my_model)

26 my_model = layers.MaxPooling2D((2,2))(my_model)

27 my_model = layers.Conv2D(filters=32, kernel_size= (3,3), strides =(1,1),

activation='relu')(my_model)

28 my_model = layers.BatchNormalization ()(my_model)

29 my_model = layers.MaxPooling2D((2,2))(my_model)

30 my_model = layers.Flatten ()(my_model)

31 my_model = layers.Dropout(0.25)(my_model)

32 my_model = layers.Dense(units=32, activation='relu')(my_model)

33 output = layers.Dense(units=1, activation = 'sigmoid ')(my_model)

34 model = Model(inputs = [input_image1,input_image2,input_image3], outputs =

output)

Listing A.2: Multi-input with LeNet-5 architecture [57]

1 #C1-C3 convolutional layers

2 def branch(input_image):

3

4 x = layers.Conv2D(filters=6, kernel_size =(3, 3), activation='relu', )(

input_image)

5 x = layers.BatchNormalization ()(x)
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6 x = layers.AveragePooling2D()(x)

7

8 return x

9

10 # network

11

12 input_image1 = Input(shape=input_shape)

13 input_image2 = Input(shape=input_shape)

14 input_image3 = Input(shape=input_shape)

15

16 first_branch = branch(input_image1)

17 second_branch = branch(input_image2)

18 third_branch = branch(input_image3)

19

20 merge = layers.Concatenate(axis=-1)([ first_branch ,second_branch ,third_branch

])

21 my_model = layers.Conv2D(filters=16, kernel_size =(3, 3), activation='relu')(

merge)

22 my_model = layers.BatchNormalization ()(my_model)

23 my_model = layers.AveragePooling2D()(my_model)

24 my_model = layers.Flatten ()(my_model)

25 my_model = layers.Dense(units=120, activation='relu')(my_model)

26 my_model = layers.Dense(units=84, activation='relu')(my_model)

27 output = layers.Dense(units=1, activation = 'sigmoid ')(my_model)

28 model = Model(inputs = [input_image1,input_image2,input_image3], outputs =

output)

Listing A.3: Multi-input with AlexNet architecture [59]

1 #C1-C3 convolutional layers

2 def branch(input_image):

3

4 x = layers.Conv2D(filters=96, kernel_size =(11,11), strides =(4,4),

activation='relu')(input_image)

5 x = layers.BatchNormalization ()(x)

6 x = layers.MaxPool2D(pool_size =(3,3), strides =(2,2))(x)

7

8
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9 return x

10

11 # network

12

13 input_image1 = Input(shape=input_shape)

14 input_image2 = Input(shape=input_shape)

15 input_image3 = Input(shape=input_shape)

16

17 first_branch = branch(input_image1)

18 second_branch = branch(input_image2)

19 third_branch = branch(input_image3)

20

21 merge = layers.Concatenate(axis=-1)([ first_branch ,second_branch ,third_branch

])

22 my_model = layers.Conv2D(filters=256, kernel_size =(5,5), strides =(1,1),

activation='relu', padding="same")(merge)

23 my_model = layers.BatchNormalization ()(my_model)

24 my_model = layers.MaxPool2D(pool_size =(3,3), strides =(2,2))(my_model)

25 my_model = layers.Conv2D(filters=384, kernel_size =(3,3), strides =(1,1),

activation='relu', padding="same")(my_model)

26 my_model = layers.BatchNormalization ()(my_model)

27 my_model = layers.Conv2D(filters=384, kernel_size =(3,3), strides =(1,1),

activation='relu', padding="same")(my_model)

28 my_model = layers.BatchNormalization ()(my_model)

29 my_model = layers.Conv2D(filters=256, kernel_size =(3,3), strides =(1,1),

activation='relu', padding="same")(my_model)

30 my_model = layers.BatchNormalization ()(my_model)

31 my_model = layers.MaxPool2D(pool_size =(3,3), strides =(2,2))(my_model)

32 my_model = layers.Flatten ()(my_model)

33 my_model = layers.Dense(4096, activation='relu')(my_model)

34 my_model = layers.Dropout(0.5)(my_model)

35 my_model = layers.Dense(4096, activation='relu')(my_model)

36 my_model = layers.Dropout(0.5)(my_model)

37 output = layers.Dense(units=1, activation = 'sigmoid ')(my_model)

38

39 model = Model(inputs = [input_image1,input_image2,input_image3], outputs =

output)
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Listing A.4: Multi-input with GoogLeNet architecture [62]

1 #C1-C3 convolutional layers

2 def branch(input_image):

3

4 x = layers.Conv2D(64, 7, strides=2, padding='same', activation='relu')(

input_image)

5 x = layers.BatchNormalization ()(x)

6 x = layers.MaxPool2D(3, strides=2, padding='same')(x)

7 return x

8

9 # Googlenet

10

11 def googlenet(input , n_classes):

12

13 def inception_block(x, f):

14 t1 = layers.Conv2D(f[0], 1, activation='relu')(x)

15 t1 = layers.BatchNormalization ()(t1)

16

17 t2 = layers.Conv2D(f[1], 1, activation='relu')(x)

18 t2 = layers.BatchNormalization ()(t2)

19 t2 = layers.Conv2D(f[2], 3, padding='same', activation='relu')(t2)

20 t2 = layers.BatchNormalization ()(t2)

21

22 t3 = layers.Conv2D(f[3], 1, activation='relu')(x)

23 t3 = layers.BatchNormalization ()(t3)

24 t3 = layers.Conv2D(f[4], 5, padding='same', activation='relu')(t3)

25 t3 = layers.BatchNormalization ()(t3)

26

27 t4 = layers.MaxPool2D(3, 1, padding='same')(x)

28 t4 = layers.Conv2D(f[5], 1, activation='relu')(t4)

29 t4 = layers.BatchNormalization ()(t4)

30

31 output = layers.Concatenate ()([t1, t2, t3, t4])

32 return output

33

34

35 x = layers.Conv2D(64, 1, activation='relu')(input)

36 x = layers.BatchNormalization ()(x)
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37 x = layers.Conv2D(192, 3, padding='same', activation='relu')(x)

38 x = layers.BatchNormalization ()(x)

39 x = layers.MaxPool2D(3, strides=2)(x)

40

41 x = inception_block(x, [64, 96, 128, 16, 32, 32])

42 x = inception_block(x, [128, 128, 192, 32, 96, 64])

43 x = layers.MaxPool2D(3, strides=2, padding='same')(x)

44

45 x = inception_block(x, [192, 96, 208, 16, 48, 64])

46 x = inception_block(x, [160, 112, 224, 24, 64, 64])

47 x = inception_block(x, [128, 128, 256, 24, 64, 64])

48 x = inception_block(x, [112, 144, 288, 32, 64, 64])

49 x = inception_block(x, [256, 160, 320, 32, 128, 128])

50 x = layers.MaxPool2D(3, strides=2, padding='same')(x)

51

52 x = inception_block(x, [256, 160, 320, 32, 128, 128])

53 x = inception_block(x, [384, 192, 384, 48, 128, 128])

54

55 x = layers.AvgPool2D(3, strides=1)(x)

56 x = layers.Dropout(0.4)(x)

57

58 x = layers.Flatten ()(x)

59 output = layers.Dense(n_classes , activation='sigmoid ')(x)

60

61 return output

62

63 # network

64

65 input_image1 = Input(shape=input_shape)

66 input_image2 = Input(shape=input_shape)

67 input_image3 = Input(shape=input_shape)

68

69 first_branch = branch(input_image1)

70 second_branch = branch(input_image2)

71 third_branch = branch(input_image3)

72

73 merge = layers.Concatenate(axis=-1)([ first_branch ,second_branch ,third_branch

])
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74 output = googlenet(merge ,1)

75 model = Model(inputs = [input_image1,input_image2,input_image3], outputs =

output)

Listing A.5: Multi-input with ResNet architecture [64]

1 #C1-C3 convolutional layers

2 def branch(input_image):

3

4 x = layers.Conv2D(64, (7, 7), strides =(2, 2))(input_image)

5 x = layers.BatchNormalization(axis=3)(x)

6 x = layers.Activation('relu')(x)

7 x = layers.MaxPooling2D((3, 3), strides =(2, 2))(x)

8 return x

9

10 #Blocks of Resnet

11

12 def identity_block(X, f, filters , stage , block):

13

14 conv_name_base = 'res' + str(stage) + block + '_branch '

15 bn_name_base = 'bn' + str(stage) + block + '_branch '

16 F1, F2, F3 = filters

17

18 X_shortcut = X

19

20 X = layers.Conv2D(filters=F1, kernel_size =(1, 1), strides =(1, 1), padding

='valid ', kernel_initializer=glorot_uniform(seed=0))(X)

21 X = layers.BatchNormalization(axis=3)(X)

22 X = layers.Activation('relu')(X)

23

24 X = layers.Conv2D(filters=F2, kernel_size =(f, f), strides =(1, 1), padding

='same', kernel_initializer=glorot_uniform(seed=0))(X)

25 X = layers.BatchNormalization(axis=3)(X)

26 X = layers.Activation('relu')(X)

27

28 X = layers.Conv2D(filters=F3, kernel_size =(1, 1), strides =(1, 1), padding

='valid ', kernel_initializer=glorot_uniform(seed=0))(X)

29 X = layers.BatchNormalization(axis=3)(X)
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30

31 X = layers.Add()([X, X_shortcut ])# SKIP Connection

32 X = layers.Activation('relu')(X)

33

34 return X

35

36 def convolutional_block(X, f, filters , stage , block , s=2):

37

38 conv_name_base = 'res' + str(stage) + block + '_branch '

39 bn_name_base = 'bn' + str(stage) + block + '_branch '

40

41 F1, F2, F3 = filters

42

43 X_shortcut = X

44

45 X = layers.Conv2D(filters=F1, kernel_size =(1, 1), strides =(s, s), padding

='valid ', kernel_initializer=glorot_uniform(seed=0))(X)

46 X = layers.BatchNormalization(axis=3)(X)

47 X = layers.Activation('relu')(X)

48

49 X = layers.Conv2D(filters=F2, kernel_size =(f, f), strides =(1, 1), padding

='same', kernel_initializer=glorot_uniform(seed=0))(X)

50 X = layers.BatchNormalization(axis=3)(X)

51 X = layers.Activation('relu')(X)

52

53 X = layers.Conv2D(filters=F3, kernel_size =(1, 1), strides =(1, 1), padding

='valid ', kernel_initializer=glorot_uniform(seed=0))(X)

54 X = layers.BatchNormalization(axis=3)(X)

55

56 X_shortcut = layers.Conv2D(filters=F3, kernel_size =(1, 1), strides =(s, s)

, padding='valid ', kernel_initializer=glorot_uniform(seed=0))(

X_shortcut)

57 X_shortcut = layers.BatchNormalization(axis=3)(X_shortcut)

58

59 X = layers.Add()([X, X_shortcut ])

60 X = layers.Activation('relu')(X)

61

62 return X
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63

64 #Resnet

65

66 def ResNet50(input_shape ,input):

67

68 X=input

69

70 X = convolutional_block(X, f=3, filters =[64, 64, 256], stage=2, block='a'

, s=1)

71 X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')

72 X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')

73

74

75 X = convolutional_block(X, f=3, filters =[128, 128, 512], stage=3, block='

a', s=2)

76 X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')

77 X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')

78 X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')

79

80 X = convolutional_block(X, f=3, filters =[256, 256, 1024], stage=4, block=

'a', s=2)

81 X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')

82 X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')

83 X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')

84 X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')

85 X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')

86

87 X = X = convolutional_block(X, f=3, filters =[512, 512, 2048], stage=5,

block='a', s=2)

88 X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')

89 X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')

90

91 X = layers.AveragePooling2D(pool_size =(2, 2), padding='same')(X)

92 X = layers.Flatten ()(X)

93 X = layers.Dense(units=1, activation = 'sigmoid ')(X)

94 return X

95

96 # network
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97

98 input_image1 = Input(shape=input_shape)

99 input_image2 = Input(shape=input_shape)

100 input_image3 = Input(shape=input_shape)

101

102 first_branch = branch(input_image1)

103 second_branch = branch(input_image2)

104 third_branch = branch(input_image3)

105

106 merge = layers.Concatenate(axis=-1)([ first_branch ,second_branch ,third_branch

])

107 output = ResNet50((256,256,3),merge)

108 model = Model(inputs = [input_image1,input_image2,input_image3], outputs =

output)
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B
Graphical results

This chapter includes the graphical results for the trials of each optimizer in every architecture network

implemented.
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B.0.1 Proposed by the Multi-input study

Figure B.1: Analysis of losses and accuracy in the training and validation of the original architecture with Adam
optimizer. The image from the left represents Adam with 0.0001 learning rate, the middle image rep-
resents Adam with 0.001 learning rate and on the right Adam with 0.01 learning rate. The accuracy, in
the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of
epochs in the x axis.

Figure B.2: Analysis of losses and accuracy in the training and validation of the original architecture with RMSprop
optimizer. The image from the left represents RMSprop with 0.0001 learning rate, the middle image
represents RMSprop with 0.001 learning rate and on the right RMSprop with 0.01 learning rate. The
accuracy, in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the
number of epochs in the x axis.
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Figure B.3: Analysis of losses and accuracy in the training and validation of the original architecture with SGD opti-
mizer. The image from the left represents SGD with 0.0001 learning rate, the middle image represents
SGD with 0.001 learning rate and on the right SGD with 0.01 learning rate. The accuracy, in the top
graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of epochs
in the x axis.

B.0.2 LeNet-5

Figure B.4: Analysis of losses and accuracy in the training and validation of the LeNet-5 architecture with Adam
optimizer. The image from the left represents Adam with 0.0001 learning rate, the middle image rep-
resents Adam with 0.001 learning rate and on the right Adam with 0.01 learning rate. The accuracy, in
the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of
epochs in the x axis.
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Figure B.5: Analysis of losses and accuracy in the training and validation of the LeNet-5 architecture with RMSprop
optimizer. The image from the left represents RMSprop with 0.0001 learning rate, the middle image
represents RMSprop with 0.001 learning rate and on the right RMSprop with 0.01 learning rate. The
accuracy, in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the
number of epochs in the x axis.

Figure B.6: Analysis of losses and accuracy in the training and validation of the LeNet-5 architecture with SGD
optimizer. The image from the left represents SGD with 0.0001 learning rate, the middle image rep-
resents SGD with 0.001 learning rate and on the right SGD with 0.01 learning rate. The accuracy, in
the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of
epochs in the x axis.
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B.0.3 AlexNet

Figure B.7: Analysis of losses and accuracy in the training and validation of the AlexNet architecture with Adam
optimizer. The image from the left represents Adam with 0.0001 learning rate, the middle image rep-
resents Adam with 0.001 learning rate and on the right Adam with 0.01 learning rate. The accuracy, in
the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of
epochs in the x axis.

Figure B.8: Analysis of losses and accuracy in the training and validation of the AlexNet architecture with RMSprop
optimizer. The image from the left represents RMSprop with 0.0001 learning rate, the middle image
represents RMSprop with 0.001 learning rate and on the right RMSprop with 0.01 learning rate. The
accuracy, in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the
number of epochs in the x axis.
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Figure B.9: Analysis of losses and accuracy in the training and validation of the AlexNet architecture with SGD opti-
mizer. The image from the left represents SGD with 0.0001 learning rate, the middle image represents
SGD with 0.001 learning rate and on the right SGD with 0.01 learning rate. The accuracy, in the top
graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of epochs
in the x axis.

B.0.4 GoogLeNet

Figure B.10: Analysis of losses and accuracy in the training and validation of the GoogLeNet architecture with
Adam optimizer. The image from the left represents Adam with 0.0001 learning rate, the middle
image represents Adam with 0.001 learning rate and on the right Adam with 0.01 learning rate. The
accuracy, in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and
the number of epochs in the x axis.
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Figure B.11: Analysis of losses and accuracy in the training and validation of the GoogLeNet architecture with
RMSprop optimizer. The image from the left represents RMSprop with 0.0001 learning rate, the
middle image represents RMSprop with 0.001 learning rate and on the right RMSprop with 0.01
learning rate. The accuracy, in the top graphics, and loss, in the bottom graphics, values are marked
in the y axis and the number of epochs in the x axis.

Figure B.12: Analysis of losses and accuracy in the training and validation of the GoogLeNet architecture with
SGD optimizer. The image from the left represents SGD with 0.0001 learning rate, the middle image
represents SGD with 0.001 learning rate and on the right SGD with 0.01 learning rate. The accuracy,
in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number
of epochs in the x axis.
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B.0.5 ResNet

Figure B.13: Analysis of losses and accuracy in the training and validation of the ResNet architecture with Adam
optimizer. The image from the left represents Adam with 0.0001 learning rate, the middle image
represents Adam with 0.001 learning rate and on the right Adam with 0.01 learning rate. The accuracy,
in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number
of epochs in the x axis.

Figure B.14: Analysis of losses and accuracy in the training and validation of the ResNet architecture with RMSprop
optimizer. The image from the left represents RMSprop with 0.0001 learning rate, the middle image
represents RMSprop with 0.001 learning rate and on the right RMSprop with 0.01 learning rate. The
accuracy, in the top graphics, and loss, in the bottom graphics, values are marked in the y axis and
the number of epochs in the x axis.
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Figure B.15: Analysis of losses and accuracy in the training and validation of the ResNet architecture with SGD
optimizer. The image from the left represents SGD with 0.0001 learning rate, the middle image rep-
resents SGD with 0.001 learning rate and on the right SGD with 0.01 learning rate. The accuracy, in
the top graphics, and loss, in the bottom graphics, values are marked in the y axis and the number of
epochs in the x axis.
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