USING MULTI-INPUT DEEP LEARNING NETWORKS IN MEDICAL IMAGES FOR THE
AUTOMATIC DETECTION OF PATHOLOGICAL STATES

Beatriz De Oliveira Noronha Filipe
beatriz.n.filipe @tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal
Outobro 2021

ABSTRACT

One of the most common ways to detect a pathological state,
through diagnosis, is by using medical images such as in
vivo confocal microscopy, fundus photography, etc. These
diagnoses are demanding, since it is needed a specialized
health professional and there has been an increase of data
regarding this type of diagnoses, making it too hard to man-
age. This increase in data availability associated with the
increase in computational power has instigated the appli-
cation of AI algorithms in this area. This study tested the
hypotheses of multi-input deep learning networks for both
images of cornea and retina, to distinguish between healthy
and pathological states in diabetic neuropathy and diabetic
retinopathy, respectively. It was proposed a multi-input archi-
tecture with different networks, such as LeNet-5, AlexNet,
GoogLeNet and ResNet, and different optimizers (mini-batch
SGD, RMSprop, Adam) with different learning rates (0.01,
0.001, 0.0001). All these variations were only applied in
corneal images, and the one that showed a better performance
was selected to be tested in retinal images. From the corneal
images trials, it was concluded that the combination that best
performed was GooglLeNet with Adam optimizer of 0.01
learning rate, since it achieved an accuracy of 99.40% in
leave-one-out cross-validation. In retinal images, this archi-
tecture achieved a satisfactory accuracy of 84.44%, although
the F1-score of 0.125 showed that the model is not reliable.
Nevertheless, this study demonstrates the capability of the
proposed multi-input network in the classification of healthy
and pathological state, and encourages the investigation with
more images and other diseases.

Index Terms— Convolutional neural networks, Deep
Learning, Diabetic Neuropathy, Diabetic Retinopathy

1. INTRODUCTION

1.1. Deep learning

Since the decade of 1950 that the idea of simulating human
reasoning with computers has been developed by computer
scientists, the so-called Artificial intelligence or AI. However,

this vision was in stand by, until the end of the century, due
to lack of data and computational power. More recently, with
an increase in data availability and improvements in computer
hardware, this field started developing algorithms such as Ma-
chine Learning (ML) and Deep Learning (DL).[[1]

Convolutional Neural Networks (CNNs), is one of the
most used deep learning architectures it was inspired in the
cat’s visual cortex, an idea developed by Hubel and Wiesel.
The cat’s visual cortex divides the visual field into specific
regions that are processed by different cells and react to dif-
ferent external stimulation in those regions.[2]] Some cells
only react to vertical orientation of the objects (edges), others
only to horizontal orientation, others to movement and then
further on the information obtained is merged and processed
by a layered architecture.[3] For this reason it is the most
adequate for pattern recognition in images, as it obtains the
detected features for every position in the images, and after
the updating of the weights in each fragment of the image
these are averaged and applied to all sets of weights.[4]]

1.2. Diabetic neuropathy and retinopathy

Diabetic neuropathy (DN) and retinopathy (DR) are serious
and common complications of type 1 and type 2 diabetes.
DN is a type of nerve damage caused by long-term high
blood sugar levels and loss of neurotrophic support given
by insulin.[5] Early symptoms are numbness, pain, or weak-
ness in hands or feet. Many studies associate this disease to
morphological changes in peripheral nerve fibers, also men-
tioned as diabetic peripheral neuropathy (DPN), like corneal
nerve fibers.[6] [7] [8] To diagnose DPN the most common
technique used is in vivo confocal microscopy, that provides
three non-overlaping images of each eye of the patient that
constitute a mosaic.

DR, on the other hand, is one of the leading causes of visual
deterioration and blindness in young adults and adults.[9]
This condition is characterized by higher permeability in the
vessels, growth of new vessels and connective tissue on the
surface of the retina and into the vitreous. In most cases, in
the early stages, it is asymptomatic, so there is or should be
a normal clinical check up of patients with diabetes regard-

ing the neural retinal damage and microvascular changes, to
better prevent and treat the disease as early as possible. The
diagnosis of DR is normally based on functional changes
such as electroretinography (ERG), retinal blood flow and
retinal blood vessel caliber, but for early stages imaging tech-
niques are used such as fundus photography[10]. Unlike the
previous diagnostic technique, the DR with retinal images
has usually one image for each eye that are both used to see
if the patient has DR or not.

Both diagnoses require a clinical professional of the area,
that are few for the demand since the number of cases has
been increasing in the last years. For this reason there has
been a wave of applications of different deep learning algo-
rithms, mainly CNNs, to automate the detection of DR and

DPN.[11]]

1.3. Proposed approach

The present study focuses on a multi-input CNN approach,
inspired by the paper[[12]. This different type of architecture
was influenced by the cornea nerve plexus data, leveraging the
fact that these data has 3 images from different parts of the eye
that are important to determine the presence of an abnormal-
ity. This multi-input CNN architecture was adapted to other
networks such as LeNet-5, AlexNet, GoogLeNet and ResNet,
with different optimizers (mini-batch SGD, Adam and RM-
Sprop) and learning rates (0.01, 0.001 and 0.0001). The goal
was to analyze how these architectures would perform in the
data and in which way it is influenced.

2. METHODS

2.1. Data
2.1.1. Cornea

The data set used consisted of 252 images of healthy subjects
and 252 images of pathological(type I and II diabetes) sub-
jects, so a total of 84 subjects were included in this study, has
the ones illustrated in fig[l} The images covered a field of
400 * 4004m? (384 * 384 pixels), acquired trough Heidelberg
Retina Tomograph (HRT-II) with the Rostock Cornea Mod-
ule (Heidelberg Engineering GmbH, Heidelberg, Germany).
Image acquisition was performed in different clinical centers
and each image was anonymized to eliminate patient informa-
tion. They were obtained from the supervisor Fabio Scarpa
from Univeristy of Pddua.

Pre-processing Due to the curvature of the cornea, prob-
lems can arise from the peripheral area of the images such as
spatial distortion partial volume effect (some structures adja-
cent can appear in the images), illumination drift and blurring.
So one of the first steps included in the algorithm while read-
ing the images into the CNN was to shorten the external area
of the images by 10 pixels, followed by a resizing by a factor
of 0.7. Being the input of the network an 256 * 256 image.

Fig. 1: In vivo confocal images of the cornea of a healthy
patient. (a) right eye. (b) left eye

As it was mentioned above, the data set consists of 3 non-
overlapping images for each eye, so the data was organized
randomly in sets of three to prevent bias in the result, caused
by the position of the images. Other techniques used to aug-
ment the data were flipping horizontally the images and orga-
nizing each set of three images in different configurations, so
that each set of 3 images is represented in 3 different ways. In
this way, the data set in the end is constituted of 504 blocks of
3 images (3 blocks for each one of the eyes of 84 subjects).

2.1.2. Retina

The data set used was of 506 images of healthy subjects and
506 images of pathological subjects (mild, moderate, severe
or proliferative DR), giving a total of 506 subjects included in
this study. The images covered a field of 2592 * 3888 pixels,
taken under a variety of imaging conditions, from an open-

source data [13] (fig[2).

(a) (b)

Fig. 2: Fundus photography images of the retina of a healthy
patient. (a) right eye. (b) left eye.

Pre-processing

The specific images are too large to fit in a deep learning
model, which causes memory issues in the performance, for
that reason the data was subjected to pre-processing. Firstly
the image was converted to a gray scale image, then the edges
were cut, in such a way that it included practically only the
area of the retina and no background (40 pixels vertically and
1400 pixels horizontally), and lastly it was resized to a 256

256 to better fit the model.

Regarding the network itself, this type of data has only
one image of each eye for one subject. So the images from
left and right eye were given as an input to the network. In the
same way has the corneal nerve plexus data, the data was also
randomly organized, and augmented by flipping the images
horizontally. This way each set of 2 images were represented
in 2 different ways, and the whole data set was 1012 blocks
of 2 images (2 blocks for each one of the 506 subjects).

2.2. Deep learning model

The multi-input CNN represented, in fig[3] is composed by 6
convolutional and pooling layers followed by two fully con-
nected layers and one activation layer, which in the case of the
present study had a sigmoid function. C1-C3 were convolu-
tional layers with size of 77 with 32 kernels, followed by S1
a pooling layer of stride 2. From S1 the outputs are all con-
catenated and afterwards transformed by C4 of size 3 * 3 with
16 kernels, S2 pooling layer with stride 4, C5 and C6 convolu-
tional layer with 32 kernels and size 3 * 3 and lastly by and S4
pooling layers with stride 2. From the output of S4 the data is
flattened and a dropout layer reduces the quantity of data, to
prevent overfitting. Then FC1 and FC2 are applied, the first
one with 32 neurons and the second with 3, and the result is
obtained through a FC with a sigmoid activation function and
1 neuron.

Fig. 3: Three-input CNN from the paper [12]

This model was afterwards adapted to other networks
such as: LeNet-5 [14], AlexNet [15]], GoogLeNet [16] and
ResNet [17]. This adjustment between architectures was
done by changing C1-C3 and S1 layers (from the original
architecture) to the first convolutional and pooling layers of
the other architectures; the rest of the network was applied
after the merge of the input layers, after C1-C3 and S1. This
adjustment was done for every architecture separately, where
it was also tested different optimizers such as mini-batch
Stochastic gradient descent (SGD), root-mean-square propa-
gation (RMSprop) and adaptive moment estimation (Adam);
for 0.01, 0.001 and 0.0001 learning rates.

2.3. Tests and Evaluation metrics

To evaluate all different models the data set was divided into
train and validations sets, which is mentioned in the study as
train/validation split, and the values of accuracy and loss in
validation for the last epoch were used to measure the per-
formance, for both single and multi-input CNNs. From the
higher validation accuracy and lower validation loss it was
afterwards performed leave-one-out cross-validation and also
extracted the confusion matrix.

In Leave-one-out cross-validation the training and val-
idation set were altered so that only one block of three im-
ages, equivalent to the diagnostic of one eye, was validated
at a time and the remaining were included in the training set.
This way, all blocks of three images were subjected to val-
idation individually. The measures obtained were the mean
value of the validation accuracy of the last epoch in each
training/validation set trial, and the percentage of validation
accuracies different from 1.0.

Confusion Matrix, on the other hand, was obtained by
predicting the results, of the training set, with the model cho-
sen has best. This method gives a matrix, as the one rep-
resented in table [T] whereby comparing the results predicted
with the true labels it calculates the true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN).
From which is possible to obtain metrics such as accuracy,
that provides the ratio between correct predictions and the to-
tal number of predictions; sensitivity, also called true posi-
tive rate, which measures the ratio of true positive predictions;
specificity, or true negative rate, that determines the propor-
tion of correct negatives compared with all predicted nega-
tives; and F1-score, it quantifies the precision of the classifier
as well as its robustness. All this metrics are given in values
between 0 and 1, although accuracy, sensitivity and specificity
can be also represented has a percentage (%). [18][19]

Actual values

True | False
Predicted | True TP FP
values False | FN TN

Table 1: Representation of the confusion matrix, where TP
means true positive, FP means false positive, FN means false
negative and TN means true negative.

3. RESULTS

In this section the metrics obtained are presented and an-
alyzed for all three different methods chosen. Overall the
methods applied took between 30 minutes and 1 hour with
the use of GPU from google colab, apart from leave-one-out
cross-validation which took 18 hours, with 64Gb GPU from
the server in Universitd di Padova.

3.1. Single-input CNN

To better compare the results between the proposed model
and a conventional single-input CNN, it was performed the
analysis of corneal images using the example network from
[20]. This network was constituted by four convolutional and
pooling layers, followed by a dropout of 0.5 and three fully
connected layers. The results are represented by figld] where
it is possible to see that the last epoch had values of 88.82%
accuracy, 0.2515 loss in training and 90.62% accuracy, 0.2901
loss in validation, after 61 epochs.

Training and validation accuracy

10

09 1

0.8

07 1

0.6 1

0.5 1
- ® Taining acc

= Validation acc

04 T T T T T T T

0 10 20 30 40 50 60
(a)
Training and validation loss

0.7 1

0.6

0.5 1

0.4 4

031 e Taining loss -
— Validation loss e %
r : - T T - -
o 10 20 30 40 50 60

(b)

Fig. 4: Analysis of accuracy and loss in the training and val-
idation of a single-input CNN.[20]The accuracy in (a) and
loss in (b) values are marked in the y axis and the number of
epochs in the x axis.

3.2. Train/validation split
3.2.1. Cornea

In this section, are presented results for all combinations of
architectures, optimizers and respective learning rates. For
these tests the batch_size was 60 for training and 24 for vali-
dation, i.e. validation had only one batch; the steps_per_epoch
were given by the number of samples (training/validation) di-
vided by the batch_size; with 200 epochs and EarlyStoping,
described in the previous section, as callback.
Multi-input network (original)

To evaluate this network the results are presented by
the table 2] Overall the performance was better for higher
learning rates, in all optimizers, and the best performance
was obtained by mini-batch SGD with 0.01 learning rate.
This resulted in 100% accuracy, 1.940E-04 loss in training
and, 91.67% accuracy and 0.1588 loss in validation, with 61
epochs.

Table 2: Values from the last epoch for each optimizer ap-
plied with the architecture of the network of the study [12]]

Optimizers Lr Val Val Last
Accuracy Loss epoch

0.0001 | 0.1250 5.2007 61
Adam 0.001 0.5000 4.5053 61
0.01 0.9167 0.6795 63
0.0001 | 0.5000 5.5376 61
RMSprop | 0.001 0.2500 11.2973 61
0.01 0.7917 0.4937 73
0.0001 0.25 2.1963 61
SGD 0.001 0.5000 3.9969 61
0.01 0.9167 0.1588 61

LeNet-5 As for LeNet-5 the table [3] presents the results.
The model appears to have an unsatisfactory performance
in validation accuracy, probably generated by overfitting,
although during training all models seem to perform really
well. Concerning the learning rate, the results were also
inconclusive since it has a constant validation accuracy in
Adam optimizer, an increase with higher learning rate in RM-
Sprop optimizer and in mini-batch SGD the best learning rate
is given by 0.001 and the other two have the same value.

Table 3: Values from the last epoch for each optimizer ap-
plied with the architecture of LeNet-5 CNN.

Optimizers Lr Val Val Last
Accuracy Loss epoch

0.0001 0.5000 2.2408 61
Adam 0.001 0.5000 7.8549 63
0.01 0.5000 11.6819 61
0.0001 0.5000 3.6244 61
RMSprop | 0.001 0.6250 0.7861 61
0.01 0.6250 4.3196 68
0.0001 0.3750 1.9172 61
SGD 0.001 0.6250 1.2333 61
0.01 0.3750 5.1471 61

AlexNet The table [4] describes the AlexNet results. By
looking at the table, it is possible to notice that there is an
increase in validation accuracy aligned with the increase of
the learning rate. Regarding the best result it can be observed

by the figures and confirmed in the table that the best one oc-
curred in mini-batch SGD with 0.01 learning rate, with values
of 100% accuracy, 3.000E-04 loss in training, and 87.50% ac-
curacy, 1.2767 loss in validation, after 73 epochs.

Table 4: Values from the last epoch for each optimizer ap-
plied with the architecture of AlexNet CNN.

Optimizers Lr Val Val Last
Accuracy Loss epoch
0.0001 0.5000 16.8937 61
Adam 0.001 0.7500 4.7785 66
0.01 0.7917 1.7941 86
0.0001 0.6250 8.2155 61
RMSprop | 0.001 0.3333 11.1866 63
0.01 0.7083 | 67.0281 135
0.0001 0.5000 1.9899 61
SGD 0.001 0.6250 3.1305 61
0.01 0.8750 1.2767 73
GooglLeNet

In the case of GoogleNet, the results are given by the ta-
ble[5] The optimizer that had the best performance was Adam
with 0.01 learning rate, this can be noticed in the figures and
also confirmed by the table, since it achieved 99.76% accu-
racy, 0.0080 loss in training, and 100% accuracy, 0.0000 loss
in validation, after 89 epochs. Regarding the learning rate,
it is observed that the validation accuracy increases with the
increase of the learning rate.

Table 5: Values from the last epoch for each optimizer ap-
plied with the architecture of GooglL.eNet CNN.

Optimizers Lr Val Val Last
Accuracy | Loss | epoch

0.0001 0.5000 | 5.7099 61

Adam 0.001 0.7917 | 2.2100 61

0.01 1.0000 | 0.0000 89

0.0001 0.3750 | 2.2920 61

RMSprop | 0.001 0.5000 1.8160 61
0.01 0.7083 1 129

0.0001 0.5000 | 3.4957 61

SGD 0.001 0.6250 | 0.9412 61

0.01 0.7083 6.7843 86

ResNet

Lastly, the performance of ResNet architecture is pre-
sented by the table [f] The model that best performed was
the 0.01 RMSprop, as the figures illustrate and the table cor-
roborates, since the values obtained were 100% accuracy,
3.030E-09 loss in training and 87.50% accuracy, 0.8005 loss
in validation after 156 epochs. Concerning the learning rate,

in the case of ResNet it is also not very consistent, since only
in RMSprop the validation accuracy increases with the learn-
ing rate and the other two optimizers have the lowest value of
validation accuracy when the learning rate is 0.001.

Table 6: Values from the last epoch for each optimizer ap-
plied with the architecture of ResNet CNN.

Optimizers Lr Val Val Last
Accuracy Loss epoch
0.0001 0.5000 2.0261 61
Adam 0.001 0.3750 1.5761 67
0.01 0.8333 0.3634 94
0.0001 0.2500 6.4950 61
RMSprop | 0.001 0.8134 0.7083 70
0.01 0.8750 0.8005 156
0.0001 0.5000 0.7152 61
SGD 0.001 0.2500 | 26.5744 61
0.01 0.7500 6.9600 95

From these results, it can be said that the GoogLeNet
architecture had the best performance, considering accuracy
and loss in validation. For this reason the next results were
measured using this architecture, as well as the Adam opti-
mizer with learning rate 0.01 (fig[5).

Training and validation accuracy

® Taining acc
— Validation acc

0 20 40 60 80

1e10 Training and validation loss

25 ® Taining loss
—— Validation loss

0 20 40 60 80

Fig. 5: Analysis of losses and accuracy in the training and val-
idation of the GoogLeNet architecture with Adam 0.01 learn-
ing rate optimizer. The accuracy, in the top graphics, and loss,
in the bottom graphics, values are marked in the y axis and the
number of epochs in the x axis.

3.2.2. Retina

For retina, it was tested the GoogLeNet algorithm with Adam
0.01, as mentioned, but it was added ReduceLROnPlateau as

callback, together with Earlystopping. ReduceLROnPlateau
function monitors a quantity, in this case ’val_loss’, and if no
improvement is observed for a ’patience’ number of epochs
(10), the learning rate is reduced. For this task the batch_size
was 28 for training and 20 for validation; the steps_per_epoch
were given by the number of samples (training/validation) di-
vided by the batch_size; with 200 epochs. The results regard-
ing retinal images are represented by fig[d]

Training and validation accuracy
09 WA T, 'h-
o F) o‘#
081 JWAe ’m;” .

07

06

05

04

® Taining acc

03 = Validation acc

(a) 0 20 40 60 80 100
1e10 Training and validation loss
6 ® Taining loss
=—— Validation loss

5

4

3

2

1

0

0 20 40 60 80 100

(b)

Fig. 6: Analysis of loss and accuracy in the training and val-
idation of the GoogLeNet architecture with Adam optimizer
of 0.01 learning rate. The accuracy in (a) and loss in (b) val-
ues in the y axis and the number of epochs in the x axis.

The results obtained in the last epoch were 87.30% ac-
curacy, 0.3444 loss in training and 65.17% accuracy, 1.2765
loss in validation; it was also noticed that after 98 epochs
the learning rate had reduced to 1.0000E-05. Although the
mechanisms used were with the goal to minimize overfitting,
it seems that it is still present in the results.

3.3. Leave-one-out cross-validation

From the results in the subsection below, it was tested the
GoogLeNet architecture with Adam (0.01 learning rate) in
the Leave-one-out cross-validation. This method, as it was
described before, took a block of three images (one eye) in
each iteration as validation, so it ran 168 times in the same
conditions as the train/validation split for GoogLeNet (Adam
0.01). The mean accuracy obtained, from all last epochs, was
99.40%, which is the best one compared also with the litera-
ture.

3.4. Confusion matrix

As it was mentioned before, for these measurements it was
taken the GoogleNet and the Adam optimizer. The models
were trained and the training set, in both cases, was used to
predict the results. From the comparison between the pre-
dicted results and the original labels, the confusion matrix was
then obtained.

3.4.1. Cornea

To test these data, it was only used the Adam as optimizer,
with 0.01 learning rate. The confusion matrix is represented
by table

Actual values

True | False
Predicted | True 69 7
values False 2 74

Table 7: Values of confusion matrix from GooglLeNet (with
Adam 0.01 learning rate) optimizer.

From this table the values of accuracy, sensitivity, speci-
ficity and Fl-score were respectively 94.08%, 97.18%,
91.35% and 0.9388. These results were quite satisfactory,
it shows that the model is robust and has high accuracy, as
well as sensitivity and specificity.

3.4.2. Retina

For retina, it was used, also the model already trained in
the section train/validation split, GoogLeNet architecture
with Adam optimizer (0.01 learning rate), and ReducelL-
ROnPlateau and EarlyStopping as callbacks. The confusion
matrix obtained is illustrated in the table

Actual values

True | False
Predicted | True 2 25
values False 3 150

Table 8: Confusion matrix of GoogLeNet network with
Adam 0.01.

The results calculated from the table were: 84.44% ac-
curacy, 40.00% sensitivity, 85.71% specificity and 0.125 F1-
score. Although accuracy and specificity were good, F1-score
show’s that the model has very little robustness and therefore
the results are not reliable.

4. LIMITATIONS

Although the results were satisfactory, there were limitations
to the study. Overall, the limitations of the study included

a small data set for both diagnosis. In DPN the corneal im-
age data set was small in number and on the characteristics
of the data itself, since it only covered small regions instead
of all cornea regions. The single-input trial with corneal data
was not optimized for augmentation neither for the best ar-
chitecture found. The multi-input, on the other hand, had also
some optimizing issues that should be further worked on. The
train/validation split metrics were not measured in the best
way, considering that it tests the model in such a way that a
different training and validation set are picked in each itera-
tion, so the comparison between the different networks and
optimizers has not the same initial conditions (it is random).
As for the confusion matrix, it had the same data set in the
training and the testing phase, which is not ideal, since the
test set should introduce new data.

Specifically regarding DR besides the lack of data, this diag-
nosis was for the patient, i.e. the input images were a retinal
image of each eye (two inputs), instead of three images of the
same eye has it was for cornea. This difference in inputs as
well as the use of the same network might also have impacted
the results regarding accuracy and the other metrics of the
model. Another factor, might have been the pre-processing.
Since the images were of higher resolution, they were shrunk
to fit in the model and turned to grayscale images, which can
cause a deterioration in the quality of the data.

5. CONCLUSION

Regarding the implementation of the different algorithms to
the corneal images, it can be said that GoogLeNet (with 0.01
learning rate Adam optimizer) was the one that best per-
formed with a mean accuracy of 99.40% which also is better
then the single-input trial. It achieved in all three different
evaluation methods a high accuracy, and also achieved higher
values in sensitivity, specificity and F1-score, which confirms
that the method is robust. When comparing these results
with the ones from the literature, the multi-input network
outperforms them in all cases.

For retinal images, the proposed multi-input network has
been tested for the first time on a small data set and the lit-
erature results are better then the ones obtained for both ac-
curacy, sensitivity and specificity. This can be due to the fact
that only one type of optimizer was tested, maybe a differ-
ent optimizer, learning rate, or type of architecture (LeNet-5,
AlexNet, ResNet) should be considered. Another approach
would be to have more samples in the training set or use bet-
ter mechanisms to overcome overfitting.

Considering all mentioned above and the goal of the the-
sis, it can be concluded that this dissertation obtained good
results regarding the application of multi-input networks to
corneal images for DPN diagnosis. Although there were some
limitations, the results were higher than in the literature, how-
ever it is still needed more research with much more data and
more trials to confirm the robustness of the model. In retina,

although it was not the best performance, it can be further
on explored with different CNN architectures, more data or
by including transfer learning, which will tackle the overfit-
ting issue. The proposed model shows that multi-input net-
works can be very helpful in differentiating between healthy
and pathological states, in diagnosis with more than one in-
put or even in multi-modal diagnoses. It also encourages the
investigation on different types of data and diseases.

6. REFERENCES

[1] Charu C Aggarwal et al., “Neural networks and deep
learning,” Springer, vol. 10, pp. 978-3, 2018.

[2] Manjunath Jogin, MS Madhulika, GD Divya,
RK Meghana, S Apoorva, et al., “Feature extrac-
tion using convolution neural networks (cnn) and deep
learning,” in 2018 3rd IEEE international conference
on recent trends in electronics, information & com-
munication technology (RTEICT). IEEE, 2018, pp.
2319-2323.

[3] Nicola Strisciuglio and Nicolai Petkov, “Brain-inspired
algorithms for processing of visual data,” pp. 105-115,
2019.

[4] Geoffrey Hinton, “Deep learning—a technology with
the potential to transform health care,” Jama, vol. 320,
no. 11, pp. 1101-1102, 2018.

[5] James L Edwards, Andrea M Vincent, Hsinlin T Cheng,
and Eva L Feldman, “Diabetic neuropathy: mechanisms
to management,” Pharmacology & therapeutics, vol.
120, no. 1, pp. 1-34, 2008.

[6] Gérard Said, “Diabetic neuropathy—a review,” Nature
clinical practice Neurology, vol. 3, no. 6, pp. 331-340,
2007.

[7]1 V Bansal, J Kalita, and UK Misra, “Diabetic neuropa-
thy,” Postgraduate medical journal, vol. 82, no. 964, pp.
95-100, 2006.

[8] Shanshan Wei, Fagiang Shi, Yuexin Wang, Yilin Chou,
and Xuemin Li, “A deep learning model for automated
sub-basal corneal nerve segmentation and evaluation us-
ing in vivo confocal microscopy,” Translational Vision
Science & Technology, vol. 9, no. 2, pp. 32-32, 2020.

[9] Tien Yin Wong and Neil M Bressler, “Artificial intel-
ligence with deep learning technology looks into dia-
betic retinopathy screening,” Jama, vol. 316, no. 22, pp.
2366-2367, 2016.

[10] Nikos Tsiknakis, Dimitris Theodoropoulos, Georgios
Manikis, Emmanouil Ktistakis, Ourania Boutsora,
Alexa Berto, Fabio Scarpa, Alberto Scarpa, Dimitrios 1.

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

Fotiadis, and Kostas Marias, “Deep learning for diabetic
retinopathy detection and classification based on fundus
images: A review,” Computers in Biology and Medicine,
vol. 135, pp. 104599, 2021.

Michael David Abramoff, Yiyue Lou, Ali Erginay, War-
ren Clarida, Ryan Amelon, James C Folk, and Meindert
Niemeijer, “Improved automated detection of diabetic
retinopathy on a publicly available dataset through inte-
gration of deep learning,” Investigative ophthalmology
& visual science, vol. 57, no. 13, pp. 5200-5206, 2016.

Yu Sun, Lin Zhu, Guan Wang, and Fang Zhao, “Multi-
input convolutional neural network for flower grading,”
J. Electr. Comput. Eng., vol. 2017, pp. 9240407:1—
9240407:8, 2017.

“Diabetic retinopathy detection,” https://www.kaggle.
com/c/diabetic-retinopathy-detection/data, Accessed:
2021-08-30.

Mostafa Gazar, “Lenet-5 in 9 lines of code
using keras,” https://medium.com/@mgazar/
lenet-5-1n-9-lines- of-code-using-keras-ac99294c8086,
Accessed: 2021-08-1.

Richmond Alake, “Googlenet,”
https://towardsdatascience.com/
implementing-alexnet-cnn-architecture-
using-tensorflow-2-0-and-keras-2113e090ad98, Ac-
cessed: 2021-08-1.

“Code for plotting the keras model graph,”
https://github.com/Machine- Learning- Tokyo/
DL-workshop-series/blob/master/Part%201%20- %
20Convolution%200perations/ConvNets.ipynb, Ac-
cessed: 2021-08-1.

Sachin Mohan, “Keras implementation of
resnet-50 (residual networks) architecture from
scratch,” https://machinelearningknowledge.ai/

keras-implementation-of-resnet-50-architecture-from
-scratch/, Accessed: 2021-08-1.

Mohit Khanna, “Classification problem: Rela-
tion between sensitivity, specificity and accuracy,’
https://www.analyticsvidhya.com/blog/2021/06/
classification-problem-relation-between-sensitivity-speci
ficity-and-accuracy/, Accessed: 2021-09-30.

Aditya Mishra, “Metrics to evaluate your machine
learning algorithm,” |https://towardsdatascience.com/
metrics-to-evaluate- your-machine-learning-algorithm-{
10ba6e38234, Accessed: 2021-09-30.

Francois Chollet, Deep learning with Python, Simon
and Schuster, 2021.

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://medium.com/@mgazar/lenet-5-in-9-lines-of-code-using-keras-ac99294c8086
https://medium.com/@mgazar/lenet-5-in-9-lines-of-code-using-keras-ac99294c8086
https://towardsdatascience.com/implementing-alexnet-cnn-architecture-
https://towardsdatascience.com/implementing-alexnet-cnn-architecture-
using-tensorflow-2-0-and-keras-2113e090ad98
https://github.com/Machine-Learning-Tokyo/DL-workshop-series/blob/master/Part%20I%20-%20Convolution%20Operations/ConvNets.ipynb
https://github.com/Machine-Learning-Tokyo/DL-workshop-series/blob/master/Part%20I%20-%20Convolution%20Operations/ConvNets.ipynb
https://github.com/Machine-Learning-Tokyo/DL-workshop-series/blob/master/Part%20I%20-%20Convolution%20Operations/ConvNets.ipynb
https://machinelearningknowledge.ai/keras-implementation-of-resnet-50-architecture-from
https://machinelearningknowledge.ai/keras-implementation-of-resnet-50-architecture-from
-scratch/
https://www.analyticsvidhya.com/blog/2021/06/classification-problem-relation-between-sensitivity-speci
https://www.analyticsvidhya.com/blog/2021/06/classification-problem-relation-between-sensitivity-speci
ficity-and-accuracy/
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f
10ba6e38234

	 Introduction
	 Deep learning
	 Diabetic neuropathy and retinopathy
	 Proposed approach

	 Methods
	 Data
	 Cornea
	 Retina

	 Deep learning model
	 Tests and Evaluation metrics

	 Results
	 Single-input CNN
	 Train/validation split
	 Cornea
	 Retina

	 Leave-one-out cross-validation
	 Confusion matrix
	 Cornea
	 Retina

	 Limitations
	 Conclusion
	 References

