
Proof of Timely-Retrievability for
Storage Systems at the Edge

(extended abstract of the MSc dissertation)

Rita Alexandra Rodrigues Prates
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professor Luís Rodrigues and Professor Miguel Correia

Abstract
Edge computing is a model that places servers close to the
edge of the network, in order to assist applications that run
in resource-constrained devices. Edge servers may be used to
store files such that clients can access data with low-latency.
Because the capacity of edge nodes is limited, providers of
edge storage may be tempted to oversell their capacity and
to hide this behavior by fetching, on-demand, data from the
cloud instead of serving it with the required low latency. In
this thesis, we study techniques that have been proposed in the
literature that can help in detecting this type of misbehavior
and design and implement a new proof of storage to detect this
rational behavior. Our Proof of Timely-Retrievability (PoTR)
aims to assess whether a storage node at the edge is able
to retrieve a data object with a latency smaller than some
specified threshold 𝛿 . We leverage the availability of Trusted
Execution Environments (TEE), more precisely Intel SGX, to
ensure that the proof is produced by the fog node being au-
dited, and to reduce the communication between the auditor
and the audited node. Our proof is issued in response to a
challenge: we describe how a challenge may be designed and
configured, so that a proof of timely-retrievability is obtained.
We have evaluated our design experimentally, and we show
that the auditor is able to distinguish a fog node that respects
the target limit on data access latency 𝛿 from a fog node that
does not.

1 Introduction
Today, there are many scenarios where an end-user, or an or-
ganization stores data in machines run by third-parties, either
to ensure durability and availability, or to provide others with
low latency when accessing the data. Relevant examples in-
clude cloud storage (such as Dropbox, iClould, Google Drive,
and many others), peer-to-peer storage (including the storage
services used for decentralized applications [4]), content dis-
tribution networks (for instance, Akamai), and, more recently,
edge storage [21]. Edge computing is a distributed model that
places servers with computing resources physically close to
end-users so that applications that require low latency process-
ing and storage resources can be executed. Moreover, servers
can only provide low-latency to these applications if they are
able to access stored data within a constrained delay.

A user, when using a storage service, has some expectations
regarding the quality of service to be provided, and agreed
with the storage third-party. Some of those expectations in-
clude the guarantee that the third-party will not discard or
corrupt the stored data, that the data is stored in distinct ma-
chines, in specific geographic locations, and that data clients
are served with some bounded delay. Unfortunately, a ratio-
nal [6, 11, 14] third-party may opt to avoid complying with
the agreement, if it can gain some benefit and pass unnoticed.
For instance, the third-party can keep the data in fewer lo-
cations than agreed with the customer, assuming that it can
be impossible for the customer to audit how many replicas
are used, or where these replicas are located. This behavior
motivated the development of auditing techniques, able to
extract proofs of storage, i.e., evidences that the third-party is
complying with (or violating) the defined quality of service.

In this thesis, we address the problem of deriving audit
techniques tailored for edge-storage scenarios, in particular,
that are able to verify that data is placed by an edge-storage
provider in locations that are able to guarantee that data is
served with low-latency to end-users. We propose a new proof
of storage: a Proof of Timely-Retrievability (PoTR) that lever-
ages the existence of Trusted Execution Environments (TEE),
more precisely Intel SGX, to ensure that the challenge is exe-
cuted by fog node being audited [15], and not by some other
fog node, and to avoid revealing the data to be accessed dur-
ing an audit, prematurely. In this thesis, we equally provide
an extensive experimental evaluation to assess the accuracy
of the produced proof.

2 Background and Related Work
2.1 Data Storage on Third-parties
There are several scenarios where a user may opt to store data
on machines controlled by a third-party. The main three sce-
narios are peer-to-peer (P2P) storage, cloud storage, and edge
storage. Using third-parties for data storage can bring sev-
eral advantages, including reduced cost (it may be more cost
efficient to run a large shared storage service than multiple
small storage devices), fault tolerance (by keeping multiple
copies of the data, possibly in different geographical loca-
tions), and reduced latency when accessing the data (copies
may be placed in locations near to the users). However, it also

1

brings challenges, given that the third-party may not comply
with the service requirements agreed.

2.1.1 Edge Storage. One of the main motivation for edge
storage is the ability to serve data clients with low-latency.
Applications for image processing of faces, or object recog-
nition [9, 20], and just-in-time video indexing [19] require a
response time below 5–30 milliseconds [18], something that
cannot be guaranteed with cloud storage alone. Edge storage
consist on placing computing and storage resources close to
end-users to avoid long network delays. Thus, edge storage is
able to meet the low latency of these new applications. Edge
servers, also known as fog nodes, or cloudlets complement
edge storage services. Nevertheless, these servers are resource
constrained, and are not able to keep a copy of all objects
maintained in the cloud [13]. Instead, they will typically keep
copies of items that are primarily stored in the cloud. More-
over, due to their limited storage capacity, providers of edge
storage may be tempted to oversell their storage and hide this
behavior by fetching, on-demand, data from the cloud or from
other servers, instead of serving it from local storage. At the
same time, due to servers geographic distribution, they are
more vulnerable to attacks by malicious players than cloud
storage datacenters [7].

2.1.2 Addressing Rational Behavior. A significant differ-
ence between privately-owned storage and third-party storage
is that, with the later, it may be difficult for the user to assess
if the desired fault-tolerant and data placement policies are, in
fact, deployed by the storage provider [6, 8, 11, 14]. Specially,
edge storage providers may have incentives to keep copies
of data item in just a fraction of their fog nodes, to augment
the capacity they can sell to their customers, at the cost of
providing increased latency to data users. One way to avoid,
and detect this rational behavior consists in deriving auditing
mechanisms that can assess if the third-party storage service
keeps the desired number of data copies in the desired loca-
tions. When the auditing detects a misbehavior, this can be
used to penalize the provider. For example, in a P2P system,
a faulty node may be prevented from further using services
provided by other nodes [10], cloud or edge storage providers
may be forced to compensate clients for violations of the de-
fined contract, generically known as Service Level Agreement
(SLA).

2.2 Auditing Third-Party Storage Services
When a storage provider is subject to an audit, it has to pro-
vide a proof that it is applying the data replication and data
placement policies specified in the SLA. Such proof is gener-
ically called a proof of storage [5]. Moreover, as an SLA may
cover different aspects of storage implementation, such as the
target number of replicas, the location of those replicas, or the
latency observed by users when accessing data, it is possible
to define different proofs of storage.

2.2.1 Proofs of Storage. The literature is rich in techniques
that allow to obtain different proofs of storage, that assess
different properties of the provided service. The most relevant

ones are Proofs of Data Possession (PDP) [3] and Proofs of
Retrievability [2] that aim to check if the storage provider
keeps at least some copies of the stored data; Proofs of Repli-
cation [5, 14] that assess if the storage provider has 𝑛 copies
of a data item (even though they might all be placed in the
same machine); and Proofs of Geographic Replication [6, 11]
that test if the storage provider keeps 𝑛 data copies in distinct
machines, in distinct geographic locations. Each one of these
proofs is issued as a response to a challenge [14], that is sent
to the storage provider by one, or more auditing entities. Typ-
ically, a challenge requires the storage provider to execute a
set of reading operations over a subset of the stored data, and
return on-time a value that proofs the access of the correct
data items. This return value, may be an cryptographic hash
of the retreived data items.

2.2.2 Structure of a Challenge. A simple way to verify
if a storage provider keeps a given data item would be to
request that item, and check the item integrity. Although this
method could, in fact, offer a PoRet, this method has several
limitations.

In first place, this approach is very expensive, as it requires
the auditor to consume a large amount of bandwidth to ob-
tain the proof. Therefore, to save bandwidth most challenges
require the storage provider to read a subset of the stored
data items, and compute a cryptographic hash of them. Typ-
ically, the response has to be issued within a pre-defined
deadline, determine by the auditor [5, 6, 8, 14]. Furthermore,
when sending the challenge, the list of data items to be access
should not be revealed entirely. Instead, the list should be
interactively revealed, i.e., the next data item to be accessed,
it is just known after accessing the previous one [14]. This
interactivity prevents the storage provider to download the
missing data items on-demand. If the storage provider cannot
guess in advance the data items to be accessed, it has to keep
all data items within the constraint access time, to build a
correct and timely proof.

In second place, the single request for data items is unable
to verify some of the service requirements. For instance, it
cannot assess if the storage provider keeps just one, or several
replicas of the data items. Therefore, some auditors may force
the storage provider to keep multiple copies of the same file,
each one encoded with a distinct key [5], unknown to the
storage provider. In practice, each replica has to be treated as
a distinct file, that has to be stored by the provider. Unfortu-
nately, this mechanism, does not avoid a provider to keep all
replicas in the same machine, which may compromise repli-
cas availability in case of failure. To ensure replicas are kept
in distinct machines, the challenge may be designed in such a
way that it is impossible to respond on-time if all replicas are
kept in the same machine, although it may be feasible if the
proof is built in parallel [14].

The above mechanism are not enough to guarantee that
the entity producing the proof is, effectively, in a given ge-
ographic location. Two techniques have been proposed to
overcome this limitation. The first one consists on using the
response delay to predict the audited node location, once it

2

may be difficult for the storage provider to issue a timely proof
if data is kept in a distant geographic location, due to the extra
network latency to access the data. The usage of a set of audi-
tors, in different locations, may increase the accuracy of this
mechanism by resorting to triangulation mechanisms [6, 11].
The second approach consists on resorting to a TEE to en-
sure that operations essential to the proof construction are
executed in a given machine [8]. At the same time, this se-
cure environments may be used to interactively reveal the
challenge.

2.3 Trusted Execution Environments
A Trusted Execution Environment (TEE) is an isolated envi-
ronment that can offer stronger security properties for code
and data, such as integrity, and confidentiality [15]. A proces-
sor with a TEE has two execution modes: the normal mode,
where the operating system, and applications run, and the
secure mode, that ensures the integrity and confidentiality of
data and code inside the secure mode, even in the presence of
an untrusted operating system.

There are a set of different TEE technologies. In this work,
we resort to Intel SGX technology, as it is the TEE technology
available in Intel systems, and we use Intel machines in our
experimental setup.

Figure 1. Intel SGX components and execution mode switch-
ing calls.

Intel SGX splits the computing environment in two parts:
the trusted parts, a set of TEEs or enclaves, and the untrusted
part. Applications in secure mode run inside the enclave,
while applications in normal mode run in the untrusted part.
Furthermore, as the processor core can only execute one
environment at a time, the exchange of environments happens
through hardware calls, more precisely ECalls and OCalls.
Figure 1 provides an overview of Intel SGX components, and
the executed calls for execution mode exchange.

Apart from code, and data security, Intel SGX provides
security guarantees about the machine identification. In other
words, any external machine that communicates with the
enclave has guarantees that is communicating with a real
enclave, through the attestation process [7, 15].

3 Proof of Timely-Retrievability
In this work, we introduce a Proof of Timely-Retrievability
(PoTR) as a proof of storage that aims to asses whether a stor-
age node can retrieve stored data with a latency smaller than
some specific threshold 𝛿 . The value of the 𝛿 parameter can
be selected by the auditor based on the specific requirements
of a given application, but it is typically small and, in some
cases, can only be satisfied if the audited node keeps the data
locally. For instance, many edge services and applications

require response times below 5–30 milliseconds [18], thus,
a fog node that stores data to serve these applications needs
to be able to retrieve data with a latency in the order of the
milliseconds.

Our PoTR is obtained as a response to an audit, therefore,
it is require to deploy a machine with auditing capabilities,
i.e., with the ability to, based on a set of measurements, con-
clude whether the edge storage provider complies with the
expect SLA. However, as fog nodes are in a large number,
and geographically distributed [16], our proof is designed in
such a way that it can be extracted by any node in the internet,
regardless of its location. This property offers a lot of flexi-
bility regarding the deployment of the auditor, and allows for
a single auditor to perform audits on a large number of fog
nodes.

We could have opted to design a PoTR requiring the au-
ditor to be placed near the audited node. For instance, if the
auditor is placed in the same network of the data clients, it can
observe directly the actual latency experience by the clients.
Unfortunately, this method would be expensive to audit a
system with a large number of fog nodes, as it requires to
move the auditor, or to deploy a large number of auditors.
We could also ask clients to report the latency they observe
and use this information to perform the audit. However, this
approach raises many challenges as client privacy needs to be
preserved. If a PoTR can be extracted independently of the
auditor location, we avoid these limitations.

3.1 Obstacles
In the design of our PoTR, we face some obstacles, namely:
i) timing information provided by the audited node cannot
be trusted [1], thus, the time to produce the proof must be
measured by the auditor; ii) the network between the auditor,
and the audited node is subject to variance, that may introduce
an error when estimating the time the audited node took to
produce the proof; iii) fog nodes are heterogeneous [16], and
the time they require to perform computations and read data
(even if the data is local) is not constant, therefore, the proof
should be based on average values from multiple readings;
and iv) the audited node may attempt to delegate the genera-
tion of the proof to another node, that has faster access to the
data than the audited node itself, so it is require to ensure the
proof is produced by the audited node, and not delegated.

3.2 Assumptions
The protocol to extract a PoTR is executed between two nodes,
an auditor and an audited fog node. We make the following
assumptions regarding these two nodes, and the network that
connects them: i) the auditor knows exactly which files, and
their content, are assigned to a fog node, and files are im-
mutable 1; ii) a fog node is considered correct if it can retrieve
the files assigned to it with a latency smaller than some given
threshold 𝛿 . Any fog node that cannot satisfy this requirement
is denoted to be faulty. The value of 𝛿 is application specific,

1Mutable files can be supported by creating new versions of a given file,
where each version is immutable.

3

but can be small and, in some cases, can only be satisfied if
data is stored in a storage device directly connected to the
fog node; iii) the auditor is aware of the latency distribution
observed by a correct node, when accessing data items, and
when performing the computations to build the proof; iv) the
auditor is able to obtain a characterization of the network
connecting it to the fog node, and has access to the latency
distribution of the messages exchanged between them (this
can be achieved through multiple requests, before an audit).

We also assume that each fog node has a processor with
Intel SGX, as we leverage on the guarantees provided by a
TEE, and that the auditor has guarantees that is communicat-
ing with the expected enclave [7, 15], due to the attestation
process. We assume that the integrity and confidentiality of
the data and code inside the enclave are guaranteed [7].

We assume that the enclave in the fog node is unable to
read an accurate and reliable system clock [1], as i) the system
clock is vulnerable to manipulations; ii) the operation to read
trusted times, like the one provided by TPM (Trusted Platform
Module) has a huge overhead; and iii) the node untrusted part
may delay time-messages, to fetch on-demand remote data
blocks, and escape detection. Thus, it is impractical to use the
enclave for time measures. Nevertheless, the enclave provide
us with security guarantees that the proof is effectively built
at the audited node [15].

Finally, we assume that is not economically feasible for the
edge storage provider to reallocate all objects in less than 𝛿 at
the beginning of the audit, from a remote storage location that
cannot satisfy the 𝛿 threshold on access latency to a nearby
storage location that can satisfy 𝛿 , i.e. the cost to reallocate
all objects every time there is an audit would exceed the costs
of maintaining data objects in a location with a access time
within 𝛿 .

3.3 System Architecture
Our PoTR is computed by a fog node to prove that it can
access data with a latency that is smaller than a given agreed
threshold 𝛿 . Thus, the system architecture includes an audi-
tor, a set of fog nodes, and a set of remote storage systems,
connected to the fog nodes. Simultaneously, multiple and het-
erogeneous clients are connected to the fog nodes, that may
satisfy the clients requests.

In addition, each fog node has an Intel SGX processor, with
an enclave, and an untrusted part. The enclave is trustworthy
to the auditor and, therefore, it is the fog node component that
communicates with the auditor. The enclave is trustworthy to
the auditor, as it authenticates towards the auditor during the
attestation process. Hence, the auditor has guarantees that the
code running inside the enclave is the expected one, and that
this code is protected from the remaining operating system [7].
The untrusted part is not trustworthy to the auditor, and is
responsible to keep files in local storage, and communicate
with remote nodes, if necessary.

3.3.1 Fog Node Storage Organization. The edge storage
provider is responsible for storing the files at the fog layer.
Therefore, to fulfill the SLA, the provider must ensure that

files are stored in such a way that they can be retrieve by
the fog node with a latency smaller than 𝛿 , the access time
threshold.

In each fog node with Intel SGX, local documents are
kept at the untrusted part, as the enclave storage capability is
limited. Thus, if the processor is running inside the enclave,
there must be an exchange between execution environments to
read a data item (from enclave to untrusted part). Even if the
data item is remotely, there is also an exchange of execution
environments, as the untrusted part is the one responsible to
communicate with remote machines [7].

The set of files that needs to be stored by a fog node and
that, therefore, can be subject to the auditing procedure, is
common knowledge to both the auditor and the audited node.
Both parties have a copy of the set of files sorted in a deter-
ministic manner. Thus, both parties can use the index of a file
in the sorted list as a mutually agreed short unique identifier
for that file. We denote this index as the set index. Note that
this organization is only possible if the auditor and the audited
node agree on the set of files. The mechanisms required to ne-
gotiate which set of files can be subject to audit is orthogonal
to the contributions of this work.

3.4 Design of the Challenge
The challenge requires the fog node untrusted part to access
a given number of data objects, with a given sequence and
return, at the end, a value related to the retrieved data objects.
The delay the fog node takes to read the expected data blocks,
and to compute the final value, is used by the auditor to
estimate the reading delay 𝛿 observed at the audited node.

Each challenge (implicitly) specifies a sequence of files
that needs to be accessed by the audited node, and each file is
uniquely identified by a set index. For a matter of efficiency,
the fog node for each file reads a data block with size 𝑠𝑏 ,2
instead of the whole file.

In each challenge 𝑐, the fog node has to read a pseudo-
random and unpredictable sequence of 𝑁 data blocks (each
with size 𝑠𝑏), and return a cryptographic hash of the concatena-
tion of all accessed data blocks. The number 𝑁 of data blocks
is a configuration parameter, that influences the challenge
accuracy and efficiency: higher the value 𝑁 , more accurate,
but less efficient, will be the proof.

The pseudo-random sequence of data blocks is determined
by a nonce 𝜂𝑐 (unique per challenge, and generated by the
auditor), and the data blocks content. For each challenge, the
auditor sends the nonce, encrypted with a symmetric key),
the number 𝑁 of data blocks, and the size 𝑠𝑏 of a block to the
enclave. To ensure the nonce 𝜂𝑐 is unknown to the untrusted
part, the enclave computes its cryptographic hash. With the
result hash, the untrusted part is able to determine the set index
of the first file to be accessed. The set index is determine by
applying a module function to the hash with the total size of
the set of files.

Simultaneously, as the fog node has to read a data block
with size 𝑠𝑏 , and not the whole file, the auditor sends, to the

2Usually, a multiple of the block size used by the fog node file system.
4

enclave, a second nonce 𝜂𝑐
𝑏

that will determine a data block
inside the file, with the computed set index. The enclave, in
turn, computes the cryptography hash of this second nonce,
and forwards the result to the untrusted part. Both nonces
are hashed by the enclave, to ensure the untrusted part does
not know them in plain text. Otherwise, the untrusted part
could maliciously pre-determine the 𝑁 data blocks. Now, with
the hashed 𝜂𝑐

𝑏
, and the total size of the file to be accessed,

the untrusted part can determine the data block, with size 𝑠𝑏 ,
inside the file to be retrieved, by applying a module function.

After reading the first data block, the untrusted part com-
putes the cryptographic hash of its content, together with the
file set index, and returns the result to the enclave. The en-
clave, in turn, computes a new hash with the response and
the nonce 𝜂𝑐 , and forwards the result to the untrusted part,
as this new result will identify the next file. Only this new
hash, enclave dependent, will determine the next file set index.
To increase the data blocks index randomness, the enclave
computes a second hash, with the hash of the retrieved data
block.

With the new hashes, the untrusted part repeats the module
functions to obtain the next set index, and the data block index
(inside the identified file), reads the data block, and computes
its cryptographic hash with the file set index, returning to the
enclave. The enclave will compute two new hashes and so
on, until the 𝑁 data blocks are read. At the end, the enclave
computes a final hash with 𝜂𝑐 , and sends the result back to
the auditor, as the final proof. The auditor, after receiving
the final hash, repeats all the above computations, to build
a verifiable version, to check the proof correctness. If both
computations match, the issued proof is correct.

Security Guarantees. Each challenge requires two unique
nonces and the sequence of 𝑁 data blocks is pseudo-randomly
chosen. This ensures the fog node is unable to retrieve the 𝑁
data blocks in parallel from neighbor nodes. Simultaneously,
with the dependency between data blocks, as the next block
index depends on the content of the previous one, the fog
node can not reuse outputs from previous challenges. Finally,
the constant exchange between execution environments (from
enclave to untrusted part and vice versa) ensures the fog node
can not resort to a remote machine (at the cloud or in the
edge) to compute the whole proof. The proof is effectively
computed at the expected machine [15]. Note that with verifi-
cation of proof correctness, the auditor assesses the storage
documents integrity. Any modified accessed data file will
result in an incorrect proof.

3.5 Estimating the Reading Delay 𝛿 at the Audited
Node

Apart from checking the proof correctness, the auditor tests
the proof timeliness. The auditor, when sending a challenge
to the enclave, starts a timer that is stop when the proof is
received. A proof is valid if it is correct and the reading delay
estimate, for a single data block, is acceptable to the auditor.

Being 𝑇𝑖 the time elapsed between the auditor sending the
challenge 𝑖 and receiving the response from the fog node, 𝑇𝑖
may be decomposed in different factors, namely:

𝑇𝑖 = rtt𝑖 + 𝛼1𝑖 + . . . + 𝛼𝑁𝑖 + 𝛿1𝑖 + . . . + 𝛿𝑁𝑖 (1)
where rtt𝑖 is the network round-trip time for the challenge-
response messages, 𝑁 the number of data blocks to be ac-
cessed, 𝛼 𝑗

𝑖
the delay observed at the fog node to compute the

cryptographic hash of a given data block 𝑗 and compute the
index of the next block and 𝛿 𝑗

𝑖
the delay observed to read a

data block 𝑗 . Note that for sufficiently large values of 𝑁 , we
will have:

𝛼1𝑖 + . . . + 𝛼𝑁𝑖
𝑁

= 𝛼𝑖 ≈ 𝛼
𝛿1𝑖 + . . . + 𝛿𝑁𝑖

𝑁
= 𝛿𝑖 ≈ 𝛿 (2)

However, the auditor is unable to measure accurate values
for rtt𝑖 , 𝛼𝑖 and 𝛿𝑖 , once they are different and variable at each
challenge 𝑖 and, at the same time, the auditor is only able to
measure the total delay 𝑇𝑖 . Therefore, to estimate 𝛿 , i.e., the
actual mean delay a fog node takes to read a data object, in
our work, we resort to mean values:

𝛿estimate =
𝑇 𝑖 − rtt − 𝑁𝛼

𝑁
(3)

Thus, the estimate error, for a given challenge 𝑖, will depend
on how distant the observed values are to the mean values.
Experimentally, we verified that the 𝛼 values are subject to a
negligibly small variance, whereby we assumed 𝛼𝑖 = 𝛼 , i.e,
we discard the error introduced by 𝛼 sampling. Hence, the
error estimating 𝛿estimate depends on two factors: i) the reading
error 𝜀𝛿 when estimating 𝛿 (that depends on the sample size,
i.e., the number of accessed data blocks) and ii) the variance
between the observed network round-trip time (𝑟𝑡𝑡𝑖) and the
expected mean value (𝑟𝑡𝑡), divided by the number 𝑁 of data
blocks, as Equation 4 describes:

𝜀rtt =

��rtt𝑖 − rtt
��

𝑁
=
Δ𝑟𝑡𝑡

𝑁
(4)

3.6 Configuring the Challenge
As introduced above, larger the number 𝑁 of data blocks,
lower the estimate error. However, there will always be an
error, even if small, when estimating 𝛿 . Therefore, when con-
figuring a challenge, the user must provide two parameters:
the maximum error 𝜀𝛿max that he is willing to tolerate, when es-
timating 𝛿 , and the challenge reliability 𝜙 , i.e., the probability
to estimate 𝛿 with an error lower than 𝜀𝛿max.

With the maximum error 𝜀𝛿max and the reliability value
𝜙 , the auditor is able to determine the number 𝑁 of data
blocks, to ensure a low estimate error. At the same time, the
auditor when determining 𝑁 takes into account the network
distribution between the auditor and the target node, and
the reading delay distribution of the audited node. Given the
reliability value 𝜙 and with the inverse cumulative distribution

5

function (ICDF) of the network distribution, we compute the
worst case difference between the observed value 𝑟𝑡𝑡𝑖 and the
expected mean 𝑟𝑡𝑡 . With this difference (Δrtt), we are able
to determine a value 𝑁 that places the estimate error of 𝑟𝑡𝑡𝑖
above a given value 𝜀rtt

max.
On the other hand, from the reading delay distribution, at

the fog node, and with the a learning curve, we are able to
determine the maximum value 𝜀𝛿𝑖max of the difference between
the mean expected value 𝛿𝑖 , that comes from sampling mea-
surements, and the real observed 𝛿 . Thus, the number 𝑁 of
data blocks may be chosen so that 𝜀rtt

max + 𝜀
𝛿𝑖
max < 𝜀𝛿max.

4 Evaluation
4.1 Experimental Setup
In our experiments, we use three machines. One of the ma-
chines is used to execute the auditor. Another machine is used
to execute the audited node. Finally, the remaining machine
is used as a remote storage node, that is used by the audited
node to access data in configurations where it does not store
the files locally. In our experiments, the fog node stores all
files at the same location, i.e., all files are stored locally, or
all files are stored in the remote node.

The three machines are physically placed at our lab and are
connected via a switch, with a mean network delay, between
any two machines, of 0.1𝑚𝑠. We extended our evaluation
to emulate deployments where the different machines are
placed at distinct geographic locations. To emulate wide-area
links, we artificially add delays to the messages exchanged
by any pair of nodes. These delays are drawn from a network
latency distribution that has been observed experimentally
with machines geographically apart.

4.1.1 Access to Remote Storage. The fog node is set up to
have access to two file systems: a local and a remote one, so
that we can test our proof with both an honest and a dishon-
est provider. The remote file system is placed at the remote
storage node. We have experimented two different techniques
for the fog node to access the remote file system:

Secure Shell FileSystem. We set up the fog node to ac-
cess the remote file system via the Secure Shell FileSystem
(SSHFS) protocol. With SSHFS the fog node reads files from
remote storage as if they were in local storage. At the same
time, we resorted to symbolic links, to allow code implemen-
tation to be storage location independent. For each file system
(local, and remote), there is a set of symbolic links. Accord-
ing to the file system it aims to access, the fog node uses the
respective set of symbolic links.

One advantage of this configuration is that the audited
node uses the same file system interface to access the files,
regardless of their location.3 A disadvantage of this approach
is that the SSHFS protocol has a significant overhead. In
particular, to access a remote file using the SSHFS protocol
the audited node may need to perform several remote calls,

3The different protocols used when accessing local or remote files are hidden
by the Unix’s virtual file system.

which amplifies the effect of the network latency, and makes
a dishonest node easier to detect.

Client-Server Plugin. Due to the limitations of the SSHFS-
based configuration, we decided to implement an alternative
technique for supporting remote file access by the audited
node, that avoids the latency amplification phenomena. It
works by placing a server on the remote storage machine
that serves as an helper to the audited node to respond to the
challenge (the audited node works as a client to this server).
When the audited node is requested to compute the hash of
a block it does not store locally, instead of attempting to
read the block itself, it sends to the server all the information
needed to compute the hash, i.e., the hashes corresponding
to the set, and block indexes. The remote node reads the
data block, computes the file cryptographic hash, and sends
the result back to the fog node, which forwards back to the
enclave. In this approach, the only visible overhead is the
network between the nodes, avoiding the extra complexity
caused by the SSHFS protocol. This strategy requires a single
round-trip in the network to execute a step of the challenge,
and avoids the transfer of the actual block in the network. As
far as we can see, this is one of the most effective strategies
for a dishonest node to hide its misbehavior.

4.1.2 Network Emulation. In our experimental setting all
machines are connected to the same local area network. To
assess the performance of the system when the auditor is at
different locations, and when the audited node stores the data
in remote nodes, we have resorted to network emulation.

We have used the ping tool to collect the distribution of
the observed round-trip time between two endpoints of the
network we were trying to emulate. For our experiments, we
have collected these values for the network between the IST
campus in Taguspark (Oeiras) and our lab at INESC-ID in
Lisbon, and between the Google datacenter in London and
also our lab at INESC-ID in Lisbon.

For each of these networks we have collected enough sam-
ples to obtain a good approximation of the distribution of the
round-trip latency. We collected 600 pings for both endpoints.
Then, to emulate a network, we have artificially added a delay
in the communication between the two endpoints. We have
used two different techniques to introduce this delay, each
with its own advantages and disadvantage:

The first technique, that we follow describe as the naive
adversary, combines the SSHFS protocol to access remote
files, with the emulator NetEm (Network Emulator), available
in Ubuntu operating system. NetEm as the advantage of al-
lowing to control all the communications between two nodes.
Therefore, it allows to delay all calls performed by SSHFS
without any additional instrumentation. In this case, NetEm
was configured to follow a normal distribution and to use the
mean and standard deviation values from the samples that we
have captured. One limitation of using NetEm is that it may
introduce some bias when approximating the real distribution,
for instance the resulting average round-trip time can be larger
than the target value [12].

6

Scenarios
TI TII TIT TIL

Auditor Taguspark Taguspark Taguspark Taguspark
Fog Node INESC-ID INESC-ID INESC-ID INESC-ID

Remote Node - INESC-ID Taguspark London
Table 1. Nodes location for evaluation scenarios.

The second technique, that we describe as the ingenious
adversary, uses the client-server plugin to request the remote
computation of the block hash, and the following technique
to add delays: every time a remote call was performed, we
have instrumented the code to include a sleep time with a
duration randomly selected from the samples collected from
that network. Albeit simple, we observed that this method
was able to offer a better approximation of the real network
round-trip time distribution. We have used this technique
for the client server plugin and also to the communication
between the auditor and the audited node, given that, in these
cases, it was easy to identify the points in the code where the
instrumentation needed to be inserted.

4.2 Evaluation Scenarios
We now introduce the different evaluation scenarios, where
for each scenario, we interchanged the auditor and the remote
node between three locations: Lisbon and Oeiras, in Portugal,
and London, United Kingdom. We kept the fog node fixed in
Lisbon. When two machines were placed in Lisbon, we have
used the real network. When two machines were placed in
different locations, we emulated the wide-area link using the
techniques describe above.

With ping tool we measured the network distribution be-
tween INESC-ID and Taguspark, and between INESC-ID and
London, and for both networks we computed the mean (𝜇)
and standard deviation (𝜎) values. The network INESC-ID–
Taguspark is characterized by 𝜇 = 7.4𝑚𝑠, and 𝜎 = 12.3𝑚𝑠.
In turn, the network INESC-ID–London is characterized
by 𝜇 = 34.5𝑚𝑠, and 𝜎 = 1.7𝑚𝑠. Surprisingly, the network
INESC-ID–Taguspark is subject to a larger variation, i.e.,
more unstable, than the network INESC-ID–London (INESC-
ID–Taguspark network has a larger standard deviation value
than INESC-ID–London network).

Given the local-area network, between the three machines,
and the above wide-area links, we were able to create a set
of 12 evaluation scenarios. In these 12 scenarios, the auditor,
and the remote storage locations are interchanged between
INESC-ID, Taguspark, and London. In Table 1, for space rea-
sons, we only provide the set of evaluation scenarios where
the auditor is placed in Taguspark, as it is the set of most
critical scenarios for the auditor, due to the network vari-
ability between the auditor, and the audited node. The TI
scenario represents a case where the fog node keeps the set
of documents in local storage.

4.3 Configuring the Challenge
When setting a challenge, the main factor to take into account
is the number 𝑁 of data blocks to be retrieved, as it affects
the error 𝜀𝛿max and the challenge reliability 𝜙 .

The number 𝑁 of data blocks depends on two factors: (1)
the network between the auditor and the fog node, and (2) the
reading delay distribution. Hence, 𝜀𝛿max and 𝜙 depend on them
too: more unstable is the network between the auditor and the
fog node and, more variable is the estimated reading delay
distribution, greater is the estimate error and lower the chal-
lenge reliability. Yet, as the error that comes from the network
between the auditor and the fog node is dispersed through
the number 𝑁 of data blocks (Equation 4), the variance of the
reading delay distribution is, at the end, the main factor of
error.

Simultaneously, as the auditor is aware of the reading delay
distribution at a fog node that complies with 𝛿 , the auditor is
able to detect an honest provider with higher accuracy than a
dishonest provider. Note that a dishonest provider may have
an infinite set of misbehaviors. For instance, it may serve the
files with different access times, i.e., some within 𝛿 and some
beyond 𝛿 , to change frequently the files location and, thus,
access time, which makes it more difficult to the auditor to
detect it. As a consequence, our proof is able to guarantee a
false positive rate (FPR) but, in the general case, cannot offer
guarantees on the false negative rate (FNR).

The FPR describes the number of challenges, out of the
executed ones, that identify a fog node as dishonest, when the
node is actually honest. The FNR describes the number of
challenges, out of the executed one, where a node is signed
as honest, but it is actually dishonest. We select a number 𝑁
that provides acceptable FPR and FNR.

In our proof, we want to meet a FPR of 0.01% and a FNR
of 0.05%. Through experiments and error analysis, we noticed
that with 𝑁 = 1000, we can meet the desired rates. Note that
the configuration of 𝑁 = 1000 depends on the 𝛿 threshold and,
on how distant the estimated access times are to 𝛿 . We follow
describe the observed estimate error 𝜀𝛿max for 𝑁 = 1000, as
it is hardware dependent, and we used different machines in
different moments of our experiments.

4.4 Results
We divided our experiments in two adversaries: a naive adver-
sary and an ingenious adversary. In each one we resorted to
different techniques for both remote storage access, and net-
work emulation. We also, for each adversary, used different
machines 4. Hence, each configuration will have a distinct
estimate error 𝜀𝛿max, as it depends mainly on the reading delay
distribution, that is hardware dependent.

Although we divided this section based on the two adver-
saries, there are some challenge configuration parameters that
are hardware independent or, even if hardware dependent,

4This is due to the fact that we have upgraded the machines in the middle of
the evaluation process.

7

are the same in both setups. We now describe the common
parameters and configurations:

In the first place, we opted for data blocks of size 𝑠𝑏 =

64𝐾𝐵,5 as it is provides a low variance [14] (1.0𝑚𝑠 and 0.3𝑚𝑠
variances for the first and second adversaries, respectively).

Second, we filled the file system with a dataset of 520184
images [17], with sizes between 846𝐵 and 180𝐾𝐵. When the
audited node has to read a file with a size smaller than 64𝐾𝐵,
the file data is padded with 0 until the data block has 64𝐾𝐵.
The index of the next file to be access is determined by the
cryptographic hash of the 64𝐾𝐵 data block with the hash with
32𝐵 from the previous iteration. We used SHA256 function
for the cryptographic hash and Rijndael AES-GCM 128bits
algorithm to cipher the nonces.

In each adversary, we ran a set of challenges, each one con-
figured with 𝑁 = 1000. Simultaneously, we ran the challenges
in the scenarios where the auditor is placed in Taguspark (Ta-
ble 1). We opted for the scenarios where the auditor is in
Taguspark, as it is the more unstable network and, thus, a
more critical and challenging scenario for the auditor. To this
end, we have emulated the INESC–ID-Taguspark network
between the auditor and the fog node.

4.4.1 Naive Adversary. The implementation of the naive
adversary uses a combination of SSHFS and NetEm. We
configured NetEm to follow a normal distribution based on
the network samples captured with ping. For the network
INESC-ID–Taguspark, we set up NetEm to follow a normal
distribution with 𝜇 = 8.0𝑚𝑠 and 𝜎 = 2.0𝑚𝑠. The 𝜇 and 𝜎
values are different to the ones captured directly with ping,
as we did an adjustment to the samples in order to follow a
normal distribution.

For the naive adversary, we used a Intel NUC7i7DNKE
machine, with a Intel i7-8650U CPU, that supports SGX, 8
GB RAM, 250GB M.2 SSD and, runs Ubuntu 20.04 LTS.
Experimentally, we measured the delay this machine takes
to compute the cryptographic hash (𝛼) and we obtained 𝛼 ≈
0.8𝑚𝑠.

0 20 40 60 80 100 120 140
 Estimate (ms)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Pe
rc

en
ta

ge
 o

f
Ch

al
le

ng
es

 (%
)

7.0ms 120.4ms33.1ms

TI
TII

TIT
TIL

Figure 2. Estimate of the reading delay 𝛿 , in milliseconds,
at the naive adversary, by an auditor emulated in Taguspark
and the remote storage node emulated between INESC-ID,
Taguspark and London. The green line is the 𝐷𝑇 ≈ 2.6𝑚𝑠,
and the red line is the𝑈𝐿𝑇 ≈ 4.8𝑚𝑠.

5A multiple of 4𝐾𝐵, the block size used by the file systems.

Scenarios 𝛿obs 𝛿est |𝛿obs − 𝛿est |
TI 1.6𝑚𝑠 1.5𝑚𝑠 0.1𝑚𝑠
TII 7.1𝑚𝑠 7.0𝑚𝑠 0.1𝑚𝑠
TIT 32.6𝑚𝑠 33.1𝑚𝑠 0.5𝑚𝑠
TIL 120.3𝑚𝑠 120.4𝑚𝑠 0.1𝑚𝑠

Table 2. Observed (𝛿obs) and estimated (𝛿est) mean access
time at the naive adversary, and auditor respectively.

Figure 2 shows the estimated reading delay 𝛿 verified at
a naive adversary, with the auditor emulated to Taguspark
and the remote storage node emulated between INESC-ID
(TII), Taguspark (TIT) and London (TIL). The first scenario
(TI), describes the case where the audited node keeps the
whole dataset in local storage and, does not resort to a remote
storage node. In each scenario, we ran 500 challenges.

Note that for the scenarios where the audited node resorts
to a remote storage node for storage and, the remote node is
emulated to Taguspark (TIT) or, London (TIL), the estimated
access times are 4x the mean of the emulated network. This
overhead is due to SSHFS remote calls, as open, lseek, read,
etc, that are also subject to the delay added by NetEm. The two
first scenarios TI and TII are equally subject to the overhead
introduced by SSHFS remote calls. However, in the scenario
TI, the SSHFS overhead is less clear as the remote calls
happen inside the same machine. Yet, we show that with our
challenge the auditor is able to estimate access times closer
to the access time observed at the audited node.

Table 2 describes the observed and estimated averages val-
ues by the audited node and by the auditor, respectively. The
auditor can estimate the observed reading delays with a maxi-
mum deviation of 0.5𝑚𝑠 for the TIT scenario. The TIT sce-
nario registers the larger deviation, as it is the case with the
more unstable network between the audited node and the
remote storage node.

In this experiments, we considered a 𝛿 value equivalent
to a local storage access, i.e., 𝛿 ≈ 1.6𝑚𝑠, as it is a critical
scenario, due to TI and TII estimates proximity. The TI and
TII scenarios have the lowest access time difference, between
any two scenarios (a difference of 5.5𝑚𝑠). Nevertheless, with
𝑁 = 1000 and a FPR=0.01%, for the TI estimates, we can
ensure 𝜀𝛿max < 1.0𝑚𝑠.

With this being said, a fog node that complies with 𝛿 is
correctly assigned as honest, if the estimated access times, by
the auditor, are below 2.6𝑚𝑠. We describe this threshold as the
detection threshold (DT), as it corresponds to the maximum
access time acceptable to the auditor, that ensures the required
FPR=0.01%. Even though the scenarios TI and TII have the
lowest estimate difference, the TII estimates are clearly above
DT, which means that even with an difference of just 5.5𝑚𝑠,
the auditor is able to accurately distinguish a fog node that
keeps files in local storage from a fog node that resorts to
a remote storage node in the same local-area network. Note
that the DT depends on the value 𝛿 agreed in the SLA, and
the error 𝜀𝛿max at an honest node.

8

0 5 10 15 20 25 30 35 40 45
 Estimate (ms)

0.0%

5.0%

10.0%

Pe
rc

en
ta

ge
 o

f
Ch

al
le

ng
es

 (%
)

1.8ms 37.4ms9.0ms

TI
TII

TIT
TIL

Figure 3. Estimate of the reading delay 𝛿 , in milliseconds, at
the ingenious adversary, by an auditor emulated in Taguspark
and the remote storage node emulated between INESC-ID,
Taguspark and London. The green line is the 𝐷𝑇 ≈ 1.0𝑚𝑠,
and the red line is the𝑈𝐿𝑇 ≈ 1.1𝑚𝑠.

In addition, we defined an unacceptable latency threshold
(ULT). This threshold lower bounds the access time estimates
for a FNR of 0.05%. As there are a set of possible scenarios,
we defined the ULT based on the TII scenario, as it is the one
closer to the DT. Given the difference between the average
estimate and the value that bounds 0.05% of TII estimates, we
obtain the false negative margin. With 𝑁 = 1000 and a false
negative margin of 2.2𝑚𝑠, we define an ULT at 4.8𝑚𝑠. Any
fog node with access time estimates above 4.8𝑚𝑠 is clearly
assigned as dishonest (does not comply with the 𝛿).

The scenarios were the audited node resorts to a remote
storage node (TII, TIT and TIL) have estimated access times
are above 4.8𝑚𝑠, thus, above the ULT, by what their misbehav-
ior was clearly detected by the auditor. In a matter of fact, for
the ran 500 challenges, we did not verify any false positives
neither false negatives.

4.4.2 Ingenious Adversary. The ingenious adversary com-
bines the client-server plugin with the sleep approach. In
the experiments for the ingenious adversary, we used a In-
tel NUC10i7FNB machine, with a Intel i7-10710U CPU,
that supports SGX, 16GB RAM, 250GB M.2 SSD and, runs
Ubuntu 20.04 LTS. The remote storage machine is similar
to the adversary machine. Experimentally, we measured the
cryptographic hashing delay of a 64𝐾𝐵 data block with a 32𝐵
hash and we obtained 𝛼 ≈ 0.1𝑚𝑠.

Scenarios 𝛿obs 𝛿est |𝛿obs − 𝛿est |
TI 0.5𝑚𝑠 0.6𝑚𝑠 0.1𝑚𝑠
TII 1.8𝑚𝑠 1.7𝑚𝑠 0.1𝑚𝑠
TIT 9.5𝑚𝑠 9.0𝑚𝑠 0.5𝑚𝑠
TIL 37.5𝑚𝑠 37.4𝑚𝑠 0.1𝑚𝑠

Table 3. Observed (𝛿obs) and estimated (𝛿est) mean access
time at the ingenous adversary, and auditor respectively.

Figure 3 shows the estimated reading delay 𝛿 by the auditor,
for the ingenious adversary. The auditor is emulated to Tagus-
park and the remote storage node is emulated between the
considered three locations: INESC-ID (TII), Taguspark (TIT)

and London (TIL). The auditor also estimated the reading
delay for an audited node that does not resort to a remote
storage node (scenario TI). For each scenario, we ran 1000
challenges. Table 3 describes the observed and estimated av-
erage values by the ingenious audited node and the auditor,
respectively.

The estimated values in the scenarios with remote storage
(TII, TIT, TIL) have no longer an extra overhead introduced
by the remote storage access approach. Instead, the estimated
access times are closer to the mean of the network between the
audited node and the remote storage node. At the same time,
the estimated values for the first scenario (TI) are lower than
the estimated at the naive adversary, for the same scenario, as
we used more advanced hardware.

Simultaneously, note that the variance between the esti-
mated values for the TIT scenario is larger than the verified
for the naive adversary. This is due to the configuration of
the sleep time approach. As we select randomly a value from
the captured samples, the sleep time, for a set of challenges,
will follow the network variance, that is in this case 151.3𝑚𝑠
(𝜎2 = 12.3𝑚𝑠). In the naive adversary the variance is lower, as
we set up NetEm with 𝜎 = 2.0𝑚𝑠 and, thus, there is a variance
of 4.0𝑚𝑠.

In this experiments, we considered, 𝛿 as the access time
to access files in local storage, i.e., 𝛿 ≈ 0.5𝑚𝑠. We select
the observed mean value at the TI scenario, as it is, once
again, a critical scenario for the auditor. The difference of the
estimated values between the TI scenario and the TII scenario
is just 1.3𝑚𝑠 (lower than the same difference in the naive
adversary). Hence, the auditor has a smaller gap to place the
DT. Thus, it becomes more difficult to distinguish the TI and
the TII scenarios.

For the local storage scenario (TI), with 𝑁 = 1000 and for
FPR=0.01%, there is an estimate error 𝜀𝛿max < 0.4𝑚𝑠. Hence,
we are able to define the DT at 1.0𝑚𝑠. Thus, the auditor is
able to detect the audited node misbehavior in scenario TII,
as the estimated values are above the DT. In the ran 1000
challenges, we did not verify a false positive.

As for the false negatives, we define the ULT at the 1.1𝑚𝑠.
Once again, we define this threshold based on the estimated
values for the TII scenario, as it is the one closer to the DT.
From the difference between the mean and the delay that en-
sure 0.05% estimates are above it, we obtained a false negative
margin of 0.1𝑚𝑠. Remember that the ULT lower bonds the
estimates from misbehavior nodes, for a FNR of 0.05%. In the
1000 ingenious adversary experiments, we did not verify any
false negative, as all estimates from misbehavior nodes were
above 1.1𝑚𝑠.

4.5 Discussion
In both naive and ingenious adversary, we define 𝛿 as the
delay to access files in local storage, i.e., in memory space
in the audited node machine. Thus, the DT is placed next to
the TI estimates, as for the given 𝛿 , we aim to distinguish
a fog node that keeps files in local storage from one that
resorts to a remote node. Moreover, the defined thresholds

9

allow to detect a fog node that resorts to a remote node in
the same local-area network (scenario TII). Yet, both 𝛿 values
and the DT are not fixed values for all evaluation contexts.
Given a set of requirements, the client may define a lower
or larger 𝛿 value than the one considered in our experiences.
One example, would be to test whether the audited node
keeps files stored in Portugal or not. For this example, and
taking into consideration Figure 3, the 𝛿 value may be defined
as 12𝑚𝑠, and the DT could be place at about 15𝑚𝑠. Note
that we are able to determine some example values, as it is
clear the difference between remote storage in Portugal (TIT
scenario) and outside of Portugal (TIL scenario). We may
even not observe any false positive, or false negative, as the
estimates are clearly distant to the DT. In other words, even
if the network between the fog node and the remote node is
unstable and, thus, the estimate error is high, due to estimates
distance, the auditor can detect storage within Portugal versus
outside with accuracy.

Equally, if any two distinct scenarios have estimates close
to each other, it is more difficult for the auditor to place the
DT to ensure a given FPR. Thus, in this case, the auditor may
increase the number𝑁 of data blocks to increase the challenge
accuracy or, may accept a larger FPR. For a scenario where
we we accept a latency equivalent to files storage in Portugal
border with Spain and there is a remote storage in the border
of Spain with Portugal, it may be hard for the auditor to
distinguish if a the audited node keeps files in Portugal or
resorts to a remote node, outside, but closer to the border.

5 Conclusions
In this thesis we describe a novel auditing mechanism that is
able to extract a proof of timely-retrievability, i.e., a proof that
a given fog node is able to serve requests without violating
some given data access latency constraint 𝛿 . Our auditing
mechanism is based on a challenge that requires the fog node
to access, in sequence, a pseudo-random set of data items, and
to respond to the challenge in a timely manner. The challenge
is designed in a such a way that, if the fog node does not
store locally a significant fraction of the objects, it will be
unable to respond in time. We leverage on the existence of
TEE, more precisely Intel Software Guard Extension (SGX),
to ensure the proof is executed at the audited node, and reduce
the communications between the auditor and the fog node.
The enclave is responsible to iteratevely reveal the next data
block to be read to the untrusted part.

We have implemented and evaluated experimentally our
auditing mechanism. Our results show that our proof can
accurately detect a node that is not able to satisfy the target
latency constraint 𝛿 .

Acknowledgments
This work has been developed in the context of the project Cosmos, that
aims at developing a storage system to support edge-computing. In the devel-
opment of the work I benefited from the discussion and collaboration with
other members of the Cosmos team, in particular from working with Cláudio
Correia, that is addressing on the security aspects of the project. This work

was supported by national funds through Fundação para a Ciência e a Tec-
nologia (FCT) as part of the projects with references UID/CEC/50021/2019
and COSMOS (financed by the OE with ref. PTDC/EEICOM/29271/2017
and by Programa Operacional Regional de Lisboa in its FEDER component
with ref. Lisbon-01-0145-FEDER-029271).

References
[1] F. Anwar et al. 2019. Securing Time in Untrusted Operating Systems

with TimeSeal. In 2019 IEEE Real-Time Systems Symposium (RTSS).
[2] F. Armknecht et al. 2016. Mirror: Enabling proofs of data replication

and retrievability in the cloud. In Proceedings of the 25th USENIX
Security Symposium.

[3] G. Ateniese et al. 2007. Provable Data Possession at Untrusted Stores.
In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security. Alexandria, Virginia, USA.

[4] J. Benet. 2014. IPFS: Content Addressed, Versioned, P2P File System.
arXiv preprint arXiv:1407.3561 (2014).

[5] J. Benet, D. Dalrymple, and N. Greco. 2017. Proof of replication.
Protocol Labs, July 27 (2017).

[6] K. Benson et al. 2011. Do You Know Where Your Cloud Files Are?. In
Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop. Chicago, Illinois, USA.

[7] C. Correia et al. 2020. Omega: a Secure Event Ordering Service for
the Edge. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

[8] H. Dang et al. 2017. Proofs of Data Residency: Checking Whether
Your Cloud Files Have Been Relocated. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security.
Abu Dhabi, United Arab Emirates.

[9] U. Drolia et al. 2017. Cachier: Edge-Caching for Recognition Appli-
cations. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). Atlanta (GA), USA.

[10] M. Feldman and J. Chuang. 2005. Overcoming Free-Riding Behavior
in Peer-to-Peer Systems. SIGecom Exch. 5, 4 (2005).

[11] M. Gondree and Z. Peterson. 2013. Geolocation of Data in the Cloud.
In Proceedings of the Third ACM Conference on Data and Application
Security and Privacy. San Antonio, Texas, USA.

[12] A. Jurgelionis et al. 2011. An Empirical Study of NetEm Network
Emulation Functionalities. In 2011 Proceedings of 20th International
Conference on Computer Communications and Networks (ICCCN).

[13] J. Leitão et al. 2018. Towards enabling novel edge-enabled applications.
arXiv preprint arXiv:1805.06989 (2018).

[14] L. Li and L. Lazos. 2020. Proofs of Physical Reliability for Cloud Stor-
age Systems. IEEE Transactions on Parallel and Distributed Systems
31, 5 (2020).

[15] S. Matetic et al. 2017. ROTE: Rollback Protection for Trusted Exe-
cution. In 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC.

[16] M. Mukherjee et al. 2017. Security and Privacy in Fog Computing:
Challenges. IEEE Access 5 (2017).

[17] Nari. 2017. tiles_256x49. https://www.kaggle.com/narimatsu/tiles-
256x49?select=0005f7aaab2800f6170c399693a96917_14.png.
[Accessed: 2021-03-12].

[18] G. Ricart. 2017. A city edge cloud with its economic and technical
considerations. In 2017 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops).

[19] M. Satyanarayanan et al. 2017. Cloudlet-based Just-in-Time Indexing
of IoT Video. In Proceedings of the Global Internet of Things Summit
(GIoTS). Geneva, Switzerland.

[20] C. Streiffer et al. 2017. ePrivateEye: To the Edge and Beyond!. In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing
(SEC).

[21] T. Taleb et al. 2017. On Multi-Access Edge Computing: A Survey of
the Emerging 5G Network Edge Cloud Architecture and Orchestration.
IEEE Communications Surveys Tutorials 19, 3 (2017).

10

https://www.kaggle.com/narimatsu/tiles-256x49?select=0005f7aaab2800f6170c399693a96917_14.png
https://www.kaggle.com/narimatsu/tiles-256x49?select=0005f7aaab2800f6170c399693a96917_14.png

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Data Storage on Third-parties
	2.2 Auditing Third-Party Storage Services
	2.3 Trusted Execution Environments

	3 Proof of Timely-Retrievability
	3.1 Obstacles
	3.2 Assumptions
	3.3 System Architecture
	3.4 Design of the Challenge
	3.5 Estimating the Reading Delay at the Audited Node
	3.6 Configuring the Challenge

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Scenarios
	4.3 Configuring the Challenge
	4.4 Results
	4.5 Discussion

	5 Conclusions
	References

