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Abstract
Symbolic execution is a program analysis technique that has
been successfully used to find various types of bugs in indus-
trial codebases. Despite being extensively used in practice,
this technique suffers from two main limitations when ap-
plied to real-world code: path explosion and interactions with
the runtime environment. To address both of these problems,
current symbolic execution engines make use of symbolic
summaries. These interact with the symbolic state of a given
program so as to simulate the behaviour of both external and
internal functions without having to symbolically execute
them. Symbolic summaries can therefore be used to mitigate
the number of paths explored and also allow for the analysis
of external calls. Despite their advantages, there is a clear
lack of mechanisms for sharing symbolic summaries across
different tools and for their uniform validation.

In this thesis we introduce a methodology for implement-
ing tool-independent symbolic summaries for the C pro-
gramming language. This methodology consists of an API
containing a set of symbolic reflection primitives for explicit
manipulation of C symbolic states. Symbolic summaries im-
plemented using our API can be shared across different sym-
bolic execution tools, provided that these tools implement the
proposed API. Additionally, due to being written directly in
C, these summaries can themselves be symbolically executed
as standard C code. Hence, we also introduce a summary val-
idation tool that can systematically evaluate the correctness
of a symbolic summary with respect to its concrete reference
implementation.

Keywords: Symbolic Execution, Runtime Modelling, Sym-
bolic Summaries, Summary Correctness

1 Introduction
1.1 Motivation
The complexity of modern software systems renders the pro-
cess of bug-finding extremely hard, especially when done
manually. This leaves room for undetected security vulner-
abilities in production code, which can then be exploited
by malicious users and have serious consequences for both
organizations and individuals. For instance, the Heartbleed
bug [5, 9], present in version 1.0.1 of the OpenSSL crypto-
graphic library, allowed for the leakage of sensitive infor-
mation protected by SSL/TLS encryption, which is used to
secure most types of Internet traffic.

Symbolic execution [3, 10] is a program analysis technique
that allows for the exploration of all the execution paths of
the given program up to a bound by executing that program
with symbolic values instead of concrete ones. For each ex-
ecution path, the symbolic execution engine builds a first
order formula, called path condition, which accumulates the
constraints on the symbolic inputs that cause the execution
to take that path. Symbolic execution engines rely on an
underlying SMT solver both to check the feasibility of exe-
cution paths as well as to check the validity of the assertions
supplied by the developer.
Symbolic execution has been successfully used to find a

wide variety of bugs and security vulnerabilities in large
industrial codebases. For instance, KLEE [4] found various
fatal bugs in GNU COREUTILS (version 6.10) and a large
number of critical bugs in other software systems, such as
in BUSYBOX [16] and MINIX [14].

1.2 Problem
Despite being extensively used in practice, symbolic exe-
cution suffers from two main limitations when applied to
real-world code: interactions with the runtime environment
and path explosion.
Most real-wold programs interact with their runtime en-

vironment via heterogeneous APIs, whose source code is
often not available for static analysis. These interactions,
which include operations involving the network, the operat-
ing system, the file system, and system devices, may have a
considerable effect on the execution of the program at hand
and therefore must be taken into account by symbolic exe-
cution engines. Nevertheless, the symbolic analysis of such
interactions is not straightforward as they often step outside
the perimeter of the programming language being analysed.
For instance, system calls cannot be directly symbolically
executed since their implementation is not part of the pro-
gram being analysed, belonging instead to the underlying
operating system. The standard approach to support such
interactions is to create summaries of the external runtime
functions called by the program to be analysed. These sym-
bolic summaries constrain the symbolic state of the given
program so as to simulate the behaviour of the external
functions without having to symbolically execute them.
Let us now consider the path explosion problem. All but

the smallest programs have an unmanageable number of
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possible execution paths, which is exponential in the num-
ber of executed conditional instructions. For this reason, a
naive symbolic execution engine that attempts to explore
all possible paths will never scale to real-world programs.
The standard approach to deal with the path explosion prob-
lem is to use sophisticated merging algorithms to combine
multiple symbolic execution paths into a single path [2].
Nevertheless, such general algorithms can be too coarse for-
getting details that would be useful for detecting specific
bugs/vulnerabilities, since the optimal merging strategy is
oftentimes dependent on the type of bug/vulnerability that
one is searching for.
Alternatively, one can leverage symbolic summaries to

contain the number of paths explored during symbolic ex-
ecution. The idea is that instead of symbolically executing
the code of a given concrete function on some symbolic
inputs, one can choose to implement a symbolic summary
that models the behaviour of that function, and then exe-
cute the summary instead of the concrete function. Symbolic
summaries have two main advantages with respect to con-
crete implementations. First, they allow developers to choose
which execution paths are to be explored by the symbolic
execution engine, steering the execution towards the paths
that may potentially lead to bugs/vulnerabilities. Second,
they allow developers to merge different symbolic execution
paths into the same one by explicitly interacting with the
current symbolic state. Hence, symbolic summaries provide
an effective merging mechanism, allowing developers to deal
with the path explosion problem in an application-specific
way.

Despite being an essential tool for modelling interactions
with the environment and containing the path explosion
problem, symbolic summaries are extremely hard to design,
with their implementation being both error-prone and time-
consuming [6]. For this reason, developers of symbolic ex-
ecution tools often make it possible for users of the tool
to write their own summaries and even to add their sum-
maries to the codebase of the tool. Currently each symbolic
execution tool implements its own symbolic summaries in
the programming language used to build the tool. For in-
stance, angr’s summaries are implemented in Python and
KLEE’s summaries are implemented in C. Furthermore, sym-
bolic summaries often rely on specific aspects of the tools
for which they are implemented. In particular, they interact
with the symbolic states of the programs being analysed
through the APIs provided by each tool. Hence, it is not only
extremely difficult to share symbolic summaries between
symbolic execution tools, but also to check whether or not
the implemented summaries satisfy the properties that their
authors intended them to. Surprisingly, although there is
a clear lack of appropriate tool support for developing and
sharing symbolic summaries across different symbolic execu-
tion tools, the research community has not yet given much
attention to this topic.

1.3 Goals
In this thesis we introduce a methodology for implementing
tool-independent symbolic summaries for the C program-
ming language. At the core of the proposed methodology is
a new API consisting of a set of symbolic reflection primi-
tives [15] for explicit manipulation of C symbolic states in a
tool-independent way. Our symbolic primitives include a va-
riety of instructions for: creating symbolic variables and first-
order constraints, checking the satisfiability of constraints,
and extending the current path condition or symbolic state
with a given constraint. Symbolic summaries implemented
using our API can be shared across different symbolic exe-
cution tools, provided that these tools implement the pro-
posed API. To illustrate the applicability of our methodol-
ogy, we extended the symbolic execution tools angr [13]
and AVD [12] with support for the proposed API and devel-
oped tool-independent symbolic summaries for three classes
of libc functions: string manipulation functions, number-
parsing functions, and input/output functions.
Given that our symbolic summaries are directly imple-

mented in C, they can themselves be symbolically executed
as standard C code. To this end, we also introduce a summary
validation tool, built on top of AVD, that can systematically
evaluate the correctness of C-implemented summaries. The
validation tool employs symbolic execution to compare the
execution paths modelled by a summary with respect to the
execution paths produced by the corresponding concrete
reference implementation.

2 Related Work
2.1 Function Summaries
In the context of symbolic execution, there are various strate-
gies for modelling runtime functions and system calls. A
naive approach is to simply add concrete implementations
of the runtime functions to be supported by the program to
be analysed. We refer to such concrete implementations as
concrete models. Concrete models have two main drawbacks:
first they promote path explosion by introducing extra code
that must be executed symbolically, for example the strlen
function will create a new execution path for each charac-
ter of a symbolic string. Second, most of the interactions
with the runtime environment cannot be captured by the
programming language. In the case of system calls, execu-
tion will reach elements that are not under control of the
symbolic execution engine. For instance, fgets interacts with
the kernel to read from the stdin.
Given the limitations of concrete models, the standard

approach to model the behaviour of runtime functions and
system calls is to use symbolic summaries [2]. A symbolic
summary is a model of a function that simulates its behaviour
by interacting directly with a symbolic state and the under-
lying symbolic engine. Symbolic summaries are therefore
an excellent device to scale symbolic execution for larger
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programs, reducing the time spent during the symbolic exe-
cution itself, as well as pruning the search space by capturing
the outcome paths of a function call in a reduced number
of branches compared to a concrete model.Summaries can
achieve this by updating the path condition of a symbolic
state with the restrictions representing the new states that
would have been created by a concrete function. Further-
more, with symbolic summaries, one can analyse even the
system/runtime calls that cannot be modelled using concrete
implementations by simply executing their corresponding
summaries with the supplied arguments.
There are two main approaches for implementing sym-

bolic summaries. The most common approach consists of
implementing symbolic summaries in the programming lan-
guage used to build the symbolic execution tool itself that
can directly access and manipulate the symbolic state. For
example angr [13] and KLEE [4] both implement symbolic
summaries in their respective native programming languages
as part of the tools themselves. Alternatively some symbolic
execution tools implement symbolic summaries in the as-
sembly language used for intermediate representation of the
target program, for example BINSEC [8] uses OCaml to gen-
erate assembly code comprising a symbolic summary, which
is then injected in the addresses of external function calls.

2.1.1 Symbolic Reflection. In the context of symbolic
execution, symbolic reflection is a mechanism that can be
applied by a symbolic engine to infer runtime properties of
the symbolic state during an analysis. For instance, symbolic
reflection can be used at a conditional statement to determine
if a certain branch is feasible according to the preceding path
conditions (eager evaluation [2]). Symbolic reflection is not
only useful for implementing dynamic approaches to help
scale symbolic execution, but it is also very convenient for
developing symbolic summaries, as it allows to model the
behaviour of a summary according to the specific symbolic
runtime properties of its input arguments in a given symbolic
state.

2.1.2 Properties of summaries. Due to the limitations
covered in section 1.2, usually symbolic execution can only
approximate the behaviour of real-world code. This means
that when considering larger scale programs, specially those
that interact with their runtime environment, as a general
rule it is impossible to guarantee that symbolic execution
outputs all and only the correct execution paths. For example
when analysing a program with infinite execution paths
due a symbolic loop (e.g., while(n) where n is symbolic),
a symbolic execution tool may resolve this by unravelling
the loop to a concrete number of iterations, thus potentially
losing important paths. On the other hand when considering
a program that reads from an external file, a tool may model
this interaction by creating symbolic bytes to simulate all
the “read” data, possibly leading to invalid execution paths.

The correctness of an analysis is often evaluated according
to the properties of Backward and Forward Soundness [1, 11].
A backward sound analysis guarantees that all generated
paths are correct with respect to the concrete execution.
Conversely, in a forward sound analysis all the possible ex-
ecution paths are taken into account, even if that means
producing wrong paths. As a device that intrinsically affects
the correctness of an analysis, these properties can also be
directly applied to symbolic summaries.
It is often the case that one has to sacrifice precision

for soundness and vice-versa. The type of property to be
achieved depends on how the summary is going to be used.
For instance, security analyses often require forward sound
summaries: if symbolic execution says that there is no secu-
rity bug, then there is no security bug. In contrast, debug-
ging/testing tools require backward sound summaries given
that developers do not want to waste their time fixing bugs
that do not exist: if symbolic execution says that there is a
bug, then the bug must exist. Unfortunately, in general, it is
not possible to have both.

2.2 libc Support on Symbolic Execution Tools
In order to understand how current symbolic execution tools
for C make use of symbolic summaries, we analyse how
such tools model interactions with libc. More concretely, we
survey 12 C compatible symbolic execution tools, checking
for each tool the number of libc summaries that it imple-
ments. Results are shown in Table 1, which divides the libc
summaries into 7 categories.

From this analysis, we can conclude that only three tools,
angr, Manticore and Otter, take significant advantage of the
scalability offered by symbolic summaries, implementing
an already extensive list of summaries for modelling both
standard library functions and system calls. The other tools
that implement summaries are mostly focused on modelling
very common libc functions (e.g., strlen), or supporting ba-
sic environment interactions through the most used system
calls (e.g., read/write), mostly without much concern about
the correctness of the models, but rather focusing on having
a simple working environment. Despite this, almost all the
teams in charge of developing the analysed symbolic execu-
tion tools intend to expand their support for libc functions
by implementing appropriate models. This is, in general, a
hard task that requires understanding the specific internals
of each symbolic execution tool. angr is the only tool that
comes with an infrastructure for users to write and use their
own summaries, albeit with a lot of extra work.

3 Symbolic Reflection API
Symbolic summaries are an effective technique for improv-
ing the scalability of symbolic execution tools. The key idea
is that instead of symbolically executing the concrete code
of a given library function, which can lead to an intractable
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Table 1. libc summaries implemented by C compatible symbolic execution tools

angr AVD BE-PUM BINSEC Kite KLEE Manticore Mayhem Otter pysymemu S2E Triton
Implementation
Language Python Python - Assembly - C Python ? C Python C++ -

String
Manipulation 19 13 0 5 0 16 5 ? 0 0 6 0

Input/Output 12 7 0 1 0 2 2 ? 3 1 1 0
File
Handling 33 4 0 7 0 7 28 ? 29 10 1 0

Memory 7 7 0 6 0 8 15 ? 18 1 2 0
Process
Management 7 1 0 0 0 2 5 ? 3 7 0 0

Sockets 9 0 0 0 0 1 11 ? 8 2 0 0
Other
System Calls 18 4 0 1 0 0 22 ? 24 10 0 0

Total 105 36 0 20 0 36 88 ≥ 30 85 31 10 0

amount of branching, one executes a symbolic summary
instead. Symbolic summaries model the behaviour of their
original concrete functions while, at the same time, mini-
mizing the amount of branching. In order to allow for the
reuse of symbolic summaries between different symbolic
execution tools, we propose that symbolic summaries be
implemented in the analysed language, in our case C. To this
end, we introduce a symbolic reflection API consisting of a
set of symbolic reflection primitives, which can be used to
implement symbolic summaries and which symbolic execu-
tion tools need to implement natively in order to execute
those summaries. Hence, instead of interpreting these primi-
tives as standard code, symbolic execution tools must have
for each primitive an internal algorithm that implements
the primitive’s expected behaviour by interacting with the
current symbolic state. Extending the targeted tools with
support for the required API is substantially simpler than
designing and implementing the symbolic summaries. Most
of these tools already provide some of the functions required
by our API, albeit with different names.
We organize the functions of the API into 3 categories:

General Functions, Operations with symbolic variables, and
Operations with restrictions. Regarding the functions for ma-
nipulation of symbolic variables, our symbolic reflection API
assumes that symbolic values are internally modelled as bit
vectors. This is not an unreasonable assumption since most
symbolic execution tools for C represent symbolic values as
bit vectors, regardless of the value type. Below we describe
the functions corresponding to each of the three categories.

General Functions. The primitives in this category pro-
vide the functionality required to interact with the symbolic
execution engine (Figure 1). These primitives represent the
core behaviour needed to develop symbolic summaries. In
fact, all the implemented summaries use at least one of these
primitives. For instance, the primitive summ_is_symbolic is
used for checking whether or not a given runtime value is

symbolic, e.g., the call summ_is_symbolic(&var,32) checks
if the 32 bit variable var is symbolic. Additionally, this cate-
gory also includes an API primitive that is specific for the
validation tool. The primitive summ_memory_addr can be
used to specify which memory addresses must be taken into
account during the evaluation of a summary that interacts
with memory (e.g., a summary for memcpy).

summ_not_implemented_error(char *fname)
summ_maximize(symbolic sym_var, size_t length)
summ_is_symbolic(symbolic sym_var, size_t length)
summ_new_sym_var(int length)
summ_assume(restr_t restr)
_solver_is_it_possible(restr_t restr)
summ_memory_addr(void* addr, void* n, size_t length)

Figure 1. Symbolic Reflection API: General Functions

Operations with symbolic variables. The primitives in
this category are responsible for manipulating the bit vec-
tors denoting symbolic variables (Figure 2). For instance,
the primitive solver_Concat concatenates two symbolic vari-
ables, while the primitive solver_SignExt extends a symbolic
variable with extra sign bits, which can be used for signed
up-casting (e.g., int to long).

_solver_Concat(symbolic sym_var, symbolic sym_var2, int length1,

int length2)↩→
_solver_Extract(symbolic sym_var, int start, int end, int length)
_solver_ZeroExt(symbolics sym_var, int to_extend, int length)
_solver_SignExt(symbolic sym_var, int to_extend, int length)

Figure 2. Symbolic Reflection API: Operations with sym-
bolic variables
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Operations with symbolic restrictions. The primitives
in this category are responsible for building restrictions over
symbolic variables (Figure 3 shows a partial list of the avail-
able operations). These restrictions can then be queried for
satisfability and/or added to the current symbolic state. For
instance the primitive call: _solve_EQ(&a, &b, 32) builds
an equality restriction over two 32 bit symbolic variables
such that 𝑎 = 𝑏.

_solver_NOT(restr_t restr)
_solver_Or(restr_t restr1, restr_t restr2)
_solver_And(restr_t restr1, restr_t restr2)
_solver_EQ(symbolic sym_var, symbolic sym_var2, size_t length)
...

Figure 3. Symbolic Reflection API: Operations with sym-
bolic restrictions

To demonstrate the portability of our summaries, we ex-
tended two symbolic execution tools:AVD [12] and angr [13],
with support for the Symbolic Reflection API. As AVD was
implemented at IST, it provides a familiar platform that was
easy to extend with support for the required summary API.
In addition, AVD also serves as the test bed for developing
and testing symbolic summaries, as its symbolic engine pro-
vides the foundation that our summary validation tool is
built upon which we will go over in Section 4.3. On the other
hand, angr is a tried symbolic execution tool that offers a flex-
ible and well documented toolkit, making it a great candidate
for demonstrating the portability of the Symbolic Reflection
API in an unfamiliar tool.

3.1 Summary Example
Figure 4 shows a backward sound summary implemented
for libc’s strlen function. This function receives a string as an
argument and returns its length. In C, strings are defined as
sequences of characters (char type) terminated by a special
null character ('\0'). For this reason, string manipulation
functions will often lead to path explosion when called with
symbolic strings. These strings may have symbolic charac-
ters, leading the symbolic execution to branch at every index
for which the corresponding character may or may not be
equal to the null character.
This summary iterates over an input string until it finds

a concrete null character. During this process, if it finds a
symbolic character it tries to prove that the corresponding
byte can only be a null character. If it succeeds, the sum-
mary returns the current length, otherwise it assumes that
the current character is not the null character and contin-
ues iterating. In particular, if a character s[i] is symbolic,
the API primitive _solver_is_it_possible queries the solver
to check if that symbolic byte can only be the null char-
acter, which is translated to the query: “ is it possible that
s[i] ≠ '\0' ? ”. If the answer is negative then that byte

must be '\0'. On the other hand if the answer is positive,
the restriction s[i] ≠ '\0' is built using the API primi-
tive _solver_NEQ and added to the current path condition
using the primitive summ_assume. The path condition is
updated to guarantee that it is consistent with the explored
path, making the summary backward sound. For instance,
given the symbolic string: “sym1|a|sym2|\0”, where sym1
and sym2 denote symbolic characters and the character '|'
is used to separate the different characters occurring in the
string, the summary will output the value 3 and add the
restrictions: sym1 ≠ '\0' and sym2 ≠ '\0' to the current
path condition.

Figure 4. Implementation of summary strlen2

1 int strlen2(char* s){
2 char charZero = '\0'; int i = 0;
3 while(1){
4 //s[i] is symbolic
5 if(summ_is_symbolic(&s[i],CHAR_SIZE)){
6
7 //Build restriction: s[i] ≠ '\0'
8 restr_t restr = _solver_NEQ(&s[i], &charZero,

CHAR_SIZE);↩→
9
10 //Query satisfiability of restr
11 if(!_solver_is_it_possible(restr)) break;
12
13 //Add restr to symbolic state
14 else summ_assume(restr);
15 }
16 else if(s[i] == charZero) break;
17 i++;
18 }
19 return i;
20 }

4 Summary Correctness
4.1 Correctness Properties
In this section, we mathematically define the correctness
properties required for evaluating our symbolic summaries,
some of which were introduced in Section 2.1.2. We start
by introducing some notation. We use 𝜎 and 𝜎̂ to denote
concrete and symbolic program states, respectively. Program
states are composed of program memories; we use 𝜇 and 𝜇

to range over concrete memories and symbolic memories,
respectively. In the following, we assume that concrete states
exactly coincide with concrete memories, while symbolic
states are composed of a concrete memory and a path condi-
tion. Put formally: 𝜎 = ⟨𝜇⟩ and 𝜎̂ = ⟨𝜇, 𝜋⟩.

We use 𝐶 and 𝐶 to denote a concrete implementation of a
function and its corresponding summaries, respectively. In
contrast to concrete implementations, which can be executed
both concretely and symbolically, symbolic summaries can
only be executed symbolically. In the following, we use:
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• 𝐶 (𝜎) to denote the concrete execution of 𝐶 on the
concrete state 𝜎 ;

• 𝐶 (𝜎̂) to denote the symbolic execution of 𝐶 on the
symbolic state 𝜎̂ ;

• 𝐶 (𝜎̂) to denote the symbolic execution of 𝐶 on the
symbolic state 𝜎̂ .

While the concrete execution of a program 𝐶 on a state 𝜎
yields a pair consisting of a concrete state 𝜎 ′ and a return
value 𝑟 , the symbolic execution of a program or a summary
on a symbolic state 𝜎̂ yields a set of pairs, each consisting of
a symbolic state and a symbolic return value. Put formally:
𝐶 (𝜎) = (𝜎 ′, 𝑟 ) and 𝐶 (𝜎̂) = {(𝜎̂1, 𝑟1), ..., (𝜎̂𝑛, 𝑟𝑛)}. To simplify
notation, we use:𝐶 (𝜎̂) ⇝ (𝜎̂ ′, 𝑟 ) to mean that (𝜎̂ ′, 𝑟 ) ∈ 𝐶 (𝜎̂);
informally, this means that the symbolic state 𝜎̂ ′ and return
value 𝑟 are contained in the set of outcomes resulting from
the symbolic execution of 𝐶 on the symbolic state 𝜎̂
In the following, we use V̂ to denote the set of symbolic

values. Furthermore, we use Σ̂ to denote an any set of pairs
of symbolic states and symbolic return values.
We write 𝜎 ∈ J𝜎̂K to mean that the concrete state 𝜎 is in

the interpretation of the symbolic state 𝜎̂ . The interpretation
of a symbolic state 𝜎̂ is the set of concrete states that can
be obtained from 𝜎̂ by mapping the symbolic variables of 𝜎̂
to concrete values in a way that is consistent with its path
condition. For instance, if 𝜎̂ = ⟨𝜇, 𝑥 ≠ 0⟩, then the symbolic
variable 𝑥 cannot be replaced by 0 in 𝜇. Accordingly, the
interpretation function J.K :: S𝑦𝑚S𝑡 → P(C𝑜𝑛𝑐S𝑡) takes
as input a symbolic state and returns a set of concrete states.

Symbolic states as boolean formulas. In order to rea-
son about the correctness properties of a summary, we intro-
duce a lifting operator ⌈.⌉ :: P(S𝑦𝑚S𝑡) → F𝑜𝑟𝑚𝑢𝑙𝑎 that
transforms a set of symbolic states paired up with return
values into a boolean formula: ⌈Σ̂⌉ = 𝜑𝑠 , where we use 𝜑 to
range over the set of boolean formulas. The lifting operator
for symbolic states is formally defined as follows:

⌈Σ̂⌉ ≡
∨{

⌈𝜇⌉𝑚 ∧ 𝜋 ∧ (ret = 𝑟 ) | (⟨𝜇, 𝜋⟩, 𝑟 ) ∈ Σ̂
}

(1)

Essentially, a set of symbolic states is transformed into a dis-
junction of boolean formulas, each describing the execution
path of its corresponding symbolic state. The formula created
for each state has three components: (1) a memory compo-
nent ⌈𝜇⌉𝑚 describing the content of the symbolic memory, (2)
a path condition component 𝜋 , and (3) a return component
ret = 𝑟 describing the return value of the function in the
execution path that led to the given state. We use a dedicated
variable ret to refer to the return value of a function.

Finally, we use Φ and Φ̂ to represent the boolean formulas
that result from symbolically executing a concrete function
𝐶 and a corresponding summary𝐶 , respectively, in the same
symbolic state, 𝜎̂ .

4.1.1 Backward Soundness. A symbolic summary 𝐶 is
backward sound with respect to a concrete implementation

𝐶 , if and only if it holds that:

∀𝜎̂ . 𝐶 (𝜎̂) ⇝ (𝜎̂ ′, 𝑟 ) =⇒
∀(𝜎 ′, 𝑟 ) ∈ (𝜎̂ ′, 𝑟 ) . ∃𝜎 ∈ 𝜎̂ . 𝐶 (𝜎) = (𝜎 ′, 𝑟 ) (2)

A backward sound summary guarantees that, for any sym-
bolic state 𝜎̂ , the interpretation of the symbolic execution
paths generated by the symbolic execution of 𝐶 in 𝜎̂ is con-
tained in the set of execution paths produced by the concrete
execution of 𝐶 on the interpretation of 𝜎̂ . Consequently, for
the summary𝐶 to be backward sound, the implication Φ̂ ⇒ Φ
must be true.

4.1.2 Forward Soundness. A symbolic summary𝐶 is for-
ward sound with respect to a concrete implementation 𝐶 , if
and only if it holds that:

∀𝜎̂ . ∀𝜎 ∈ J𝜎̂K ∧ 𝐶 (𝜎) = (𝜎 ′, 𝑟 ) ∧ 𝐶 (𝜎̂) ⇝ (𝜎̂ ′, 𝑟 ) =⇒
(𝜎 ′, 𝑟 ) ∈ J(𝜎̂ ′, 𝑟 )K (3)

A forward sound summary guarantees that, for any symbolic
state 𝜎̂ , the set of execution paths produced by the concrete
execution of 𝐶 on the interpretation of 𝜎̂ , is contained in
the interpretation of the symbolic execution paths generated
by the symbolic execution of 𝐶 in 𝜎̂ . Consequently, for the
summary 𝐶 to be forward sound, the implication Φ ⇒ Φ̂
must be true.

4.1.3 Completeness. A symbolic summary 𝐶 is complete
with respect to a concrete implementation 𝐶 , if and only if
it satisfies both (3) and (2). A complete summary guarantees
that, for any symbolic state 𝜎̂ , the interpretation of the set
of symbolic execution paths generated by the symbolic ex-
ecution of 𝐶 in 𝜎̂ corresponds to the set of execution paths
produced by the concrete execution of 𝐶 on the interpreta-
tion of 𝜎̂ . Consequently, for the summary 𝐶 to be complete,
the equivalence Φ̂ ⇔ Φ must be true.

4.2 Generalized Properties
In practice, it is common to have summaries that are nei-
ther backward nor forward sound. This can happen due to
the nature of a target function forcing the corresponding
symbolic summary to be overly complex in order to satisfy
one of the foregoing soundness properties. If this is the case,
one can often obtain either soundness or precision if one
assumes that the function input satisfies some additional
constraints. To model this type of assumption, we introduce
generalized versions of the foregoing soundness properties
that allow us to account for additional constraints on the
function inputs. In the following, we will assume that the
additional constraints on a function’s input are expressed as
a formula 𝜌 and we write 𝜎 ∧ 𝜌 to mean ⟨𝜇, 𝜋 ∧ 𝜌⟩.

4.2.1 GeneralizedBackward Soundness. A summary𝐶
is considered generalized backward sound with respect to a
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concrete implementation 𝐶 and a predicate 𝜌 , if and only if
it holds:

∀𝜎̂ . 𝐶 (𝜎̂ ∧ 𝜌) ⇝ (𝜎̂ ′, 𝑟 ) =⇒
∀(𝜎 ′, 𝑟 ) ∈ J(𝜎̂ ′, 𝑟 )K , ∃𝜎 ∈ J𝜎̂ ∧ 𝜌K . 𝐶 (𝜎) = (𝜎 ′, 𝑟 ) (4)

A summary satisfies this property if the interpretation of
the symbolic execution paths generated by the symbolic ex-
ecution of 𝐶 in 𝜎̂ ∧ 𝜌 is contained in the set of execution
paths produced by the concrete execution of 𝐶 on the inter-
pretation of 𝜎̂ filtered by 𝜌 , meaning that we only consider
the concrete states in the interpretation of 𝜎̂ that satisfy the
predicate 𝜌 .

4.2.2 Generalized Forward Soundness. A summary 𝐶

is considered generalized backward sound with respect to a
concrete implementation 𝐶 and a predicate 𝜌 , if and only if
it holds:

∀𝜎̂ .∀𝜎 ∈ J𝜎̂∧𝜌K∧𝐶 (𝜎) ⇝ (𝜎 ′, 𝑟 ) ∧𝐶 (𝜎̂∧𝜌) = (𝜎̂ ′, 𝑟 ) =⇒
(𝜎 ′, 𝑟 ) ∈ J(𝜎̂ ′, 𝑟 )K (5)

A summary satisfies this property if the set of execution
paths produced by the concrete execution of 𝐶 on the inter-
pretation of 𝜎̂ filtered by 𝜌 , is contained in the interpretation
of the symbolic execution paths generated by the symbolic
execution of 𝐶 in 𝜎̂ ∧ 𝜌 .

4.2.3 Generalized Completeness. A symbolic summary
𝐶 is complete with respect to a concrete implementation 𝐶
and a predicate 𝜌 , if and only if it satisfies both (5) and (4). A
summary satisfies this property if the interpretation of the
symbolic execution paths generated by the symbolic execu-
tion of 𝐶 in 𝜎̂ ∧ 𝜌 corresponds to the set of execution paths
produced by the concrete execution of𝐶 in the interpretation
of 𝜎̂ filtered by 𝜌 .

4.3 Summary Validation Tool
The purpose of symbolic execution is to allow for the ex-
ploration and analysis of all possible execution paths in a
target program. As a result, this technique will often gen-
erate many more paths that what might be expected. For
this reason, even for seemingly simple symbolic summaries,
the tasks of summary debugging and correctness verifica-
tion, quickly become unfeasible to be carried out manually.
Given that our symbolic summaries are implemented in the
programming language of analysis (C), they can themselves
be symbolically executed as standard C code. To this end,
we implemented an auxiliary infrastructure, illustrated in
Figure 5, that works on top of the symbolic execution tool
AVD [12], to systematically evaluate a summary according
to the preceding correctness properties.
This validation tool achieves its goal in two main steps.

First, given a binary containing the implementation code
for both a target concrete function and the corresponding
symbolic summary, AVD will compute the boolean formulas

Φ and Φ̂with the selected symbolic input. These formulas are
in turn passed to an SMT solver that verifies the satisfiability
of the logical implications denoting correctness properties
(e.g, Φ̂ ⇒ Φ). However, due to the complex nature of sym-
bolic execution and summary debugging, it is often the case
that simply knowing whether or not a symbolic summary
satisfies a given correctness property is not enough. As a
result, the validation tool is also required to generate coun-
terexamples illustrating why a correctness property could
not be satisfied.

Verification Tool

Concrete
Function

Symbolic
Summary Binary AVD SMT Solver

Result

Output 
Result

Verify
implications

counterexample

Compute

Not
satisfiable

Symbolic
Input

Figure 5. Summary Validation Tool

5 Evaluation
This section answers the following three evaluation ques-
tions:
EQ1 What is the time performance overhead of tool inde-
pendent summaries?
EQ2 Is the symbolic reflection API sufficiently expressive
to allow for the writing of backward/forward sound sum-
maries?
EQ3 Can our summary validation tool be used to analyse
real-world symbolic summaries developed in the context of
other tools?

5.1 EQ1: Time Performance of Tool independent
Summaries

Wemeasure the difference in performance of C-implemented
symbolic summaries against that of natively implemented
summaries. For our evaluation, we selected a subset of the
libc summaries provided by the AVD tool [12], implemented
their corresponding C counterparts, and compared their re-
spective performances. AVD comes with 36 symbolic sum-
maries for libc functions implemented natively in Python.
Out of these 36 summaries, we re-implemented 15 summaries
directly in C using the exact same algorithms as their native
Python equivalents. Then, we used AVD to symbolically exe-
cute two data sets using both the natively-implemented and
the C-implemented symbolic summaries and measured their
respective performances.
In order to carry out our evaluation we require a sym-

bolic test suite in which to measure the difference in perfor-
mance between Python-implemented and C-implemented
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summaries. To this end, we have used two distinct symbolic
test suites, each with its own benefits. For the first test suite,
we used a subset of the challenge binaries from DARPA’s
Cyber Grand Challenge (CGC) [7]. These challenges were
designed for an automated CTF exercise, allowing us to eval-
uate our summaries with binaries that simulate real world
programs. For the second test suite, we have used a real-
world HashMap library implemented in C and obtained from
github [17]. The HashMap library did not come with sym-
bolic tests, meaning that we had to write our own symbolic
test suite. This allowed us to have complete control over the
size and complexity of the symbolic tests, enabling us to use
pure symbolic execution as the analysis mode. In contrast,
the CGC tests had to be run sing an heuristic for trace-driven
execution explained below.

Given a symbolic test suite, our goal is to characterize the
overhead incurred by executing AVD with C-implemented
summaries as opposed to natively-implemented summaries.
To this end, we measure for each symbolic test the number
of executed instructions pertaining to C-implemented sum-
maries and the total overhead. We then determine the best
linear unbiased estimator for the overhead per executed sym-
bolic summary instruction using a simple linear regression.
More concretely, for a given test, the summary overhead 𝑂 ,
can be written as:

𝑂 = 𝛼 . 𝐼𝐶 (6)
where the coefficient 𝛼 is the overhead per executed instruc-
tion of a C summary, and 𝐼𝐶 is the number of executed in-
structions of C-implemented summaries (𝑂 = 𝑡𝑃 − 𝑡𝐶 with 𝑡𝐶
and 𝑡𝑃 being the execution time spent on the C and Python
summaries respectively). To compute the best fitting coeffi-
cient 𝛼 for all tests, we use a simple linear regression.

Additionally, for a better understanding of the actual over-
head experienced from employing the C-implemented sum-
maries in a given data set, we also measure the global over-
head percentage, 𝐺%, for a test suit according to the expres-
sion:

𝐺 (%) =

∑𝑛
𝑖=1𝑇𝐶𝑖∑𝑛
𝑖=1𝑇𝑃𝑖

× 100 (7)

where 𝑇𝐶𝑖
and 𝑇𝑃𝑖 correspond to the total execution time of

a test, 𝑖 , using C and Python summaries respectively.

5.1.1 CGC Data set. The Challenge Binaries that serve
as the test bed for the CTF are tailor-made programs im-
plemented to contain a wide variety of known software
vulnerabilities. These challenges do not use the standard
libc runtime. However, they rely on various auxiliary func-
tions that can be mapped to standard libc functions without
damaging their functionality.
Due to the large size and complexity of most of the chal-

lenge binaries, the experiments for this data set where con-
ducted using AVD’s heuristic for guided symbolic execution,
which drives the symbolic execution engine along a specific
precomputed path. Every CGC challenge has at least one

Proof of vulnerability (PoV), which we use to generate an ex-
ecution trace that will trigger a vulnerability. Then, we feed
these traces to AVD to perform guided symbolic execution
along the path specified by the PoV.
The CGC dataset includes 246 challenge binaries from

which 218 use functions that can be mapped to libc equiva-
lent ones. These 218 challenges correspond to a total of 358
PoVs (recall that a challenge may be associated with more
than one PoV). We executed AVD on these 358 PoVs using
using both summary implementations with a maximum time-
out of 1 hour. Some of these PoVs where excluded from the
analysis: 88 PoVs timed out in both executions and 59 con-
tained features unsupported by AVD, such as floating point
operations, and multiple binaries, causing AVD to throw an
error. From the remaining 211 PoVs, we obtained 100 valid
executions, since 111 PoVs could not be analysed as they fall
into a current limitation of AVD’s trace-driven heuristic for
symbolic execution. Out of the remaining 100 valid PoVs, 10
where excluded as they did not call any summaries, and 3
were excluded for causing the symbolic execution to time
out, leaving us with 87 selected POVs. We plotted the sum-
mary overhead, 𝑂 , for all the 87 selected PoVs according to
the expression (6). Results are shown in the scatter plot of
Figure 6, where the 𝑥 axis corresponds to the number of exe-
cuted instructions pertaining to C-implemented summaries,
𝐼𝐶 , and the 𝑦 axis to the measured overhead, 𝑡𝐶 − 𝑡𝑃 . After
computing the linear regression to best fit all data, we obtain
a coefficient 𝛼 of 0.0005, which translates to an approximate
overhead of 0.5ms or half a millisecond per executed instruc-
tion of a C summary. As for the global overhead percentage
for this data set, we obtain a 𝐺% of 194%.
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Figure 6. Overhead scatter plot for the GCG dataset.

5.1.2 HashMap Library. To complement the results ob-
tained with the CGC binaries, we obtained a real-world
HashMap implemented in C from github [17] and wrote
a symbolic test suite for that library. This particular data
structure and implementation were chosen to maximize the
number of libc functions that can be replaced by our libc sym-
bolic summaries. Our test suite consists of 10 symbolic tests,
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which cover all the functions exposed by the library. We
focused on key-manipulating functions, which were tested
using symbolic keys instead of concrete ones.
To determine the overhead per instruction for this data

set, we executed the 10 symbolic tests using both summary
implementations with a maximum timeout of 30 minutes
per test. Again, we plotted the summary overhead, 𝑂 , for
the 10 test binaries, as none of the executions timed out. The
results are shown in the scatter plot of Figure 7. As before,
we use a simple linear regression to estimate the value of
the coefficient 𝛼 . Interestingly, the results for the HashMap
benchmark are consistent with those of the CGC benchmark
in that we obtain the exact same value for 𝛼 , 0.0005. This
result suggests an overhead of approximately half a millisec-
ond per executed instruction of a C summary that remains
consistent across different data sets and heuristics. Regard-
ing the global overhead percentage for this test suite, we
obtain a 𝐺% of 511%. As expected this value is substantially
larger compared to the CGC one, as this data set is composed
by much smaller tests denoting use cases of the HashMap
library, consequently spending a much larger portion of the
execution time inside summary calls.
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Figure 7. Overhead scatter plot for the Hashmap dataset.

5.2 EQ2: Summary Correctness
Our library of summaries models 20 libc functions from 3
different header files (string.h, stdlib.h and stdio.h) for each
of which we implemented several summaries satisfying dif-
ferent correctness properties, with a total of 57 summaries.
Considering two summaries that satisfy the same correct-
ness property, we say that one summary is more accurate
than the other if it is “closer” to satisfy the Completeness
property. For example, considering two backward sound sum-
maries, the more accurate summary models a larger number
of correct paths of the concrete function. All summaries are
named using a number suffix, which allows to organize the
summaries by correctness property and order of accuracy.

The correctness properties of all implemented summaries,
except those modelling I/O functions, are given in Table 2,

where the N/A column represents the summaries that only
satisfy generalized properties. These are further described
in Table 3, where we detail their corresponding generalized
properties. For instance, we have two forward sound sum-
maries (atoi2 and atoi3) for atoi and one generalized forward
sound (atoi1).

Table 2. Correctness properties of the implemented sum-
maries

N/A Backward
Soundness

Forward
Soundness Completeness

atoi 1 - 2, 3 -
memchr 1 2 3 4
memcmp 1, 2, 3 - 4 -
memcpy 1 2 - -
memmove 1 2 - -
memset 1 2 - -
strcat 1 2 - -
strchr 1 2 3, 4 5
strcmp 1, 2, 3 - 4 -
strcpy 1 2 - -
strlen 1 2 3 4
strncat 1, 2 3 - -
strncmp 1, 2, 3 - 4 -
strncpy 1, 2 3 - -
strpbrk 1 3 - 4
strrchr 1 2 3 4

Table 3. Generalized correctness properties of the imple-
mented summaries

Gen. Backward
Soundness

Gen. Forward
Soundness

Gen.
Completeness

atoi - 1 -
memchr - - 1
memcmp 2, 3 2, 3 1, 2, 3
memcpy - - 1
memmove - - 1
memset - - 1
strcat - - 1
strchr - - 1
strcmp 2, 3 2, 3 1, 2, 3
strcpy - - 1
strlen - - 1
strncat - - 1, 2
strncmp 2, 3 2, 3 1, 2, 3
strncpy - - 1, 2
strpbrk - - 1
strrchr - - 1

5.3 EQ3: Bugs in Symbolic Execution tools
We use our summary validation tool to find bugs in the sym-
bolic summaries included in tools other than AVD, more
concretely the symbolic execution tools angr and Manti-
core. In this context, we consider as a “bug” a summary that
does not satisfy any of the standard soundness properties
(backward or forward soundness), and for which there is no
additional information about the expected behaviour of the
summary regarding missing/incorrect paths. To this end,
we implemented a total of 14 summaries from both tools
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directly in C, using our reflection API and following their
original Python code. We then used our validation tool to
evaluate these summaries by comparing them against their
corresponding concrete implementations. Out of the anal-
ysed 14 summaries, we found two buggy summaries, one in
angr and one inManticore. Both summaries include spurious
paths and exclude correct paths, meaning that they are nei-
ther backward- nor forward-sound. Importantly, the code of
these summaries is not annotated with any comments clari-
fying the preconditions that must hold for the summary to
be applied; hence, we cannot say whether or not the authors
were aiming at a specific generalized property.

5.3.1 Bug in angr. The first detected bug occurs in angr’s
summary for libc’s strncmp function. In angr’s architecture
the strncmp summary provides the core functionality for
other string comparison summaries, as the implementations
for the strcmp, strstr and strcasecmp summaries will call the
parent strncmp summary.

All the possible execution paths for the strncmp function
can be divided into two main groups according to the re-
turned value: the execution paths where the return value is
equal to zero; and in contrast, the execution paths where the
return value is different from zero. angr correctly models all
the execution paths that return the value zero, accounting
for the cases where both strings are equal, both strings are
empty, or the argument 𝑛 is equal to zero. Regarding the
execution paths with a return value different that zero, i.e,
the cases where the input strings are different, using our
notation, angr will generate the following execution path
formula:

𝜑 = [𝜋 ∧ (ret = 1)]
where 𝜋 represents all the possible combinations for two
strings to be different. However, by having a fixed return
value of 1, the summary does not satisfy any of the standard
soundness properties, as this formula produces both missing
and incorrect executions paths. According to strncmp’s spec-
ification, this function should also return a negative value
when the first string is lower than the second. Assuming for
example two symbolic input strings of size 2, str1 and str2,
our validation tool will produce the following counterexam-
ples:

Missing : [𝑠𝑡𝑟1 = ‘𝑎𝑎’ ∧ 𝑠𝑡𝑟2 = ‘𝑏𝑏’ ∧ 𝑛 = 2 ∧ 𝑟𝑒𝑡 = −1]
Wrong : [𝑠𝑡𝑟1 = ‘𝑎𝑎’ ∧ 𝑠𝑡𝑟2 = ‘𝑏𝑏’ ∧ 𝑛 = 2 ∧ 𝑟𝑒𝑡 = 1]

5.3.2 Bug in Manticore. The second bug was found in
Manticore’s summary for libc’s strcmp function. In this tool’s
architecture strcmp is modelled using an if-then-else formula.
The summary iterates over the two strings to build a recur-
sive if-then-else formula over pairs of symbolic bytes. This
formula expresses that if two symbolic bytes are different
then the summary must return the difference of those bytes,
else, if they are equal, the summary must return the value 0
when they are the last two bytes of the string or continue

iterating otherwise. Consequently, it does not satisfy any
of the standard soundness properties since it does not take
into account that the symbolic bytes can also be null charac-
ters. For instance, considering two symbolic input strings:
𝑠𝑡𝑟1 = ’𝑠𝑦𝑚1|𝑠𝑦𝑚2| \0 ’ and 𝑠𝑡𝑟2 = ’𝑠𝑦𝑚3|𝑠𝑦𝑚4| \0 ’, our val-
idation tool will produce the following counterexamples:

Missing:[𝑠𝑡𝑟1 = ‘ \0 |𝐴| \0 ’ ∧ 𝑠𝑡𝑟2 = ‘ \0 |𝐵 | \0 ’ ∧ 𝑟𝑒𝑡 = 0]
Wrong: [𝑠𝑡𝑟1 = ‘ \0 |𝐵 | \0 ’ ∧ 𝑠𝑡𝑟2 = ‘ \0 |𝐴| \0 ’ ∧ 𝑟𝑒𝑡 = 1]

6 Conclusions
Symbolic summaries are a key element of modern symbolic
execution engines. They are an essential tool for both con-
taining the path explosion problem and modelling interac-
tions with the runtime environment. Even though the im-
plementation of symbolic summaries is time-consuming and
error-prone, there is still a clear lack of mechanisms and
methodologies for sharing symbolic summaries across dif-
ferent tools and for their uniform validation.
This thesis proposes a new methodology for developing

tool-independent summaries and semi-automatically vali-
dating them, which has at its core a new symbolic reflection
API for explicit manipulation of C symbolic states in a tool-
independent way. Using the proposed API, symbolic sum-
maries can be directly implemented in C and shared across
different symbolic execution tools, provided that these tools
implement the API. To demonstrate the expressiveness of our
API, we extended the symbolic execution tools angr and AVD
in order to support it and developed tool-independent sym-
bolic summaries for 20 different libc functions, comprising
string manipulation functions, number-parsing functions,
and input/output functions. Furthermore, we develop an
infrastructure for the semi-automatic validation of the sum-
maries written with our API and apply this infrastructure
to the validation of 57 libc summaries written by us and 14
summaries obtained from state-of-the-art symbolic execu-
tion tools. Our validation tool flagged two of the third-party
analysed summaries as being incorrect in that they both
exclude correct execution paths and include spurious ones.

6.1 Future Work
For future work we would like to extend our API with primi-
tives to interact with the execution environment of program.
This would allow for the implementation of summaries that
model system calls such as heap manipulation functions (e.g.,
malloc). Accordingly, we also would need to introduce new
correctness properties for evaluating such summaries.
Finally, we also believe that the interaction with the val-

idation tool can be improved. Currently, this tool must be
run with one symbolic input at a time. In the future, we plan
to extend the summary validation tool with support for it to
accept a range of symbolic inputs on which to evaluate the
given summary.
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