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Abstract— The work presented in this report belongs to the 

scientific field of electronic design automation, with a special focus 

on the automatic sizing of radio-frequency integrated circuit 

blocks. With the help of deep learning and, more specifically, 

artificial neural networks, a new approach is introduced and 

discussed. The approach proposed in this work is based on a 

supervised learning scenario using artificial neural networks both 

for classification and regression. A convergence classifier will be 

used to predict if a certain simulation is likely to converge or not, 

and a frequency guess predictor to predict the oscillating 

frequency. This method will be implemented and tested on voltage-

controlled oscillators’ optimizations, by learning from a dataset of 

previous performances obtained by the simulator. The studied 

voltage-controlled oscillator circuit topologies are evaluated under 

extreme operation, i.e., Process, Voltage and Temperature 

corners. It is expected that these networks filter and discard 

solutions with no valuable information for the optimization loop, 

and thus, greatly reducing the overall time of the optimization 

process. The result is a model that can predict non desired 

solutions, resulting in gains of almost 20% in overall simulation 

time, by discarding non valuable points. And it is able to correctly 

predict oscillatory frequencies, as the difference between these 

ones and the ones given by the simulator, reach values of mean 

absolute percentage error under 12%. Additionally, the use of this 

model does not compromise the results, as the ones obtained are 

very similar to the ones obtained without its use, and even better 

in some cases. The model demonstrates to be feasible for different 

optimization specifications, as well as for other examples of 

Voltage-Controlled Oscillators. The gains are similar, as the model 

is able to save 10% and 17%, respectively, and the results very 

promising, resulting in a model with a strong level of 

generalization 
Keywords—Artificial Neural Networks, Analog Integrated Circuits, 

Electronic Design Automation, Physical Design 

I. INTRODUCTION 

Electronic Design Automation (EDA) tools and design 

methodologies have been made available to cope with new 

capabilities offered by the integration technologies. However, 

there is still a huge discrepancy between the tools available for 

analog and digital integrated circuit (IC) design. The gap 

between the number of existing EDA tools for digital and analog 

circuits is usually explained by the fact that the digital market is 

much larger, absolving the available resources. It is also easier 

to express a digital system, which can be represented naturally 

in terms of Boolean representation, whereas, on the analog side, 

their design is less systematic, more knowledge-based, and more 

heuristic [1]. Even though analog circuits only occupy a small 

fraction of systems, they are responsible for design errors and 

expensive reruns. Therefore, economic pressure has motivated 

the pursuit of better methodologies to accelerate analog design.  

The automation level for analog IC has been improving in 

the last years, being a field of profound academic and industrial 

research activity, which produces significant advances [2]. 

However, it is still far from the push-button stage, which leads 

to designers exploring the solution space almost manually as 

there are no standard advanced analog EDA tools and 

methodologies to automate the analog IC design flow.  

On top of that, with predictions that more than half of new 

businesses will run on the Internet of Things (IoT) and advances 

in telecommunications, such as the 5th generation broadband or 

5G for short, there will be a huge demand for devices and 

sensors, opening doors to advances in areas such as healthcare, 

education, resource management, transportation, agriculture, 

and many other areas. Not only that, but there has also been an 

increase in the amount of data that is being continuously 

generated, resulting in new challenges within every part of the 

networks. Consequently, there is high pressure in today’s market 

for large communication rates, extensive bandwidths, and 

ultralow-power consumptions. This is where radio-frequency 

(RF) ICs come in hand, playing a crucial role. This demand 

stresses out the problem which resides in the remarkable 

difficulty of RF and Millimeter Wave (mmWave) IC design in 

deep nanometric integration technologies for both IoT and 5G, 

due to their high complexity and demanding performances. 

Aggravated by the need to fulfill these at minimal costs and 

under frightful time-to-market constraints. Some of the design 

difficulties lie in the exceptionally wide range of frequencies and 

dynamic ranges involved, but also: 

• Their dependence on non-reliable models of passive 

devices; 

• At gigahertz frequencies, there is a huge impact of 

layout parasitics; 

• Their integration in deep nanometer technologies that 

are bearing variability issues and non-idealities which 

have never been experienced in older technology 

nodes. 

One major objective for the design of modern RF ICs is to 

avoid the costs of redesign cycles, to diminish the post-



fabrication tuning, and pursue first-pass fabrication success. 

Until now, the circuit designers were able to carry this flow 

manually thanks to the vast Computer Aided Design (CAD) 

tools provided by companies, but this method is no longer 

manageable due to the number of complex interactions and the 

sub-optimal RF designs that come with it.  

Over the past few years, the entire IC implementation from 

digital flow to graphic design system design flows, where one 

uses primarily stand-alone synthesis, placement, 

and routing algorithms to IC construction and analysis flows 

for design closure, has gone through significant changes. When 

it comes to analog design flow, most of the time when designing 

an Analog Mixed Signal (AMS) IC manually, the designer still 

follows the steps introduced by Gielen and Rutenbar [3], 

illustrated in Figure 1. The methodology consists of a series of 

top-down design steps that are repeated from the system-level to 

the device-level, and bottom-up layout generation and 

verification. 

This document is organized as follows. Section II presents 

the state-of-the-art on analog IC sizing is presented, providing 

some insights on machine learning (ML) and some 

methodologies that are made to estimate applicability to analog 

IC automation. In Sections III and IV the artificial neural 

networks (ANNs) are described, presenting its development and 

training process for two voltage-controlled oscillators (VCOs). 

Section V presents the results of the implementation of the 

ANNs in the design of the circuits, where the results are analyzed 

and discussed. In Section VI the final remarks of the work and a 

brief discussion on future research directions is addressed. 
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Figure. 1. Steps when designing AMS IC manually. Reprinted from [4]. 

II. RELATED WORK & CONTRIBUTIONS 

For many years, humans have been trying to develop 

machines to help them in daily tasks, to reduce their workload, 

and to achieve better results. As the advances in technologies 

kept increasing, the need to develop more complex and 

automated machines kept growing. This led to the birth of ML. 

ML is an area of artificial intelligence (AI) that aims at building 

an expert system, focusing on the statistical properties of data. 

As each simulation made within an optimization-based loop 

is a time-consuming process, there has been a development in 

techniques to reduce the workload of the simulator. Particularly, 

ANN models have been extremely popular when addressing 

this problem.  

ANN, or simply called neural network, is an algorithm based 

on the way the human brain analyses and processes information. 

ANN consist of node layers, one input layer, one output layer, 

and at least one, hidden layer. Each layer connects to the next 

one through links with its associated weight and threshold. 

ANNs can build effective end-to-end ML systems, being an 

exceptionally flexible construct. Learning methods have been 

derived from ANNs such as Deep learning, which is extremely 

useful when a lot of data is available. 

In the work [5], presented in 2003, a neural network-based 

methodology is used to create fast and efficient models for 

estimating the performance parameters of Complementary 

Metal-Oxide-Semiconductor (CMOS) operational amplifier 

topologies. The results of both efficiency and accuracy of the 

obtained performance models were demonstrated in a generic 

algorithm-based circuit synthesis system. This tool is based on 

performance constraints that are defined by the user and aim to 

optimize a fitness function. The validation of the performance 

parameters of the synthesized circuits is done with SPICE 

simulations and then compared to the ones predicted by the 

neural network models. 

In the work presented in [6], it is used deep neural networks 

(DNNs) to replace SPICE. In addition to a Multiobjective 

Optimization (MOO), which is commonly used in analog 

circuits to identify the tradeoffs imposed by the designer 

specifications by using POFs, is used a Single-Objective 

Optimization (SOO). The ANN was trained using data obtained 

in the MOO phase, therefore requiring no additional step for its 

training. The ANN replaces the simulator in the later phase, in 

the SOO phase, reducing the performance evaluation time. 

The use of ANNs to find device sizing in analog IC is 

proving up to be a widely accepted approach and its use can 

learn and speculate circuit sizing when asked for some target 

specifications [7][8]. In [9] an ANN is developed to give the 

channel widths of all the transistors in a circuit when given the 

output specifications by the designer. The training phase data 

was performed with different SPICE parameters from the ones 

used in the test data to show the ability to give the transistor 

sizes of a circuit for new unknown technology, having no 

dependency on the SPICE parameters. As a method of 

validation, two circuits were used, current mirrors and a CMOS 

differential amplifier. For the first one, a general regression 

neural network was used, and the results showed that it can 

estimate the current mirror circuits transistor sizes for never 

seen technologies, having a 94% accuracy. For the second one, 

a multilayer perceptron and the results had an accuracy of 90%. 

In [10] to produce the sizing for a low noise amplifier, 

several ANNs are put in sequential order, having as input the 

intended performance. The results have shown good prediction 

accuracy, however, the train and tune of such a model have 

proven to be exceedingly difficult. Having only used 277 

handmade sizing solutions for the training phase, this one still 

needed an outer loop to acquire the model’s hyperparameters, 

which reflected in a train of over 5 hours on such a short dataset. 

In [11] the sizing for an amplifier is also predicted using ANNs 

when given its specifications. However, in this one, the model 

and training phases are different since the test was only 

performed on 10 samples from the original dataset, and there is 

not made evaluation on the performance and usability of the 

model for unknown target specifications. 

https://en.wikipedia.org/wiki/Routing_(EDA)
https://en.wikipedia.org/wiki/Design_closure


In the work [12], presented in 2019, a feed-forward time-

delay ANN is used to address one of the biggest concerns in 

today’s SoC design and verification, power consumption. 

Analysing power consumption is still an extremely hard task 

because of the dependency on time-consuming low-level 

simulations. The implementation of the ANN comes to increase 

the functional models of AMS blocks regarding information 

about their transient power consumption, where this one is 

trained and then translated into a behavioral modelling language 

that is tolerant to industrial circuit simulators. All of this, 

without the need to have manual interaction. To validate this 

approach, a low power relaxation oscillator was used, and the 

results confirm that the energy consumption has come close to 

the considered time range, having an error of only 2.7%, while 

the needed simulation time has diminished. 

As seen, ML and ANNs have been successfully used in the 

field of analog IC design automation. The Table 1 sums up all 

the contributions and applications discussed along this Section.  

While having the simulator as the evaluation engine is 

beneficial in both generality and accuracy, it suffers from 

demanding execution times. Researchers have been using ML 

to reduce the workload of the simulator, and both SVM and 

ANNs have shown to be very useful when optimizing 

simulation-based techniques. Thus, this makes the choice to use 

ANNs in this work, with the intent to enhance the optimization-

based sizing, in an attempt to complement the circuit simulator 

used.   
 Table 1 – Summary of Related Work Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. IMPLEMENTATION 

The work proposes the development of ANNs, namely 

DNNs, to enhance the current analog RF IC sizing optimization 

methodologies, given the sizing of the devices. The goal is to 

reduce the total effort of the evaluation engine, i.e., the 

simulator, by reducing the number of candidate circuit sizing 

solutions that are actually simulated. This is accomplished with 

the use of two ANNs, one classifier, and one regressor. As this 

work focuses on VCO circuits, the combination of these two will 

try to predict whether a certain solution can generate all the 

performances metrics, i.e., if it will “converge”, and when this is 

the case, at what frequency does the circuit oscillates. 

The optimization process is described in Figure 2, where the 

DNNs play the filter role of selecting from the candidate circuits 

the most likely to be useful to be presented to the simulator.  
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Figure. 2. Proposed Optimization 

The development of the ANNs is used, initially, to accelerate 

the optimization sizing process of a complex dual-mode class 

C/D VCO described in [13], where a schematic of the circuit is 

shown in Figure 3. 

 
Figure. 3. Dual-mode class C/D VCO schematic reprinted from [13] 

This circuit contains 43 devices, and there are 28 

optimization/design variables used in [13], such as devices’ 

widths, lengths, and number of fingers, whose sizes must be 

chosen in order to meet the desired circuit performances. The list 

of the optimization variables is shown in Table 2. 

Reference Application Method 

[4], 2003 
Simulation-

based Enhanced 
by ANN 

ANN 

[6], 2020 

Simulation-

based Enhanced 
by ANN 

DNN 

[7][8], 2018 - 2019 
Predicting 

devices size 
DL and 
ANN 

[9], 2008 
Predicting 

devices size 
ANN 

[10], 2015 
Predicting 

devices size 
ANN 

[11], 2017 
Predicting 

devices size 
ANN 

[12], 2019 
Other 

Application 
TDNN 



Table. 2. Optimization Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These optimization variables (which impact the sizing of the 

different devices) will be used as inputs for the ANNs, being 

these ones evaluated for 9 different tesbenches variations, i.e., 

typical, and extreme conditions. These different testbenches for 

extreme conditions are called PVT corners and are outlined in 

Table 3. 
Table. 3. PVT Corners considered 

 

 

 

 

 

 

 

 

 

Each sizing combination is simulated for each PVT corner 

and, a worst-case tunning range optimization is considered. The 

circuit is desired to oscillate between 3.9GHz and 4.8GHz, 

therefore the circuit will be optimized for two tunning modes, 

b0000 and b1111, for the values of 3.9GHz and 4.8GHz, 

respectively, generating for each simulation the performances 

illustrated in Table 4. This will result in 18 simulations, 9 for 

each tunning mode, where each one produces 10 performances 

values. 

 

 

Table. 4. Performances considered 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

It is necessary to prepare the dataset for each ANN. The 

tunning mode must be added to the input features, and for the 

regression ANN the PVT corner as well. Also, for the 

classification ANN, there is the need to label each PVT corner, 

corresponding to a binary classification of “converges” or not. 

To do this, the 10 performances for each PVT corner will have 

to be grouped up and according to the values of the 

performances the group will be labelled as “converge” or not, 

i.e., if there is at least one value that is equal to 0 or non-defined 

then it is labelled as “not converges”, otherwise it is labelled as 

“converges”. This process of data preparation must be done 

before training the ANNs. 

IV. ANNS STRUCTURE AND TRAINING  

For this work, the two ANNs that were developed have 

similar architectures, with some minor differences. All ANNs 

were implemented using Python language with the use of 

different ML libraries such as TensorFlow [14] and Keras [15]. 

The code was executed on an Intel® Core™ i5-8600K 6 cores 

CPU 3.60 GHz with 16 GB of RAM.  

A. Class-C/D VCO Classification 

The classification receives the device sizings and the tuning 

mode and will do a classification of “converges” or “not 

converges”, which is the classification of each possible 

candidate circuit sizing solution, as shown in Figure 4. Each 

output is classified based on the values of the performances 

produced, for each corner considered. If the values produced are 

all different than 0 it is classified as “converge”, otherwise as 

“not converge” and discarded. Obviously, the number of 

neurons in the input and output layers is determined by the 

number of features and the type of output pretended. In this 

work, the number of inputs will be the number of the devices 

Variable Units Min Grid Max 

Ind_radius µm 15 5 90 

Ind_nturns - 1 1 6 

Ind_spacing µm 2 1 4 

Ind_width µm 3 1 30 

mccl, m1l nm 60 20 240 

mccw, m1w µm 0.6 0.2 6 

mccnf, m1nf - 1 1 32 

mccm - 1 1 100 

moscapw µm 0.4 0.2 3.2 

moscapl µm 0.2 0.2 3.2 

mimvw, mimvl, 

mim1w 
µm 2 0.2 20 

r1l, r2l, r3l, r4l µm 1 0.2 10 

r1m, r2m, r3m, 

r4m 
- 1 1 20 

nfn1, nfn2, 

nfp1, nfp2 
- 1 1 100 

Name Process Voltage Temperature 

tt TT 0.35V 25°C 

ff FF 0.35V 25°C 

fs FS 0.35V 25°C 

sf SF 0.35V 25°C 

ss SS 0.35V 25°C 

300mV TT 0.3V 25°C 

400mV TT 0.4V 25°C 

M40dC TT 0.35V -40°C 

85dC TT 0.35V 85°C 

Measure Units Description 

fosc GHz 
Oscillation 

frequency 

PN@10kHz dBc/Hz 
Phase noise 

at 10kHz 

PN@100kHz dBc/Hz 
Phase noise 
at 100kHz 

PN@1MHz dBc/Hz 
Phase noise 

at 1MHz 

PN@10MHz dBc/Hz 
Phase noise 
at 10MHz 

Power mW 
Power 

consumption 

FOM@10kHz dBc/Hz 

Figure-of-

merit at 
10kHz 

FOM@100kHz dBc/Hz 

Figure-of-

merit at 
100kHz 

FOM@1MHz dBc/Hz 

Figure-of-

merit at 
1MHz 

FOM@10MHz dBc/Hz 
Figure-of-

merit at 
10MHz 



sizings, plus the tunning mode, and one output for each corner 

analyzed. The training process led to a model with its tuned 

hyperparameters described in Table 5 and the loss and accuracy 

of both training validation shown in Figure 5 and Figure 6. By 

analyzing the loss graphs as the epochs start increasing, the loss 

curve starts decreasing achieving its best result on the last 

epochs. At this point, the training curve starts to get lower than 

the validation one, hence the need to stop rests there, otherwise 

the model would start to overfit. As for the accuracy graphs, the 

same results are observed, as the epochs increase the value gets 

better, in this case it goes higher, which means that the model 

learns to predict the status of the corners more correctly.  

 
 Table. 5. Summary of the Classification Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Class-C/D VCO Regression 

The regression, besides having the same inputs as the 

classification, have one additional input, the corner to be 

considered. The output will determine the oscillatory frequency 

for that specific corner and tuning mode, as shown in Figure 7. 

Having tested and tuned all the hyperparameters, the ANN was 

trained, and its architecture and parameters are showed in the 

Table 6. The results of the metrics used for both the training and 

validation are shown in the Figure 8, Figure 9, and Figure 10. 

Analyzing the graphs, the model learns to predict the oscillatory 

frequency, having a lower error value as the epochs keep 

increasing, up to the point where the model stops training since 

an overfit would occur if it would continue. 
 

Table. 6. Summary of the Regression Model 
 

 

 
Figure. 7. Regression ANN 

   

 

 

 

 

 

 

 

 

 

 

Hyperparameter Value 

Input Layer 1 Layer (30 neurons) 

Hidden Layers 200,150 neurons 

Output Layer 1 Layer (1 neuron) 

Activation 

Functions 

Leaky ReLU and 

Linear 

Optimizer Adam 

Regularizer 
Dropout (drop rate = 

20%) 

Loss Function MSE 

Learning Rate 0.0008 

Epochs 100 

Batch Size 256 

Normalization Min Max (1,2) 

Hyperparameter Value 

Input Layer 1 Layer (29 neurons) 

Hidden Layers 200,200,250 neurons 

Output Layer 1 Layer (9 neurons) 

Activation 
Functions 

Sigmoid 

Optimizer Adam 

Regularizer 
Dropout (drop rate = 

20%) 

Loss Function Binary Crossentropy 

Learning Rate 0.003 

Epochs 200 

Batch Size 256 

Normalization Min Max (0,1) 

Figure. 4. Classification ANN 

Figure. 5. Training and 

validation loss 

Figure. 6. Training and 

validation accuracy 

Figure. 8. Training and 

validation MSE 

Figure. 9. Training and validation 

MAE 

Figure. 10. Training and 

validation MAPE 



C. Class-B/C Hybrid-Mode VCO  

The results regarding another circuit, Ultralow-Power 

Complementary Class-B/C Hybrid-Mode VCO, illustrated in 

Figure 11, are presented, following the logic that was used in 

the previous section. This circuit was designed for 4.2 to 5.1 

GHz Ultralow-Power in a 65-nm CMOS node, having a total of 

22 optimization variables, being simulated for 9 different 

testbenches variations [16]. For this new circuit, the objective 

is to use the same model as the one used before. Nonetheless, 

new models have also been trained with its specific 

hyperparameters for this circuit topology, and the results are 

compared with the first models for the Class-C/D VCO. 

 

 

 

 

 

 

The comparison between both models, show that results are 

marginally different, and so it was proven that the time spent on 

studying the model for one circuit, does not need to be wasted 

for a second one, since the model has a high level of 

generalization, and so is able to present very optimal results 

when applied to a different VCO. 

V. EXPERIMENTAL RESULTS 

To test different approaches, a different threshold, used to 

determine if the points will be presented to the simulator, was 

tested and the results analyzed. Not only did the threshold came 

from the usage of the classification ANN, but also from the 

regression one. 

To start the experiments, the threshold was set to 50%, and 

to make the conditions identical, it was used the same 

configuration of the optimization without the ANNs, using a 

population of 256 elements and a total of 150 generations, and 

the results were obtained with and without the use of the 

Regression ANN. 

A. 50% Threshold 

To start off, the directive to allow the points to be simulated, 

was a naive approach starting with a 50% threshold, meaning 

that if the classification ANN predicts, for a given point, that 

more than half the PVT corners converge, then that point is 

simulated, otherwise discarded. With this defined, an 

optimization was conducted, and the points simulated and 

discarded computed, arriving to the ratio of points simulated 

and not simulated illustrated in Figure 12. This graph shows 

that, from the total points that were supposed to be simulated, 

18.65% of them were discarded by the ANNs, meaning that 

almost 20% of the total time required for the optimization was 

saved with the use of ANNs. Since the optimization without the 

use of these models lasted 25 days, with the use of these, almost 

5 days were economized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Impact of the Regression ANN 

To prove the value and use of the regression ANN, this one 

was removed from the implementation, and another 

optimization with the same characteristics, a population of 256 

elements that were optimized for 150 generations, was 

conducted. This led to a discard of almost 30% of the total 

points that would be simulated, as 28.23% of the total points 

were discarded, which was higher than the previous results, as 

the Figure 13 shows. This increase in points discarded can be 

explained since, without the regression ANN, the simulator was 

not able to come up with the best oscillatory frequencies, and 

so the points that progressed during the evolution of the 

generations, were not so optimized, hence more solutions were 

discarded by the classification ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal points for each optimization, with and without 

the use of the regression ANN, were retrieved and a POF was 

obtained. These two POFs were then compared against the POF 

obtained without the use of the ANNs, considered the reference, 

as depicted in Figure 14. As the results show, the use of the 

regression ANN proves to be valuable since that, even though 

its corresponding POF shows that the solutions obtained have 

better results in terms of phase noise, however, in terms of 

power the results are considerably worse, never achieving 

values lower than 1.30E-03. Where with the use of the 

regression, the POF obtained is very similar to the reference 

one.  Some solutions have worse values of power, however 

there are some that achieve values lower than 9.00E-04, and 

better results in terms of phase noise, reaching values of -

136.00. Therefore, the use of the regression ANN proves to be 

essential, as it helps the simulator to converge thanks to the 

predicted value of the oscillatory frequency. 

 

Figure. 11. Ultralow-Power Complementary Class-B/C 

Hybrid-Mode VCO topology. Reprinted from [16] 

Figure. 12. Ratio of points discarded using a 

value of 50% threshold 

Figure. 13. Ratio of points discarded without 

the use of the regression ANN 



C. 75% Threshold 

Next, the threshold was defined to 75%, being this value 

more rigid and so it is expected that the number of points 

discarded is higher. The same configuration for the 

optimization was used, and so the points simulated were 

computed, reaching to the ratio showcased in Figure 15. As 

expected, the efficiency of the classification ANN was higher, 

as the points discarded were higher than the results before, 

reaching a value of 19.65% of points discarded from the total 

points that would be fed to the simulator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To conclude, the resulting POF was extracted and again 

compared with the reference one as illustrated in Figure 16. The 

results show that the points obtained were again very similar to 

the references one, even reaching values of power and phase 

noise better than the reference one. In terms of power, all the 

values are lower than 7.91E-04, and lower than -134.19 in terms 

of phase noise.   

 

 

To sum up, the results show that the ANNs are 

accomplishing what is expected, discarding unwanted 

solutions, being each ANN indispensable. They show apt to 

perform optimizations in less time, without compromising the 

results. 

D. New Specifications 

To prove the efficiency of the ANNs with different changes 

within the same circuit, a new test was made, and the ANNs 

were faced upon a new setup where the specifications for the 

circuit were slightly different. For this setup, the circuit was 

meant to operate at 2.4GHz, having a range of frequency from 

2.3GHz to 2.5GHz, and the constraints of the phase noise were 

changed, being the new ones tighter in 5dBc/Hz. 

Having all prepared, a new optimization was executed, 

using a population of 256 elements for 200 generations, and the 

ratio of the points simulated and discarded was produced as 

Figure 17 illustrates. The number of points discarded was low, 

having a value of only 9.51%, which can indicate immediately 

that the efficiency of the ANNs were poorer. 

 

 

Even with a low number of points discarded, the optimal 

points obtained could present good values, and so the POF was 

retrieved and compared with the one obtained without the use 

of the ANNs. Analyzing the results, one can observe that the 

POF obtained while using the ANNs has better results in term 

of phase noise, as the solutions are always lower than -138.50. 

However, that's not the case when looking at power. The values 

are higher, achieving results that don’t get lower than 6.00E-04, 

while the ones without using the ANNs, are lower, where the 

values of power never reach 5.00E-04, as observed in Figure 

18. 

 

Ultimately, the results are acceptable, with a reduction of 

almost 10% of the time, which corresponds to a reduction of 

almost 3 days since the optimization took about 26 days to 

complete without the use of ANNs. Even though, the POFs are 

slightly distanced, the optimal points retrieved proved to be 

better regarding the phase noise, with slight inferior results in 

Figure. 14. Comparison of POFs obtained with a value of 50% 

threshold and with and without the regression ANN versus the 

original  

 

Figure. 15. Ratio of points discarded using a 

value of 75% threshold 

Figure. 16. POF obtained with 75% threshold 

Figure. 17. Ratio of points discarded for the new 

specifications 

Figure. 18. POF obtained with the new specifications 



power. This can lead to the deduction that, the ANNs do 

perform well when facing different specifications, and so, is 

possible to use already trained ANNs for different 

configurations for the circuit that they were trained for.      

 

E. Ultralow-Power Complementary Class-B/C Hybrid-Mode 

VCO 

Finally, the ANNs were implemented in the second circuit, 

the Class-B/C VCO. The same approach was used as the one 

used for the Class-C/D VCO, and so it was performed an 

optimization and the number of points that were simulated were 

extracted. For this circuit, the configurations were changed, as 

the ones used without using the ANNs were also modified, and 

so, a generation of 256 points was used, and it was performed 

an optimization for 97 generations. As  Figure 19 shows, from 

the total points that were simulated, 17.27% were discarded, 

being this number close to the 19.65% that was obtained for the 

first circuit, the Class-C/D VCO, with a value of also 75% 

threshold. Since the optimization without using ANNs took 25 

days, by using these ones, more than 4 days were economized.  

 

 

To prove the validity of the results, the POF was obtained, 

and it was compared against the one without the use of ANNs, 

named reference, as showed in Figure 20. The results show to 

be very promising, as the values of power obtained are lower, 

being close 1.50E-04, as the ones obtained without using the 

ANNs are closer to 2.00E-04. Regarding phase noise, the results 

are very similar, even recording three points that reach values 

lower than –130.55, whereas in the reference POF the results 

never get lower than this value. 

VI. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS 

This Section exposes not only the conclusions of the work 

done on this dissertation, but also the aim of the project for 

further optimizations and use of ANNs applied to analog IC 

sizing. 

The work here exhibited, showed an approach to optimize 

the sizing of analog IC circuits with the help of two ANNs, one 

classification and one regression. They both proved to be 

essential, as the use of the classification and regression ANN 

discard unwanted solutions, and the use of the last one makes 

the results even more accurate and approximate to the ones 

obtained at the first place, therefore reducing the whole 

optimization process. 

Two circuits, with the same constraints, were studied, and 

its design optimized. The first one was a Class-C/D, where 

thanks to the ANNs, it was possible to reduce almost 20% of 

the optimization process, without compromising the results. 

The optimal points obtained were very similar, even better in 

some cases, to the ones retrieved without using the ANNs. For 

the same circuit, the ANNs also proved to work for different 

specifications, however with less efficiency, as the time saved 

was close to 10%, and the solutions obtained better in some 

cases, but worse in other. 

A second circuit, an Ultralow-Power Complementary Class-

B/C Hybrid-Mode VCO, was analyzed and optimized, having 

the intention to use the same ANNs used for the previous 

circuit, the Class-C/D. To do so, a careful study was again 

made, using the same logic used for the previous circuit, and 

the new models obtained were discussed and compared with the 

previous ones. The results were marginally different, proving 

that, there is no need to spend time training new ANNs, and so 

emphasizing the generalization of these ones. The design of this 

circuit, was successful, reducing almost as much time as for the 

first circuit, and its optimal points showed very promising 

results.  

To sum up, the results proved that the ANNs not only show 

to be very useful when designing a circuit, but also, for a 

different one, of the same type, without having the need to do 

an additional train of the ANNs. However, the results for a 

different specification fall somehow short of the ones expected, 

as the model implemented is not able to achieve its best results. 

This work proved that the use of ANNs reduce the time to 

design an analog IC, even if the effort required for their training 

must be taken in consideration. Having this thought in mind, it 

is possible to take a step further. 

First of all, even though the ANNs prove to have a high level 

of generalization towards different types of VCOs, there is still 

required time to train these ones. A future objective would be 

to reduce this time, which would be possible with additional 

computation resources. In this work, the training of the ANNs, 

was performed with human interaction, where each 

hyperparameter was optimized manually.  On a future 

perspective, this process could be optimized by using 

algorithms finding the best values for the hyperparameters, 

resulting on an even further reduction in time.  

On a second approach, the training of this ANNs was 

executed using a dataset that was given, so this one was already 

known and well defined. However, with the ANN architecture 

well defined, the implementation of the models can be used 

without the need for the complete dataset at the beginning, and 

therefore the train of the ANNs would not be done before, but 

as part and during the optimization process. This would work in 

a dynamic way, such that the ANNs could be implemented in 

the optimization loop, and they would be trained during its 

process, resulting at first, on using only the normal procedure, 

without the ANNs, and as soon as the accuracy of the ANNs 

Figure. 19. Ratio of points discarded for the new circuit 

Figure. 20. POF obtained for the Class-B/C 



would be high enough, they would start to be used and therefore 

to reduce the optimization time.  

One challenge that comes with this approach, is the 

flexibility that the ANNs would have to show when facing small 

samples of data and be trained fast and accurate enough for the 

process to be worth its implementation. 
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