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Abstract—Transprecision computing is currently viewed as a
possible potential paradigm to increase performance and energy
efficiency in modern computing systems, by allowing the floating-
point precision to be tuned to the application requirements.
However, most attempts at deploying transprecision architectures
often rely on mutliple different modules to provide support for
different precisions, leading to a waste of hardware resources
and power. While variable-precision and vectorized architectures
have been explored in the past to mitigiate this issue, they often
have to rely on the IEEE-754 standard and lack support for low-
precision arithmetic. To that end, the recent Posit number system
presents a non-uniform encoding that is particularly well-suited
for low-precision arithmetic. However, for higher precisions it
often incurs in prohibitive hardware requirements. In this paper,
it is proposed a new unified Posit/IEEE-754 Vector Multiply-
Accumulate Unit, with variable-precision and SIMD computing
capabilities. It implements a fully vectorized datapath with
variable-precision arithmetic with a unique shared support for
the Posit and IEEE-754 formats. A 28nm ASIC implementation
results in 50% less area and 2.9x less power consumption, when
compared to typical transprecision systems setups.

Index Terms—Floating-point arithmetic, Posit, IEEE-754,
Variable-Precision, SIMD, Transprecision Computing

I. INTRODUCTION

Transprecision computing [1] has received a gradually in-
creasing attention as a viable paradigm to cope with ever
increasing performance and energy efficiency demands in
modern computing systems. It is set on the principle that
different application domains have different precision require-
ments (e.g., while physics simulations may require higher
than 64-bit precisions [2], some deep learning applications
may be executed with as low as 4-bit precisions [3]). To
that end, several recent studies [4—13] have shown that by
lowering floating-point (FP) precision (as much as allowed by
the application requirements) it is possible to reduce: i) the
chip area per arithmetic operator, allowing the released area
to be used for additional computing and storage resources;
and ii) the total memory storage requirements per operand,
boosting the effective memory bandwidth, in turn, allowing
an increased computing throughput.

However, most transprecision hardware solutions [14] rely
on the instantiation of multiple modules to support differ-
ent precisions, which leads to an increased chip area for
FP arithmetic. However, even if the non-used modules are
disabled when a given precision is considered, it still results

in a waste of computing resources [15]. To tackle this issue,
recent variable-precision arithmetic units [15-17] introduce
dynamic datapaths that can operate in multiple and different
precisions, while sharing the same hardware resources. To do
so, they deploy a higher precision arithmetic logic (e.g., 32-
bit) and allow parts of the circuit to be turned off to lower
the operand precision by as much as it is required by the
application (e.g., to 8-bit or lower [3]). While this approach
has been recognized to provide significant chip area reductions
and to enable straightforward Single-Instruction Multiple-Data
(SIMD) capabilities [16], existing solutions are often limited
by their adoption of the IEEE-754 standard [15], whose lowest
supported precision has as much as 16 bits.

Alternatively, some variable-precision solutions [16, 17]
have been adopting the Posit format [6], mainly due to its
low-precision computation capabilities and its fully parame-
terizable precision and dynamic range (exponent size). The
Posit format is also particularly suited for fused operations,
since it adopts an exact accumulator structure (quire) with
enough precision to avoid overflow and accuracy losses [18].
While Posit-based implementations traditionally define and
fix its parameters at design-time [9, 11, 12, 19, 20], it has
been shown that it is possible to support runtime-configurable
exponent sizes with minimal hardware overheads [13]. This
allows making use of the entire representable dynamic range
for a given posit precision by specifying the exponent size
of the input values. In turn, it also provides the possibility to
encode a larger dynamic range, capable of supporting (within
the same hardware) both values with high decimal precisions
and very large magnitude.

Nevertheless, while the above-mentioned features make
posits very-well suited for low-precision arithmetic and trans-
precision computing, the hardware overhead associated with
the quire becomes prohibitive when the precision and ex-
ponent size increase [19, 20] and they still lack support in
standard compilation frameworks. On the other hand, when
considering the adoption of the transprecision paradigm on
general-purpose computing contexts, it is desirable to maintain
compatibility with the standard IEEE-754 format, as it still is
the most established FP format.

In accordance, this paper proposes a new Posit/IEEE-754
Vector Multiply-Accumulate (VMAC) unit for transprecision
computing. Besides combining variable-precision arithmetic



and SIMD capabilities, it takes a step further from existing
solutions by deploying a unified support for the IEEE-754
and Posit formats. The proposed unit introduces the following
contributions and features:

« an efficient variable-precision FP multiply-accumulate
32-bit architecture, especially designed for transprecision
computating;

« a unified FP arithmetic architecture compatible with both
the IEEE-754 and the Posit formats with support for inter-
format operation and conversion;

» a fully vectorized datapath to efficiently make use of
the hardware resources that are released in low-precision
computing scenarios;

o SIMD decoding/encoding modules with shared support
for FP vectors encoded with i) dynamic posit formats with
configurable exponent size; ii) IEEE-754 standard and
ultra-low precision non-standard formats; and i) multiple
scalar and vector element precisions (including, 32/16/8-
bit scalars and 2x16/4x8-bit vectors).

Finally, when implemented in a 28nm ASIC technology, the
proposed VMAC results in 50% less area and 2.9% less power
to achieve the same multiple-precision functionality when
compared with other transprecision architectures [14], while
supporting a unified FP format with dynamic configuration.

II. BACKGROUND
A. IEEE-754 Standard

The IEEE-754 Standard [21] defines a FP number consisting
of three fields — sign (S), biased exponent (E) and mantissa
(M). The value of a normal number is given by

(1) x 2E-Pias 1. M, (1)

where bias is the exponent bias value. Although the standard
defines several precision formats, including half-precision (16-
bit), single-precision (32-bit), and double-precision (64-bit), it
does not define a low-precision 8-bit format. However, since
the proposed architecture supports 8-bit posits, it is adopted a
8-bit float format with 4 exponent bits and 3 mantissa bits for
comparison purposes.

B. Posit Number System

The posit number system is defined by the pair <n, es>,
where n represents the word size (precision) and es is the
maximum exponent size. Eq. 2 depicts the Posit encoding:

sign regime exponent fraction
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nbits

Similarly to floats, posits include the sign, exponent, and
fraction with an additional field called regime. Whenever the
sign bit corresponds to a negative number, it is necessary to
take the 2’s complement before decoding the remaining fields,
contrarily to floats. The regime comes after the sign bit and
is a variable-sized field, whose encoded value (k) is given by
the run length of 1s or Os in the regime bits.

Together with the exponent field, the k£ encoded in the
regime represents the scale factor of the represented value,
equivalent to the exponent of floats. As a consequence of the
variable-sized regime, the exponent and fraction contents are
unknown before decoding the regime. Depending on the run
length, they can be partly (or fully) left out of the binary
encoding. Accordingly, a number encoded as a posit has a
decoded value P given by:

p= (_l)sign % 26xp+k2” % lf (3)

Additionally, the posit format also defines special encod-
ings. A single representation for O (all O bits) and Not-a-
Real (NaR) (1 followed by all O bits). The latter comprises
all mathematical exceptions.

The posit format makes use of a 2’s complement fixed-
point accumulator (quire) based on the Kulisch accumulator.
It can store sums of products of posits without rounding and
accuracy loss. However, as with other long accumulators, it
has a considerable hardware overhead. It is constituted by 4
fields: sign, carry guard (cg), integer (int) and fraction (frac).
The quire size is given by:

quire size =1+cg+2°* x (n-2) “4)

However, when considering the use of a quire, it must be
carefully dimensioned as tends to grow exponentially with the
considered exponent size and precision [20].

III. PosSIT/IEEE-754 VMAC ARCHITECTURE
A. Overview

The herein proposed VMAC architecture (depicted in Fig. 2)
takes a step further from existing multiple-precision arithmetic
units not only by combining variable-precision arithmetic and
dynamic vectorization capabilities, but also by providing an
unified support for the Posit and IEEE-754 FP formats. Ac-
cordingly, the proposed unit features the following properties:

Posit-based Variable-Precision Architecture: The pro-
posed unit features a 32-bit posit fused multiply-accumulate
datapath. All modules are designed to allow reducing their
arithmetic precision at runtime to alternate between 32, 16,
and 8-bit operations (as illustrated in Fig. 1.A). To mitigate
the hardware overheads associated with the use of a quire,
the proposed unit only provides exact accumulation for low-
precision scenarios with standard [18] 8-bit posits (es = 2)
and an 128-bit quire (as opposed to 512 bits for 32-bit posit
accumulation). As such, a scale factor value is paired with the
quire to ensure the correct representation of accumulations for
all the supported precisions.

Dynamic Vectorization: All arithmetic operators and
logic modules are fully vectorized and configurable at runtime
to support 1x32-bit, 2x16-bit, and 4x8-bit vector operations
within the same hardware (see Fig. 1.B). This allows re-
sources that are freed (when precision is reduced) to be
reused for additional parallel computations, in turn offering
increased throughput. To support the introduced variable-
precision vectorization, input 32-bit vectors are decoded into
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Fig. 1. Proposed VMAC (A) variable-precision and (B) vector datapath
configuration schemes, together with the (C) encoded/decoded FP and quire
vector data formats. Grey areas represent unused bits.

three unified vector formats that gather the sign (s), scaling
factor (or exponent - sf), and fraction (f) that compose each
vector element precision, according to the (—1)% x 257 x 1.f
generic exponential format (see Fig. 1). These vectors are also
paired with additional flag vectors to represent mathematical
exceptions.

Variable-Exponent Posit Configuration: Posit exponent
size can be defined at runtime (instead of being fixed at
design-time), allowing most of the dynamic range for a given
posit precision to be representable. Since, as mentioned above,
the quire is already paired with a scaling factor value, the
arithmetic logic can already support dynamic ranges larger
than that which can be represented by the quire precision.
Accordingly, it is only necessary to include a set of shifters
to decode/encode the posit format according to the configured
exponent size (described below).

FP Format Unification: While the Posit and IEEE-754
formats are fundamentally different in their representation,
after being decoded, both represent a FP number in the
generic exponential format. As such, the logic to perform
multiplication and addition/subtraction operations is virtually
the same for both formats. Conversely, to add IEEE-754
support in a Posit base architecture, it is only necessary to add
minimal decoding/encoding logic and detection for IEEE-754
mathematical exceptions (not represented in the Posit format).
For the particular case of 8-bit precision operations, to match
the equivalent Posit precision, it is also adopted a 8-bit format
(since the IEEE-754 standard does not define lower than 16-bit
precisions).

Inter-format Operation and Conversion: The intro-
duced unified FP format allows the proposed unit to perform
inter-format operations between equivalent Posit and IEEE-
754 precisions. Since the unit’s internal representation is
compatible with both formats, it is only necessary to decode
each operand according to their specific format (controlled
by dedicated configuration signals - see below). Similarly, the
format of the output can also be configured independently of

the input formats. As such, it is also possible to perform
conversions between formats (with or without performing
arithmetic operations).

B. Proposed Architecture

The proposed VMAC unit (depicted in Fig. 2) comprises a
fully pipelined architecture, supporting variable-precision and
vector FP addition, subtraction, and multiplication, together
with fused multiply-add and multiply-accumulate operations.
Accordingly, the unit deploys a 32-bit SIMD datapath with
unified support for Posit and IEEE-754 FP formats, imple-
mented by a 6-stage pipeline : i) Decode; ii) Multiply;
iii) Quire (Scale + Accumulate); iv) Normalize; and
v) Encode. The unit accepts three input operands (V,, Vj
and V.), and outputs one result vector (V,), and is capable of
operating with 32/16/8-bit scalar values or with 2x16/4x8-bit
vectors.

The following paragraphs describe each pipeline stage in
detail.

Unified Decode: The Decode stage comprises three equiv-
alent vectorized decoding modules (one for each input value
- see Fig. 3.A). Each decoding module contains the necessary
logic for decoding FP vectors represented in the supported
Posit and IEEE-754 formats, to their corresponding s, s f,and
f fields. The FP, precision, and data formats are selected
according to a set of control signals paired with the input
value (see below).

For the IEEE-754 format, the three fields are extracted and
a bias is subtracted from the exponent value, according to
the configured precision. Conversely, for the Posit format, it
is taken the 2’s complement according to the sign bit. Next,
the regime run-length is decoded by means of a leading zero
counter (LZC) is used (if the run-length starts with ’1° the
value is first inverted). Then, k is calculated and the regime
is shifted out of the value, and shifted once again according
to the dynamically configured exponent size. Finally, the k
value is added with the exponent to obtain sf, and a ’1’ bit
is concatenated with the fraction to obtain f.

Multiplication: The Multiply stage performs imple-
ments a variable-precision/vectorize FP multiplier. Multipli-
cation is performed between the decoded V, and V; values
while propagating V. to the next stage. To do so, the fraction
product is performed with a 4x4 structure of 8-bit radix-4
Booth multipliers, generating 16 partial products in carry-save
format. These partial products are gathered through a Wal-
lace tree-like structure, resulting in a 64-bit value. Variable-
precision and/or vectorization are applied by only enabling
the required multipliers. The scaling factor vectors are added
with vectorized carry-lookahead adder, capable of breaking its
carry-chain to perform lower-precision parallel additions. The
sign vector is generated by performing a bitwise XOR of the
input vectors.

Quire Scale and Accumulate: To mitigate the critical
path associated with the Posit quire structure, the Quire
module is subdivided into two pipeline stages, Scale and
Accumulate. In this module, the operands (V. and the
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Fig. 3. Unified FP (A) decoding and (B) encoding modules, providing an unsigned value. Next, the number of positions to normalize

simultaneous support for Posit and IEEE-754 vector formats.

product from the previous stage) are first converted to a 128-bit
fixed-point quire format vector, paired with a scale factor vec-
tor (see Fig. 1.C). This format was particularly dimensioned to
provide a three-fold advantage over existing solutions, by: i)
supporting higher posit exponent values without increasing the
size of the quire; ii) keeping the hardware associated with the
quire to a minimum, while still assuring exact accumulation
for low-precision 16/8-bit Posit formats [18]; and iii) provide
enough precision to allow operations over values encoded with
the IEEE-754 standard.

Accordingly, in the Scale stage the necessary conversion
is done by first taking the two’s complement of the fraction
vectors and sign-extending them according to the precision.

the quire is obtained with a vectorized LZC. The obtained zero
count is used by a left shifter to align the unsigned quire vector.
Any discarded bits are condensed in a sticky vector. Finally,
the scale factor is obtained by adding the quire scale factor
and the zero count with an offset (due to the quire conversion).

Unified Encode: Similarly to the Decode stage, Encode
stage also provides the necessary logic for encoding the pro-
posed unit output vectors to the Posit and IEEE-754 formats
(see Fig. 3.B). The logic is fully vectorized and translates the
s, sf, and f vectors of the result to the configured FP format
vector. For the IEEE-754 format, the bias corresponding to
the value precision is added to the scale factor and the value
is verified, adjusting the fraction for subnormal numbers.
Afterwards the vector fields are concatenated and the fraction
is rounded. The correct result is then selected between the
rounded result, zero, infinity or canonical NaN, according to



the flags generated by previous stages.

For the Posit format, sf and f are first concatenated and
the k value is taken out with a vectorized barrel shifter,
according to the exponent size. The k value’s 2’s complement
is taken and the regime is shifted-in to sf and f, according
to k’s sign. The resulting binary value is then rounded and
the 2’s complement is taken according to s, and the sign is
concatenated.

IV. IMPLEMENTATION RESULTS

This section presents the main implementation results of the
proposed Unified Posit/IEEE-754 VMAC unit and discusses
them when compared to reference designs and solutions from
the literature. A case is also made regarding its implementation
in transprecision computing systems.

The 32-bit vector MAC architecture of the proposed unit
was successfully implemented in RTL and synthesized for a
28nm ASIC technology, by targeting an operating frequency of
667 MHz under typical operating conditions (1.05 V, 25° C).
Synthesis results for chip area and power estimation with
obtained with Cadence Genus 19.11, by considering the 28nm
UMC technology [22]. The functionality of all modules was
verified with testing vectors generated with the help of the
SigmoidNumbers julia library [23] and TestFloat [24].

TABLE I

COMPARISON OF THE PROPOSED VMAC WITH THE STATE-OF-THE-ART.
UNIT NuMm. PrpEL. ASIC DELAY AREA POWER

Bits STAGES TECH. (ns) (um2) (mW)
Ref. Posit Std. MAC 8 5 28 nm  0.65 7598 21
Ref. Posit Std. MAC 16 5 28 nm 0.8 17384 47
Ref. Posit Std. MAC 32 5 28 nm 091 39767 108
Proposed VMAC 8/16/32 6 28 nm 1.5 51563 99
Posit DFMA [13] 32 5 45 nm 1.5 112350 370
FP VEMA [15] 16/32/64 3 90 nm 1.5 180610 44
Posit VMULT [17] 8/16/32 - 90 nm 23 91861 64

To establish a reference architecture design, three Posit
fused multiply-accumulate (MAC) architectures were imple-
mented, with 8, 16, and 32-bit precisions, all with exponent
size of 2, as defined in the latest Posit standard [18]. Ac-
cordingly, the 8, 16, and 32-bit maintain 128, 256, 512-bit
quires, respectively. The proposed design is also compared
with state-of-the-art dynamic and variable-precision units. In
particular, it is compared with a 64-bit IEEE-754 variable-
precision fused multiply-add (FMA) [15] (VEMA), a 32-bit
Posit variable-precision multiplier [17] (VMULT), and a 32-
bit Posit dynamic FMA [13] with configurable exponent size
(DFMA). The synthesis results for the proposed VMAC and
all the considered units are presented in Table I.

Despite the introduced variable-precision and unified FP
functionality, When compared to the reference 32-bit Posit
MAC architecture, the proposed VMAC only presents a 30%
chip area increase and a similar power consumption. While
a lower frequency was expected as a result of the increase
complexity of the circuit, the critical path is still majorly
mitigated by limiting the size of the VMAC quire to 128 bits
(as opposed to the reference 512-bit quire). This is also evident

when comparing with the DFMA [13], which also adopts a
512-bit quire. Despite the higher flexibility of the DFMA [13],
when compared to standard architectures, as opposed to the
proposed VMAGC, it still presents a fixed-precision datapath
and is unsuited for transprecision computation.

While direct comparisons with the state-of-the-art variable-
precision solutions are hardly possible due to the differences
in implementation technologies (28nm vs. 90nm), it is still
possible to estimate how the proposed VMAC would match
against these units. In particular, while VFMA [15] presents
a variable-precision architecture, also with similar SIMD ca-
pabilities, it is bound by its sole adoption of the IEEE-754,
and cannot perform 8-bit low-precision operations. Contrarily,
while still providing support for the IEEE-754 standard, the
proposed VMAC also leverages the Posit format to perform
low-precision operations with configurable dynamic range.
Hence, the VMAC shows a much higher flexibility and is bet-
ter suited for low-precision computation scenarios. Conversely,
while the more recent VMULT [17] presents low-precision
Posit support and variable-precision capabilities similar to the
proposed VMAC, it only implements the multiplier datapath
and lacks the same flexibility of the VMAC in what concerns
the configurable exponent size and compatibility with the
standard FP format.

Finally, when considering typical transprecision system ar-
chitectures [14], by deploying a variable-precision datapath,
the proposed VMAC requires 50% less area and 2.9x less
power, when compared to a combination of Posit MAC units
that offers the same precision mix (4x8-bit, 2x16-bit, 1x32-bit
MAC). Additionally, the VMAC offers increased flexibility by
supporting a unified FP format with dynamic configurations.

V. CONCLUSION

This paper proposes a new unified Posit/IEEE-754 Vector
Multiply-Accumulate (VMAC) unit architecture for transpreci-
sion computing. It not only offers a variable-precision datapath
with SIMD processing capabilities, but also a unique support
for both the Posit and IEEE-754 FP standards. Accordingly,
it is capable of performing low- and high-precision Posit
operations (with dynamic exponent size) without requiring
a prohibitive chip area size, while maintaining compatibility
with the standard IEEE-754 format. A 28nm ASIC implemen-
tation resulted in 50% less area and 2.9%x less power when
compared with a typical transprecision system topology.
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