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Abstract

Transprecision computing is currently viewed as a potential paradigm to increase performance and en-

ergy efficiency in modern computing systems, by allowing the floating-point precision to be tuned to the

application requirements. However, most attempts at deploying transprecision architectures often rely

on instantiations of multiple different modules to provide support for different precisions. To counteract

this issue, recent solutions have started to explore variable-precision units with dynamic datapaths that

can support different floating-point precisions with the same hardware resources. This approach not

only provides for significant area reductions but also enables straightforward Single Instruction, Multiple

Data (SIMD) capabilities. Despite their success, most architectures often have to rely on the IEEE-754

standard and lack support for low-precision arithmetic. To that end, the recent Posit number system

presents a non-uniform encoding that is particularly well-suited for low-precision arithmetic. However,

for higher precisions, it often incurs in prohibitive hardware requirements. In this Thesis, a new unified

Posit/IEEE-754 Vector Multiply-Accumulate Unit is proposed, with variable-precision and SIMD comput-

ing capabilities. It implements a fully vectorized datapath with multiple-precision arithmetic capabilities

and unique shared support for both the Posit and IEEE-754 formats. The proposed unit was fully de-

scribed in RTL by considering Application Specific Integrated Circuit (ASIC) and Field Programmable

Gate Array (FPGA) implementations. Results show that the proposed unit requires 50% less area and

2.9× less power consumption when compared to a reference transprecision setup.

Keywords

Floating-point Arithmetic, Posit Number System, IEEE-754, Variable-Precision, SIMD, Transprecision

Computing
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Resumo

O paradigma de computação em transprecisão é atualmente visto, como uma potencial solução para

aumentar o desempenho e a eficiência energética em sistemas de computação modernos, através do

ajuste da precisão dos números de vı́rgula flutuante aos requisitos da aplicação. No entanto, a maior

parte das implementações resultam da utilização de diversos módulos para suportar as diferentes pre-

cisões. Para contrariar esta tendência, arquiteturas mais recentes implementam unidades de precisão

variável, com datapaths dinâmicos que suportam diferentes precisões com os mesmos recursos de

hardware. Esta abordagem, permite reduções de área como também possibilita explorar esquemas de

Single Instruction, Multiple Data (SIMD). No entanto, apesar do seu sucesso, estas arquiteturas tendem

apenas a suportar o standard IEEE-754, que não contempla aritmética de baixa precisão. Neste sen-

tido, o recente sistema numérico Posit apresenta uma codificação não uniforme que é particularmente

adequada para a aritmética de baixa precisão. No entanto, para precisões mais elevadas, o Posit toma

proporções de hardware demasiado elevadas. Assim, esta Tese propõe uma nova unidade Vetorial de

Multiplicação-Acumulação unificada para os formatos Posit e IEEE-754, oferecendo precisão variável e

recursos de computação SIMD. A unidade é totalmente vetorizada, com aritmética de precisão variável

e suporte para os formatos Posit e IEEE-754. A unidade proposta, foi inteiramente descrita em RTL e

implementada em Application Specific Integrated Circuit (ASIC) e em dispositivos Field Programmable

Gate Array (FPGA). Os resultados mostram que a unidade proposta, quando comparada a uma re-

ferência de transprecisão, obtém uma área 50% inferior e requere consumo de potência 2.9× menor.

Palavras Chave

Aritmética de Vı́rgula Flutuante, Formato Numérico Posit, IEEE-754, Precisão Variável, SIMD, Computação

de Transprecisão
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1.1 Motivation

The end of Moore’s Law and waning of Dennard scaling mark the end of an era in which the computa-

tional capacity growth was mainly based on the down-scaling of silicon-based technology [5]. As a result,

new research efforts have been shifting to the study of more efficient arithmetic circuits and improved

computer technologies to meet the requirements of applications in several emergent domains [5].

Motivated by rapidly evolving algorithms advances in domains, such as Deep Learning (DL) and the

ever-increasing amount of data availability, led to the exploration of different approaches to cope with

increasing computational demands. In particular, significant advances have been made by lowering the

arithmetic precision of Floating-Point (FP) operations [3,6–13], to obtain straightforward acceleration and

efficiency. By lowering operand precision, it is possible to reduce memory storage per operand, obtain

higher computing bandwidths, while reaching lower power and energy consumptions. In fact, it has been

shown that it is possible to use different precisions in the different stages of an application [8, 14]. As

an example, a recent study [8] verified that some stages of the training phase of DL applications are

more sensitive to numerical errors than others, allowing the adjustment of the precision accordingly. On

the other hand, applications such as physics simulation, rely heavily in high precision operations, such

as 64-bits or even higher [15, 16]. Hence, it can be concluded that different applications have distinct

precision requirements and adjusting the precision to the application can provide significant acceleration

and efficiency gains.

Transprecision computing [14] is set on these principles and has received a gradually increasing

attention as a viable paradigm to cope with the ever-increasing performance and energy efficiency de-

mands in modern computing systems. Transprecision computing is a step beyond approximate comput-

ing [17], in which rather than tolerating errors implied by imprecise computations, systems are designed

to deliver just the required precision. However, most transprecision hardware solutions [18] rely on in-

stantiating multiple arithmetic modules to support different precisions, which leads to an increased chip

area and power consumption. Moreover, even if the non-used modules are disabled, when a given

precision is considered, it still results in a waste of resources [19].

To tackle this issue, recent variable-precision arithmetic units [19–21] introduce dynamic datapaths

that can operate in different precisions with the same hardware resources. To do so, they deploy a

higher precision arithmetic logic (e.g., 32-bit) and allow parts of the circuit to be turned off to lower the

operand precision by as much as it is required by the application (e.g., to 8-bit or lower [15]). While this

approach provides for significant area reductions and enables straightforward Single Instruction, Multiple

Data (SIMD) capabilities [19], existing solutions are often limited by their adoption of the IEEE-754

standard [20], whose lowest supported precision is only 16 bits. Some major computing market players

such as Intel [22], Google [6] and Xilinx [23] have already realized that the adoption of alternative floating-

point formats with reduced precision may provide straightforward computing acceleration. However,

2



despite their success, most solutions are tailored for the DL domain.

Alternatively, some recent solutions [19, 21] adopt the recently proposed Posit format [3], since it

allows parameterizable precision and dynamic range (exponent size). This format is especially well

suited for low-precision operations since it offers a trade-off between a wider dynamic range and an

increased precision, which effectively allows a higher accuracy while lowering the operand precision

(fewer bits). The Posit format is also particularly suited for fused operations since it adopts an exact

accumulator structure (quire) with enough precision to avoid overflow and accuracy losses [4]. While

Posit-based implementations traditionally define and fix its parameters at design-time [10–12, 24, 25], it

has been shown that it is possible to support runtime-configurable exponent sizes with minimal hardware

overheads [13]. This allows making use of the entire representable dynamic range for a given posit

precision by specifying the exponent size of the input values. In turn, it also provides the possibility to

encode a larger dynamic range, capable of supporting (within the same hardware) both values with high

precisions and very large magnitude.

Nevertheless, while these features make posits well suited for low-precision arithmetic and trans-

precision computing, the hardware overhead associated with the quire becomes prohibitive when the

precision and exponent size increase [24, 25]. Additionally, for a more general-purpose context, it is

desirable to maintain compatibility with the standard IEEE-754 format, as it still is the most established

FP format.

1.2 Objectives

The main objective of this thesis is to investigate and implement new variable-precision architectures for

future Transprecision computing systems. Accordingly, the following research directions were consid-

ered for the herein presented work:

• Research on new dynamic datapaths to enable variable-precision computing;

• Assess the viability of adopting the Posit format as an alternative to the IEEE-754 standard, for

low-precision arithmetic;

• Investigate new mechanisms to mitigate the hardware overheads associated with the adoption of

the Posit format for high-precision arithmetic.

The aimed work will also entail the description of all developed hardware modules in RTL and their

evaluation in terms of performance and energy efficiency, by considering implementations in Application

Specific Integrated Circuit (ASIC) technologies and Field Programmable Gate Array (FPGA) devices.

3



1.3 Contributions

According to the defined objectives, this thesis proposes a new Posit/IEEE-754 Vector Multiply-Accumulate

(MAC) unit for transprecision computing. Besides combining variable-precision arithmetic and SIMD ca-

pabilities, it takes a step further from existing solutions by deploying a unified support for the IEEE-754

and Posit formats. It introduces the following contributions and features:

• an efficient variable-precision FP multiply-accumulate (MAC) 32-bit architecture, especially de-

signed for transprecision computing;

• a unified FP arithmetic architecture compatible with both the IEEE-754 and the Posit formats with

support for inter-format operation and conversion;

• a fully vectorized datapath to efficiently make use of the released hardware resources in low-

precision computing scenarios;

• SIMD decoding/encoding modules with shared support for FP vectors encoded with i) dynamic

posit formats with configurable exponent size; ii) IEEE-754 standard and low-precision non-standard

formats; and iii) multiple scalar and vector element precisions (including 32/16/8-bit scalars and

2x16/4x8-bit vectors).

Results show that, for an ASIC implementation, the proposed unit requires 50% less area and 2.9×
less power consumption when compared to a reference transprecision system setup. For a FPGA

implementation, the proposed unit requires 2.1x less LUTs, 4x less registers, and 3.9x less power con-

sumption when compared to a reference transprecision system setup.

1.4 Thesis Outline

The thesis is organized in the following chapters:

• Chapter 2 provides background on floating-point formats, by focusing on the IEEE-754 standard

and the Posit number system. Then, the main arithmetic structures for each format are presented

in detail, followed by a revision of the literature. The chapter is concluded by covering the main

problems and solutions that can be found in the literature;

• Chapter 3 describes the proposed variable-precision architecture, by introducing the adopted vec-

tor data formats and structures. Then, it is presented the proposed architecture and its main

modules in detail;

• Chapter 4 describes the main implementation results for ASIC and FPGA, together with a com-

parison with state-of-the-art solutions;

• Chapter 5 presents the main conclusions of this work along with a discussion on possible future

work directions.
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Transprecision computing [14] is set on the principle that different application domains have different

precision requirements. However, most transprecision hardware solutions [18] rely on the instantiation of

multiple modules to support different precisions and only support the IEEE Standard for Floating-Point

Arithmetic (IEEE-754). More recently, some floating-point architectures have been adopting the Posit

format [3], which has been gaining attention as a possible complement to the IEEE-754 standard. The

unified support of both formats can be the next step for transprecision computing.

This chapter presents some background on floating-point arithmetic with the IEEE-754 standard and

Posit formats. The first section introduces relevant floating-point formats, starting with the definition of

floating-point, the IEEE-754 standard for floating-point including some of his variants, and the recent

Posit number system. The second section describes the main computing structures and operators for

IEEE-754 floats and posit operations. The third section presents the most relevant IEEE-754 and Posit

arithmetic unit architectures in the literature. Finally, a discussion is presented regarding IEEE-754 floats

and posit as well as transprecision implementation approaches.

2.1 Floating-point formats

Since the early years of computing, several ways of approximating and representing real numbers have

been introduced, each providing different compromises between the complexity of its manipulation and

the involved approximation error. A relatively straightforward approach is to adopt a fixed-point repre-

sentation, where the numbers are processed as integers with a fixed scale factor. They have three

components: integer part, binary point (implied), and fractional part. They have simple associated hard-

ware, however, they have a limited dynamic range, caused by the fixed radix point position.

Other proposed representations involve storing the logarithm of a number and doing multiplication

by adding the logarithms or using a pair of integers (x,y) to represent the fraction x/y. However, floating-

point arithmetic is by far the most widely used way of approximating real number arithmetic to perform

numerical calculations on modern computers.

Floating-point was created as a means to have an approximation of real numbers while supporting

both very small and very large real numbers (i.e. a larger dynamic range) with a limited number of bits.

It is a “semi-logarithmic” representation with a fixed-point component (significand or mantissa) that is

scaled by a factor (exponent). A floating-point number is represented as

sign× significand× baseexponent. (2.1)

The most popular format for floating-point arithmetic is the IEEE-754 [1], a standard established in

1985 that has been expanded and improved by the Institute of Electrical and Electronics Engineers over

the years. The standard defines encodings, operations, exception handling, and rounding rules. The
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standard supports base 2 and 10, although the second is not relevant in this work.

2.1.1 IEEE-754 standard

The IEEE Standard for Floating-Point Arithmetic was established in 1985 with the goal to improve the

portability of floating-point computations and it was recently updated in 2019 [1]. The representation of

binary floating-point data consists of three fields – sign, exponent, and trailing significand. In Figure 2.1 it

is represented the structure of an n-bit float. The standard defines several formats of widths, 16, 32, 64,

and 128 bits, and in general for any multiple of 32 bits of at least 128 bits. In Table 2.1 are represented

the first four.

The sign bit is 0 for positive numbers and 1 for negative. The exponent is w-bit wide and it is

represented as an unsigned integer with a bias: E = exp+ bias. The significand field is represented as

a fixed-point number with t-bits. Normalized numbers are represented as

(−1)sign × 2exp × 1.significand, (2.2)

where the ’1’ denotes the hidden bit, which is implicitly encoded in the exponent. When the number

is subnormal, the hidden bit is set to 0 and exp = expmin. Apart from these encodings, the standard

defines several expectations, such as Not a Number (NaN) and infinity, all represented in Table 2.2.

The IEEE-754 standard defines not only a number, but also several guidelines and rules in what

concerns:

• Operations (e.g., Arithmetic operations, conversions and sign manipulation)

• Rounding

• Exceptions

Most arithmetic operations do not result in a number that can be exactly represented. In such cases,

the result needs to be rounded. To that end, The IEEE-754 standard defines five rounding modes:

• roundTiesToEven - rounds to the nearest value; if the two nearest are equally near, rounds to the

one with an even least significant digit; if that is not possible, rounds to the larger in magnitude.

• roundTiesToAway - rounds to the nearest value; if the two nearest are equally near, rounds to the

larger in magnitude.

IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

3.4 Binary interchange format encodings  3.4.0

Each floating-point number has just one encoding in a binary interchange format. To make the encoding  
unique, in terms of the parameters in 3.3, the value of the significand m is maximized by decreasing e until 
either  e = emin or  m ≥ 1. After this process is done, if  e = emin and 0 < m < 1, the floating-point number is 
subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Representations of floating-point data in the binary interchange formats are uniquely encoded in k bits in 
the following three fields ordered as shown in Figure 3.1:

a) 1-bit sign S

b) w-bit biased exponent E = e + bias

c) (t = p − 1)-bit trailing significand field digit string T = d1 d2…dp −1; the leading bit of the significand, 
d0, is implicitly encoded in the biased exponent E.

Figure 3.1 — Binary interchange floating-point format  3.4.0

The values of k, p, t, w, and bias for binary interchange formats are listed in Table 3.5 (see 3.6). 

The range of the encoding’s biased exponent E shall include:

― every integer between 1 and 2w − 2, inclusive, to encode normal numbers

― the reserved value 0 to encode ±0 and subnormal numbers

― the reserved value 2w − 1 to encode ±∞ and NaNs.

The representation r of the floating-point datum, and value v of the floating-point datum represented, are 
inferred from the constituent fields as follows: 

a) If E = 2w − 1 and  T ≠ 0, then  r is qNaN or sNaN and  v is NaN regardless of  S  and then  d1  shall 
exclusively distinguish between qNaN and sNaN (see 6.2.1).

b) If E = 2w − 1 and T = 0 , then r and v = (−1) S × (+∞).

c) If 1 ≤ E ≤ 2w− 2, then r is (S, (E−bias), (1 + 21− p × T));
the value of the corresponding floating-point number is v = (−1) S  × 2 E−bias  × (1 + 21− p × T);
thus normal numbers have an implicit leading significand bit of 1.

d) If E = 0 and T ≠ 0, then r is (S, emin, (0 + 21− p × T));
the value of the corresponding floating-point number is v = (−1) S  × 2 emin  × (0 + 21− p × T);
thus subnormal numbers have an implicit leading significand bit of 0.

e) If E = 0 and T = 0 , then r is (S, emin, 0) and v = (−1) S  × (+0) (signed zero, see 6.3).

In binary interchange formats, all number and NaN encodings are canonical.

NOTE — Where k  is either 64 or a multiple of 32 and ≥ 128, for these encodings all of the following are 
true (where round( ) rounds to the nearest integer):

k = 1 + w + t  = w + p  =  32 × ceiling((p + round(4 × log2(p + round(4 × log2(p)) − 13)) − 13) /32)
w = k – t − 1  = k − p  =  round(4 × log2(k)) − 13
t  = k – w − 1  = p − 1  =  k − round(4  × log2(k)) + 12
p = k − w  = t + 1  =  k − round(4  × log2(k)) + 13

emax = bias  =  2(w −1) − 1
emin = 1 − emax  =  2 − 2(w −1).

19
Copyright © 2019 IEEE. All rights reserved.

 

d1..................................................................................dp-1E0....................Ew-1

1 bit MSB w bits t = p – 1 bits LSBMSBLSB

T
(trailing significand field)

E
(biased exponent)

S
(sign)

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on October 14,2019 at 12:20:34 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.1: Binary IEEE-754 floating-point format [1].
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Format Bits (n) Exponent Bits (w) Bias Significand Bits (t)

Half-precision (FP16) 16 5 15 10
Single-precision (FP32) 32 8 127 23
Double-precision (FP64) 64 11 1023 52
Quadruple-precision (FP128) 128 15 16383 113

Table 2.1: Haf, single, double and quadruple precision floating-points encodings.

Encoding Sign Biased Exponent Fraction

Positive zero 0 0 (all 0’s) 0 (all 0’s)
Negative zero 1 0 (all 0’s) 0 (all 0’s)
Positive infinity 0 (all 1’s) 0 (all 0’s)
Negative infinity 1 (all 1’s) 0 (all 0’s)
qNaN - (all 1’s) any number (non-zero)
signaling NaN (sNaN) - (all 1’s) any number (non-zero)
Positive nonzero (Subnormal) 0 0 (all 0’s) 0.any number
Negative nonzero (Subnormal) 1 0 (all 0’s) 0.any number
Positive nonzero (Normalized) 0 any number (non-zero) 1.any number
Negative nonzero (Normalized) 1 any number (non-zero) 1.any number

Table 2.2: Encodings of the IEEE-754 standard.

• roundTowardPositive - rounds to the closest value towards positive infinity.

• roundTowardNegative - rounds to the closest value towards negative infinity.

• roundTowardZero - truncation.

It is also stated in the standard that a binary format implementation shall provide the first rounding

mode as default (roundTiesToEven) and the last three as user selectable. The mode roundTiesToAway

is optional.

The standard specifies five kinds of exceptions that shall be signaled with the corresponding status

flag and default result. The exceptions covered by the standard are:

• Invalid operation

• Division by zero

• Overflow

• Underflow

• Inexact

Some disadvantages (also argued in [3]) are: repeated patterns to represent NaN values, ±∞ and

±0 values, the possibility of overflow/underflow, the added complexity of using normalized/subnormal

numbers, misused exponent size and the lack of reproducibility guarantees across systems. The latter

occurs since, there are various optional mechanisms that are covered in the standard, including the

subnormal support, the diagnostic information on invalid operation exception, which is provided in the

quiet NaN (qNaN) output, etc.
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Variations

Several variations to the IEEE-754 standard have been recently proposed, mostly by the ever-increasing

proliferation of deep learning applications. One of the most most popular is the ”Brain Floating Point”

(bfloat16) [2], which is a 16-bit truncated version of the F32. It aims to improve hardware efficiency

while maintaining the ability to train accurate deep learning models, all with minimal switching costs

from FP32. In Figure 2.2, is represented the structure of: (a) FP32, (b) FP16 and (c) bfloat16.

Since the FP16 format is prone to overflowing and Deep Learning (DL) is not a strongly precision-

bound application, the bfloat16 format has an exponent of the same size as a FP32, at the cost of

fraction accuracy. Furthermore, bfloat16 multipliers require nearly half the chip area size of an FP16

multiplier. However, this custom floating-point format is not suited for all domain applications, since it

was designed specifically to DL.

There is also an 8-bit floating-point format [26], also known as microfloats. It has 1 sign bit, 4

exponent bits, and 3 significand bits. This 8-bit variation of IEEE 754 floating-point stresses some of its

limitations. Specifically, it has 14 representations for NaN, ±∞, and ±0 which make up to approximately

6.6% of useless values.

One of the most recent is the TensorFloat-32 (TF32) [27], introduced in the NVIDIA Ampere archi-

tecture. Despite the name, this format is 19-bit long and is a combination of FP16 and bfloat16. The

mantissa is 10-bit long (similar to FP16), while the exponent is 8-bit long (similar to bloat16 and FP32).

As a consequence, this format has the same dynamic range of FP32 and the same precision of FP16.

Most of these variations are tailored for the Deep Learning domain, contrarily to the Posit number

system, which is gaining attention as a possible alternative (or complement) to the IEEE-754 Standard.

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

(a) FP32: Single-precision IEEE-754 format

S E E E E E M M M M M M M M M M

S E E E E E E E E M M M M M M M

Exponent: 8 bits Mantissa (Significand): 23 bits

Exponent: 8 bits

Exponent: 5 bits Mantissa: 10 bits

Mantissa: 7 bits

(b) FP16: Half-precision IEEE-754 format

(c) bfloat16: Brain Floating point format

Figure 2.2: Structure of: (a) FP32, (b) FP16 and (c) bfloat16 [2].
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2.1.2 Posit Format

The Posit format [3] is part of the latest revision of the unum (universal number) arithmetic framework.

The original ”Type I” unum was proposed in 2015 [28], and it is a superset of the IEEE-754 Standard.

Following the Type I, the “Type II” unum [29] was proposed and corresponds to a completely new design

based on the projective reals and abandons compatibility with the IEEE Standard. Motivated by the

fact that Type II unums rely on table look-up for most operations and they are not adequate to fused

operations, the ”Type III” unum emerged in 2017 [3] – with the designation of posit. The Posit format

is a “hardware friendly” version of Type II unums that keeps many of its merits while relaxing some

mathematical properties. A draft of its standard [4] was made available in 2021.

A posit is defined by the pair < n, es >, where n represents the word size and es the exponent size.

In Figure 2.3 it is represented the structure of an n-bit posit, with es exponent bits.

The sign bit is 0 for positive numbers and 1 for negative. However, for negative numbers, it is neces-

sary to take the 2’s complement before decoding the following fields: regime, exponent, and fraction.

The Posit format presents a non-uniform encoding where the length of its parameters varies de-

pending on the magnitude of the represented number. The regime is a sequence of identical bits, r,

terminated by the opposite bit, r̄ (or by the end of the posit) and has numerical meaning, k, as demon-

strated in Table 2.3. Let m be the number of identical bits in the regime. Then, k is given by:

k =

{
m− 1 , if r0 = 1

−m , otherwise.
(2.3)

The encoded value indicates a scale factor (sf ) of magnitude useedk where useed = 22
es

(or 2k2
es

).

The exponent can have up to es exponent bits (depending on how many bits remain to the right of

the regime) and is represented as an unsigned integer, e. Contrarily to IEEE-754 floats, there is no bias.

Hence the encoded value indicates a scale factor of 2e.

The fraction, f , is represented by the remaining bits that are not used by the regime and exponent

fields. Similarly to the IEEE-754 significand field, there is a hidden bit. However, there are no subnormal

numbers, that is, the hidden bit is always ’1’, and the encoded value is 1.f .

Similarly to the floating-point standard, the Posit format also defines exception values. However, it

only provides a single representation for 0 (all ’0’ bits) and one ±∞ = Not a Real (NaR) (’1’ followed by
2.1. The Posit Format

Here is the structure of an n-bit posit representation with es exponent bits (fig. 2).

s

sign
bit

regime
bits

r r r r⋯ r

exponent
bits, if any

e1 e2 e3⋯ ees

fraction
bits, if any

f1 f2 f3 f4 f5 f6⋯

Figure 2. Generic posit format for finite, nonzero values

The sign bit is what we are used to: 0 for positive numbers, 1 for negative numbers. If

negative, take the 2’s complement before decoding the regime, exponent, and fraction.

To understand the regime bits, consider the binary strings shown in Table 1, with numerical

meaning k determined by the run length of the bits. (An “x” in a bit string means, “don’t care”).

Table 1. Run-length meaning k of the regime bits

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical meaning, k −4 −3 −2 −1 0 1 2 3

We call these leading bits the regime of the number. Binary strings begin with some number of

all 0 or all 1 bits in a row, terminated either when the next bit is opposite, or the end of the

string is reached. Regime bits are color-coded in amber for the identical bits r, and brown for

the opposite bit r̄ that terminates the run, if any. Let m be the number of identical bits in the

run; if the bits are 0, then k = −m; if they are 1, then k =m− 1. Most processors can “find first

1” or “find first 0” in hardware, so decoding logic for regime bits is readily available. The regime

indicates a scale factor of useedk, where useed = 22
es

. Table 2 shows example useed values.

Table 2. Table 1. The useed as a function of es

es 0 1 2 3 4

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

The next bits (color-coded blue) are the exponent e, regarded as an unsigned integer. There

is no bias as there is for floats; they represent scaling by 2e. There can be up to es exponent

bits, depending on how many bits remain to the right of the regime. This is a compact way of

expressing tapered accuracy ; numbers near 1 in magnitude have more accuracy than extremely

large or extremely small numbers, which are much less common in calculations.

If there are any bits remaining after the regime and the exponent bits, they represent the

fraction, f , just like the fraction 1.f in a float, with a hidden bit that is always 1. There are no

subnormal numbers with a hidden bit of 0 as there are with floats.

The system just described is a natural consequence of populating the u-lattice. Start from

a simple 3-bit posit; for clarity, fig. 3 shows only the right half of the projective reals. So far,

fig. 3 follows Type II rules. There are only two posit exception values: 0 (all 0 bits) and ±∞ (1
followed by all 0 bits), and their bit string meanings do not follow positional notation. For the

other posits in fig. 3, the bits are color-coded as described above. Note that positive values in

fig. 3 are exactly useed to the power of the k value represented by the regime.

J. L. Gustafson, I. Yonemoto

2017, Vol. 4, No. 2 73

Figure 2.3: Posit format highlighting its components (sign, regime, exponent and fraction) [3].
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Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical meaning, k -4 -3 -2 -1 0 1 2 3

Table 2.3: Example of the run-length meaning k of the regime field with 4 regime bits.

all ’0’ bits). It does not have NaN representation, thus all remaining bit patterns are used to represent

actual numbers. Furthermore, the sf can be heavily affected by the chosen value of es, which will, in turn,

establish the maximum positive number (maxpos) and minimum positive number (minpos) representable

as posits. Unlike IEEE-754 floats, posits do not overflow nor underflow, but saturate to ±maxpos or

±minpos, respectively. Therefore, a number (x) encoded as a posit has a decoded value p given by

Equation 2.4.

p =


0 if x = 000 ... 0,

±∞ = NaR if x = 100 ... 0,

(−1)sign × useedk × 2e × 1.f all other x.
(2.4)

Example 2.1.1 illustrates the decoding process for a posit, according to Equation 2.4. To understand

the example it is important to define the posit sf , which is analogous to the exp from IEEE-754 floats. It

is the combination of the regime and exponent factors and is obtained by rearranging Equation 2.4 as

p = (−1)sign × 2e+k2es × 1.f, (2.5)

therefore, sf = e+ k2es.

Example 2.1.1 Posit decoding

Consider the following posit bit strings for the < 8, 2 > configuration:

1. 01100101;

2. 11001101;

3. 01111101.

Since the configuration is < 8, 2 >, useed = 22
2

= 16 for all examples.

The first two examples correspond to decoding a simple positive and negative number. The

third example shows some of the peculiarities due to the variable-length parameters. An analysis

of each bit string is presented below, with the parameters discriminated (where the variable length

is well observed) according to the color scheme from Figure 2.3:

1. 0 110 01 01

The sign bit 0 means the value is positive. The regime bits 110 have a run-length of two
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1s, which means k is 1, corresponding to a contribution by the regime of 161. The exponent

bits, 01, represent 1 (as an unsigned binary integer), and contribute another scale factor of

21. Lastly, the fraction bits 01 represent 1 (as an unsigned binary integer), so the fraction is

1 + 1
4 . This translates in: p = 1× 161 × 21 × 1.25 = 40.

2. 1 1001101 (01 10 011)

The sign bit 1 means the value is negative, consequently, it is necessary to take the 2’s

complement to decode the remaining fields: 01 10 011.

The regime bits 01 have a run of one 0, which means k is -1, corresponding to a contribution

by the regime of 16−1. The exponent bits, 10, represent 2 (as an unsigned binary integer),

and contribute another scale factor of 22. Lastly, the fraction bit 011 represent 3 (as an

unsigned binary integer), resulting in the fraction 1 + 3
8 . This translates in: p = −1× 16−1 ×

22 × 1.375 = −0.34375.

3. 0 111110 1

The sign bit 0 means the value is positive. The regime bits 111110 have a run of five 1s,

which means k is 4, corresponding to a contribution by the regime of 164. For the exponent,

in this case, there is only one 1 bit left in the bit string. However, the exponent field is 2

bits wide, therefore, the represented exponent corresponds to 10, which represents 2 (as

an unsigned binary integer), and contributes another scale factor of 22. Since there are no

bits left, the fraction is 1 + 0. This translates in: p = 1× 164 × 22 × 1.0 = 262144.0.

Continued

When comparing the structure of a posit against the IEEE-754, the main difference corresponds

to the presence of the regime field and the variable length of the parameters. The variable length of

the regime allows numbers near to 0 to have more accuracy than extremely large or extremely small

numbers (tapered precision), which is the same distribution that Deep Neural Network (DNN) weight

parameters usually follow (more grouped around 0). As a result, posit presents more accuracy in this

”golden zone”, as highlighted on Figure 2.4. However, out of this zone, posits become less accurate

than IEEE-754 of the same precision.

Finally, the Posit format only defines one rounding method, where the value is rounded to the nearest

binary value and if two posits are equally near, the one with binary encoding ending in 0 is selected.
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(c) Posit64 versus Float64
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Figure 1: Epsilons to use for the standard model

by floating-point experts to outline the limits of a floating-point
system. They show that posits behave better on these examples.
Unfortunately they stop there, when a balanced studywould require
to similarly construct examples that outline the limits of posits. This
section first fills this gap, with the purpose to help users understand
in which situations posits can be expected to behave much worse
than floats of the same size, and more importantly, why.

5.1 Two anti-posit examples
The first example, inspired from [10], is to consider the straightfor-
ward calculation of

xn

n! ,

done in the naive way (separate computation of xn and n! then
division). For x = 7 and n = 20, with FP32 arithmetic, we obtain a
relative error 1.73 · 10−7, and with Posit32 arithmetic, the relative
error is 1.06 · 10−4. For x = 25 and n = 30, with FP32 arithmetic,

we obtain a relative error 1.50 · 10−7, and with posit32 arithmetic,
the relative error is 8.03 · 10−2.

Of course, there exists a re-parenthesising of xn
n! that ensures

the calculation stays in the golden zone, just like there exists well-
known alternative formula that make floating-point accurate for
the examples cited in [12]. We will discuss in the conclusion if we
can expect compilers to find them automatically.

The second example, less academic, deals with physics. As of
May 2019, the International System of Units3 will be defined purely
out of physics laws and a handful of constants, some of which are
given Table 1 and plotted on Fig. 1. These constants are all defined
with at most 10 decimal4 digits.

Posit32 is unable to represent most of these constants accurately.
Many of them are even out of the golden zone of Posit64 (although
to be fair, the Posit64 representation always has more than 10
significant digits and therefore should be good enough).

Can we apply scaling here? This would in principle be as sim-
ple as changing the units (we have used in Table 1 the standard
units). Physicists themselves sometimes use scaled units, such as
electron-volt (eV) instead of Joule for energy. However, it adds
to code complexity, and for safety it would need tight language
support that is currently not mainstream. To complicate matters,
posit-oriented scaling should be by powers of two (with the caveat
that such scaling may not be exact, see Section 4.1), while unit
scaling (mega, micro, etc) are powers of ten, with negative powers
of ten not exactly represented in binary. Worse, if the code doesn’t
use the standard units, it then becomes critical to attach the unit
to each data exchanged (let us recall the Mars Climate Orbiter fail-
ure, which was due to a lack of doing so). We can conjecture that
attaching units would void the goal of posits to pack more digits
into fewer bits.

3See https://en.wikipedia.org/wiki/International_System_of_Units and the references
therein
4It seems the arithmetic community missed an opportunity to push for binary-
representable values...

Planck constant h 6.626070150 · 10−34
Posit32 value ≈ 7.7 · 10−34
FP32 value ≈ 6.626070179 · 10−34

Avogadro number NA 6.02214076 · 1023
Posit32 value ≈ 6.021 · 1023
FP32 value ≈ 6.0221406 · 1023

Speed of light c 299792458
Posit32 value 299792384
FP32 value 299792448

charge of e− 1.602176634 · 10−19
Posit32 value ≈ 1.6022 · 10−19
FP32 value ≈ 1.60217659 · 10−19

Boltzmann constant k 1.380649 · 10−23
Posit32 value ≈ 1.3803 · 10−23
FP32 value ≈ 1.1.38064905 · 10−23

Table 1: Constants defining the standard international units

Figure 2.4: Accuracy comparison of FP16 and posit < 16, 1 > with the posit ”golden zone” highlighted [24].

Quire

Besides its non-uniform encoding, the most important feature of the Posit format is the adoption of an

exact accumulator for fused operations. This structure, named quire, is a 2’s complement fixed-point

accumulator based on the Kulisch accumulator [30]. It is capable of storing sums of products of posits

without rounding, up to at least 2n−1 − 1 (dependent of the carry guard) number of such products. As

a consequence, the quire format is particularly useful to implement the frequent dot products present in

DNN computations, such as convolutions, matrix multiplications, etc. In Figure 2.5 it is represented the

quire format.

The quire is composed of the following fields:

• length: qsize = 16n bits.

• fraction: nq = (8n− 16) bits.

• integer: nq bits.

• carry guard: cg = 31 bits (allows at least 230 − 1 sums of products).

The value of the quire datum is given by the 2’s complement signed integer represented by all bits,

divided by 2nq and also includes the NaR exception.

Despite the size and exponent parameters of a posit configuration being arbitrary, there are 3 stan-

dardized configurations and its parameters are represented in Table 2.4.

The equations that define the quire parameters bit-width on the standard do not adjust to the dynamic

S (sign) C (carry guard) I (integer) F (fraction)

1 bit MSB LSBc bits

C0 . . . . . .Cc−1

MSB LSBnq bits

I0 . . . . . . Inq−1

MSB LSBnq bits

F0 . . . . . .Fnq−1

Figure 3: Binary quire format

3.2.2 Quire format encoding

The quire is a fixed-point 2’s complement value of length nbits2/2 which is 32, 128, 512, or 2048 bits for the
posit sizes 8, 16, 32, and 64 respectively.

The number of bits for the fraction is nq = 1/4nbits2 − 1/2nbits. The integer part also has nq bits. The
carry guard has c = nbits − 1 bits to guarantee that sums of products cannot overflow, up to 2nbits−1 − 1
products.

The representation (S,C, I, F ) of the quire and value v of the datum represented are inferred from the
fields as follows:

1. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

2. For all other cases, the value v is the 2’s complement signed integer represented by all bits, divided by
2nq.

8

Figure 2.5: Binary quire format [4].
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Parameter posit8 posit16 posit32

whole representation (n) 8 16 32
max exponent es 2 2 2
quire (16n) 128 256 512

Table 2.4: Parameters of standardized posit configurations.

range of all the configurations, in fact, they are simplifications tailored for the configurations of Table

2.4. The generic size of the quire for a given configuration is given by Equation 2.6. The 1 is for the

sign, the cg is self-explanatory, the remaining factor corresponds to the integer and fraction parameters

(nq = 2es+1 × (n− 2)).

qsize = 2es+2 × (n− 2) + 1 + cg (2.6)

2.2 Floating-point arithmetic structures

This section presents an overview of the most relevant IEEE-754 and Posit floating-point arithmetic

operations and their computing architecture. These include common operations, such as addition/sub-

traction, multiplication, division, as well as fused operations, such as Fused Multiply-Add (FMA) and

Multiply-Accumulate (MAC). The latter are particularly used in deep learning applications for dot prod-

ucts, matrix operations and convolutions.

A typical Floating-Point Unit (FPU) structure is depicted in Figure 2.6. The computation is usually

in three main phases: i) decoding; ii) operation; and iii) encoding. In the decoding stage, special en-

codings (e.g. NaN for IEEE-754 floats and NaR for posits) are detected and the fields of the operands

are extracted. After properly decoded, the respective arithmetic operation is conducted, whose result

must be normalized and the exponent/scale factor properly adjusted. In the encoding stage, the result

is rounded and packed, and exception flags are generated. While the various arithmetic operations are

mostly identical and independent from the format, the decode and encode stages are naturally depen-

dent on it. In particular, those for the Posit format are more complex, therefore, they will be addressed

independently.

Operands Decode Arithmetic
Operation Encode Result

op

Figure 2.6: Floating-point unit structure.
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2.2.1 IEEE-754 Format Decoding

To decode IEEE-754 floats, it is only necessary to unpack all the fields (sign, exponent, and significand),

since they can be directly obtained from the encoded binary, only exception cases (±0, ±∞ and NaN)

need to be processed. Nevertheless, first, the three fields are extracted and the hidden bit (obtained

through the exponent) is concatenated with the significand. Figure 2.7 depicts how to detect the various

special encodings. Specifically, if the exponent is 0, the hidden bit is 0, otherwise, the hidden bit is

1. This logic does not influence the ±∞ and NaN decoding since they are usually decoded to flags.

Furthermore, as there are two types of NaN and since the standard does not provide details on how to

distinguish between a qNaN and a sNaN, they depend on the implementation.

Exponent

Significand Significand

zero all 1s

zero

±0 Sub

!zero zero

±∞ NaN

!zero

Figure 2.7: Decision tree representation of the IEEE-754 special encodings.

2.2.2 Posit Decode

In contrast with the IEEE-754 format, where the location of the fields is known a priori, the location of the

fields in a posit varies depending on the magnitude of the encoded number. Therefore, the decoding of

a posit number is much more complex. This can be observed in Figure 2.8, where the common structure

of a posit decoding module is illustrated.

The decode stage translates a posit value to their corresponding sign (s), scale factor (sf) and

fraction (frac) fields, while signaling the exceptions NaR and zero (z) through flags. Posit decoding is a

process that includes several steps. First, the sign is extracted from the most significant bit (MSB) and

the 2’s complement is taken according to the sign value. Next, the regime run-length (zc) is decoded by

means of a leading zero counter (LZC). However, if the run-length starts with ’1’ the value (r0=’1’) is first

inverted. Alternatively, the run-length can be obtained with a LZC in parallel with a leading one counter,

being the result selected according with r0.

Then, the value encoded in the regime (k) is calculated according to equation 2.3, which is controlled

by the r0 bit. At the same time, the regime is shifted out of the 2’s complemented posit value according
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Figure 2.8: Typical posit decoding module.

to the zc, leaving the exponent and fraction (ef). Since the exponent size is known (defined by es), the

exponent and fraction can be easily detached. Finally, the k value is concatenated with the exponent to

obtain sf, and the hidden bit is concatenated, resulting in the fraction (f). The hidden bit is ’1’ if the posit

is not an exception (zero or NaR).

2.2.3 Addition/subtraction

Floating-point addition/subtraction is regarded as a very complex operation involving several steps. A

simplified version of the classical structure for floating-point addition/subtraction [31, 32] is represented

in Figure 2.9.

Suppose we want to add the 8-bit binary numbers 1.1010110×210 and 1.1011001×25. Mathematically,

to add two exponential numbers, their exponents need to be equal for the significands to be added. In

case they are not, there are two possible ways to achieve this. The largest exponent can be decremented

(significand left-shifted) or the smallest exponent can be incremented (significand right-shifted). Since

there is a finite number of bits, there will be a loss of precision. Left shifting the significand affects the

MSBs of the significand, while right shifting affects the LSBs. Loss of MSBs implies more precision loss,

therefore the smaller exponent is usually incremented and the correspondent significand right shifted.

Moreover, pre-shifting is typically applied to only one of the operands, therefore, swap capability is also

provided. With the significands aligned, the addiction/subtraction can be conducted. Subsequently, if

the operation produces a carry-out bit, the resulting significand value of the addition corresponds to a

number in the interval [0,4[. In such a case, the result must be normalized to the interval [1,2[, with

corresponding exponent adjustments.
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significand1 significand2

+/-
Align Significands

+ Cin

Normalize

sign logic

sign1 sign2

Cout

Adjust exponent

Selective Complement and
possible swap

sign exponent significand

Figure 2.9: Floating-point addition/subtraction structure.

The posit addition/subtraction is very similar to the IEEE-754 operator, it solely differs on the way

exponent and scale factor are handled. In Posit format, the scale factor is usually in 2’s complement,

therefore, 2’s complement comparison is needed. However, the detection of larger and smaller operands

is done with a simple integer comparison of the posit values (complemented if negative).

2.2.4 Multiplication and Division

The floating-point multiplication and division operations are mathematically simpler than addition/sub-

traction operations and their implementation is much more straightforward. The classical structure for

the floating-point multiplication/division [31,32] is represented in Figure 2.10. The significands are mul-

tiplied/divided, the exponents are added/subtracted (with the proper bias subtraction) to calculate a

temporary exponent, and the sign is computed with a XOR operation.

The significand division corresponds to an integer divisor and can be performed with different algo-

rithms. The most common are digit recurrence algorithms and functional iteration algorithms [33]. The

first class is a slow division algorithm that produces one digit of the final quotient per iteration, converg-

ing linearly to the result. The second class is a fast division algorithm that represents the division or

reciprocal operation as a function and uses function-solving techniques such as the Newton-Raphson

method [33] to converge to the quotient or reciprocal.

For posit multiplication, the only difference is the scale factor calculation, which does not involve a

bias.
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exp1 exp2 significand1 significand2sign1 sign2

sign exponent significand

Multiply (Divide)
significands

Add (Sub)
exponents

Normalize

XOR

Adjust
exponent

Figure 2.10: Floating-point multiplication/division structure.

2.2.5 Fused Multiply-Add

A fused multiply–add (FMA) operator (defined as (A×B)+C) is a floating-point operation that performs a

multiplication followed by an addition between three operands, without intermediate normalization/round-

ing (fusing). A simplified version of a FMA structure [32,34] is represented in Figure 2.11.

Since the FMA operator is a combination of a multiplier and an adder/subtractor without the inter-

mediate rounding step, it is necessary to include a larger adder (when compared to a single addition

operation) and alignment logic. Similarly, to the single multiplication, the significands are multiplied; the

exponents are added, and the sign is computed with a XOR operation. With the resulting exponent,

alignment is conducted with the third operand exponent. This concludes the multiplication. The resulting

significand is added/subtracted with the aligned significand of the third operand and a leading zero/one

Leading
0s/1s predictor

Multiplier Align

A B
C

Adder

Normalize

Figure 2.11: Floating-point FMA structure.
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predictor is used to shorten the critical path of the normalization. After normalizing the significand, the

signals enter the encoding module.

Remembering the reader that the posit standard defines a long accumulator for fused operations, the

quire, however, its use is not mandatory. In fact, the standard [4] states that fused expressions (such as

fused multiply-add and fused multiply-subtract) do not need to be performed in the quire to be compliant.

Therefore, this structure can be applied in the posit environment.

2.2.6 Multiply-Accumulate

This operation implements the multiplication of two elements followed by a continuous accumulation of

the multiplication results (defined as R← R + (A×B)). This structure is particularly useful to compute

several dot products with minimal deviations from the exact result. While there are different solutions for

accumulations, the most relevant for this work is the Long Accumulator.

The first Long Accumulator (Kulisch accumulator) was proposed by Ulrich W. Kulisch in [30], which

corresponds to a 2’s complement fixed-point accumulator to process the dot product of IEEE-754 floats

with full accuracy. The structure of a basic long accumulator is depicted in Figure 2.12.

The multiplication result is converted to a 2’s complement fixed-point notation which is accumulated

with the value stored in the register. The result of each accumulation is normalized and propagated to

Multiplier

A B

Adder

Register

Shifter

exponent

Normalize

R

Figure 2.12: MAC structure with Long Adder and Long Shifter.
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be encoded back to the IEEE-754 format.

While this operation is not included in the IEEE-754 standard, the Posit standard defines a similar

structure named quire, which is specific for accumulation. Nonetheless, several IEEE-754 accumulators

have already been proposed and differ from the Posit format mainly in the accumulator sizes, since the

formats have different dynamic ranges. While the size of the quire is given by Equation 2.6, an analogous

for IEEE-754 is given by Equation 2.7, for the Kulisch accumulator:

asize = 2emax + 2n+ 2|emin|+ cg (2.7)

2.2.7 IEEE-754 Format Encoding

Floating-point arithmetic operation results are encoded to the IEEE-754 format by translating the sign,

exponent, and significand fields to a binary format. Since the position to which a value must be rounded

is known when performing this conversion, the encoding is fairly straightforward. It is only necessary

to apply a rounding scheme and result selection, according to the special cases defined by the format.

Some encodings may also produce some of the following status flags:

• Inexact: set if the result is different from the mathematically exact result of the operation.

• Underflow: set if the rounded value is tiny and inexact.

• Overflow: set if the absolute value of the rounded value is too large to be represented.

• Divide-by-zero: set if the result is infinite given finite operands.

• Invalid: set if a real-valued result cannot be returned (e.g., 0×∞, +∞−∞).

Some of the status flags have an associated result. The overflow outputs ±∞ (depending on the

sign), the divide-by-zero and invalid outputs qNaN.

2.2.8 Posit Format Encoding

To encode a posit value, it is necessary to translate the sign (s), scale factor (sf), and fraction (f) fields

to a Posit binary format. In Figure 2.13 is represented the common structure of a posit encoding module.

The encoding process starts by detaching the regime value (k) from the exponent (e), according to

the exponent size es. The k value’s 2’s complement is taken and the corresponding encoded regime

value is shifted-in (according to k’s sign) to the exponent and fraction fields that are concatenated in

parallel (ef). The resulting signal (ref) is rounded. Since posits do not overflow and underflow, when

the k’s value is greater in the module than the maximum regime value, no round-up is allowed. The

rounded value is then 2’s complemented according to s. Finally, the result is obtained considering the

special cases zero and NaR.
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Figure 2.13: Typical posit encoding module.

2.3 Floating-point Hardware Units

Alternative floating-point formats with reduced precision have been gaining attention in the DL and artifi-

cial intelligence application domains. In fact, several implementations already exploit low-precision/custom

floating-point formats. Such is the case of NVIDIA’s Graphics Processing [7] Units and Google’s Tensor

Processing Units [35], both supporting the FP16 and bfloat16 formats. However, some DL operations

do not need as much precision, resulting in the growing interest in exploiting low-precision posits.

The DL inference stage tends to have low sensitivity to errors, often allowing good performance to

be achieved with very low precisions (e.g. 8-bit posits [36, 37]). Conversely, the training phase is more

challenging and the most computationally demanding stage. Recent results suggest that posits can

consistently achieve similar accuracies to IEEE-754, with precisions as low as half of those used by

the IEEE-754 standard [8, 38, 39]. However, resources, energy, and performance optimizations are not

guaranteed if the posit hardware is more costly. To assess the posit potential, it is necessary to compare

posit hardware implementations with IEEE-754 implementations.

Most common hardware units provide support both for the elementary and fused operators, such

as addition, subtraction, multiplication, division, and fused multiply-add. Both standards include the

first four. However, in what regards fused operators, the IEEE-754 standard [1], only supports fused

multiply-add, which requires a rounding step at every multiply-add operation. In contrast, the Posit

standard [4], supports FMA and MAC, making use of the quire for fused operations, specializing in

continuous accumulation, with rounding errors being introduced only after the last operation.
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Format Operator Ref. Sup. Device FPGA Lat.(cycle) LUTs Reg. DSPs Freq.(MHz)

IEEE-754

Add
[44] FPGA Zynq 7000 SoC 5 388 252 0 107.5
[46] FPGA Zynq 7000 SoC 6 503 290 0 83
[47] FPGA Zynq 7000 SoC 7 448 360 0 126.6

Mult
[44] FPGA Zynq 7000 SoC 4 263 234 1 161.3
[46] FPGA Zynq 7000 SoC 4 328 153 1 120.5
[47] FPGA Zynq 7000 SoC 12 610 445 0 126.6

Div [44] FPGA Zynq 7000 SoC 12 823 539 0 92.6
[47] FPGA Zynq 7000 SoC 35 627 525 0 126.6

FMA [44] FPGA Virtex-7 6 258 296 2 196
[45] FPGA Virtex-7 19 989 1210 3 493

MAC [50] FPGA Zynq 7000 SoC 12 5300 1900 2 90

Posit

Add

[51] FPGA/ASIC Zynq 7000 SoC 0 1103 0 0 31.7
FPGA/ASIC Zynq 7000 SoC 5 884 254 0 113.6

[10] FPGA/ASIC Zynq 7000 SoC 0 981 0 0 25

[25] FPGA Zynq 7000 SoC 0 745 0 0 41.7
FPGA Kintex-7 22 738 811 0 376

Mult

[51] FPGA/ASIC Zynq 7000 SoC 0 616 0 4 36.1
FPGA/ASIC Zynq 7000 SoC 6 802 204 1 108.7

[10] FPGA/ASIC Zynq 7000 SoC 0 572 0 4 30.3

[25] FPGA Zynq 7000 SoC 0 469 0 4 37
FPGA Kintex-7 21 544 710 4 413

Div [51] FPGA/ASIC Zynq 7000 SoC 12 922 538 5 129.9
FPGA/ASIC Virtex-7 0 4,050 0 0 21.7

[53] FPGA Virtex-7 0 828 0 0 4.7

MAC [25] FPGA Kintex-7 40 5068 6256 4 112
[13] FPGA/ASIC Virtex-7 6 4134 1580 4 85

FMA [54] FPGA Artix-7 0 1740 0 0 18
[55] FPGA Artix-7 0 1797 0 0 21

Table 2.5: Arithmetic unit architectures for IEEE-754 and Posit.

While the hardware for floating-point operators has been extensively studied in the literature [20,

40–50] and the Posit format has arisen the interest of many researchers in the community and there is

already a considerable amount of studies for hardware implementations [10, 12, 13, 19, 21, 25, 51–55].

Table 2.5 presents some of the most relevant works with the respective hardware metrics for 32-bits

operators. The aim of this table is to assess the posit potential, not to list all the implementations,

therefore, only the comparable implementations, in terms of architecture or technology differences, are

listed.

IEEE-754 floating-point unit architectures

Since the IEEE-754 standard was established in 1985, there are plenty of hardware implementations

for addition/subtraction [40–44, 46, 47], multiplication [44–47] and division [44, 47, 49]. Regarding fused

operations, the implementations from [44,45] correspond to classical FMA architectures, while [20] goes

a little further, with native support for vectorization (1×128-bit, 2×64-bit, 4×52-bit or 8×16-bit precision

parallel operations). Although accumulation is not compliant with the IEEE-754 standard, there are

plenty of MAC units, one recent example was proposed in Fiolhais et al. [50]. There are some differences

between the architectures, however, the most relevant corresponds to the subnormal number support,
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which is only provided by [20,40,42,46,47].

Posit-based architectures

Regarding the posit hardware implementations, studies [10,25,51,52] implement the fundamental arith-

metic operators (adder/subtractor and multiplier) while others implement dividers [51, 53]. Regarding

fused operations, Forget et al. [25] implement a MAC unit based on the Kulish accumulator, using the

quire to store accumulations. Classical FMA architectures [12,54,55] were also implementation. In [13]

it is proposed a MAC architecture, which supports both accumulation or addition with a third operand.

They also proposed a 64-bit vectorized MAC posit unit (1×64-bit, or 2×32-bit, or 4×16-bit, or 8×8-

bit parallel operations) integrated in a reconfigurable tensor unit [19]. More recently, Zhang et al. [21]

proposed a Posit vectorized variable precision architecture, however, it only performs multiplication.

For this format, the architectural differences are more significant, in particular, Jaiswal et al. [51] does

not concatenate the regime and the exponent, Forget et al. [25] propose a C++ template library and uses

a scale factor with bias (just like IEEE-754 floats), Xiao et al. [53] keeps the 2’s complement format, and

Neves et al. [13] supports different exponents values dynamically through a set of shifters.

IEEE-754 vs Posit

Observing the results represented in Table 2.5 for the referred implementations, it can be concluded

that the posit hardware has an overhead in terms of time and resources in both operators. This occurs

because of the complexity of the encode and decode steps, as a result of the format’s non-uniform en-

coding scheme. Additionally, the quire has considerable overheads of resources and timing, as expected

of a long accumulator.

In terms of division operators, a fair comparison between the formats is not possible since the imple-

mentations use different division algorithms, which would only highlight the differences between them,

not the differences between the formats. Therefore, regarding the digit recurrence methods [44] and [53]

(see Table 2.5) have similar resource utilization. However, the posit divider [53] is not pipelined there-

fore, a totally fair comparison is not possible. Nonetheless, it can be estimated that both standards have

similar resources utilization. In terms of timing, a comparison is not possible because of the referred

differences.

The metrics of the IEEE-754 fused operators [44] and [50] (see Table 2.5) reveal the trade-off of hav-

ing exact accumulation without loss of precision. As such, a significant difference is visible in resource

utilization and maximum operating frequency. The same situation occurs if a IEEE-754 FMA implemen-

tation is compared with a Posit implementation supporting exact accumulation (see metrics from [25]

and [13] in Table 2.5). This reveals a problem for the Posit format, and in general, of exact accumulators,

it is an extremely costly architecture, almost prohibitive with more than 32-bits.
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In conclusion, for the same precision, posit arithmetic is slightly more costly because of its variable

size fields. The quire is also extremely costly in terms of resources, since its size grows exponentially

with the precision. However, posits can be used with fewer bits. Which suggests an energy and memory

save, and performance boost for several applications, such as DL.

2.4 Discussion

As it was discussed in the previous sections, the Posit format presents several advantages over IEEE-

754 floats, such as improved accuracy and larger dynamic ranges with lower precision (fewer bits).

These make posits especially suited for low-precision arithmetic. However, posits represent numbers

with a non-uniform format. In particular, for smaller values (in magnitude), the Posit format can provide

more accuracy and for large values (in magnitude) the accuracy is reduced. This makes it suitable for

applications such as DL, but unsuited for other domains, such as particle physics simulations and inte-

gration methods, where the numerical values of the result is often unbounded [24]. Moreover, modern

computing systems have the IEEE-754 standard deeply embedded in compilers and low-level software

routines. Therefore, a drastic replacement of the IEEE-754 standard to the Posit format may be un-

feasible [24]. In terms of hardware overhead, for the same precision, Posit arithmetic is slightly more

costly because of its variable size fields (i.e., regime). The quire is also extremely costly in terms of

resources since its size grows exponentially with Posit precision. Instead of looking at the Posit format

as an alternative to the IEEE-754 standard, it is more suited to look at it as a complement. Since their

intermediate format (after decoded) is quite similar, an arithmetic unit with a shared datapath that sup-

ports both representations is accomplishable and may provide important steps towards the proliferation

of transprecision computing.

Regarding the topic of transprecision computing, it was discussed that most hardware solutions [18]

attempt to support different precisions by instantiating multiple arithmetic modules to support different

precisions. However, recently developed architectures, deploy variable precision units [19–21] with dy-

namic datapaths that can operate in different precisions with the same hardware resources. They deploy

a higher precision arithmetic logic (e.g., 32-bit) and allow parts of the circuit to be turned off to lower the

operand precision. This approach not only provides for significant area reductions but also enables

straightforward Single Instruction, Multiple Data (SIMD) capabilities.

Accordingly, the work presented in this thesis aims at exploring such opportunities to develop an

efficient transprecision architecture deploying a unified Posit and IEEE-754 that that takes advantage of

the quire for accumulations in low-precision and configurable to perform operations for other precisions.

24



2.5 Summary

This chapter starts by introducing fundamental topics on floating-point arithmetic and an introduction to

the most relevant formats, including the standard for floating-point (IEEE-754), some of its variants for

DL, and the novel Posit format. Next, it is presented a discussion on the structure of the addition/sub-

traction, multiplication, division, fused multiply-add and multiply-accumulate operators.

Subsequently, it is discussed the recent research work regarding the referred operators for both

formats and it is presented a comparison between both formats to assess the potential of adopting the

posit format for low precision arithmetic. To conclude the chapter, the problems and solutions were

discussed.
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In this Chapter, a new Multiply-Accumulate (MAC) architecture for variable-precision floating-point is

proposed. It was particularly designed for future transprecision computing and takes a step further from

existing solutions by (i) deploying a dynamic datapath capable of supporting multiple-precision within

the same hardware while making an efficient use of hardware resources by introducing vectorization

capabilities; and (ii) introducing an unique support for both the Posit and the IEEE-754 floating-point

formats. This allows the proposed unit to simultaneously leverage the capabilities of the Posit format to

deploy low-precision operations, and maintain support for the well-established IEEE-754 format, while

mitigating the hardware overheads imposed by high-precision posit operations.

Accordingly, this chapter begins by introducing the proposed architecture, by providing an overview of

its main features and discussing the main design decisions. The second Section describes the adopted

vector data formats and details the introduced vectorization by detailing the designed vector arithmetic

operators. The last Section provides a detailed description of the proposed MAC unit architecture and

its individual modules.

3.1 Proposed Architecture Overview

This section provides an overview of the proposed Vector MAC unit architecture and its main features.

In accordance with the opportunities identified in Chapter 2, the herein proposed architecture combines

variable-precision arithmetic and dynamic vectorization capabilities, while providing an unified support

for the Posit and IEEE-754 formats. The proposed unit features the following properties:

1. Posit-based Variable-Precision Architecture: The proposed unit features a 32-bit Posit fused

multiply-accumulate datapath, that targets low-precision arithmetic while providing support to some de-

gree of high-precision, achieved with 32-bit floating-point numbers. To provide variable-precision ca-

pabilities, all modules are designed to allow reducing their arithmetic precision at runtime to alternate

between 32, 16, and 8-bit operations (as illustrated in Figure 3.1.A). Remembering the reader that the

Posit MAC architectures use a long accumulator, the quire, which has significant hardware overheads

in high precision. To mitigate these overheads associated with the use of a quire, the proposed unit

only provides exact accumulation for low-precision scenarios with standard [4] 8-bit posits (es = 2) and

128-bit quire (as opposed to the 512 bits that would be necessary for 32-bit posit accumulation). As

such, a scale factor value is paired with the quire to ensure the correct representation of accumulations

for all the supported precisions.

2. Dynamic Vectorization: All arithmetic operators and logic modules are fully vectorized and con-

figurable at runtime to support 1x32-bit, 2x16-bit, and 4x8-bit vector operations within the same hard-

ware (see Fig. 3.1.B). This allows resources that are freed (when precision is reduced) to be reused

for additional parallel computations, in turn offering increased throughput. To support the introduced
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A. Variable-Precision Datapath Bitwidth

Full Precision

B. Vectorized Datapath Bitwidth

Full Precision

logic disabled logic reused

Figure 3.1: (A) variable-precision vs proposed (B) vector datapath configuration scheme.

variable-precision vectorization, input 32-bit vectors are decoded into three unified vector formats that

gather the sign (s), scaling factor (sf ), and fraction (f ) that compose each vector element precision

(more details in Section 3.2.1), according to the (−1)s × 2sf × 1.f generic floating-point format (see

Equation 2.1). These vectors are also paired with additional flag vectors to represent special encodings

necessary for the floating-point formats.

3. Variable-Exponent Posit Configuration: The Posit format, apart from different precisions, sup-

ports different exponents, which allows the adjustment of the dynamic range (see Section 2.1.2 from

Chapter 2). In the proposed unit, the Posit exponent size can be defined at runtime (instead of being

fixed at design time), allowing most of the dynamic range for a given posit precision to be representable.

Since, as mentioned above, the quire is already paired with a scaling factor value, the arithmetic logic

can already support dynamic ranges larger than that which can be represented by the quire precision.

Accordingly, it is only necessary to include a set of shifters to decode/encode the posit format according

to the configured exponent size (described in Sections 3.3.2 and 3.3.6). To optimize the scale factor

bitwidth (see Fig. 3.1.B), the maximum exponent range is restrained. Namely, 8-bit Posit can only use

an exponent configuration of up to 3, while 16 and 32-bit posits can use an exponent configuration of up

to 7.

4. Floating-Point (FP) Format Unification: While the Posit and IEEE-754 formats are fundamen-

tally different in their representation, after being decoded, both represent a FP number in the generic

exponential format. As such, the logic to perform typical arithmetic operations (such as multiplication

and addition/subtraction) is virtually the same for both formats (as seen in Section 2.2 from Chapter 2).

Conversely, to add IEEE-754 support in a Posit base architecture, it is only necessary to include de-

coding/encoding logic and minimal detection for IEEE-754 mathematical exceptions (not represented in

the Posit format). For the particular case of 8-bit precision operations, to match the equivalent Posit

precision, it is also adopted an 8-bit format (since the IEEE-754 standard does not define lower than

16-bit precisions). The 8-bit format adopted is the microfloat (see Section 2.1.1 from Chapter 2).

5. Inter- and intra-format Operation and Conversion: The introduced unified FP format also al-

lows the proposed unit to perform inter-format operations between equivalent Posit and IEEE-754 pre-
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Figure 3.2: Proposed Posit/IEEE-754 unit architecture diagram.

cisions. Since the unit’s internal representation is compatible with both formats, it is only necessary to

decode each operand according to their specific format (controlled by dedicated configuration signals –

see Section 3.3.1). Similarly, the format of the output can also be configured independently of the input

formats. As such, it is also possible to perform conversions between formats (with or without performing

arithmetic operations). Additionally, the introduced dynamic exponent support also allows the proposed

unit to perform intra-format operations and conversions between posits with different exponent configu-

rations. by applying the same methodology of inter-format operations and conversions. An independent

signal for each decode and encode module.

The proposed unit (depicted in Figure 3.2) comprises a fully pipelined architecture, supporting vec-

tor variable-precision FP addition, subtraction, and multiplication, together with fused multiply-add and

multiply-accumulate operations. Accordingly, the unit accepts three input vector operands (Va, Vb and

Vc), and outputs one result vector (Vr). To deploy a datapath with variable-precision support and Single

Instruction, Multiple Data (SIMD) capabilities, the data formats and basic arithmetic operators must be

defined.

3.2 Arithmetic Vectorization

To efficiently support variable-precision hardware and vectorization capabilities, the data formats used in

each configuration must be well defined. Additionally, an arithmetic floating-point MAC unit is made up of

various basic structures such as shifters and adders that in a vectorized approach must be reformulated

to support the several vector configurations.

3.2.1 Vector Data Formats

To efficiently support the aimed variable-precision hardware and vectorization capabilities, an unified

vector data format was devised. The adopted number format can represent 1×32-bit, 2×16-bit, or
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Figure 3.3: Vector data formats for (A) input/output vectors, (B) decoded fields vectors, and (C) quire vectors. Grey
areas represent unused bits.

4×8-bit numbers in the same vector (see Figure 3.3.A). Additionally, it is also capable of operating

with 32/16/8-bit scalar values, which is particularly useful for full accuracy accumulation with 8 and 16-

bit operands. Despite the fact that the proposed unit supports both posits and IEEE-754 floats, each

individual vector can only support one of the representations at the same time (e.g., Va cannot have

one 16-bit posit number and one 16-bit float number within the same vector). This cross-format support

allows operations between formats (e.g., Va can be a posit vector and Vb, Vc and Vresult float vectors),

as referred above.

Accordingly, the input vectors (Va,Vb and Vc) are decoded into three unified vector formats that gather

the sign, scale factor and fraction components for each supported vector element precision (see Figure

3.3.B). The sign of each operand is organized into a 4-bit signal. For 8-bit operations, each bit represents

the sign of one sub-operand. For a 16-bit and 32-bit operations, the sign is extended to the adjacent

sub-element (see Figure 3.3.B).

The scale factor of each operand is organized into a 32-bit signal. This is due to the fact that,

for 8-bit operations, the minimum scale factor bitwidth is 4 bits (es = 0), however, the unit supports

variable exponent configurations. As a consequence, the 8-bit posit configuration supports an exponent

(es) of up to 3, which requires four additional bits in each scale factor (3 for the exponent and 1 for

overflow protection). Similarly, for 16 and 32-bit precisions, the unit supports a posit configuration with

an exponent of up to 7, resulting in scale factors of 13 and 14 bits, respectively.

The fraction of each operand is also organized into a 32-bit signal. Each fraction element has a

bitwidth of n− 2 bits, where n is the precision. Every vector element has a padding of 2 bits, protecting

each element from overflowing to its left neighbor and allowing parallel arithmetic operations. Finally,

any unused bits are set to ’0’ (grey areas in Figure 3.3), with the exception of the scale factor, which is

sign extended.
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The sign, exponent, and significand components of the IEEE-754 numbers fit in the adopted vector

configurations. In fact, the exponent and significand are padded to match the bitwidth of the Posit

scale factor and fraction, respectively. Additionally to the referred signals, the flags that are used to

represent special encodings (such as Not a Real (NaR), signaling NaN (sNaN) and infinity) adopt the

same configuration of the sign vector format.

As referred in Section 3.1, to mitigate the hardware overheads associated with the use of the quire,

the proposed unit adopts a reduced quire and introduces a paired scale factor value to ensure the correct

number representation. The motivation behind the chosen configuration is discussed below.

Quire Vector Format

The main objective of the quire structure is to represent the entire dynamic range of a given posit config-

uration for accumulation with full accuracy and overflow protection. As a result, its size is mathematically

tied to the precision and the exponent of the posit configuration (see Equation 2.6). To put the quire di-

mensions in perspective, to support a 32-bit posit configuration with es = 7, the quire would have 15392

bits, which is clearly prohibitive in terms of hardware resources and in the context of transprecision com-

puting. In fact, even 8-bit posits with es = 3 would take prohibitive dimensions, with 224 bits for every

element, resulting in 896 bits for the full four elements. Even if the maximum exponent configuration of

every precision was limited to 2 (according to the Posit standard [4]), the quire would require a total of

512 bits: 32-bits posits – 1x512 quire bits; 16-bits posits – 2x256 quire bits; 8-bits posits – 4x128 quire

bits. Furthermore, the quire size that would be necessary to perform exact accumulation for IEEE-754

floats would have to be even larger (see Equation 2.7).
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Figure 3.4: Adopted quire vector formats.
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To mitigate the quire footprint, while maintaining some of its benefits, the quire size was limited to

128 bits (see Figure 3.4). Hence, to support the defined exponent configurations and the Posit/IEEE-754

unified datapath, the quire maintains an associated scale factor, requiring alignment logic for addition

and accumulation.

According to this design decision, the carry guard field of each element of the quire vector is fixed

to 7 bits and the integer and fraction fields are divided equally from the remaining bits. By reducing the

quire carry guard, only the maximum number of accumulations with overflow protection are reduced.

A quire with 128 bits allows support for accumulation without loss of accuracy (i.e., according to the

Posit standard [4]) to 8-bit configurations with exponent sizes up to 2 and for 16-bit configurations with

exponent sizes up to 1, in full precision mode (scalars). Additionally, the introduction of the associated

scale factor and alignment logic allows accumulation with all configurations, albeit with the possibility of

accuracy loss, depending on the magnitude of the elements.

The main advantage of the adopted quire format, in addition to a straightforward reduction in hard-

ware resources and increased flexibility, is the fact that for low-precision, most of the benefits of the quire

are maintained, while still allowing for high precision, operations without prohibitive overheads. Specif-

ically, it allows a gradual loss of accumulation capacity and accuracy for higher precisions in order to

keep the accumulator smaller (128-bit instead of 512-bit) while maintaining support for higher exponent

configurations and IEEE-754 floats.

3.2.2 Vector Arithmetic Operators

To fully vectorize the floating-point multiply-accumulate datapath of the aimed unit, the main fundamental

arithmetic structures used on floating-point arithmetic (such as adders, barrel shifters, leading zero

counters, multipliers) must be redesigned to support variable-precision and vector operations.

The following paragraphs detail the design and architecture of each vectorized structure used in the

proposed unit.

Vector Adder

A vector adder can be simply designed by solely breaking a typical adder carry-chain with strategically

placed single-bit multiplexers, as represented in Figure 3.5. Such a structure is capable of performing

the addition of either 1×n-, 2×n/2-, or 4×n/4-bit vectors. Depending on the configuration, the carry-in of

each sub-adder is selected with a multiplexer, between the carry-out of the previous sub-adder or to an

input carry-in. This is controlled with split signals, which value depends on the configuration. Specifically,

for 4×n/4-bit vectors each split signal is ’1’, for 2×n/2-bit vectors the signal splitH is ’1’, and for 1×n-bit

vectors all split signals are ’0’.
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Figure 3.5: Vectorized adder structure.

To do subtraction in this type of structure, first, the subtrahend is inverted and the corresponding

carry-in set to ’1’, according to the vector configuration.

Vector Barrel Shifter

A barrel shifter is one of the most common dynamic shifters, allowing shifting a word by a varying

amount. It has a control input (shift amount) that specifies the number of bit positions of an input data

word to shift. Figure 3.6 depicts a generic left barrel shifter with a multiplexer-based architecture..

The first step to vectorize a left barrel shifter is to first dimension a barrel shifter for the minimum size

of each vector element (e.g. n/4 bits for a n-element vector). Each of these shifters has an associated

shift amount (see Figure 3.7), allowing each vector element to be individually shifted.

When considering the aimed variable-precision, it is necessary to add support for configurations

with 2×n/2 bit elements. Hence, it is first necessary is to determine which shift amount corresponds to

each barrel shifter. Since one n/2-bit value occupies the same bidwidth as two n/4-bit values, two barrel

shifters are used to shift each n/2 vector, and the shift amount of each barrel shifter must be the same.

However, a n/2-bit element implies one more bit of shift amount (see Figure 3.7). This can be easily

performed with an additional shifting level, with the remaining bit.

However, while a normal barrel shifter typically discards the bits that are shifted out (see Figure 3.6),

in this case, such bits may contain data for the higher level vector elements. To solve this problem, in

shamt0 shamt1

Inputn

<< 1 << 2

shamt2

<< 4 << n/2

...

shamtlog2(n)-1

Outputn

n-1 n-2 n-4 41 n/2 n/22

shamt

2n

nn

Figure 3.6: Left Barrel Shifter architecture based on multiplexers.
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Figure 3.7: Input and shift amount generic vectors format.

each barrel shifter, all data is maintained (each n/4-bit input vector element results in a n/2-bit output

signal). These elements must then be properly put together to form the correct signal and correctly shift

the higher precision values. The described solution is depicted in Figure 3.8. Note that each shamt

and each bitwise OR is controlled according to the configuration. This way, each vector element is either

cropped or OR’ed with the adjacent vector element to form the high-level element vector. The bitwise OR

is the mechanism that allows forming high-level elements, and it is based on the fact that each element

is shifted by the same amount, therefore, the interception is between data and 0’s.

A similar scheme can also be applied to vectorize right barrel shifters. However, contrarily to left

shifting, it is necessary to account for the differences between logic right shifting and arithmetic right

shifting, which implies shifting in the sign. In the latter case, the sign is introduced strategically depending

on the configuration.

Vector leading zero counter

A leading zero counter (LZC) is a critical structure used both in the decoding/encoding of posits and in the

floating-point normalization. It allows counting the number of zeros (from the most significant bit (MSB))

up to the position of the first one in a binary number, outputting the zero count and a flag (zero), which,

as the name implies, shows if the input signal has all bits to ‘0’. A simple generic architecture comprises

designing a base LZC module of 4-bits (using simple combinational logic) and arranging them in a tree-

like structure to construct higher-order counters.

For example, a 8-bit LZC can be constructed by using two 4-bit modules (see Figure 3.9.A). In

the same way, two 8-bit LZCs can construct a 16-bit LZC (and so on). This assembly is done by (i)

placing an AND gate between the zero flags of each module to get the corresponding higher-order zero

flag; (ii) extending the zero count of each module with the number of zeros of each adjacent module

(concatenating a ‘0’ on the most significant count and an ‘1’ on the least significant count); and (iii)

selecting the zero count where the first ’1’ bit appears based on the zero flag of the most significant LZC

module.

With such a modular design, to vectorize a LZC, it is only necessary to capture intermediate re-

sults to obtain zero counts for each supported precision. Figure 3.9.B depicts the structure of a scalar

32-bit LZC. As can be observed, depending on the desired configuration, each partial result can be

obtained and combined in a unified vector format (see Figure 3.9.C). Other length vectorized LZCs can
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Figure 3.8: Overview of the vectorized barrel shifter architecture. The block diagram illustrates the multi-level ar-
chitecture of a n-bit left barrel shifter with a maximum of four elements. It shows how partial results
can be extracted between each level to obtain shifted value for each supported vector configuration. It
also demonstrates the unification of partial results via a bitwise OR operation and their propagation to
a subsequent level.

be designed in the same way. For example, in the normalization phase (described below), a 128-bit vec-

torized LZC with minimum vectors of 32-bits is needed. Instead of unifying the partial results of 8-bits,

only 32-bits partial results are unified, up to the 128-bit result.
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Figure 3.9: Vectorized leading zero counter architecture, illustrating (A) a 8-bit module construction from two basic
4-bit LZC modules, (B) a 32-bit vectorized LZC from four 8-bit LZC modules and (C) the corresponding
outputs depending on the precision.

Vectorized Radix-4 Booth Multiplier

The most classic method for multiplying long integer numbers is based on calculating partial products,

shifting them to the left, and then adding them together. While in binary, each digit is either 0 or 1. The

same logic is still applied (shift and add). To illustrate the multiplication algorithm, an example using

unsigned integers is shown in Figure 3.10, for decimal (A) and binary (B) representations.

It can be observed that the number of partial products is exactly the number of digits of the multiplier

Multiplicand (M) = 19010 = 101111102 
Multiplier (X) = 17010 = 101010102

1 9 0
1 7 0x
0 0 0

1 3 3 0
1 9 0+
3 2 3 0 0

1 0 1 1 1 1 1 0
1 0 1 0 1 0 1 0x
0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0+
0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0

A. Long decimal multiplication B. Long binary multiplication

Figure 3.10: Long (A) decimal and (B) binary multiplication example of 190× 170.
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(i.e., a n-digit multiplier implies n partial products). In general, the partial product section is proportional

to the amount of hardware required to sum the partial products and obtain the final product. While

it can be reduced by using time multiplexing, it implies a longer operation time. The latency is also

related to the height of the partial product section, which may vary depending on the adder algorithm.

Nevertheless, adding fewer partial products is naturally a better option, since reducing the number of

partial products may reduce the hardware cost and improve performance. This is the idea behind the

technique of radix-4 Booth recoding (or encoding), which can halve the total number of partial products

in a binary multiplication. Higher radix recoding (radix-8, radix-16, etc) can result in even fewer partial

products compared to a radix-4 Booth multiplier. However, the encoding logic is more complex and it

is not worthwhile for the desired multiplier. The basics of a radix-4 Booth multiplier are discussed in

Appendix A.

For the proposed architecture, a vectorized multiplier is implemented with a 4×4 structure of 8-bit

radix-4 Booth multipliers, where segments of 8-bits are multiplied between them, resulting in 16 partial

products (see Figure 3.11). Each resulting partial product is gathered and maintained in carry-save

format. The obtained carry-save values are then added through a Wallace tree-like structure, resulting

in a 64-bit value (see Figure 3.12). Since the multiplier must support all vector configurations, some

segments cannot be multiplied at all times – configured by activating and deactivating specific encoders

depending on the precision configuration through bitwise ANDs.

Since every fraction element has a padding of 2 bits, according to the adopted vector format (see

Figure 3.3), it is not necessary to account for potential overflows to the left neighbor. However, since each

Booth multiplier output is in carry-save format, the carry-out might affect the adjacent partial products.

B24-31 B16-23 B8-15 B0-7

A0-7A8-15A16-23A24-31

Radix-4
BM (0) pp0

Radix-4
BM (1) pp1

Radix-4
BM (2)

pp2...

Radix-4
BM (15)

pp15

ppi - partial product i
(carry-save format)

Radix-4 Booth
multipliers

Figure 3.11: Vectorized radix-4 Booth multiplier partial product generation scheme for 32-bit vectors.
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Figure 3.12: Vectorized radix-4 Booth multiplier architecture for 32-bit vectors. The block diagram shows the partial
product scheme with radix-4 booth multipliers and each encoder activation for each supported vector
configuration: (A) 1x32-bit, (B) 2x16-bit, and (C) 4x8-bit.

This carry-out should not be considered as a product bit, it is resultant of the Booth algorithm and would

be discarded if the result was not in carry-save. Therefore, when combining the partial products of each

Booth multiplier, these carry-outs must be removed. In the proposed vector multiplier (see Figure 3.12),

the sum vector of each carry-save format Booth multiplier result is extended with multiple 1s, in specific

positions (not represented in the Figure 3.12) to propagate the undesired carry-outs outside the larger

product range.

3.3 Proposed Vector MAC Unit

The proposed unit (depicted in Figure 3.2) comprises a fully pipelined architecture, supporting vec-

tor variable-precision FP addition, subtraction, and multiplication, together with fused multiply-add and

multiply-accumulate operations. Accordingly, the unit deploys a 32-bit SIMD datapath with unified sup-

port for Posit and IEEE-754 FP formats, implemented by a 6-stage pipeline : i) Decode; ii) Multiply;

iii) Quire Scale; iv) Quire Accumulate; v) Normalize; and vi) Encode. The unit accepts three input

vector operands (Va, Vb and Vc), and outputs one result vector (Vr), and is capable of operating with
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32/16/8-bit scalar values or with 2x16/4x8-bit vectors.

In the Decode stage, the input vectors are decoded, according to the control signals, into three uni-

fied vector formats that gather the sign, scale factor, and fraction fields. These signals enter the Multiply

stage, where Va and Vb are multiplied and Vc are propagated to the next stage. The multiplication is

performed using typical floating-point multiplication, however, with vectorized structures. In the Quire

Scale stage, the multiplication result and the third vector Vc are converted to the adopted quire format

with an associated scale factor. In the Quire Accumulate stage, addition or accumulation with a pre-

viously stored quire value is performed (depending on the operation) after the proper alignment. The

result is then re-normalized to fraction and scale factor in the Normalize stage. Finally, in the Encode

stage, the result vectors are transformed in a posit or IEEE-754 result vector, according to the control

signals.

Before addressing each stage is in detail, the signals that control the unit functioning such as preci-

sion and operation first are addressed.

3.3.1 Control Signals

The several unit configurations and operations are defined through a set of control signal. They include:

operation (op), precision (pre), full precision (vec), format (fmt) and exponent (es) (see Figure 3.2). The

operation signal define the arithmetic operation between the input vectors, and the precision defines

the vector configuration, 1×32-bit, 2×16-bit, or 4×8-bit. Their encodings and respective function are

represented in Table 3.1.

The proposed unit supports operations with three different precisions (8, 16, and 32-bits), which are

controlled by the pre 2-bit signal. The supported addition, subtraction, multiplication, fused multiply-

add, and multiply-accumulate operations are controlled by the op 3-bit signal. The MSB of the op signal

encodes the accumulation operation. The fused multiply-add has the same encoding as the addition

operation and the same occurs with the fused multiply-sub and subtraction operations. This is possible

since multiplying vector Va by the fundamental value 1 and adding/subtracting Vc is the same as a fused

operation. Forcing Vb to the value 1 is left to external control coverage by the user or the processing

system when the unit may be deployed. However, for multiplication, forcing Vc to 0 and performing the

operation as if it is a fused operation may produce an incorrect result, when considering the signed

zeros of the IEEE-754 format. Therefore, a special operation encoding is established for multiplication.

Nonetheless, Vc must still be forced to 0 by external facilities as in the previous case.

The vec is a 1-bit control signal that allows operations with scalars. In this mode (full precision), a

sub-element vector uses the full quire bitwidth. As an example, an 8-bit operation with a vec signal set to

high performs the operation encoded in the op signal with only one 8-bit element from each input vector.

This feature is particularly relevant for continuous accumulation with full accuracy. The same occurs for
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Signal Encoding Function

precision
0X 32-bit precision
10 16-bit precision
11 8-bit precision

operation

000 Vr = Va × Vb + Vc or Vr = Va + Vc
001 Vr = Va × Vb − Vc or Vr = Va − Vc
010 Vr = Va × Vb
100 Vr+ = Va × Vb
101 Vr− = Va × Vb

Table 3.1: Precision and operation signal encodings and respective function.

16-bit operations. For 32-bit operations, this signal is ignored, since the quire is already being fully used.

The remaining two signals, format, and exponent, are four independent signals, one for each vector

(input and output). In particular, fmt, is a 4-bit signal, in which bit 0 corresponds to the result format,

bit 1 to the Vc format, bit 2 to the Vb format, and bit 3 to the Va format. The es signal is a 12-bit

signal, constituted by segments of 3-bits corresponding to each vector. This signal is only used for

posit operands. For 8-bit operations, only the first 2 bits of each segment are used. A configurable

exponent of 2-bits allows the posit format to be used with an exponent configuration of up to 3 (es = 3)

(minimum number of bits to represent the standard configuration es = 2). This design decision was

taken taking into consideration the resulting scale factor vector bitwidth, as addressed in Section 3.2.1.

Higher precisions can use higher exponent configuration, up 7.

3.3.2 Decode

The decode module (see Figure 3.13) translates an input vector (Vi) to the corresponding sign (s), scale

factor (sf), and fraction (f) vectors. Furthermore, it signals, through flags, special encodings – not a

real (NaR) and zero (z), for the Posit format and NaN (qNaN and sNaN), infinity (inf) and zero (z). for the

IEEE-754 format. Since the proposed vector unit supports both formats, the input vector of each decode

module has to be processed in dedicated sub-modules. The format is selected with the signal fmti,

which may differ between decoding modules, allowing cross format operations, as seen above. Similarly,

the esi signal may also differ in each decoding module (even from the encode module), allowing Posit

cross exponent operations. These features provide an intrinsic support for conversions, either between

posits configurations or between posits and IEEE-754 floats.

Regarding the flags, two aspects stand out in Figure 3.13. One is the fact that IEEE-754 floats have

more exception flags than posits. The other is that there is no qNaN flag output in the decode module. In

fact, the qNaN flag is merged with the NaR flag. This is possible, since, according to the posit standard [4],

NaR converts to quiet NaN (qNaN). It is also stated that all forms of infinity and Not a Number (NaN)

convert to NaR. However, only the referred conversion is applied in the decode stage, since including
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Figure 3.13: Proposed Posit/IEEE-754 decode module.

additional convergence would invalidate IEEE-754 floats and cross-format arithmetic. As such, after the

format selection, the z and NaR flags correspond to a posit or an IEEE-754 float (depending on the input),

just like the sign, scale factor, and fraction. The sNaN and inf flags only have an useful value if the input

vector is in the IEEE-754 format, otherwise the bits are set to ’0’.

The vec signal is used in this stage to adjust the decoded fields for the full precision operation mode.

It extends the sign and zero signals as in a 32-bit operation (see Figure 3.3.B), and changes the fraction

(according to the precision) to the most significant positions. Additionally, all signals have their unused

sections set to ’0’, through a register reset, which does not apply to the sign and zero signals. The

objective of these changes is to perform operations as if they were 32-bit operations, however, only for

the fraction and the signals that directly affect it (zero and sign).

Posit Decode

The posit decode stage translates an input posit vector (Vposit) to the corresponding sign (s), scale factor

(sf) and fraction (f) vectors, while signaling the special encodings Not a Real (NaR) and zero (z) through

flags. In Figure 3.14 it is represented the proposed posit decode module. Its architecture is based on

the decode module proposed by Neves et al. [13] which supports dynamic exponent. For each posit

vector, the fields extraction follows the procedure from Section 2.2.2, however the used structures are

fully vectorized (as described in Section 3.2.2), and two additional shifters and some local ORs are used

to deal with the dynamic exponent support.

The NaR and z flags and the hidden bit logic are also generated according to the unit configuration.

The z flags are detected by a tree-like structure with three levels. In the first level, each of the four 8-bit

segments is checked for zero, which corresponds to the zero signal for 8-bit operations. With these

signals, in the second level, each 16-bit segment zero is obtained by two zero signals for 8-bit. In the
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Figure 3.14: Proposed posit decode module.

last level the two zero signals for 16-bit form the zero signal for 32-bit. Depending on the precision,

the corresponding zero signals are selected. Since in the Posit format the MSB is the differing factor

between a zero and a NaR, the s bit of each vector element in each level is not analyzed, but must be

considered in the following levels of the tree. The z signal is latter used to condense the hidden bit and,

together with s, derive the NaR signal.

The vector Posit decode module starts by taking the 2’s complement according to the s bit of each

posit element. The 2’s complement corresponds to inverting the signal and adding 1. To invert correctly

according to the precision, each s bit controls (through a bitwise XOR) the corresponding 8-bit segment,

as if it was a 8-bit operation. This is possible due to the adopted extended sign format (see Figure 3.3.B).

To add 1, a vector adder (as described in Section 3.2.2) is used, by taking the inverted posit vector and

adding it with 0 and with a carry-in set to the s vector.

Then, to obtain the number of regime bits, each vector element is inverted according to each regime’s

MSB bit (rbit), with the same logic as the 2’s complement inversion step. The inverted signal enters a

vectorized LZC (see Section 3.2.2) which counts the number of zeros (number of regime bits) of each

vector element. The zero count (zc) has a bitwidth of 16-bits, however, its minimum value is 12-bits

since the base 2 logarithm of 8 is 3 (3×4=12). Nonetheless, since the zc will ultimately lead to the scale

factor, which is a 2’s complement number, each vector element must be extended with 0s according to

the precision in the vectorized LZC, hence the 16-bits.

The zc is then simultaneously used to shift out the regime bits from each vector element with a vector

left barrel shifter and to obtain the value k encoded in each regime, which is a 2’s complement number.

The latter is calculated using a vector adder, which uses as inputs zc and rbit signals. The vector

adder inputs are defined by analyzing the expression to obtain k (see Equation 2.3). It can be concluded

that for a regime starting with 0, zc must be 2’s complemented, which involves inversion and adding 1

(k = not(zc) + 1). Each segment of the zc inversion is controlled by each rbit bit. However, in this
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case, it is inverted if the rbit is 0, instead of 1, therefore a XNOR is used (instead of a XOR). Adding 1

is done, through the carry-in using the negated rbit signal. When the regime starts with 1, zc must be

subtracted by 1 (k = zc − 1). Since one input of the vector adder remains unused, it is added a binary

string of 1s, obtained by extending each rbit bit to a 4-bit segment.

After shifting out the regime bits, the shifted vector contains the exponent and fraction fields (ef)

for each element, which are then split according to the exponent configuration (es), using a vector left

barrel shifter. This shifter is slightly different from others since the vector elements that are shifted out

correspond to the exponent (e) value. Hence, the shifted out bits must be saved and are not discarded.

Additionally, the es signal is a scalar shift amount input, which simplifies the shifter, having only one

shifting level. The k is also shifted according to es, however, with another modified shifter. Which, first,

extends the input to 32-bits with zeros according to the precision, and then shifts it, forming the regime

value.

Subsequently, to obtain sf, it is necessary to join the regime value with the exponent. The regime

value has the same format of the scale factor (see Figure 3.3.B), while the exponent has a special

format, chosen to allow a uniform fusion between both values across all precisions. The fusion can be

performed solely through bitwise ORs since overlap between the regime and exponent is mathematically

impossible (see Equation 2.4). In Figure 3.15, it is represented the exponent format and the fusion logic.

As described in Section 3.2.1 for 8-bit operations, each exponent can only have up to 3 bits, however,

for 16- and 32-bit operations, each exponent can have up to 7 bits. Accordingly, bitwise ORs are used to

bitwise ORbitwise ORbitwise ORbitwise OR

32 bits

20 bits

exponent

regime value

scale factor

Figure 3.15: Scale factor construction logic. Each rectangle corresponds to a bit. The grey bits are ’0’.
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fill the overlapable exponent sections with 0s for all precisions. In the sections that do not have bitwise

ORs, the regime is directly concatenated to the scale factor.

Finally, the f is obtained by concatenating two 0s (since each vector element has a padding of 2

bits for overflow protection in the multiplication stage) and the negated z signal to each vector element

according to the precision. The negated z signal corresponds to the hidden bit.

IEEE-754 Decode

The IEEE-754 decode sub-module extracts the signs, exponents and significands from the input float

vector (Vfloat) to form the sign (s), scale factor (sf) and fraction (f) vectors. It also signals the special

encodings qNaN, sNaN, infinity and zero through flags. In Figure 3.16 it is depicted a scheme of the

proposed IEEE-754 decoding sub-module. Similarly to the Posit decode sub-module, the signs are

extracted from the MSB of each vector element, organized and extended depending on the precision in

an unified format (see the sign in Figure 3.3.B).

The exponents are directly extracted, grouped in an unified format, and analyzed for potential special

encodings: all 0s (expZ) – zero or subnormal; all 1s (expF) – infinity or NaN. The sf vector is formed by

adding a negative bias vector to the exponent vector, selected from constant vectors according to the

precision. To deal with subnormal numbers, the carry-in of the vector adder is connected with the expZ

signal, since expmin = E − bias + 1 when the value is subnormal. While this affects the exponent for

zero inputs, during the following stages, the z flag vector is properly analyzed, eliminating any potential

errors. In addition, to follow the defined scale factor format (see Figure 3.3.B), the 16-bit unbiased

exponent vector must be sign extend to a 32-bit vector, according to the precision.

The f vector is obtained by concatenating two 0s and the negated expZ signal to each significand

element (corresponding to the hidden bit). Similarly to the format adopted for posits, each vector element

32
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Adder-Vbias

e
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1s

expZ
4

frac 0

32

4
expF

fracZ
4

bitwise
AND

bitwise
AND

z

sf

4

inf4

bitwise
AND

NaN

4

bitwise
AND

bitwise
AND

4

4

sNaN

qNaN

fracMSB
4

32 f

Figure 3.16: Proposed IEEE-754 decode module.
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has a padding of 2 bits for overflow protection in the multiplication stage. Due to the bitwidth size

differences between the significand of each precision (8-bit – 3 significand bits, 16-bit – 10 significand

bits, 32-bit – 23 significand bits) and the adopted fraction format (see Figure 3.3.B), the significand is

also prefixed with zeros to fill the 32-bit bitwidth.

Since the IEEE-754 standard has several special encodings, each exponent and significand must

be analyzed for special combinations (as it was shown in Table 2.2, from Chapter 2). The exponent

is analyzed for all 0s and for all 1s, and the result represented in the already referred signals expZ

and expF, respectively. Each significand is analyzed for all 0s (fracZ), directly performed on the input

vector. The z flag is obtained from the expZ and fracZ signals, and the infinity (inf) from the expF and

fracZ signals, both by a bitwise AND between them. Additionally, the standard also defines two types

of NaNs, whose representation can differ depending on the implementation. In the proposed unit, qNaN

is distinguished from sNaN by the MSB of the significand (the qNaN has the MSB to ’1’, while the sNaN

has the MSB to ’0’). As such, the two different NaN flags are obtained from the expF, negated fracZ,

and fracMSB.

3.3.3 Multiply

The Multiply stage (see Figure 3.2) performs the multiplication of the decoded Va and Vb input vectors,

while propagating the decoded Vc vectors to the next stage. Multiplication is performed using the typ-

ical floating-point scheme, by performing a bitwise XOR between the signs, adding the scale factors,

and multiplying the fractions. However, since the adopted solution provides variable-precision through

vectorization, all the necessary arithmetic operators are also vectorized (as described in Section 3.2.2).

Hence, to add the scale factors, a 32-bit vector adder is used. Similarly, the fraction components are

multiplied with a vectorized multiplier, which is implemented with the same vectorized radix-4 Booth

multiplier as described in Section 3.2.2.

A detailed representation of the multiplication is depicted in Figure 3.2 from a scalar perspective.

Besides this logic, the unit requires additional logic to deal with the special encodings in the flags and a

correction block to ensure a correct conversion to the quire format (see Figure 3.4), as will be described

in the Quire Scale module below.

Correction block: Regarding the correction block, the result of the multiplication is in a fixed-point

format with 2 integer bits, Q2.x (where x depends on the precision), that must be normalized to the

format Q1.y (y=x+1). If the MSB of the fraction multiplication (ovf) is ’0’, the fraction is shifted left.

Contrarily, if it is ‘1’, the scale factor is adjusted with the carry-in of the scale factor addition. This method

avoids right-shifting the least significant bit (LSB) out in the case of overflow by left-shifting out the ‘0’

instead, solely consisting of a manipulation of the implicit fraction point.
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|x| × |y| |y|
+0 +∞ qNan sNan

|x|
+0 +0 sNan qNan sNan

+∞ sNan +∞ qNan sNan
qNan qNan qNan qNan sNan
sNan sNan sNan sNan sNan

Table 3.2: Specification of multiplication for IEEE-754 float special encodings.

Special encodings arithmetic: Conversely, the special encodings logic must follow both formats while

sharing some of its signals. In the case of the posit multiplication, if one operand is NaR, the result is

NaR, if one operand is 0, the result is 0 (except if the other operand is NaR). Since priority can be

assigned to one case over the other, there is no need to consider the exception, and an OR between

both flags produces the resulting flags.

The IEEE-754 standard is more complex in what concerns the special encodings. The specifications

for |x| × |y| are summarized in Table 3.2. The zero and qNaN are equal to the Posit format and priority

can also be applied (sNaN > qNaN > ∞ > 0). The logic for the sNaN and infinity flags is obtained

by following Table 3.2 and considering the corresponding. However, since the proposed architecture

performs multiplication followed by addition, a special case must be taken care of, the infinity flag, that

cannot be generated if the result is a qNaN. This happens due to the addition/subtraction logic with

infinity, which may generate a sNaN incorrectly, motivating the final AND gate for the infinity flag.

As seen in Section 2.1.1, the IEE-754 standard specifies five status flags, which are processed in

the encoding stage. Hence, the Invalid Operation status flag corresponds to mathematically impossible

operations (such as 0 ×∞) or those involving signaling NaNs. This said, in the proposed architecture,

fa sfa Sa

ovf

10

fp sfp Sp

za nara

zp NaRp

infa

infp

sNana fb sfb Sb zb narb infbsNanb

sNanp

<<1

Figure 3.17: Complete Multiply stage in a scalar perspective.
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the sNaN flag encodes any invalid operation during the arithmetic stage, which is then evaluated in the

encode stage to signal the Invalid Operation status flag and the respectively associated result qNaN.

Vectorization: Apart from the vectorization of the adder, multiplier, and XOR, the vectorization of the

other logic components was not discussed. However, the signals share the sign format (see Figure 3.3,

therefore, the logic gates that process the flags are all bitwise. The correction block is single-bit left

shifter controlled by the ovf signal, vectorized with a similar scheme as described in Section 3.2.2.

3.3.4 Quire Arithmetic

The Quire Arithmetic module (see Figure 3.2) is divided into two consecutive pipeline stages: (i): Quire

Scale; and (ii) Quire Accumulate. This design decision was taken to try to keep the critical path to a

minimum, given the complexity of the logic necessary to implement the quire and its main structures.

Accordingly, in the first stage (Quire Scale), the operands are converted to a mixed fixed-point quire

format (see Figure 3.4) with an associated scale factor. Next, in the second stage (Quire Accumulate),

the values are added/subtracted or accumulated (based on control signals), by first selecting and prop-

erly aligning the correct operands, between the product vector from the Multiply stage and the operand

Vc or an accumulated quire vector.

Quire Scale

The Quire Scale stage is responsible for converting the product vector and operand Vc to the quire fixed-

point vector format. The necessary logic is replicated for both operands to allow their parallel conversion

and is divided into two steps. First, the fraction is converted to the quire format, and then it is adjusted

according to the scale factor.

Conversion: The conversion process starts by taking the 2’s complement of the fraction vectors, and

then sign extending and right padding them (according to the precision) to form a 128-bit vector. In

Figure 3.18 it is illustrated this process for the product vector. The sign vectors are not directly used in

this process, since they must first be processed with the operation signal and the zero flag.

Typical floating-point addition or Fused Multiply-Add (FMA) operations do not convert the fractions

to a 2’s complement format (such as the quire). In fact, the addition or subtraction operations are often

controlled by a selective complement of one of the operands and the carry-in of the adder. In this case,

since the hardware is the same for all operations, and all fractions are converted to the adopted quire

format, the necessary 2’s complement step can be used to define the operation (addition or subtraction).

Since the unit supports sole multiplication, the default operation, in this case, is addition (with 0).

48



4

41

signp

fracp

Bitwise
XORzerop

op

op0op2

3

rsign

Bitwise XOR

Vector Adder

64

64

64

fracp

59

11

270

0

0

64 bits

1

1 0 1 27

1 00 1 11 11 0 1 111

Bitwise
AND

128 12128 12 128 12 128 12

11 01sresign011 01sresign111 01sresign211 01sresign3

8 28 28 8 28 28

27 01resign127 01 sresign3 s

8 60 60

59 01resign3

resign 4

fraccomp

fraccomp

fraccomp

fraccomp

Quire128

Quire64

Quire32

128 bits

s

64 bits64 bits

32 bits 32 bits 32 bits 32 bits

Vector Quire fraction point alignment

quiretmp(p)

128

Figure 3.18: Quire conversion of Quire Scale module for the multiplication result.

In particular, to select the operation between addition or subtraction a bitwise XOR is performed

between the signs and the LSB of the operation signal (see Table 3.1). However, the products fraction

can only be subtracted if the operation is accumulation. This requires an additional bitwise AND with

the MSB of the operation signal. The resulting sign vector corresponds to the real sign vector (rsign) of

the operands, according to the operation (addition – same sign; subtraction – inverted sign). After this

step, each fraction element is 2’s complemented. The 2’s obtained value is then sign extended and right

padded to correctly converted to the adopted quire format.

In parallel with the conversion, it is necessary to handle the zero flag. In particular, there is the possi-

bility that elements with a value of zero may have a negative real sign. This is particularly problematic in
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the sign extension step, since a 0 value would be extended with 1s, which is incorrect. This would only

happen for the Posit format in the multiplication of a negative element by a zero element. However, the

IEEE-754 standard has positive and negative zeros, making it impossible to manipulate the sign prior

to the addition. Therefore, the sign extension is performed by the resign signal, obtained by a bitwise

AND between rsign and the negated zero flag.

Adjustment: At this point, it remains to adjust the integer and fractional part according to the scale

factor of each element. For positive scale factors the quire must be left-shifted, while for negative scale

factor, it must right shifted. However, the proposed unit supports IEEE-754 floats and several Posit

exponent configurations with a reduced quire format, when left shifting, the shift amount cannot be

greater than the integer size, and the right shift cannot be performed, since it could shift out the value

before the addition. Therefore, the shift amount is calculated from the scale factor dynamic range with the

aid of a saturation module, which saturates the shifting amount (adjusting the scale factor accordingly)

whenever the fixed-point value overflows.

By only left shifting and maintaining the scale factor associated with the quire format and introducing

floating-point alignment logic in the next stage, it is possible to support the aimed features. The scale

factor saturation logic and quire adjustment are processed in the following way:

32
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Figure 3.19: Quire adjustment of the Quire Scale module for the i operand.
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• if the scale factor is negative, the temporary quire (output of the conversion step, see Figure 3.18)

is not shifted and the quire scale factor remains unchanged;

• if the scale factor is positive and less than the maximum quire integer value (i.e., it fits the quire

fixed-point precision), the temporary quire is left-shifted by the value encoded in scale factor and

the quire scale factor is set to 0;

• if the scale factor is positive and greater than the maximum quire integer value (i.e., it does not

fit the quire fixed-point precision), the temporary quire is left-shifted by the maximum quire integer

value and the quire scale factor is set to the difference.

Figure 3.19 depicts the introduced saturation logic and quire adjustment. As it is shown in the

schematic, the scale factor (sfi, where i is the operand, product or Vc) is subtracted by the maxi-

mum quire integer value (max int), according to the precision. Since max int is a constant, its negative

constant value (-max int) is added to the scale factor. The resulting scale factor difference (sfdiff ),

max int and sfi are then selected to form the quire shift amount (quiresh) and the quire scale factor

(sfqi).

The selection is performed in segments of 8-bits and each segment is controlled by the scale factor

sign (sfsign(i)) and the scale factor overflow signal (sfsat). The latter is obtained with a bitwise NOR

between sfsign(i) and the scale factor difference sign (sfdiff sign). This only occurs if both scale factors

are positive, any other case, there is no saturation. Next, in the vector shift amount selection, if the scale

factor is negative (sfsign(i)=’1’), the corresponding 8-bit segment of the quiresh is 0, if there is saturation

(sfsat=’1’), it is max int, any other case, it is sfi. Then, the quiresh enters a vector left barrel shifter

to adjust the temporary quire (quiretmp(i)), resulting in the operand fraction converted to the adopted

quire format. In the vector quire scale factor selection, if the scale factor is negative (sfsign(i)=’1’), the

corresponding 8-bit segment of the sfqi is sfi, if there is saturation (sfsat=’1’), it is sfdiff , any other

case, it is 0.

Quire Accumulate

The Quire Accumulate stage is responsible for selecting the correct operands and performing the re-

quired operations (see Figure 3.2). To do so, the registered quire (quirer) or the quirec (and respective

complementary signals, such as the scale factor and the flags) are first selected according to the op-

eration (accumulation or addition, respectively). This selection is performed according to the MSB of

the op signal. Afterwards, typical floating-point addition alignment is conducted. While in typical FMA

architectures, the alignment is performed in parallel with the multiplication, since the proposed unit sup-

ports accumulation, the registered value may need alignment. Therefore, the alignment is performed

only after the selection. In Figure 3.20 is represented in detail the swap, alignment, and addition logic.
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Figure 3.20: Detailed Quire Accumulate arithmetic stage.

Swap logic: The first step for alignment is to determine which operand has the lower scale factor so

that the corresponding quire element can be shifted. Similarly to typical floating-point addition, swapping

capability is provided so that shifting is only applied to one of the signals (in this case, the one coming

from the quire). However, since the scale factor elements are in 2’s complement, the swap logic is

slightly more complex than typical floating-point arithmetic. In particular, it must be considered the sign

of the multiplicand quire scale factor (sfsign(p)), the bitwise XOR between the quire scale factors (sfxor),

the zero flags (zerop and zeros), and the sign of the difference between each scale factor element

(sfdiff sign). The logic behind the swapping is represented in the flowchart from Figure 3.21.A. In

Figure 3.21.B the swap logic is represented for the LSB of the swap signal.
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Figure 3.21: (A) flowchart and (B) Boolean swap logic.

Alignment logic: After the swap step, the quire elements with lower scale factors are shifted in a

vectorized right barrel shifter (as described in Section 3.2.2). This structure is similar to the vector left

barrel shifter, differing in the bitwise ORs positions and the shifted in bits. In this case, since the quire

is in 2’s complement, the corresponding sign is shifted in. The shifted out bits are condensed in a sticky

bit vector, essential for rounding in the encoding stage. The shifting amount is given by the difference

between the scale factor elements. Since the difference can be negative, both operations are performed

(i.e., sfqs is subtracted to sfqp and sfqp is subtracted to sfqs). The correct value (shamtalign) is selected

with the swap signal. Additionally, the higher quire scale factor elements are also selected with the swap

signal, corresponding to the scale factor associated with the result quire (sfqr). The latter is obtained
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x+ y
y

+0 −0 +∞ −∞ qNan sNan

x

+0 +0 +0 +∞ −∞ qNan sNan
−0 +0 −0 +∞ −∞ qNan sNan
+∞ +∞ +∞ −∞ sNan qNan sNan
−∞ −∞ −∞ sNan −∞ qNan sNan

qNan qNan qNan qNan qNan qNan sNan
sNan sNan sNan sNan sNan sNan sNan

x− y y
+0 −0 +∞ −∞ qNan sNan

x

+0 +0 +0 −∞ +∞ qNan sNan
−0 −0 +0 −∞ +∞ qNan sNan
+∞ +∞ +∞ sNan +∞ qNan sNan
−∞ −∞ −∞ −∞ sNan qNan sNan

qNan qNan qNan qNan qNan qNan sNan
sNan sNan sNan sNan sNan sNan sNan

Table 3.3: Specification of addition and subtraction for IEEE-754 float special encodings.

by adding the the shifted quire (quireshifted) with the fixed quire (quirefixed).

Special encodings arithmetic: Besides the actual arithmetic operation, it is necessary to include

additional logic to deal with special encoding cases. A detailed representation of the exception logic is

presented in Figure 3.22, by considering a scalar perspective. The special encodings logic must follow

both formats while sharing the same signals. For the Posit format, if one operand is NaR, the result is

also NaR, otherwise, the result is given by the arithmetic result. An OR between each NaR flag can

detect any operation involving NaRs. The logic between the zero flags is not used for the Posit format,

since adding two 0s is not the only operation resulting in 0. Hence a zero result can be detected in the

later normalization stage. In fact, the AND between the zero flags is to deal with signed zero operations

with IEEE-754 floats (described below).

All the logic represented in Figure 3.22, with the exception of the NaR, is required to deal with the

NaR infsignexp sNaN

infainfm

sNaNa

sNaNm

rsigna rsignm

NaRaNaRm 0 1

0 1

rsignarsignm

0 1

op1

zero

zeroazerom

Figure 3.22: Special encodings arithmetic.
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IEEE-754 standard special encodings. This logic was developed according with the specifications for

x + y and x − y that are summarized in Table 3.3 (for the default rounding mode – round to nearest

value). The qNaN (merged in the NaR flag) logic is equivalent to the Posit format, for any operation

involving a qNaN results in a qNaN with the exception of the sNaN. Moreover, the priority described for

the Multiply stage is also applicable here (sNaN > qNaN >∞ > 0). However, it is not necessary to deal

with overlapping special encoding operations.

Additionally, any mathematically impossible operations, or those involving sNaN, result in a sNaN. In

the addition/subtraction case, this is refered to operations between infinities with opposite signals (see

Table 3.3). This is verified with an AND between the infinity flags and the XOR between the real signs

(rsign, see Figure 3.18).

Finally, to deal with signed special encoding operations (specifically, signed zeros and signed infini-

ties) the signs are processed according to Table 3.3, where the operation (addition or subtraction) is

distinguished by op1, which corresponds to the bit 1 of the op control signal. Its use is necessary since,

in this stage, for the sole multiplication case, the product result is added with +0. However, if the product

result is −0, adding +0 changes the result. Therefore, if the operation is multiplication, the sign of the

multiplication is selected. In any other case, the signs are processed with an AND gate, complying with

Table 3.3 regarding signed zero operations. The infinity has priority over zero, therefore, the correspond-

ing sign is selected as the exception sign (signexp). This signal is then selected in the normalization

stage as the result sign, according to the zero and infinity flags (i.e., if either one of the flags is ’1’, the

sign of the result is the one encoded in the signexp signal).

3.3.5 Normalize

The Normalize stage (see Figure 3.2) is responsible for re-normalizing the quire vector and extracting

the sign (s), scale factor (sf), and fraction (f) vectors. First, the sign of the quire is extracted from the

MSB of each quire basic vector element. This sign is used to convert the quire to an unsigned value

through 2’s complement. However, as referred in the previous section, the signs for signed zero and

infinity encodings are packed in the signexp signal. As a consequence, the sign of the result is selected

between the sign extracted from the quire and the signexp through the zero and infinity flags.

With a vectorized LZC (as described in Section 3.2.2), the number of positions to normalize the

unsigned quire are obtained (zero count). With the obtained zero count, the unsigned quire vector is

left-shifted by a vectorized left barrel shifter, which structure is similar to the one in the first stage of the

Quire Arithmetic. It frames the result to a format similar to the decoded fraction (see Figure 3.3) and

condenses any discarded bits in a sticky bit vector. The normalized fraction vector is represented in

Figure 3.23, where the L is the integer (leading) bit.

At this step, the scale factor must be adjusted according to the fraction normalization. Specifically, it
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Figure 3.23: Normalized fraction vector.

is summed with a normalization factor, which is obtained from the zero count and an offset. The logic

to implement the normalization factor is presented in Figure 3.24, for an example 32-bit operation and

by considering positive and negative normalization factors. This logic is used to convert any excess

(or shortage) of integer bits to the scale factor, representing a typical conversion from fixed-point to

exponential formats.

In parallel with the quire sign being extracted, the value of each quire element is checked for zero.

This is necessary for the alignment in the Quire Accumulation, since if the addition/accumulation result

is zero due to one of the operands being the inverse of the other, the quire value is also zero, but the

corresponding scale factor may be different than zero. When aligning this operand for the accumulation,

if the scale factor of the second operand is smaller, it would be incorrectly shifted. The zero flag is then

OR’ed with that coming from the Quire Accumulate stage, forming the final zero flag.

s cg int frac

1

68 bits 60 bits

int frac

68 bits 60 bits

0

zero count 1normalization factor

offset

sf normalization factor = offset - zero count

LSB

LSB

frac

68 bits 60 bits

0

zero count 1

LSB normalization factor

Positive normalization factor

Negative normalization factor

Figure 3.24: Scale factor encoded in the quire.
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Additional logic is also necessary in this stage to the NaR flag in case of a quire overflow. In particular,

if the number of continuous accumulations exceeds the quire capacity, the NaR flag must be signaled.

To do so, the overflow flags are first obtained with typical 2’s complement overflow logic (the carry-out

vector of the quire addition and the quire sign are XOR’ed and the signs of the operands checked) and

then OR’ed with the NaR flag.

3.3.6 Encode

The Encode stage provides the necessary logic for encoding the proposed unit output vectors to the Posit

and IEEE-754 formats (see Figure 3.25). The logic is fully vectorized and translates the sign (s), scale

factor (sf), and fraction (f) vectors of the result to the selected format vector. Since the proposed vector

unit supports both posits and IEEE-754 floats, the result vectors are processed in parallel in the sub-

decode modules of each representation and the correct result is selected. The result is selected through

the signal fmt, which may differ from the decoding modules. Similarly, the es signal may also differ from

the decoding modules, allowing cross exponent operations. As referred in the Decode module, these

features provide intrinsic support for conversions, either between posits (differing on the es) or between

Posit and IEEE-754 formats.

Any operation with IEEE-754 as the destination format is processed normally, even if the input vectors

are in the Posit format. However, the same does not occur in case the input is in the IEEE-754 format

and the result is in the Posit format, due to the IEEE-754 special encodings. If any of the input operands

is a IEEE-754 float and the result format is a posit, any special encodings from the IEEE-754 format

Vr

fmtr

f sf s z

NaR

Vector Posit Encode

NaR infsNan

Vector Float Encode

Selection

esr

Vp Vf Vfs_flags

Vsflags

inf sNan

Bitwise OR

IEEE input 0 1

f sf s z

Figure 3.25: Proposed Posit/IEEE-754 encode module.
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(sNaN, qNaN and infinity) must be processed as a NaR. As referred in the Decode stage, all forms of

infinity, sNaN, and qNaN are merged with NaR. This is accomplished by a bitwise OR between all the

corresponding flags.

Posit Encode

The Posit Encode sub-module translates the result vectors to a posit vector. Any special encoding result

(NaR or zero) is directly encoded in the posit vector, according to the Posit format [4]. In Figure 3.26,

it is represented the Posit encode sub-module. The sub-module is fully vectorized and follows the

typical posit encode scheme (see section 2.2.8), while accounting for the variable exponent capabilities

introduced in the proposed unit.

Accordingly, the process starts by concatenating the full scale factor and fraction according to the

precision. The resulting value is then right-shifted by the es value, with the aid of a vectorized right barrel

shifter, that is especially designed so that any discarded bits are condensed in a sticky bit vector and to

allow the scale factor sign to be shifted in.

The obtained value is then split into the ef and k vectors, each with 32-bits. Next, the k value

is 2’s complemented, resulting in the module of k (|k|), while each element is checked for overflow.

In particular, if |k| is greater to the maximum that is supported by the precision, the resulting posit

saturates at the maximum supported value.

After this step. the two base regime combinations (01 and 10) are concatenated to each element

of the ef signal according with the respective k sign. This signal is then shifted-in according to the

saturated value encoded in k (|k̄|). The shifted-in bits are given by the k sign and the result represents

the unrounded posit value (ref). The discarded bits during shifting correspond to the guard, round, and

|k|
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Figure 3.26: Proposed Posit encode module.
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sticky bit vectors. Additionally, a ’0’ is concatenated in the MSB of each vector element (for the sign).

Finally, the ref signal is rounded with a round to the nearest even scheme (using the LSB, guard,

round, and sticky bits). Afterwards, the 2’s complement is taken according to the sign and the correct

sign is placed in the MSB. The resulting posit values are then selected between the 2’s complement

rounded results and special encodings (according to the flags NaR and zero).

IEEE-754 Encode

The IEEE-754 format encode sub-module translates the result vectors to a IEEE-754 float vector, and

signals the corresponding status flags. In Figure 3.27, it is represented the IEEE-754 encode sub-

module. Since the proposed unit arithmetic datapath is shared for the Posit and IEEE-754 formats, the

subnormal cases are only processed in this sub-module.

To encode a result to the IEEE-754 format first the bias corresponding to the adopted precision is

added to the scale factor. This results in the biased scale factor signal sfbiased, which is then verified if

it corresponds to a subnormal, to generate the corresponding subnormal flag (sub). In case the value

is subnormal, the fraction is adjusted to nullify the exponent and the hidden bit. This is done with the

aid of a vectorized right barrel shifter, which saturates any element whose absolute value is greater

than the maximum shift amount supported by each element, according to the precision. The correct

normalized fraction and exponent (expbiased) elements are then selected between f and subfrac, and

between sfbiased and zero, respectively, according to the sub signal.

Next, the obtained sign, fraction, and expbiased are concatenated in a 32-bit signal (prefloat) accord-

ing to the precision. Any discarded expbiased bits have no meaning in the prefloat since no overflow

or special encoding is generated with sfbiased. However, overflow can occur when prefloat is rounded

(with a round to the nearest scheme) and is handled accordingly. The correct result is then selected be-
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tween the rounded result, zero, infinity, or canonical NaN, according to the flags generated by previous

stages and the scale factor value. In the zero and infinity cases, the corresponding sign is concatenated

and the sNaN and qNaN flags always correspond to the canonical NaN output and are distinguished by

the status flags.

Status flags logic: Regarding the status flags logic (see Figure 3.28), the sNan flag is directly con-

nected to the invalid status flag. As such any impossible arithmetic operation (such as 0 × ∞ and

∞−∞) or involving signaling NaNs results in a signaled invalid status flag. The overflow status flag

is obtained by checking the sfbiased bits that stay out of the exponent bitwidth and the exponent of the

rounded value exponent (for the cases in which the NaN and infinity flags are not signaled). It is impor-

tant to note that the overflow status flag is not signaled for operations with infinities, it is only signaled if

any ”normal” arithmetic operation that exceeds the maximum representable IEEE-754 float value for the

corresponding precision. When the overflow status flag is signaled, the inexact flag is also signaled.

Additionally, any loss of accuracy that may occur (discarded) also signals the inexact status flag (for

the cases in which the NaN and infinity flags are not signaled). Any loss of accuracy is encoded in the

round, guard, and sticky bit vectors.

The remaining status flag is the underflow status flag, which is raised when the result of an opera-

tion is inexact and tininess is detected. While the inexact condition was previously resolved (discarded),

the proposed unit detects tininess after rounding since it results in fewer spurious underflow signals. To

determine tininess, the sub-encode module rounds a complementary result to the destination precision

without regard for the exponent range. If this result is not in the normal exponent range for the destina-

tion precision, then the tininess condition occurs. Specifically, a result is tiny (tininess) if the sfbiased
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Figure 3.28: IEEE-754 encode status flags logic.
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is negative or if the sfbiased is zero. However, in the last case, the fraction is also be taken into consid-

eration, since it can produce a round-up that influences the scale factor. Namely, if the sfbiased is zero

and in the fraction rounding, a carry-out is produced, then tininess does not occur, otherwise, tininess

occurs.

3.4 Summary

In this chapter, a vectorized variable-precision arithmetic unit with unified Posit and IEEE-754 format sup-

port was proposed. First, an overview of the functionalities of the architecture was presented. Following,

it was presented the adopted vector data formats and detailed descriptions of the low-level vectorized

components used in the proposed unit. Finally, the proposed unit architecture was presented by detailing

each individual pipeline stage and its functionality. The next Chapter evaluates the proposed unit imple-

mentation in Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA)

devices and compares it to other state-of-the-art solutions.
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This chapter presents an evaluation of the proposed unified Posit/IEEE-754 Multiply-Accumulate

(MAC) unit architecture in what concerns its resources, timing, and energy efficiency, by considering an

Application Specific Integrated Circuit (ASIC) synthesis and an Field Programmable Gate Array (FPGA)

implementation.

In the first section, it is discussed the evaluation methodology. The second section shows and com-

pares the proposed architecture with several reference architectures and state-of-the-art solutions.

4.1 Evaluation Methodology

The 32-bit 6-stage pipeline architecture of the proposed Unified Posit/IEEE-754 Vectorized MAC unit

was described in RTL, using VHDL, and synthesized using a 28nm UMC standard cell technology [56]

and was implemented on a Xilinx Virtex-7 FPGA device (xc7vx485tffg1761-2).

The functionality of the proposed architecture and all its modules was validated using testing vectors

generated with the Sigmoid Numbers Julia library [57] and TestFloat [58]. TestFloat corresponds to a

set of applications to test whether the implementation of IEEE-754 arithmetic conforms to the standard.

It generates millions of test cases and the corresponding results. The test cases were used as inputs

in the proposed unit and the respective outputs (result and status flags) were cross-checked for errors.

The Sigmoid Numbers library corresponds to a software implementation of the Posit number system

endorsed by its developers. It allows generating random inputs and the corresponding outputs. Special

tests for Posit arithmetic were also performed for corner cases such as 0, Not a Real (NaR) and the

smallest and largest positive and negative numbers that can be represented.

Reference Architectures: To evaluate the proposed architecture, several reference architectures were

implemented alongside the proposed unit:

• Three Posit standard MAC architectures with 8-, 16- and 32-bits precisions. All with exponent size

of 2, as defined in the Posit standard [4]. These 8, 16, and 32-bit precisions imply the use of 128,

256, 512-bit internal quires, respectively;

• A 32-bit Posit MAC architecture with a dynamic exponent as proposed by Neves et al. [13]. How-

ever, with a maximum exponent configuration of 7 and a dynamic configuration for every de-

code/encode module, as defined in the proposed architecture for a fairer comparison. This unit

maintains a standard 512-bit quire;

• A 32-bit MAC architecture with unified support posits and IEEE-754 floats, with a 512-bit quire, a

dynamic exponent (up to 7), and cross-format support similar to the proposed architecture.
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The Posit standard MAC architectures correspond to units that implement the standard posit config-

urations. Additionally to being the main reference for comparison (32-bit) with the proposed Vectorized

Multiply-Accumulate (VMAC), they will also be used to simulate the cost of typical Posit MAC transpreci-

sion implementations, with the same precision mix as the proposed unit (4x8-bit + 2x16-bit + 1x32-bit).

The remaining reference architectures will be used to compare the gains of adopting a reduced quire.

Namely, to verify if the freed resources are enough to mitigate the vectorization approach. All these

architectures were implemented in the same technologies of the proposed VMAC.

State-of-the-art Architectures: The proposed unit will also be compared with state-of-the-art im-

plementations in ASIC technology, including typical Fused Multiply-Add (FMA), dynamic and variable-

precision units. Namely, with a 32-bit Posit typical FMA implementation [12] (TFMA), a 32-bit Posit dy-

namic MAC [13] with configurable exponent size (DMAC), with a 64-bit Posit variable-precision MAC [19]

(VMAC), with a 64-bit IEEE-754 variable-precision FMA [20] (VFMA), and a 32-bit Posit variable-precision

multiplier [21] (VMULT).

Most state-of-the-art architectures that implement variable-precision datapaths with Single Instruc-

tion, Multiple Data (SIMD) capabilities are implemented in ASIC, and the available FPGA metrics only

correspond to scalar units. Nevertheless, the proposed VMAC was also implemented and compared

with the available state-of-the-art implementations in FPGA technology. Namely, with the 32-bit IEEE-

754 Xilinx FMA implementation [44], with a 32-bit IEEE-754 MAC implementation [50], with two 32-bit

Posit FMA implementations [54, 55], with a 32-bit Posit MAC implementation [25], and a 32-bit Posit

dynamic MAC [13] with configurable exponent size (DMAC).

4.2 Implementation Results

4.2.1 ASIC Implemenatation

The proposed Unified Posit/IEEE-754 Vectorized MAC unit was described in RTL and synthesized using

a 28nm UMC standard cell technology [56], by targeting an operating frequency of 667 MHz, under

typical operating conditions (1.05 V, 25° C). Chip area and power estimation results were obtained with

Cadence Genus 19.11. The synthesis results for the proposed VMAC and all the considered reference

and state-of-the-art units are presented in Table 4.1.

The obtained ASIC synthesis results (see Table 4.1) show that the proposed VMAC has a maximum

delay of 1.5 ns, which is imposed (critical path) by the Quire Accumulate stage (see Figure 3.2 from

Chapter 3). This is mainly due to the logic complexity and bitwidth of the required operations. It has an

area of 51563 µm2 and total power of 99 mW .
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UNIT
NUM. PIPEL. ASIC DELAY AREA POWER
BITS STAGES TECH. (ns) (µm2) (mW )

Ref. Posit Std. MAC 8 5 28 nm 0.65 7598 21
Ref. Posit Std. MAC 16 5 28 nm 0.8 17384 47
Ref. Posit Std. MAC 32 5 28 nm 0.91 39767 108
Ref. Posit Transp. MAC 8/16/32 5 28 nm 0.91 104927 286
Ref. Posit Dyn. MAC 32 6 28 nm 1.45 54109 134
Ref. Posit/IEEE-754 MAC 32 6 28 nm 1.47 54849 137
Proposed VMAC 8/16/32 6 28 nm 1.5 51563 99
Posit TFMA [12] 32 - 28 nm 1.6 10750 10
Posit DMAC [13] 32 5 45 nm 1.5 112350 370
Posit VMAC [19] 8/16/32/64 6 45 nm 1.25 799000 702
IEEE-754 VFMA [20] 16/32/64 3 90 nm 1.5 180610 44
Posit VMULT [21] 8/16/32 - 90 nm 2.3 91861 64

Table 4.1: Comparison of the proposed VMAC with reference architectures and state-of-the-art solutions for ASIC
technology.

Comparison with references: When comparing the reference architectures, an increased chip area

of 36% and an increased delay of 60% is needed to add dynamic exponent support to the standard Posit

reference architecture. In terms of power, this implies an increase of 27%. It can be seen that adding

support for IEEE-754 floats to the reference architecture with dynamic exponent support implies minimal

overheads. Specifically, an increased area and delay of 1%, and consequently, an increase of power

consumption of 2%.

When compared to the reference 32-bit Posit standard MAC unit, it can be seen that despite the intro-

duced variable-precision and unified Floating-Point (FP) functionality, the proposed VMAC only presents

a 30% chip area increase, while showcasing a similar power consumption. Furthermore, although a

lower operating frequency was expected as a result of the increased complexity, the critical path is still

majorly mitigated by limiting the size of the quire to 128 bits (as opposed to the reference 512-bit quire).

This is particularly evident when comparing with the reference Posit Dynamic and Posit/IEEE-754 MAC

units, which also adopt a 512-bit quire and have similar features as the proposed VMAC (dynamic ex-

ponent support and floating-point alignment logic). Furthermore, the maximum operating frequency

difference is negligible while the freed resources resultant from the quire reduction allow a 5% and 6%

reduction of chip area, and 26% and 28% less power consumption, respectively.

Comparison with state-of-the-art: When compared to a typical scalar FMA architecture (TFMA), it

can be observed that the proposed VMAC presents a 4.8x chip area and a 10x power consumption

increase while showcasing a similar delay. As would be expected of a FMA architecture, which does

not support accumulation. As a consequence, the TFMA has a maximum datapath bitwidth of 62 bits,

while the proposed VMAC a maximum datapath bitwidth of 128 bits with alignment logic. Since the

TFMA does not provide area and power metrics for a pipelined implementation, the differences in area
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and power consumption are even larger. In terms of functionality, the proposed unit shows much higher

flexibility, in addition to the features provided by the TFMA. In particular, the proposed VMAC supports

accumulation, posits with dynamic exponent configuration, and IEEE-754 floats in a shared variable-

precision datapath.

Functionality comparison with state-of-the-art: While direct comparisons with other state-of-the-art

solutions are hardly possible due to the distinct implementation technologies (28 nm vs. 45 and 90 nm),

it is still possible to compare the proposed VMAC in what concerns the offered functionality:

• The DMAC [13] supports more exponent configurations when compared to the proposed VMAC,

however, the degree of support is excessive (up to 29) and presents a fixed-precision datapath

that lacks the IEEE-754 format support.

• The VMAC [19] is integrated into a hardware accelerator where several 64-bit variable precision

Posit units with SIMD capabilities (1×64-bit, 2×32-bit, 4×16-bit, 8×8-bit parallel operations) are

implemented, together with a 2048-bit quire, according to an older version of the Posit standard.

When compared to the proposed VMAC, it still lacks the Posit dynamic configuration and the IEEE-

754 support.

• The VFMA [20] presents a variable-precision architecture, also with similar SIMD capabilities, how-

ever, it is bound by its sole adoption of the IEEE-754 format, and cannot perform 8-bit low-precision

operations.

• The more recent VMULT [21] also presents low-precision Posit support and variable-precision

capabilities (similar to the proposed VMAC), however, it only implements the multiplier datapath

and lacks the same flexibility of the VMAC in what concerns the configurable exponent size and

support of the IEEE-754 standard.

Comparison with a transprecision setup: Finally, when considering the integration of the proposed

VMAC in a typical transprecision architecture [18] to support a variable-precision datapath it is observed

that it requires 50% less area and 2.9× less power than an alternative combination of the reference stan-

dard Posit MAC units that offer the same precision mix (4x8-bit + 2x16-bit + 1x32-bit MAC). Additionally,

the VMAC offers increased flexibility, by supporting unified support for Posit and IEEE-754 formats with

dynamic exponent configurations.

Energy Efficiency Study

To further study the proposed VMAC, an energy efficiency study was also performed (see Figure 4.1) for

the proposed VMAC, the reference Posit/IEEE-754 MAC, and a typical transprecision setup (simulated
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Figure 4.1: ASIC implementation energy-delay product gain against a scalar version of the VMAC and a typical
transprecision setup.

by combining the reference standard Posit with the equivalent precision mix). Energy efficiency is herein

characterized by an energy-delay product (EDP) metric (see Equation 4.1), which quantifies the trade-

off between raw performance and energy consumption. The obtained results for the considered ASIC

implementation show that adopting a multiple-precision architecture deploying SIMD capabilities results

in considerable gains compared to typical transprecision systems setups.

EDP = power × delay2 (4.1)

It can be seen, that despite all the added functionalities and flexibility, in addition to having less area

and power consumption compared with a scalar architecture with similar functionalities, the proposed

VMAC presents increased gains of up to 33%. Also, when compared to a typical trasnprecision setup,

the proposed unit presents a 6% energy efficiency gain.

4.2.2 FPGA Implementation

The proposed Unified Posit/IEEE-754 VMAC architecture was also implemented on a Xilinx Virtex-7

FPGA device (xc7vx485tffg1761-2). Synthesis and place-and-route results were obtained with the Vi-

vado 2020.1 suite. The implementation results for the proposed VMAC, the reference architectures, and

all the considered state-of-the-art units are presented in Table 4.2.

The obtained FPGA implementation results (see Table 4.2) show that the proposed VMAC has a

maximum operating frequency of 76 MHz, which is imposed (critical path) by the Quire Accumulate stage

(see Figure 3.2 from Chapter 3). It uses 8892 LUTs, 1493 registers, and 0 DSPs, which corresponds to
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UNIT
NUM. PIPEL. FPGA DELAY NO. NO. NO. D. POWER
BITS STAGES (ns) LUTS REGS DSPS (mW )

Ref. Posit Std. MAC 8 5 Virtex-7 6.0 1252 341 0 68
Ref. Posit Std. MAC 16 5 Virtex-7 7.4 2951 1073 0 156
Ref. Posit Std. MAC 32 5 Virtex-7 9.0 7389 2462 0 376
Ref. Posit Transp. MAC 8/16/32 5 Virtex-7 9.0 18299 5972 0 960
Ref. Posit Dyn. MAC 32 6 Virtex-7 12.5 9984 1727 0 326
Ref. Posit/IEEE-754 MAC 32 6 Virtex-7 12.8 11321 1754 0 361
Proposed VMAC 8/16/32 6 Virtex-7 13.2 8892 1493 0 249
IEEE-754 Xilinx FMA [44] 32 6 Virtex-7 5.1 258 296 2 19
IEEE-754 MAC [50] 32 12 Zynq 7000 SoC 11.1 5300 1900 2 -
Posit FMA [54] 32 - Artix-7 54.4 1740 0 0 -
Posit FMA [55] 32 - Artix-7 47.5 1797 0 0 -
Posit MAC [25] 32 40 Kintex-7 8.9 5068 6256 4 -
Posit DMAC [13] 32 6 Virtex-7 11.7 4134 1580 4 -

Table 4.2: Comparison of the proposed VMAC with state-of-the-art solutions for FPGA technology.

2.9% and 0.25% utilization of the FPGA’s available LUTs and registers, respectively. Although several of

the listed state-of-the-art architectures are implemented in different FPGAs, all the FPGAs have 6-input

LUTs, therefore a fair comparison is possible in terms of used resources.

Comparison with reference setups: When compared to the reference 32-bit Posit standard MAC

unit, it can be seen that, despite the introduced variable-precision and unified FP functionality, the pro-

posed VMAC only presents a 20% increase of LUTs and due to the reduced quire, a 75% decrease in

registers. A 13% decrease in power consumption is also visible. Furthermore, it has a 47% increased

delay as a result of the increased complexity. However, the critical path is still majorly mitigated by lim-

iting the size of the quire to 128 bits (as opposed to the reference 512-bit quire). This is evident when

comparing with the reference Posit Dynamic and Posit/IEEE-754 MAC units, which also adopt a 512-bit

quire and have similar features as the proposed VMAC. As in the ASIC results, the freed resources

resultant from the quire reduction allow a reduction of resources and reduced power consumption when

compared with the Posit dynamic MAC and the Posit/IEEE-754 MAC.

Comparison with state-of-the-art FMA solutions: When compared to the FMA architectures from

the literature, it can be seen that the proposed VMAC presents an higher utilization of resources and

lower operation frequency, similarly to the ASIC results. Although the decode and encode modules of

Posit architectures impose considerable overheads of both time and resources [25, 51, 55], most of the

difference between the Xilinx FMA and the Posit FMA implementations [54,55] is the use of DSPs, which

not only reduces the number of LUTs but also a decreases the delay. Hence, when compared to the

latter implementations, the proposed VMAC presents an increased number of LUTs.

Since the Posit implementations [54, 55] are not pipelined and are deployed in different FPGAs, a

fair comparison in terms of delay is hard to accomplish. Nevertheless, is to be expected an inferior total
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latency of the units when compared with the proposed VMAC due to the accumulation support. In fact,

the accumulation support implies a datapath with operands with more bits (more than double). Despite

all the observed increase in terms of hardware resources and timing, it is important to notice that the

proposed unit has much more functionalities and higher flexibility, supporting the IEEE-754 standard and

the Posit format with different exponent configurations.

Comparison with state-of-the-art MAC solutions: When compared to state-of-the-art MAC imple-

mentations, it can be observed that the proposed VMAC presents an increased number of LUTs and

has a greater delay, however, their implementations have more pipeline stages and use DSPs, which

reduces the multiplier footprint. Since the proposed vector multiplier is intrinsically implemented with

logic, architectures with variable-precision support cannot make use of the FPGAs DSPs.

While the Posit MAC units from [13, 25] deploys a 564-bit quire, the IEEE-754 MAC unit [50] deploy

a 564-bit accumulator, equivalent to the quire. The latter implements a segmented accumulator which

is split into several pipeline stages resulting in a lower delay. The Posit MAC [25] implements a heavy

pipeline architecture, which is clearly inefficient compared to the proposed VMAC architecture.

Nonetheless, the adopted quire format allows mitigating the critical path imposed by the quire size,

evident by comparing the maximum operating frequency of the proposed VMAC and the MAC units [13,

25, 50]. On the other hand, although the IEEE-754 MAC [50] and the Posit MAC [25] implement their

architectures in different FPGAs, they have more than the double of pipeline stages. Which, with the

topology adopted in the proposed VMAC, cannot be changed, since it would imply stalling the pipeline

for the accumulation.

Comparison with a transprecision setup: When considering the FPGA implementations of the pro-

posed VMAC and the reference Posit standard architectures arranged in a typical transprecision [18]

setup, it can be observed that the proposed VMAC requires 2.1x less LUTs, 4x less registers, and 3.9x

less power consumption than an alternative combination of reference standard Posit units that offer the

same precision mix (4x8-bit + 2x16-bit + 1x32-bit MAC). Similar to the ASIC implementation, the VMAC

FPGA implementation offers increased flexibility, by supporting unified support for Posit and IEEE-754

formats.

Energy Efficiency Study

The obtained results for the proposed FPGA implementation showed that adopting a variable-precision

architecture deploying SIMD capabilities results in considerable gains compared to typical transprecision

systems setups. To further study the proposed VMAC, an energy efficiency study was also performed

(see Figure 4.2) for the proposed VMAC, the references Posit dynamic MAC and Posit/IEEE-754 MAC,
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Figure 4.2: FPGA implementation energy-delay product gain against a scalar version of the VMAC and a typical
transprecision setup.

and a typical transprecision setup (simulated by combining the reference standard Posit with the equiv-

alent precision mix).

It can be seen, that despite all the added functionalities and flexibility, the proposed unit in addi-

tion to having less area and power consumption compared with the reference Posit dynamic MAC and

Posit/IEEE-754 MAC, it provides 4% and 15% energy efficiency gains, respectively. Also, when com-

pared to a typical setup, it results in a 13% energy efficiency gain.

In an FPGA, beyond the logic delay, there are significant net delays, associated with the reconfig-

urable logic. Since the reference Posit/IEEE-754 MAC has more LUTs and registers (i.e., more logic

area) than the reference Posit dynamic MAC, the introduced net delay is also more significant. Which

explains the differences in efficiency.

4.3 Summary

This chapter provided an in-depth evaluation in terms of resources utilization, power consumption, and

performance of the proposed VMAC by considering an ASIC and FPGA implementation. In the first

section, the evaluation methodology of the proposed unit was addressed. Specifically, the methods

used to test the functionality of the proposed unit, and the architectures used for comparison purposes

(developed references and state-of-the-art architectures).

The second section of this chapter presented the ASIC and FPGA metrics for the proposed VMAC,

references, and state-of-the-art architectures. A comparison was performed between the proposed unit

and the considered architectures in terms of metrics and functionality.
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Research efforts have been shifting to the study of more efficient arithmetic circuits to cope with

rapidly evolving algorithms advances and the ever-increasing amount of data availability. Transprecision

computing has been receiving increasing attention as a viable paradigm to achieve the current com-

puting demands. It is set on the principle that different application domains have different precision

requirements. With these architectures, significant performance and efficiency gains can be obtained by

adjusting the arithmetic precision of floating-point operations to the application requirements.

As a consequence, the lower the precision requirements of the application, the greater the gains. This

approach is being currently used in Deep Learning (DL), where floating-point numbers with precision as

low as 4 bits can be used to train neural networks. For floating-point arithmetic, transprecision solutions

often rely on the IEEE-754 standard, however, an alternative representation has been gaining attention

for low-precision arithmetic, the Posit number system. This format is especially well-suited for low-

precision operations since it offers a trade-off between a wider dynamic range and an increased decimal

precision, this effectively allows a higher decimal accuracy while lowering the operand precision (fewer

bits). It also allows parameterizing the precision and dynamic range (exponent size).

As a result of such properties, it is often observed that posits are more accurate than IEEE-754 floats

near zero and less accurate for higher values. A survey on the state-of-the-art Posit and IEEE-754 was

carried out and was observed that the Posit standard has an overhead of both timing and resources

compared to the equivalent IEEE-754 standard operators, which is a result of its non-uniform encoding.

Hence, while this difference is not noticeable when considering low-precision Posit arithmetic, it becomes

prohibitive in high-precision scenarios due to the use of a quire for exact accumulation.

A state-of-the-art survey showed that there are recent solutions that propose variable-precision ar-

chitectures with Single Instruction, Multiple Data (SIMD) capabilities, which are particularly well suited

for transprecision computing. They allow resources that are freed (when precision is reduced) to be

reused for additional parallel computations, in turn offering increased throughput. Contrarily to most

transprecision hardware solutions that rely on instantiating multiple arithmetic modules to support differ-

ent precisions.

Hence, it was identified an opportunity to explore variable-precision arithmetic with dynamic vec-

torization capabilities while providing unified support for the Posit and IEEE-754 formats. However, to

mitigate the hardware overheads associated with the adoption of the Posit format for high-precision arith-

metic, the use of a reduced quire with associated saturation and alignment mechanisms was considered.

The deployed mechanisms allow maintaining the accumulation benefits for low-precision arithmetic while

gradually losing accumulation accuracy for higher precisions, ultimately enabling hardware and power

savings. Additionally, the deployed mechanisms also allow the introduction of dynamic exponent support

for posits by adding a set of registers in the respective encode and decode steps.

Finally, an Multiply-Accumulate (MAC) unit architecture was proposed that takes a step further in
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the transprecision paradigm, by deploying variable-precision arithmetic datapath with SIMD capabilities

(1×32-bit, 2×16-bit or 4×8-bit precision parallel operations) which can adapt its precision and floating-

point format to the application. Accordingly, it is capable of performing low- and high-precision floating-

point operations with the IEEE-754 and Posit formats. The deployment of the shared Posit/IEEE-754

datapath not only provides support for operations with both formats in the same unit but also cross-

format and intrinsic support for conversions.

The proposed architecture was successfully implemented in Application Specific Integrated Circuit

(ASIC) and Field Programmable Gate Array (FPGA) technologies and compared to the state-of-the-

art and typical transprecision setups. The 28nm ASIC implementation resulted in 50% less area and

2.9× less power consumption when compared with a typical transprecision system topology. The FPGA

implementation resulted in 2.1x less LUTs, 4x less registers, and 3.9x less power consumption when

compared with a typical transprecision system topology. Moreover, an energy efficiency study was also

conducted, where the proposed unit outperformed the typical transprecision setup in both technologies

by 6% and 13%, respectively.

5.1 Future Work

As a result of the work presented in this Thesis, several potential future research directions and improve-

ments to the architecture can be considered:

• Optimize the use of the Quire stages by developing specialized operation encodings for fused

multiply-add, addition, and multiplication with associated power gating mechanisms (for ASIC im-

plementations);

• Introduce more operations to the architecture such as sign injection, minimum and maximum de-

tection, and other supported operations in the floating-point RISC-V ISA [59];

• Introduce cross precision conversion mechanisms;

The flexibility that is provided by the proposed architecture capabilities allows for the integration in

several applications such as accelerators, embedded systems, edge computing, internet-of-things, and

even in a RISC-V processor.

Accordingly, the proposed VMAC can replace the VMAC designed for the Reconfigurable Tensor Unit

(RTU) [19] accelerator since it provides increased flexibility and support for more general computations.

Despite all the added functionalities, the proposed unit does not support 64-bit operations (double-

precision) as the VMAC from the RTU. If double-precision is necessary, two solutions can be proposed.

The first consists of supporting more vector configurations (1×64-bit, 2×32-bit, 4×16-bit, 8×8-bit parallel

operations), extending the proposed architecture for double-precision, which would imply a quire with

256 bits. This solution would result in a much smaller than the deployed in the RTU (2048 bits) while
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supporting accumulation with the same accuracy for low-precision. The other solution is to add support

for IEEE-754 double-precision operations (which decode and encode require less hardware resources

than the Posit analogous modules) with minimal hardware logic addition. Since the Quire Scale and

Quire Accumulate have 128-bit bitwidth, by deploying a bigger multiplier, support for 64-bit IEEE-754

floats is possible due to the resulting product fraction size (106 bits).

The RISC-V is an open-source ISA that natively supports computations on single and double-precision

IEEE-754 floats. Furthermore, the ISA allows adding support for other instructions by extending the ISA.

In addition to the native single-precision floating-point extension of the RISC-V ISA, several useful ex-

tensions to integrate the proposed architecture in the RISC-V ISA are available, such as an ISA for

Posit [55] and a vector (RVV) [60] extension. With these as starting points, the proposed architecture

can be integrated into a RISC-V processor.
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A
Radix-4 Booth Multiplier

The radix-4 Booth recoding is a modification of the Booth algorithm [61], named after its creator, which

was first proposed for speeding up signed radix-2 multiplication in early digital computers. The idea

of a radix-4 Booth multiplier is instead of shifting and adding for every digit of the multiplier term and

multiplying by 0 or 1, we only take every second digit, and multiply by 0, ±1, or ±2. This is, M × X is

implemented as M × Y where Y is a Booth representation of X, such that yi ∈ {−1,−2, 0, 1,+2}.

To recode the multiplier term, the bits are grouped in blocks of three, with overlapping between

blocks. Grouping starts from the least significant bit (LSB), and since the first block does not have a

previous block to overlap, it is extended with a ’0’. Each block is then decoded to select a single partial

product as per Table A.1. In general, there will be bn+2
2 c partial products, where n is the operand length.

Each partial product is shifted 2-bit positions with respect to its neighbors. These partial products are

then added to form the result.

First, to implement the multiplications in each partial product as described in Table A.1, the multi-

plicand is extended with a ’0’ since numbers as large as 2 times the multiplicand must be dealt with.

Depending on the block, the respective partial product is then selected. Multiply by 0 correspond to

selecting a bit string of only 0s. To multiply by 1, the extended multiplicand signal is selected. To multiply

83



Multiplier Bits Block Partial Product
000 0× M
001 1× M
010 1× M
011 2× M
100 −2× M
101 −1× M
110 −1× M
111 0× M

Table A.1: Radix-4 Booth recoding.

by 2, it is left-shifted. Negative multiplications, in 2’s complement, can be obtained by complementing

the signal, and, adding the sign bit in the least significant position of the partial product. This sign can

be simply concatenated in the correct position of the following partial product to avoid additional addi-

tions. Since the partial products can be negative, they need to be sign-extended. However, this can be

simplified by clearing the sign extension bits for positive partial products with the same technique of the

literature [20,62] (extending with the sign and 1s). This said the encoding module of each block outputs

the partial product and the sign of the resulting partial product. Figure A.1 shows a diagram for a 8-bit

radix-4 Booth multiplier (the empty bit positions correspond to 0s).

S0
0

0
0

S0S0

S11

S21

S3

S0

S1

S2

S3+

partial product bit

multiplier bit

result bit

S =1 if PP is negative

Figure A.1: 8 bit modified radix-4 Booth multiplier.

Propagate adders such as ripple-carry adders, carry-lookahead adders, or some other method are

not convenient to use to add the partial products due to the high number of operands. In fact, one of

the most important advances in improving the multiplication is the use of carry-save adders [63]. The

carry-save adder reduces the addition of three numbers to the addition of two numbers. To obtain the

result, a propagate adder is used at the end of the carry-save adder which adds the two final numbers

(Wallace tree-like structure). In conclusion, a radix-4 Booth multiplier uses a radix-4 Booth encoder to

generate the partial products and a Wallace tree-like structure to add them to the result.
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