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The dynamic behavior of an aircraft can be investigated
through computation or experiments. To validate their designs,
engineers need to perform experiments that are usually expen-
sive and time-consuming. In order to improve this process,
topology optimization can be used to produce scaled models
with the same dynamic behavior of the full-scale model that
requires smaller testing facilities and less time to be produced
thanks to the potentialities of additive manufacturing. The
goal of this work is to produce a scaled model that has the
same dynamic behavior as the full-scale model. The method
used to obtain this result is the multi-material topology opti-
mization where the material properties are defined using the
Solid Isotropic Material with Penalization method. The Modal
Assurance Criterion is selected as the optimization constraint
to track and synthesize modes between the full scale and the
scaled designs. Eigenvector derivatives must be calculated and
two different methods were used in order to calculate the sen-
sitivities.
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Introduction

The optimization process adopted in this work aims to gen-
erate a scaled model of a wingbox that presents similar char-
acteristics to a compared full scale wing-box. The objective
function of the optimization will be the minimization of the
difference of the eigenfrequencies of the models and the in-
equality constraints are based on the modal assurance cri-
teria. This approach guides the optimization to obtain, as
mentioned before, matching natural frequencies and eigen-
modes.

Fig. 1. Representation of the wing-box

In this extended abstract the case study in exam is going to
be presented with the definition of the optimization prob-
lem, the computational environment and finally the results
obtained.

Case Study

The case in exam uses a structure, called wing box, that is
an idealization of a real wing-box present inside the skin of
the wing in a normal aircraft. This element is designed to
provide the necessary strength in the lightest way possible
and usually it is composed by numerous ribs and spars.
The wing-box used, being a simplification, is a sandwich
structure. This type of structure is composed by two thin
and strong skins divided by a thick layer of lightweight
core that can be a foam or an honeycomb. The core main
function is to separate the two skins and carry the load
from one skin to the other and, while slightly increasing the
weight, it dramatically increases the inertia of the whole
structure improving bending and buckling loads (1).
The 3D model for the finite element analysis is presented
in figure 1, the dimensions of the box are reported in
table 1. The scaling factor between the two models is
10 and therefore the natural frequencies and the modal
displacement will need to be scaled by a factor of 10 in
order to be directly compared (2).

Instance Full Scale
Model [mm]

Scaled Model
[mm]

Base Chord 3200 320
Tip Chord 500 50
Half Wingspan 4600 460
Thickness 100 10

Table 1. Model dimensions comparison

The mesh of the skin is composed by shell elements,
and the mesh of the internal core is globally composed
by 19200 hexhaedral 3D elements divided in 8 layers of
2400 cells each. Only the internal core is included in the
optimization process while the skin material distribution
does not change during the optimization. The great compu-
tational time required to perform the optimization however
requires to simplify the model and reduce the number of
cells used, the patch approach is therefore used. The patch
used in the optimization is applied at a layer level, every
patch contains 12 cells and the material properties of the
sub-cells are the same if they are shared by the same patch.
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Optimization Problem
The optimization problem studied in this work is to mini-
mize the function f:

f =
n∑
i=n

(1− ωscaled(i)
ωfull(i)

)2 (1)

Subject to the constraint g(i):

g(i) = 1 +γ−MAC(i, i) with γ = 10−6 (2)

where ω is the solution to the problem (K−ω2M) = 0 and
MAC is calculated with the formula presented in the para-
graph at page 3 of this extended abstract.

Sequential Approximate Optimization
Sequential Approximate Optimization has been selected for
the purpose of this study because the number of variables in
the simulation is considerably high and other methods would
result computationally expensive.
Considering the kth iteration with l the number of equal-
ity constraints, m the number of inequality constraints, n the
number of design variables, f̄k0 is the approximated function
of f0 and ḡk0 h̄

k
0 are the approximated functions of the equal-

ity and inequality constraints; the problem can be expressed
as follows:

minimize ¯fk0 (x)
ḡk0 (x) = 0, j = 1, ..., l
h̄k0(x)≤ 0, j = 1, ...,m
αki ≤ xi ≤ βki i= 1, ...,n

(3)

where x is the vector containing the design variables, k is
the number of design variables and α and β are the limits for
the optimization of the considered function at the considered
iteration.

Computational Structure
The process of optimization requires to continuously ana-
lyze the structure in order to update the results. The process
is controlled by Matlab that performs the optimization but in
order to compute the structure fundamental frequencies and
the related eigenmodes, the use of Abaqus is required.
Matlab communicates to Abaqus using Python scripts so the
whole process is automatized and at every iterations the in-
formation is stored in .txt files in order to prevent data losses
in case of unexpected crashes.
The computational process starts from a Matlab code that
launches the finite element analysis of the full scaled model
using a pre-compiled python code that contains all the infor-
mation needed by the finite element code to run. After con-
vergence of the simulation of the full scale model, the initial
design is updated and the pre-processing is completed.
When the pre-processing is completed the optimization loop
can start and it is composed by three separate main se-
quences:

Fig. 2. Computational Structure

• Scaled model FEA

• Sensitivity analysis

• Optimization algorithm

The scaled model analysis is performed in the same way it is
performed in the pre-processing, but differently from the full
scale model analysis, it is performed every time the design
is updated and therefore for every optimization loop. After
the simulation has converged the results of the simulation
is imported in the Matlab environment in the form of global
variables in order to share them with the various functions of
the code. The variables imported are essentially the eigen-
frequences and eigenvectors of the structure and the stiffness
matrices that are needed in order to perform the sensitivity
analysis. Once the sensitivity analysis is completed the ob-
jective function, it’s derivative, the inequality constraints and
their derivatives are imported into IPOPT (3) and the code
performs the optimization that leads to a new material distri-
bution.
The optimization loop is then iterated until the maximum
number of iterations is reached.

Solid Isotropic Material with penalization
Solid Isotropic Method with Penalization has been proposed
by Bendsøe and Kikuchi (4) in 1989 and then by Rozvany
and Zhou in 1991 (5). The method prevents the formation
of grey areas in the optimized structure. Gray areas are par-
ticularly problematic because they represent a material that
was not expected at the beginning of the optimization or sim-
ply does not exist. The stiffness is defined by the following
formula:

E(ρe) = ρpeE0 (4)
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E defines the Young Modulus of every element in the dis-
cretization and ρ is the density relative to the element. This
definition indicates that if p=1, E/E0 varies linearly be-
tween 0 and 1 while if p > 1, E/E0 assumes an exponential
behaviour prioritizing external values and therefore avoiding
grey areas.

Modal Assurance Criterion
The Modal Assurance Criterion, is a statistical indicator sen-
sible to the differences between mode shapes. In general it
can be used in order to compare:

• Experimental eigen-vectors and analytical mode
shapes.

• A defined mode shape with a modified one.

It is important in our case because it allows the code to di-
rectly compare the mode shapes of the full scaled wing-box
and of the scaled wing-box; when comparing a set of mode
shapes it returns an array of values between 0 and 1 where 1
means complete similarity and 0 means total difference but
values over 0.9 already indicate a consistent correspondence
and are acceptable for the purpose of the test (6).

MAC(r,q) = |{φA}Tr ∗{φX}q|2

({φA}Tr ∗{φA}r)∗ ({φQ}Tq ∗{φQ}q)

Where φA is the eigenvector related to the full scaled model
and φX is the eigenvector related to the scaled model.

Adjoint method
The Adjoint Method, developed by Tsai ad Cheng (7), re-
quires five steps in order to be performed, the eigenvectors
of the two structures and the global matrices of the scaled
model are required as an input. It is important to remark
that the method cannot distinguish the eigenvectors in the
case of repeated eigenvalues. The solution adopted by Tsai
is to maximize the natural frequencies, which provides an
easy and straightforward way to prevent mode switching, (7)
which is not applicable in this case study and therefore extra
attention needs to be used to monitor mode switching:

• a= (( (ψT
0 ψj)

(ψT
0 ψ0)(ψT

j
ψj) )ψT0 −

( (ψT
0 ψj)2

(ψT
0 ψ0)(ψT

j
ψj)2 )ψTj )ψT0

• c= (( (ψT
0 ψj)

(ψT
0 ψ0)(ψT

j
ψj) )ψT0 −

( (ψT
0 ψj)2

(ψT
0 ψ0)(ψT

j
ψj)2 )ψTj )−2aψT0 M

• αp = K−λM
c

• b=−αpMψT0

• αj = bψT0 +αp

The MAC derivatives in the adjoint method are calculated
using the global mass and stiffness matrices of the scaled
model. Since the global matrices are not normally given
as an output by Abaqus, a new instance of Abaqus has to
opened ever iteration adding computational time. The steps
used in the calculation are the following, αj is then used by
the equation to calculate the derivatives of the Modal Assur-
ance Criterion:

∂MAC

∂ρ
= αj

∂K

∂ρ
ψj + (aψj−λαj)

∂K

∂ρ
ψj

Multi-material topology optimization
The topology optimization includes three different materi-
als, in this case the elastic modulus can be expressed by the
equation:

E(ρ1,ρ2) = ρpe1 (ρ2E1 + (1−ρpe2 )E2)

Where we are neglecting the importance of the third material
that is void and in the code is indicated with a value of 10−8

GPa instead of zero in order to avoid numerical instabilities.
The element constitutive matrix Ce is expressed as the linear
combination of the constitutive matrices of the materials:

Ce =
m∑
k=1

ωkCk with

m∑
k=1

ωk = 1

Results
The case presented is the case that presented the best results
in terms of material distribution and natural frequency
matching. As presented in table 2 the materials used are two
with a Young modulus of respectively 4 and 1 GPa. The
penalization factor used is equal to 3 and a density filter is
applied to the optimization.

Penalization factor = 3
Material E

[GPa]
ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 4 1180 0.3
Core 2 (Scaled) 1 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 2. Material properties of case 5

The optimization targeted the first three eigenfrequencies,
and the results show a percentage deviation lower than 1%
for all the targeted modes.
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Mode Scaled Full
scale

Full
scale
*10

% differ-
ence

1 34.89 3.52 35.19 0.86
2 111.08 11.16 111.55 0.43
3 137.67 13.87 138.66 0.72

Table 3. Natural frequency comparison

The objective function converged to zero fairly quickly while
the convergence of the function related to the inequality con-
straints diverged until iteration 100 and then started to get
smaller.

Fig. 3. Objective function and constraint function convergence.

Fig. 4. Material distribution after the optimization ordered from layer 1 to layer 8.

The MAC related to the first three modes is higher than
0.95 for the first two modes that are represented by figure
5 and 6 while is lower than 0.9 for figure 7. This is visible
in the figures where a bigger difference is displayed by 7.
More iterations should be performed to evaluate the fitting
of mode three.

Fig. 5. Mode 1 mid-chord spanwise displacement (bending)

Fig. 6. Mode 2 mid-chord spanwise displacement (bending)

Fig. 7. Mode 3 chord displacement (torsion)
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Conclusion
The results obtained, show that the code was able to produce
designs with eigenfrequencies comparable to the one of the
full scaled model with errors under 1%. The first and the
second eigenmodes have been represented quite carefully
by every simulation but the third mode, a torsional mode,
has to be improved.
The results could be improved increasing the number of
patches and therefore the computational time but this was
not feasible with the setup used for the work in exam.
The drawback that the simulation displayed is that the
influence of multiple materials have not made a consider-
able impact on the results since most of the final designs
preferred the first material, the stiffest one, than the second.
It is possible to see this in figure 4 where material number
2 is absent from the figure. This behaviour has to be
investigated with the selection of different materials.

For the future developments of the work some aspects should
be underlined:

• Ulterior simulations with an higher number of patches
should be performed in order to obtain a better fit for
the third vibrational mode.

• The application of different filtering techniques in or-
der to obtain a smoother solution and allow the 3D
printed manufacturing of a real model.

• The introduction of lattice cells in the optimization in
order to allow intermediate designs in the 3D printing.

• To physically produce the final design and to test its
dynamical properties in a wind tunnel in order to val-
idate the model. This implementation is feasible for
two main reasons, the size of the scaled model could
potentially fit in a large number of wind tunnels and
the materials used in the implementations are chosen
with material properties that are close to the ones of
polymers available for FDM printers.
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