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Abstract

The dynamic behavior of an aircraft can be investigated through computation or experiments.

To validate their designs, engineers need to perform experiments that are usually expensive

and time-consuming. In order to improve this process, topology optimization can be used

to produce scaled models with the same dynamic behavior of the full-scale model but that

requires smaller facilities to be tested and less time to be produced thanks to the potentialities

of additive manufacturing. The goal of this work is to produce a scaled model that has the

same dynamic behavior as the full-scale model. The method used to obtain this result is the

multi-material topology optimization that the material properties are defined using the Solid

Isotropic Material with Penalization method. The Modal Assurance Criterion is selected as the

optimization constraint to track and synthesize modes between the full scale and the scaled

designs. Eigenvector derivatives must be calculated and two different methods were used in

order to calculate the sensitivities.
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Resumo

O comportamento dinâmico de uma aeronave pode ser investigado através de simulações

computacionais ou testes experimentais. Para validar os seus projetos, os engenheiros pre-

cisam de realizar testes que geralmente são dispendiosos e demorados. Para melhorar este

processo, a otimização da topologia pode ser usada para produzir modelos à escala com

o mesmo comportamento dinâmico do modelo à escala real, mas que requerem menores

instalações para serem testados e menos tempo para serem produzidos graças às poten-

cialidades da manufatura aditiva. O objetivo deste trabalho é produzir um modelo à escala

que tenha o mesmo comportamento dinâmico do modelo à escala real. O método utilizado

para obter estes resultados é a otimização topológica multi-material, em que as propriedades

são definidas usando o método do Material Isotrópico Sólido com Penalização. O Critério de

Garantia Modal é incluı́do como uma restrição na otimização para seguir e sintetizar os modos

entre os modelos à escala e real. As derivadas dos vetores próprios são calculadas utilizando

dois métodos distintos, para obter as suas sensibilidades.

Palavras Chave

Modelo em escala dinâmica, Restrições de vetores próprios, Manifatura aditiva, Dailey’s method,

Adjoint method.
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The engineer bases his existence on the concept of optimization. Usually there are constraints

that limit the amount of time or money that can be involved in the process and the task of the

engineer is to obtain the best results from the given amount of resources.

The figure of the engineer changed constantly during the history but received a drastic muta-

tion after the invention of the modern computer. The machine conceptualized by Alan Turing in

1936, in fact, while being initially limited to simple operations, allowed the engineer to perform

calculation that would have required unreasonable amounts of time otherwise.

In this way the engineer could avoid drastically the trial and error process allowing for a great

saving in time and resources.

1.1 Topology optimization

In this scenario of continuous technological improvement the concept of Topology Optimization

introduced during the 1960s was applied by Bendsøe and Kikuchi [1] in 1988 at the beginning

as a static problem where the optimization targets was the displacement field.

While engineers can usually propose new designs of simple parts using the experience, the

problem becomes more complex when the number of loads and constraints increases, this is

the point where Topology Optimization (TO) becomes beneficial. TO is the process of defining a

distribution of material inside the design domain in order to maximize a given objective function.

For example, if we consider an aircraft, the wings have to sustain variable force fields and

therefore the optimization can involve not only the maximization of the load tolerable by the

structure but also the maximization of the dynamic properties of the structure defined by the

eigenproblem:

(K − ω2M) = 0 (1.1)

where K is the stiffness matrix, ω is the natural frequency and M is the mass matrix. The so-

lution to this problem consists in a number of values called eigenfrequencies that connote the

resonant frequencies of the structure. When the structure vibrates at a certain frequency, called

natural frequency, the vibration amplitude tends to diverge causing failure. The eigenvectors

are associated to these eigenfrequencies and define the displacement field of the structure at

that defined eigenfrequency.

Using Multi Material Topology Optimization (MMTO) [2] it is possible to modify the eigenfre-

quencies and the eigenvectors associated to a scaled structure in order to match the full scale

structure in a process called dynamic scaling.

1



The difference between MMTO and TO is that during the optimization process are not consid-

ered only two materials one of which is void but more than two allowing for a higher precision

in the results. One of the most used methods in TO is the Solid Isotropic Material with Penal-

ization (SIMP) and is the one used in this optimization process [3].

During the process of optimization Modal Assurance Criteria (MAC) can be used to monitor the

evolution of the eigenmode of the optimized structure in comparison to the objective structure.

An inequality constraint based on MAC can be implemented inside the optimization environ-

ment Interior Point Optimization (IPOPT) in order to guide the optimization to have similar mode

shapes between the two structures [4].

In order to calculate the derivatives of MAC, the derivatives of the eigenvector have to be calcu-

lated [5]. This process can be performed with different algorithms such as Nelson’s, Dailey’s or

Friswell’s [6] [7] [8]. The disadvantage of the first method is that it is not usable in the not remote

case of multiple eigenvalues, this is why the Dailey’s Method was firstly applied to this research

without satisfying results. For this reason a different method was used in order to calculate

the MAC derivatives, this so called Adjoint Method was presented in a paper called ”Structural

design for desired eigenfrequencies and mode shapes using topology optimization” [5] in 2013

and provides a fast and efficient way to obtain MAC derivatives. One of the main advantages

of the method is that it performs the calculations using global matrices and therefore linearly

solves a system in order to obtain the solution resulting faster than the previously mentioned

Dailey’s method. The biggest disadvantage is that the method does not consider multiple eigen-

values.

1.2 Goal of the optimization

The optimization process adopted in this work aims to generate a scaled model of a generic

structure that presents similar characteristics to a compared full scale structure. In particular

the structure in exam is a wing-box. The objective function of the optimization will be the

minimization of the difference between the eigenfrequencies of both models and the inequality

constraints will based on the MAC. This approach will guide the optimization to obtain, as

mentioned before, matching natural frequencies and eigenmodes.

1.3 Additive manufacturing

Once the scaled model is dynamically similar to the full scaled model and the optimization

reached its goal, a prototype can be manufactured and tested inside a controlled environment.

2



An efficient and fast way to produce the optimized structure can be additive manufacturing.

This field undergone a great development in the last years and has proven to be one of the

best alternatives to produce a prototype [9]. For this reason Additive Manufacturing (AM) can

be also mentioned as fast prototyping.

Modern machines can produce pieces using multiple materials such as titanium, brass, alu-

minum alloys and polymers. Thanks to the increased precision that these machines can

achieve, lattice structures can be considered increasing the potentialities and the flexibility of

the process [10].

1.4 Structure of the document

The main goal of this work is to introduce a constraint to the optimization in order to obtain

matching eigenmodes between the full scale and the scaled models. In order to do so the main

target was to implement a constraint function and to calculate the sensitivity of the eigenvectors

using the Adjoint Method and to introduce them in the Matlab code.

The document is going to introduce initially the problem and the optimization environment used.

After that, the calculation of the aforementioned sensitivities is presented with the inclusion of

the calculation of the MAC derivatives.

The chapters of results presents a series of optimizations performed with different material

parameters and the best results are presented more in details.

The document ends with a final chapter where the problems encountered are presented and

possible solutions are proposed for future developments of the work.
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TO is the mathematical process that defines where to place material inside the design space

in order to maximize the performance of the structure [11]. The concept was firstly introduced

by Bendsøe and Kikuchi in 1988 [1] and since then it revolutionized the approach of design in

several fields such as fluid dynamics, optics, acoustics and many more.

The method is based on multiple analysis, one per every iteration, of the design and the update

of the topological distribution of the material in the domain under the guide of the gradient

computation. [11]

The development of this technology allowed engineers to optimize the structure without the

objective of maximizing some parameters such as stiffness or the first natural frequency but

to obtain structures with similar dynamic behaviour. This is the case analyzed in the following

pages where the dynamic properties of a scaled wing-box are going to be optimized in order to

match the properties of the full scaled wing-box.

Before entering in detail with the process adopted for the optimization, a brief description of the

most common methods used is presented.

2.1 Solution Methods

There are multiple solving methods to be used in topology optimization. Some of them have

been used since decades and have proved their solidity such as SIMP and Evolutionary Struc-

tural Optimization (ESO). Other methods as Proportional Topology Optimization (PTO) have

been recently proposed and can take advantage of the increased computational power avail-

able in order to perform more accurate calculation. Some of these methods are going to be

introduced in the following paragraphs.

2.1.1 SIMP and RAMP

Solid Isotropic Method with Penalization has been proposed by Bendsøe and Kikuchi [1] in

1989 and then by Rozvany and Zhou in 1991 [3]. The method was proposed in order to prevent

the formation of grey areas in the optimized structure. Gray areas are particularly problematic

because they represent a material that was not expected at the beginning of the optimization

or simply does not exist. The stiffness is defined by the following formula:

E(ρe) = ρpeE0 (2.1)

E defines the Young Modulus of every element in the discretization and ρ is the density relative

to the element. This definition indicates that if p=1, E/E0 varies linearly between 0 and 1 while
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if p > 1, E/E0 assumes an exponential behaviour prioritizing external values and therefore

avoiding grey areas. A representation of the variation of the Young Modulus with the penalty

factor and its impact on the results is presented is figure 2.1.

(a) Young modulus variation with p (b) Impact of p factor in the
result [12]

Figure 2.1: Penalization factor

A variation of the SIMP method is the Rational Approximation of Material Properties (RAMP)

method. In this case the Young modulus is defined by:

E(ρi) = w(ρi)E0 where w(ρi) =
ρi

1 + p(1− ρi)
(2.2)

Thanks to this modification the RAMP [13] method has the gradient different from zero when

ρi=0.

2.1.2 Evolutionary Structural Optimization

The ESO has been proposed in 1992 by Xie and Steven [14] and is based on the assumption

that some areas of the structure are subjected to very low stresses and therefore these areas

can be removed iteratively until the structure reaches the optimal solution. The process of se-

lection is quite simple: if the Von Mises stress of the cell is lower than the maximum stress

tolerated by the material multiplied by a factor called rejection ratio (RR) the material present in

the cell can be removed. The method proved to be effective in particular scenarios but had one

main issue: once the material has been removed it can’t be reintroduced.
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Following this results a different method was proposed, the Additive Evolutionary Structural

Optimization (AESO) method considers a kernel structure that is overly stressed and applies

material in the zones that present a concentration of stresses [15].

In 1999 Bi-directional Evolutionary Structural Optimization (BESO) was introduced. The method

was developed in order to solve two problems related the the previous evolutionary method: the

uniqueness of the solution and the addition of material once removed [16]. The method can

start from a kernel structure or an oversized structure and remove or add material according to

the stress distribution of the structure.

A representation of the evolution is presented in figure 2.2:

• In subfigure a the kernel structure is presented.

• In subfigure b material is added by the algorithm in order to reduce de stresses

• In subfigure c it is possible to notice that the iterations added material to the external

surface while removing material from the center.

• In subfigure d the behaviour expressed in the previous point is accentuated.

Figure 2.2: BESO [16]

2.1.3 Proportional Topology Optimization

PTO is a non sensitivity method and therefore it doesn’t require the analytical derivation of

the sensitivities of the structure. It was at first proposed by Biyikli and To in 2014 [17] and

later improved by Wang, Cheng and Du in 2020 [18]. In these methods the density variable
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is updated with at every iteration and the target of the optimization can be the minimization

of compliance or the minimization of the maximum stress. The SIMP method is implemented

inside PTO and it possesses a great simplicity and a good grade of accuracy for the given

simplicity while avoiding the calculation of the derivatives relative to the structure.

2.2 Checkerboard patterns

A concerning issue in topology optimization is the formation of checkerboard patterns, and it

is presented in figure 2.3. These patterns are areas in the design domain where the optimizer

converged to a physically unfeasible solution where cells with materials alternate with cells

without material.

Initially, it was believed that this solution was representing the optimal micro-structure but this

thesis was denied and the formation of checkerboard patterns were due to bad numerical mod-

elling [19].

Figure 2.3: Checkerboard pattern [20]

In order to avoid the formation of this problem some strategies can be adopted: at first

higher-order finite element can be used but this solution cannot be applied to all methods.

Smoothing is an option to be avoided because it adopts image processing in order to remove

the checkerboard but doesn’t address the problem that generated the pattern. Another solution

could be to use filtering techniques [21], those techniques try to smooth the design sensitivity

of the element similarly to the techniques used in the imaging processing. The element is

therefore influenced by its closest neighbors and the checkerboard is less likely to occur; the

downside of this technique is that adds computational cost.
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2.2.1 Mesh dependency

The mesh-dependency problem is well illustrated in figure 2.4, where the optimized structure

is highly dependent on the size of the mesh adopted. This means that the structure present in

figure c, that is obtained using a finer mesh, contains more substructures than figure d while it

should simply be a smoother version of it. This can be evaluated just counting the number of

beams that structure c and d present.

Figure 2.4: Mesh dependency [22]

The problem illustrated in figure 2.4 is dependent on the non existence of the solution, but

the problem of mesh-dependency can present itself also in situation where there are multiple

optimal solutions, such as a bar under uni-axial tension.

2.2.2 Density Filter

When bad results such as checkerboard patterns appears, a filter can be applied to the struc-

ture in order to improve the results. In this work a density filter is applied to the structure [23],

the formulation of the filter is presented by equation 2.3:

~fe =

∑
i∈N Heifi∑
i∈N Hei

(2.3)

Where Hei = max(0, rm −∆(e, i)) and N is the neighborhood or, in other words, the set of

elements that are located at a distance lower than rm. As it is presented in figure 2.5 the filter

applies only to the elements that are interested by the filter radius and it averages the value of

the neighborhood in order to avoid the checkerboard formation.

10



Figure 2.5: Filter radius

2.3 Discrete material optimization

Discrete material optimization [24] is a particular type of topology optimization where the al-

gorithm doesn’t have to choose between solid and void but between a set of intermediate

densities. The set of available materials takes the name of candidate materials and the total

number of design variables becomes equal to the number of elements multiplied by the number

of materials. In order to adapt the SIMP to the MMTO the constitutive matrix Ep and the density

ρp are defined as follows, where NW is the number of material selected for the optimization

including void: {
Ep =

∑NW
j=1 ω

E
j Ej

ρp =
∑NW

j=1 ω
ρ
j ρj

(2.4)

wEj and wρj are the weight functions and can be described by the following equations:{
wEj (xp) =

xp
1+pen(−xp+1)

wρj = xpenp
(2.5)
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2.4 Additive Manufacturing

AM was originally referred as Rapid Prototyping (RP) for its ability of rapidly creating a proto-

type. The research on this topic was conducted in the 1970s but the process was patented by

Charles Hull in 1986 as a process called Stereolitography (SLA), also known as optical fabri-

cation [25]. The term AM describes the principle of operation of the method where sequential

layers of the material are additively stratified one on the other in order to produce the compo-

nent.

AM is widely used in the industry as a prototyping tool but lately it spread also in the hobbyist

world thanks to the reduction in price of SLA and Fused Deposition Modeling (FDM) printers.

In order to manufacture a piece it needs to be designed inside a CAD environment. The 3D

model is afterwards sliced with a standalone software or with a CAD integrated tool and then

uploaded to the printer.

2.4.1 Stereolitograpy

SLA was the first AM method to be developed and uses a focused ultraviolet laser beam in

order to solidify a resin that is a thermoset polymer. The laser might be produced by a single

source and then directed to the liquid by a moving mirror, can be produced by a matrix of lasers

that directly draw the section (improving the speed of the process) or can be produced by a

Digital Light Processing (DLP) projector. A schematic representation of an SLA printer is pre-

sented in figure 2.6(a).

Even though the technology was introduced 4 decades ago it is still used nowadays because

(a) SLA scheme [26] (b) Gears produced with SLA process and
high tensile strength resin [27]

it is relatively fast, has a good resolution and can produce objects with good mechanical prop-

erties such as the gears represented in figure 2.6(b). A big disadvantage related to it is the

necessity to perform a finishing wash using isopropyl alcohol in order to remove any trace of
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uncured liquid from the surface and to perform a curing cycle of the finished part and it is impor-

tant to remark that SLA also produces a considerable amount of material wastes differently from

other printing techniques. But recent studies showed the possibility of printing multi-material

micro-structures using the SLA process [28].

2.4.2 Fused Deposition Modeling

FDM, also called fused filament fabrication, was patented in 1989 by Stratasys [29] but gained

increased popularity after 2009 when the patent expired and the technology could spread.

The printer has one or multiple nozzle that can move on 3 axis and deposit on a printing bed

the melted material that hardens after the deposition as represented in figure 2.6.

Most of the time the material is a thermoplastic polymer and therefore the nozzle has to be

heated. Thanks to the relative simplicity of the printer its costs are quite low compared to other

AM technologies and the wide spread of it also in the hobbystic world generated a wide gamma

of usable materials that include recycled, edibles, biological and ceramic filaments.

Figure 2.6: FDM scheme [30]

The parts produced with FDM are inexpensive and fast to produce, but according to the

nozzle used, they can present quite visible layers that undermine the visual quality and the

mechanical properties. Those defects can be reduced using smoothing techniques that require

time, chemicals and change the final thickness of the part.

FDM technology can be used to produce big parts out of concrete for architectural purposes [31]

and even houses [32].
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2.4.3 Selective Laser Melting

Selective Laser Melting (SLM), also known as powder bed fusion or direct metal laser melting,

is an increasingly used method for 3D printing. One of the limiting factor, in its utilization, is the

high initial and operational cost but it allows to produce complex parts using metal alloys [33].

The produced part has to be smoothed because it presents an high roughness and therefore

is not suitable for painting or visual application.

Figure 2.7: SLM scheme [34]

SLM machines are usually big compared to other AM machines, the printing chamber needs

to be inert and usually is filled with Argon gas. The printing bed can move vertically and de-

scend of one layer height once the layer is completed. Simultaneously another piston that acts

as a reservoir provides the powder to the re-coater cylinder that distributes a new layer of pow-

der on the printing bed. As presented in figure 2.7, a laser beam is deflected and focused by a

series of mirrors and lenses in order to melt the powder and to generate the final product.

The main advantage of SLM is the possibility to print Aluminum, Titanium, Nickel, Cobalt, Cop-

per and Iron based metal alloys that have similar strength characteristics compared to the same

material produced with different techniques. Unfortunately the micro-fluid dynamic character-

istics of SLM causes the formation of micro-cavities that decrease the fatigue properties of the

final part, especially in iron based parts [35].
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2.4.4 Lattice Structures

The design of lattice structures using lattice cells derives from the necessity of distribute the

material in a more efficient way compared to normal homogeneous materials. This technology

provides material with good energy absorption and good thermal and acoustic insulation [36]

[37]. In order to build lattice structures the 3D printer, usually using SLM technology [38],

produces three-dimensional structures on a micro-scale that are interconnected along their

nodes or edges. Usually the cell properties and a microscopical scale are anisotropic but at the

component scale those properties results homogenized.

The production of this structures is particularly interesting in the subject of this thesis. Es-

pecially considering the new development of lattice structures based on polymers [39], and

therefore printed with SLA techniques, that are more suitable for the manufacturing of the core

of the wing-box allowing the designer to produce it using intermediate densities that often ap-

pear during the optimization process.
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2.5 Applications

Started on the first half of the 1980s AM hasn’t been extensively used by the industry until the

end of the 2010s. The main factors that limited the development of the technology were the

patents, most of them are now expired, the cost of the printers, the long production time and

the low quality of the prints [40].

While some factors, like the low production ratio, are still a limiting factor for the large scale

production, the big design freedom and the low prototyping costs are increasing the popularity

of this solution.

Three example of 3D printed parts will be presented to illustrate the state of art of the technol-

ogy, the examples are drawn from three different industries: aerospace, space and automotive.

2.5.0.A Airbus A350 XWB door hinges

(a) Airbus A350 XWB (b) Comparison between a CNC machined
wing bracket and the topologically opti-
mized used by the A350 [41]

The Airbus A350 XWB presented in figure 2.8(a) is built using over 1000 3D printed parts

according to Stratasys, the producer of the printers used by the aircraft manufacturer [42]. This

technology allowed to speed up the development process but is still used to produce parts

currently utilized on the aircraft because of the unique freedom of design that the technology

permits; an example of this is the wing bracket presented in the image 2.8(b) that is produced

with SLM technology and a Titanium alloy. Titanium is not the only 3D printed material used

on the A350, Ultem is a polyetherimide that is commonly used thanks to its great thermal and

flame retardant characteristics while providing also a good chemical resistance.
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2.5.0.B Bugatti brake caliper

Bugatti is an historical car manufacturing brand that always succeeded in producing some of

the more iconic, high performance and expensive hypercars in the world. Before being acquired

in 2021 by the Croatian hypercar brand Rimac Automobili, Bugatti was part of the Volkswagen

group and could benefit of the Volkswagen advanced research departments that allowed them

to design the brake caliper in exam. The brake caliper presented in figure 2.8(d) is produced

using a Ti6AI4V alloy and compared to a state of the art 8 pistons caliper made out of Alu-

minum alloys 2.8(c) allows for a saving in weight of the 40% while maintaining the same braking

performance.

The new owner of Bugatti, Rimac Automobili, produces an electric hypercar that takes advan-

tage of advanced 3D printing in several components of the final car.

(c) Brembo 8POT brake caliper (d) Comparison between a high performance iron cast
brake caliper and a SLM 3D printed titanium caliper

2.5.0.C OPTISYS AM antenna

Antennas are critical in satellites communications for conveying information. They usually re-

quire large volume and weight 2.8(e) and therefore they can negatively impact the performance

of the spacecraft.

The design presented in figure 2.8(f) and produced by the American based company Optisys,

allows for a weight saving of 95%, a 80% reduction in production time while still allowing for a

reduced production cost around 20%.

Another hidden benefit for 3d manufacturing is that it allows to reduce the part-count, in

this case from 100 to 1, therefore reducing the probability of malfunction and the maintenance
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(e) Original plan for the antenna assembly (f) 3D printed titanium optimized antenna

requirements. [43]
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After describing the basic concepts and various others notions useful to understand the

optimization process 2, now it is time to describe the approach used in this research. The

optimization problem is going to be described, followed by the integration between the vari-

ous software available and after that the calculation of the objective function is going to be

presented.

3.1 Optimization Problem

The optimization problem studied in this work is to minimize the function f:

f =
n∑
i=n

(1− ωscaled(i)

ωfull(i)
)2 (3.1)

Subject to the constraint g(i):

g(i) = 1 + γ −MAC(i, i) with γ = 10−6 (3.2)

where ω is defined by equation 1.1 and MAC is defined in paragraph 3.5.

3.2 IPOPT

IPOPT is a code developed by Andreas Wächter, a chemical engineer, specifically designed

to solve non-convex, nonlinear, continuous and smooth optimization problems also called Non

Linear Programming (NLP) [4]. The code was initially designed in FORTRAN and then trans-

lated a couple of years later in C++ and it is an Open-source project.

3.3 Sequential Approximate Optimization

Sequential Approximate Optimization (SAO) has been selected for the purpose of this study be-

cause the number of variables in the simulation is considerably high and other methods would

result computationally expensive.

Considering the kth iteration with l the number of equality constraints, m the number of inequal-

ity constraints, n the number of design variables, f̄k0 is the approximated function of f0 and ḡk0
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h̄k0 are the approximated functions of the equality and inequality constraints; the problem can

be expressed as follows:

minimize ¯fk0 (x)
ḡk0 (x) = 0, j = 1, ..., l

h̄k0(x) ≤ 0, j = 1, ...,m

αki ≤ xi ≤ βki i = 1, ..., n

(3.3)

Where x is the vector containing the design variables, k is the number of design variables

and α and β are the limits for the optimization of the considered design variables at the consid-

ered iteration.

3.4 Computational Structure

The process of optimization requires to continuously analyze the structure in order to update

the results. The process is controlled by Matlab that performs the optimization but in order

to compute the structure fundamental frequencies and the related displacement, the use of

Abaqus is required.

Matlab communicates to Abaqus using Python scripts so the whole process is automatized and

at every iterations the information is stored in .txt files in order to prevent data losses in case of

unexpected crashes.

The computational process starts from a Matlab code that launches the Finite Element

Analysis (FEA) analysis of the full scaled model using a pre-compiled python code that contains

all the information needed by the finite element code to run. After convergence of the simulation

of the full scale model, the initial design is updated and the pre-processing is completed.

When the pre-processing is completed the optimization loop can start and it is composed by

three separate main sequences:

• Scaled model FEA analysis

• Sensitivity analysis

• IPOPT

The scaled model analysis is performed in the same way it is performed in the pre-processing,

but differently from the full scale model analysis, it is performed every time the design is up-

dated and therefore every optimization loop. After the simulation has converged the results of
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Figure 3.1: Computational Structure

the simulation is imported in the Matlab environment in the form of global variables in order to

share them with the various functions of the code. The variables imported are essentially the

eigenfrequences and eigenvectors of the structure and the stiffness matrices that are needed

in order to perform the sensitivity analysis. Once the sensitivity analysis is completed the ob-

jective function, it’s derivative, the inequality constraints and their derivatives are imported into

IPOPT and the code performs the optimization that leads to a new material distribution.

The optimization loop is then iterated until the maximum number of iterations is reached.

3.5 Modal Assurance Criterion

The MAC is a statistical indicator sensible to the differences between mode shapes. In general

it can be used in order to compare:

• Experimental eigen-vectors and analytical mode shapes.

• A defined mode shape with a modified one.

It is important in our case because it allows the code to directly compare the mode shapes of

the full scaled wing-box and of the scaled wing-box; when comparing a set of mode shapes it

returns an array of values between 0 and 1 where 1 means complete similarity and 0 means

total difference but values over 0.9 already indicate a consistent correspondence and are ac-
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ceptable for the purpose of the test [44]. A graphical example of the MAC calculation for 5 mode

shapes is presented in figure 3.2.

Figure 3.2: Modal Assurance Criterion

3.6 Sensitivity analysis

The sensitivity analysis plays a fundamental role in this thesis, the calculation of the sensitivity

of the MAC numbers is required, but in order to perform this calculation it is required to calculate

the sensitivity of the eigenvector. Initially the calculation of the sensitivity of the eigenvector was

performed through Dailey’s method that required the knowledge of the sensitivity of the eigen-

values but had the advantage that was able to calculate the derivatives of multiple eigenvalues.

Unfortunately the implementation of this method did not succeed and a different method, called

Adjoint method was used [45]. Both methods are going to be presented in the following pages

after definition of the calculation of the eigenvalue derivatives.

23



3.6.1 Eigenvalue derivatives

The derivative of the eigenvalues is calculated considering the equation:

(K − ω2
sM)φs = 0 ∀ s = 1, ..., ndof (3.4)

Where dof is the number of eigenvalues considered. Differentiating 3.4 we obtain:

(
∂K(x)

∂x
− (ω2

s

∂M(x)

∂x
+
∂ω2

s(x)

∂x
M))φs + (K − ω2

sM)
∂φs
∂x

= 0 (3.5)

Multiplying and reordering 3.5 by φTs :

φTs (
∂K(x)

∂x
− (ω2

s

∂M(x)

∂x
+
∂ω2

s(x)

∂x
M))φs = −φTs (K − ω2

sM)
∂φs
∂x

(3.6)

According to 3.4 the right part of 3.6 is zero and after some manipulation we obtain:

∂ω2
s(x)

∂x
=
φTs (∂K(x)

∂x − ω
2
s
∂M(x)
∂x )φs

φTsMφs
(3.7)

Assuming that the eigenvector is mass-normalized the denominator of the right part of the

equation is equal to 1:

∂ω2
s(x)

∂x
= φTs (∂

K(x)

∂x
− ω2

s

∂M(x)

∂x
)φs (3.8)

And the derivative of the eigenfrequency can be defined:

∂ωs(x)

∂x
=

1

2ωs

∂ω2
s(x)

∂x
(3.9)

3.6.2 Dailey’s method

Several methods have been proposed in order to calculate the eigenvector derivatives, Dailey’s

method was selected because it can consider also cases where the eigenvalues associated

to the eigenvectors are multiple. This method is derived from Nelson’s method in order to

include the case of repeated eigenvalues and from this method the Friswell algorithm has been

developed [46]. The algorithm used can be summarized in 10 steps:

1. D = XT (K ′ − λM ′)X

2. Solve the eigenvalue problem DΓ = ΓΛ′ where Λ is the diagonal matrix of the eigenvalue

derivatives calculated by 3.9 and Γ should be normalized.
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3. The columns of Z = XΓ become the new eigenvectors.

4. Compute G = K − λM and f = (λM ′ −K ′)Z +MZΛ′

5. Find the position of the largest element in Z and substitute in the corresponding columns

and rows of G and rows of f the number 0. In the diagonal position of G affected by the

substitution replace with 1. The new matrices are called Ḡ and f̄

6. Solve ḠV= f̄

7. Q = −V TMZ − ZTMV − ZTM ′Z

8. R = ZT (K ′ − λM ′)V − ZT (M ′Z +MV )Λ′ + 0.5ZT (K ′′ − λM ′′)Z

9. Build and mxm matrix C in the following way:

cij =

{
rij/(λ

′
j − λ′i) if λ′j 6= λ′i

0.5qij otherwise

10. Calculate Z ′ = V + ZC where the columns of Z’ are the eigenvector derivatives

3.6.2.A MAC derivatives in the Dailey’s Method

The MAC derivatives are finally calculated using the eigenvectors of both structures and their

derivatives [45]:

∂MAC

∂ρ
= [

2(φTAφX)2

(φTAφA)(φTQφQ)2
φTQ]

∂φQ
∂ρ

(3.10)

where φA is the eigenvector related to the full scale model and φX is the eigenvector related

to the scaled model.

3.6.3 Adjoint method

The adjoint method developed in this work is presented by Tsai ad Cheng [45], it requires five

steps in order to be performed, the eigenvectors of the two structures and the global matrices

of the scaled model are required as an input. It is important to remark that the method cannot

distinguish the eigenvectors in the case of repeated eigenvalues. The solution adopted by

Tsai is to maximize the natural frequencies, which provides an easy and straightforward way

to prevent mode switching [45], that is not applicable in this case study and therefore extra

attention needs to be used to monitor mode switching.
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1. a = ((
(ψT

0 ψj)

(ψT
0 ψ0)(ψT

j ψj)
)ψT0 − (

(ψT
0 ψj)

2

(ψT
0 ψ0)(ψT

j ψj)2
)ψTj )ψT0

2. c = ((
(ψT

0 ψj)

(ψT
0 ψ0)(ψT

j ψj)
)ψT0 − (

(ψT
0 ψj)

2

(ψT
0 ψ0)(ψT

j ψj)2
)ψTj )− 2aψT0M

3. αp = K−λM
c

4. b = −αpMψT0

5. αj = bψT0 + αp

3.6.3.A MAC derivatives in the Adjoint Method

The MAC derivatives in the adjoint method are calculated using the global mass and stiffness

matrices of the scaled model, they are updated every iteration and used as a derivative of the

inequality constraint inside the IPOPT optimize. Since the global matrices are not normally

given as an output by Abaqus, a new instance of Abaqus has to opened ever iteration adding

computational time. The steps used in the calculation are the following, αj is then used by the

equation 3.11 to calculate the derivatives of the Modal Assurance Criterion:

∂MAC

∂ρ
= αj

∂K

∂ρ
ψj + (aψj − λαj)

∂K

∂ρ
ψj (3.11)
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3.7 Wing-box

The case in exam uses a structure, called wing box, that is an idealization of a real wing-box

present inside the skin of the wing in a normal aircraft. This element is designed to provide the

necessary strength in the lightest way possible and usually it is composed by numerous ribs

and spars.

Figure 3.3: Wing-box model [47]

The wing-box used, being a simplification, is a sandwich structure. This type of structures

are composed by two thin and strong skins divided by a thick layer of lightweight core that can

be a foam or an honeycomb. The core main function is to separate the two skins and carry

the load from one skin to the other and, while slightly increasing the weight, it dramatically

increases the inertia of the whole structure improving bending and buckling loads [48].

Figure 3.4: Sandwich model [49]

The main advantage related to the adoption of a continuous media between the two skins

is the ability to discretize the core in small parallelepipeds and to vary the material properties

of every element in order to optimize the structure and obtain the final design.
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3.8 Abaqus Model

(a) Skin mesh (b) Core mesh with boundary conditions

Figure 3.5: Abaqus generated mesh for the wing-box

The 3D model for the finite element analysis is presented in figure 3.5, the dimensions of

the box are reported in table 3.1. The scaling factor between the two models is 10 and therefore

the natural frequencies and the modal displacement will need to be scaled by a factor of 10 in

order to be directly compared.

Instance Full Scale
Model [mm]

Scaled Model
[mm]

Base Chord 3200 320
Tip Chord 500 50
Half Wingspan 4600 460
Thickness 100 10

Table 3.1: Model dimensions comparison

The mesh of the skin is composed by shell elements, and the mesh of the internal core is

globally composed by 19200 hexhaedral 3D elements divided in 8 layers of 2400 cells each.

Only the internal core is included in the optimization process while the skin material distribution

does not change during the optimization.

The great computational time required to perform the optimization however requires to simplify

the model and reduce the number of cells used, the patch approach is therefore used.

The patch used in the optimization is applied at a layer level, every patch contains 12 cells and

the material properties of the sub-cells are the same if they are shared by the same patch.
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4.1 Multi Material Optimization

MMTO is a computationally complex and heavy optimization process. As introduced in chapter

3 the framework requires to perform a finite element analysis every iteration that is performed

using Abaqus. This simulation requires, with a modern CPU equipped with six cores running at

4.2GHz, around 400 seconds.

Apart from this, the Matlab code requires 450 seconds in total to perform the various tasks

required, including the calculation of the sensitivity of the eigenvectors but excluding the IPOPT

optimizer itself.

The aforementioned optimizer time limit is set to 500 seconds and allows it to perform around

130 sub-iterations.

Instance Time [s] Total time [s]
Abaqus 400
Matlab 450
IPOPT 500 1350

Table 4.1: Computational time

This premise, even if not required, is important to specify why only a limited number of

simulations is presented in this thesis. A more powerful cluster would allow for a faster imple-

mentation of different solutions.

The biggest difficulty behind the implementation of new alternatives for the code is that the total

CPU time to complete a global iteration takes 1350 seconds or around 22 and a half minutes.

Considering that in order to understand if the results are converging to a feasible result the sim-

ulation has to perform preferably 200 iterations this means that a simulation ends after more

than three days without considering predictable crashing that fortunately can be recovered by

the code.

For the reasons presented, five different case-studies of the wing-box are presented, where the

material properties of the multi-material core are changed together with the penalty factor and

the filter application.
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4.1.1 Case 1

Penalization factor = 2.4
Material E [GPa] ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 4 1180 0.3
Core 2 (Scaled) 1 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 4.2: Material properties of case 1

The first case to be presented for the optimization considers two different materials for the core,

the two material selected present a Young modulus of 4 and 1 respectively while the third ma-

terial is the void that can’t be represented with a value of 0 in order to avoid numerical errors.

The feasibility of the part is respected even with good FDM printers since it is possible to find

in commerce nylon based polymers that respect this data.

The results show a good converge of the objective function while the constraint function related

to the MAC of the first three modes is maintained low with the first mode in particular showing

a very low value of 0.009 and therefore a great similarity.

The eight layers, represented on the next page, show a disordered distribution of material with

some formation of checkerboard patterns. It was decided to perform other simulations with dif-

ferent materials and penalization factors in order to investigate the impact of those parameters

on the final results.

(a) Objective function convergence (b) Constraint function convergence

Figure 4.1: Case 1

31



(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8
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4.1.2 Case 2 (increased penalization factor)

Penalization factor = 3
Material E [GPa] ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 4 1180 0.3
Core 2 (Scaled) 1 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 4.3: Material properties of case 2

This case is very similar to case number one. The only difference with it is the increase of the

penalization factor that, as presented previously, tends to limit the formation of intermediate

densities. From the results, this tendency is not very ascertainable because the variation of the

penalization factor is quite small but it is interesting to notice the formation of a blue zone in the

last two plies that represents material number 2.

(i) Objective function convergence (j) Constraint function convergence

Figure 4.2: Case 2
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8
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4.1.3 Case 3 (Material Variation)

Penalization factor = 3
Material E [GPa] ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 4 1180 0.3
Core 2 (Scaled) 3 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 4.4: Material properties of case 3

Case 3 and 4 differently from the first two cases maintain the penalty factor equal to 3 but

variate the material properties. In this case the material properties are chosen to be more

similar to each other with material number two that presents a Young modulus of 3 with a ratio

between the two material of 1.33 compared to the previous ratio of 4. The results show that

material number two, that in the first two simulation was nearly absent, now is present but it is

also possible to notice a great number of patches with intermediate densities.

It is also important to notice that in figure 4.3 the curves related to mode number 2 and 3 overlap

each other displaying a possible problem of mode swapping.

(i) Objective function convergence (j) Constraint function convergence

Figure 4.3: Case 3
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8
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4.1.4 Case 4 (Material Variation)

Penalization factor = 3
Material E [GPa] ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 8 1180 0.3
Core 2 (Scaled) 1 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 4.5: Material properties of case 4

As introduced before, simulation number four uses a different material ratio between core 1 and

2. The ratio is equal to 8 and this provides some interesting results that should be considered

for future developments.

In the pictures presented on the next page it is possible to see that material number two is

avoided by the code and only material number one is used. The distribution is good in terms of

intermediate densities but begins to develop traces of checkerboard patterns especially in the

sixth layer.

(i) Objective function convergence (j) Constraint function convergence

Figure 4.4: Case 4
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8
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4.1.5 Case 5 (Density Filter Application)

Penalization factor = 3
Material E [GPa] ρ[kg/m3] ν

Core (Full Scale) 0.03 1000 0.32
Skin (Full Scale) 70 2700 0.33
Core 1 (Scaled) 4 1180 0.3
Core 2 (Scaled) 1 1150 0.3
Core 3 (Scaled) 1e−8 10 0.3
Skin (Scaled) 70 2700 0.33

Table 4.6: Material properties of case 5

The last case presented uses the same materials of case one and two but with the application

of a density filter. The filter used can be expressed by equation 4.1:

~fe =

∑
Heifi∑
Hei

(4.1)

Where Hei = max(0, rm−∆(e, i)) and rm=1.7. The filter is applied to the material densities

and its function is to average the densities of the contiguous cells in a layer.

The results obtained are going to be analyzed more in detail after the presentation of the layers

in the following page.

(i) Objective function convergence (j) Constraint function convergence

Figure 4.5: Case 5
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

(g) Layer 7 (h) Layer 8
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The first and the second mode are bending modes and their natural frequencies have to

be scaled by the geometrical scaling factor of 10, the results are presented in table 4.7 and

show a very good comparability with a maximum percentual difference of 0.86 for the first three

modes. This result was expectable considering the plot of the objective function that converged

to a really close value of zero.

Mode Scaled Full scale Full scale *10 % difference
1 34.89 3.52 35.19 0.86
2 111.08 11.16 111.55 0.43
3 137.67 13.87 138.66 0.72

Table 4.7: Natural frequency comparison

The mode comparison as described in the third chapter has been done with the calculation

of the MAC number and in order to visualize the results, a scaled plot of the displacements in

the z direction is presented in figure 4.6.

(i) First mode (bending) (j) Second mode (bending) (k) Third mode (torsion)

Figure 4.6: Visual mode comparison

The nodes designated for the plot of the displacements for the first two modes (bending

modes) are represented in figure 4.7(a) and are selected along the longitudinal mid-line while

the nodes designated for the displacements of the third mode (torsional mode) are presented

in figure 4.7(b).

The two bending modes are well replicated in the scaled model and this is also shown by a the

MAC number related to the two modes in figure 4.7(b) of 0.982 for the first mode and 0.920

for the second mode. The cross member that compare the first and the second mode is also

high and this is identifiable in the similarity that the two modes have. The third mode is not

represented in the proper way and this is underlined also by the MAC value that is lower than

0.9, a value that should be considered minimum for the mode shape similarity [44].
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(a) Node selection (bending) (b) Node selection (torsion)

Figure 4.7: Node displayed in plot 4.6
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5
Conclusion
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Topology optimization is nowadays included in many commercial codes because the industry

understood its capability in terms of performance and thanks to the additive manufacturing in-

creased popularity the designs produced are feasible and progressively more economic.

The largest part of those designs are focused on weight saving and dynamic scaling is still not

considered but numerous applications could benefit of this technology. The main goal of this

thesis was to develop an algorithm that allowed to include in the code the calculation of the

inequality constraints sensitivity and therefore guide the optimization to obtain a dinamically

scaled model.

Using the inequality constraints sensitivity in the form of MAC derivatives, the code performs

a multi-material topology optimization that has the target of producing a dynamically scaled

model with matching eigenvalues and eigenfrequencies. In order to perform this calculation

the Dailey’s method and the Adjoint method have been implemented inside the Matlab envi-

ronment. Adjoint method was then selected in order to perform the simulations because it’s

implementation displayed better results.

Adjoint method directly calculates the MAC derivatives using the global K and M matrices of the

scaled model, it’s implementation is simple and the calculation is quite fast but the main issue

related to this method is that it doesn’t consider the case of repeated eigenvalues and therefore

this aspect has to be taken in consideration.

The results obtained, displayed in chapter 4, where multiple designs were analyzed, show that

the code was able to produce designs with eigenfrequencies comparable to the one of the full

scaled model with errors under 1%. The first and the second eigenmodes have been repre-

sented quite carefully by every simulation but the third mode, a torsional mode, still displayed

need of an improvement.

The results could be improved increasing the number of patches and therefore the computa-

tional time but this was not feasible with the setup used for the thesis.

The drawback that the simulation displayed is that the influence of multiple materials have not

made a huge impact in the results since most of the final designs preferred the first material,

the stiffest one, than the second. This behaviour has to be investigated with the selection of

different materials.

For the future developments of the work some aspects should be underlined:

• Ulterior simulations with an higher number of patches should be performed in order to

obtain a better fit for the third vibrational mode.

• The application of different filtering techniques in order to obtain a smoother solution and

allow the 3D printed manufacturing of a real model.
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• The introduction of lattice cells in the optimization in order to allow intermediate designs

in the 3D printing.

• To physically produce the final design and to test its dynamical properties in a wind tunnel

in order to validate the model. This implementation is feasible for two main reasons, the

size of the scaled model could potentially fit in a large number of wind tunnels and the

materials used in the implementations are chosen with material properties that are close

to the ones of polymers available for FDM printers.
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A
Code of Project

Listing A.1: Dailey's method.m

1 function [DU,dMAC,Diele full patch, Diele patch]=Daileys method dMAC(x,

wns,Diele,dcM elw)

2

3 global NW ND CellL StiffnessCand Pen NuMod ob Diele Full

4 global Cell MassCand NumNat FilterON Yc

5 global SolidEleOr

6

7

8 n=ND*NW;

9 [w,dw,ddw]=Weight 2M(x,Pen,0);

10 [wM,dwM,ddwM]=Weight 2M(x,1,1);

11 DU=[];
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12 %%

13 for ifN=1:NuMod ob

14 g Cons T=0;

15 for cl=1:ND

16 CelAco=[];

17 CelAco=Cell{cl};

18 MAC T=0;

19 dMac T=0;

20 for i=1:length(CelAco)

21 CEnu=CelAco(i);

22 CEnu=CelAco(i);

23 MAC Cons tm=(((Diele(:,CEnu,ifN)'*Diele Full(:,CEnu,ifN)

)ˆ2)./...

24 ((Diele(:,CEnu,ifN)'*Diele(:,CEnu,ifN))*...

25 (Diele Full(:,CEnu,ifN)'*Diele Full(:,CEnu,ifN))))

-1;

26 MAC T=MAC T+MAC Cons tm;

27 end

28 g Cons T=g Cons T+MAC T;

29 end

30 g Cons(:,ifN)=g Cons T;

31 end

32 Eig vec C=g Cons;

33

34 [Rep pos]=EV reordering(wns);

35

36 for ifN=1:NuMod ob %eigenmodes

37 for cl=1:ND %patches

38 for j=1:NW %materials

39 kci=0;

40 CelAco=[];

41 CelAco=Cell{cl};

42 DUt=zeros(24,1);

43 %MAC T=0;

44 dMac T=0;
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45 for i=1:length(CelAco) %elements

46 if Rep pos(ifN)==0

47 CEnu=CelAco(i);

48 G t bar=[];

49 f t bar=[];

50 V=[];

51 c=0;

52 Uj=Diele(:,CEnu,ifN);

53 D day = Uj'*(dw(j,cl)*StiffnessCand(:,:,CEnu,j)-...

54 ((wns(ifN))*dwM(j,cl)*MassCand(:,:,CEnu,j)))*Uj;

55 [lambda,gamma]=eig(D day);

56

57 Z day=Uj*lambda;

58 G t bar(:,:)=w(j,cl)*StiffnessCand(:,:,CEnu,j)-...

59 ((wns(ifN))*wM(j,cl)*MassCand(:,:,CEnu,j));

60 f t bar(:,1)=dcM elw(j,CEnu,cl,ifN)*wM(j,cl)*...

61 MassCand(:,:,CEnu,j)*Z day-((dw(j,cl)*...

62 StiffnessCand(:,:,CEnu,j)-abs(((wns(ifN)))*...

63 dwM(j,cl)*MassCand(:,:,CEnu,j))))*Z day;

64

65 ntm=max(Z day);

66 [xx,yy]=find(Z day==ntm);

67

68 G t bar(:,xx)=0; G t bar(xx,:)=0; f t bar(xx,1)=0;

69

70 for ii=1:24

71 G t bar(ii,ii)=1;

72 end

73

74 V day=G t bar\f t bar;

75

76 Q day=V day'*wM(j,cl)*MassCand(:,:,CEnu,j)*Z day-...

77 Z day'*wM(j,cl)*MassCand(:,:,CEnu,j)*V day-Z day

'*...

78 dwM(j,cl)*MassCand(:,:,CEnu,j)*Z day;
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79

80 R day 1=Z day'*(w(j,cl)*StiffnessCand(:,:,CEnu,j)-...

81 ((wns(ifN))*wM(j,cl)*MassCand(:,:,CEnu,j)))*V day

;

82 R day 2=-Z day'*(dwM(j,cl)*MassCand(:,:,CEnu,j)*...

83 Z day-wM(j,cl)*MassCand(:,:,CEnu,j)*V day);

84 R day 3=0.5*Z day'*(ddw(j,cl)*StiffnessCand(:,:,CEnu,

j)...

85 -((wns(ifN))*ddwM(j,cl)*MassCand(:,:,CEnu,j)))*

Z day;

86

87 R day=R day 1+R day 2+R day 3;

88

89 C day= 0.5 * Q day;

90

91 EV der= V day + Z day*C day;

92

93 DUt=DUt+EV der;

94 else

95 if Rep pos(ifN)==1

96 KK=find(Rep pos==1);

97 n rep=size(KK,2);

98 elseif Rep pos(ifN)==2

99 KK=find(Rep pos==2);

100 n rep=size(KK,2);

101 elseif Rep pos(ifN)==3

102 KK=find(Rep pos==3);

103 n rep=size(KK,2);

104 end

105 CEnu=CelAco(i);

106 G t bar=[];

107 f t bar=[];

108 V=[];

109 c=0;

110 Uj=[];
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111 Ujj=[];

112 CEnu=CelAco(i);

113 for ik=1:n rep

114 Ujj(:,ik)=Diele(:,CEnu,ik);

115 Uj(:,ik)=Ujj(:,ik);

116 end

117 D day = Uj'*(dw(j,cl)*StiffnessCand(:,:,CEnu,j)-...

118 ((wns(ifN))*dwM(j,cl)*MassCand(:,:,CEnu,j)))*Uj;

119 [lambda,gamma]=eig(D day);

120

121 Z day=Uj*lambda;

122 G t bar(:,:)=w(j,cl)*StiffnessCand(:,:,CEnu,j)-...

123 ((wns(ifN))*wM(j,cl)*MassCand(:,:,CEnu,j));

124

125 for i=1:n rep

126 f t bar(:,i)=gamma*wM(j,cl)*MassCand(:,:,CEnu,j)*

...

127 Z day(:,i)-((dw(j,cl)*StiffnessCand(:,:,CEnu,

j)-...

128 abs(((wns(ifN)))*dwM(j,cl)*...

129 MassCand(:,:,CEnu,j))))*Z day(:,i);

130 end

131 ntm=max(Z day);

132 [xx,yy]=find(Z day==ntm);

133

134 G t bar(:,xx)=0; G t bar(xx,:)=0; f t bar(xx,:)=0;

135

136 for ii=1:24

137 G t bar(ii,ii)=1;

138 end

139

140 V day=G t bar\f t bar;

141

142 Q day=V day'*wM(j,cl)*MassCand(:,:,CEnu,j)*Z day-...

143 Z day'*wM(j,cl)*MassCand(:,:,CEnu,j)*V day-Z day'
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...

144 *dwM(j,cl)*MassCand(:,:,CEnu,j)*Z day;

145

146 R day 1=Z day'*(w(j,cl)*StiffnessCand(:,:,CEnu,j)...

147 -((wns(ifN))*wM(j,cl)*MassCand(:,:,CEnu,j)))*V day;

148 R day 2=-Z day'*(dwM(j,cl)*MassCand(:,:,CEnu,j)...

149 *Z day-wM(j,cl)*MassCand(:,:,CEnu,j)*V day);

150 R day 3=0.5*Z day'*(ddw(j,cl)*StiffnessCand(:,:,CEnu,

j)...

151 -((wns(ifN))*ddwM(j,cl)*MassCand(:,:,CEnu,j)))*

Z day;

152

153 R day=R day 1+R day 2+R day 3;

154

155 for ik=1:n rep

156 kk=gamma(ik,ik);

157 C day=R day/kk;

158 end

159

160 EV der= V day + Z day * C day;

161

162 DUt=DUt+EV der;

163 end

164 end

165

166 if size(DUt,2)==1

167 DU(:,j,cl,ifN) = DUt;

168 else

169 for i=1:n rep

170 DU(:,j,cl,ifN) = DUt(:,i);

171 end

172 end

173

174 end

175 end
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176

177 end

178

179 %Mac Derivatives Calculation

180

181 %MACDERIVATIVES

182 Diele full patch=zeros(24,ND,NuMod ob);

183 Diele patch=zeros(24,ND,NuMod ob);

184

185 for m=1:NW

186 for j=1:ND

187 for k=1:NuMod ob

188 CelAco=[];

189 CelAco=Cell{j};

190 UF=zeros(24,1);

191 US=zeros(24,1);

192 for i=1:length(CelAco)

193 CEnu=CelAco(i);

194 UF=UF+Diele Full(:,CEnu,k);

195 US=US+Diele(:,CEnu,k);

196 end

197 Diele full patch(:,j,k)=UF;

198 Diele patch(:,j,k)=US;

199

200 end

201 end

202 end

203

204 a=Diele full patch;

205 b=Diele patch;

206

207 Squ=zeros(24,ND,NuMod ob);

208 for i=1:NuMod ob

209 for j=1:ND

210 Squ(:,j,i)=(((2*(a(:,j,i)'*b(:,j,i))/((a(:,j,i)'*a(:,j,i))*...
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211 (b(:,j,i)'*b(:,j,i))))*(a(:,j,i))'+(((2*(a(:,j,i)'*...

212 b(:,j,i))ˆ2))/((a(:,j,i)'*a(:,j,i))*((b(:,j,i)'*...

213 b(:,j,i))ˆ2)))*(b(:,j,i)')));

214 end

215 end

216

217 dMAC=zeros(NW,ND,NuMod ob);

218

219 for i = 1:NuMod ob

220 for j = 1:NW

221 for k = 1:ND

222 dMAC(j,k,i) = Squ(:,k,i)' * DU(:,j,k,i);

223 end

224 end

225 end

226

227 %dMAC=reshape(dMAC,[NW*ND,NuMod ob]);

228

229 if FilterON==1

230

231 for ifN=1:NuMod ob

232 DUi=dg Cons(:,ifN);

233 DEig vec C(:,ifN)=YFiltering(DUi,ND);

234 end

235

236 end
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Listing A.2: Adjoint Method.m

1 function [dMAC,Diele PATCH,Diele full PATCH]=Adj met(wns, x)

2

3 global Diele UN full Diele UN StiffnessCand MassCand NuMod ob Pen NW ND

Cell

4

5 [M,K]=Global stiffness;

6 GlobalMASS=M;

7 GlobalSTIFF=K;

8

9 Diele obj T=Diele UN full;

10 Diele T=Diele UN;

11

12 for i=1:NuMod ob

13

14 k=((2*Diele T(:,i)'*Diele obj T(:,i))/((Diele T(:,i)'*Diele T(:,i))*(

Diele obj T(:,i)'*Diele T(:,i))))*Diele obj T(:,i)';

15 j=(2*(Diele obj T(:,i)'*Diele T(:,i))ˆ2/((Diele obj T(:,i)'*

Diele obj T(:,i))*(Diele T(:,i)'*Diele T(:,i))ˆ2)*Diele T(:,i)');

16 a=(k-j)*Diele T(:,i);

17 a j(i)=a;

18

19 delta = GlobalSTIFF - wns(i)*GlobalMASS;

20 c = (k-j) - 2*a*Diele T(:,i)'*GlobalMASS;

21

22 alpha p = delta'\c';

23

24 b = -alpha p'*GlobalMASS*Diele T(:,i);

25

26 alpha j(:,i) = b * Diele T(:,i) + alpha p;

27 end

28

29 ENode=dlmread('C:/Temp/Conectivity.txt');

30

31 for ina=1:NuMod ob
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32

33 U=alpha j(:,ina);

34 Di=Diele T(:,ina);

35 Df=Diele obj T(:,ina);

36

37 for ii=1:19200 %Number of Elements

38 for j=1:24

39 CEN=ENode(ii,:);

40 if mod(j/3,1) == 0

41 kii=3*CEN(j/3);

42 Ued(j)=U(kii);

43 Die(j)=Di(kii);

44 DieF(j)=Df(kii);

45 elseif mod(((j+1)/3),1) == 0

46 ki=3*CEN((j+1)/3)-1;

47 Ued(j)=U(ki);

48 Die(j)=Di(ki);

49 DieF(j)=Df(ki);

50 else

51 ki=3*CEN((j+2)/3)-2;

52 Ued(j)=U(ki);

53 Die(j)=Di(ki);

54 DieF(j)=Df(ki);

55 end

56 end

57 alpha j ELEM(:,ii,ina)=Ued';

58 Diele ELEM(:,ii,ina)=Die';

59 Diele full ELEM(:,ii,ina)=DieF';

60 end

61 end

62

63 [w,dw,ddw]=Weight 2M(x,Pen,0);

64 [wM,dwM,ddwM]=Weight 2M(x,1,1);

65

66 for j=1:ND
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67 for k=1:NuMod ob

68 CelAco=[];

69 CelAco=Cell{j};

70 UF=zeros(24,1);

71 DD=zeros(24,1);

72 DDF=zeros(24,1);

73 for i=1:length(CelAco)

74 CEnu=CelAco(i);

75 UF=UF+alpha j ELEM(:,CEnu,k);

76 DD=DD+Diele ELEM(:,CEnu,k);

77 DDF=DDF+Diele full ELEM(:,CEnu,k);

78 end

79 alpha j PATCH(:,j,k)=UF;

80 Diele PATCH(:,j,k)=DD;

81 Diele full PATCH(:,j,k)=DDF;

82 end

83 end

84

85 KK=zeros(24,24);

86 MM=zeros(24,24);

87

88 for j=1:ND

89 for k=1:3

90 CelAco=[];

91 CelAco=Cell{j};

92 UF=zeros(24,1);

93 for i=1:length(CelAco)

94 CEnu=CelAco(i);

95 KK=KK+StiffnessCand(:,:,CEnu,k);

96 MM=MM+MassCand(:,:,CEnu,k);

97 end

98 StiffnessCand PATCH(:,:,j,k)=KK;

99 MassCand PATCH(:,:,j,k)=MM;

100 end

101 end

63



102

103 for ifN=1:NuMod ob %eigenmodes

104 for cl=1:ND %patches

105 for j=1:NW %materials

106 dMAC(j,cl,ifN) = alpha j PATCH(:,cl,ifN)'*(dw(j,cl)*

StiffnessCand(:,:,cl,j)*Diele PATCH(:,cl,ifN))...

107 +(((a j(ifN)*Diele PATCH(:,cl,ifN)'-wns(ifN)*

alpha j PATCH(:,cl,ifN)'))*(dwM(j,cl)*MassCand(:,:,cl

,j)*Diele PATCH(:,cl,ifN)))';

108 end

109 end

110 end
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