
A Static Analysis-based Platform-as-Service to Improve the

Quality of Smart Contracts

Dinis Antunes Palha de Araújo
dinisaraujo@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Blockchain technology promises consensus on a decentralized, immutable digital ledger maintained
by a peer-to-peer network involving nodes that do not trust each other. Such technology has gained
both popularity and financial value. Likewise, Ethereum’s Smart Contracts followed this trend, by
promising distributed computations without the need for a third party. More than one and a half
million smart contracts have been deployed to the Ethereum Blockchain where some have been known
to have security vulnerabilities. Recent attacks on these vulnerabilities result in great financial losses
and due to the smart contract immutability these cannot be patched. Many static analysis tools
have been created for Smart Contracts and SmartBugs was created as an extensible framework that
aggregates them with the goal of detecting different vulnerability types. While using SmartBugs,
developers tend to find themselves with a huge overhead on parsing the outputs, unifying the results
and acknowledging the information produced by this tool. In this dissertation we describe SARIF,
a standard format for the output of static analysis tools. We then discuss how we converted the 11
tools run by SmartBugs to this format. Moreover, we develop SASP, a protocol server, as a service
to receive queries, run the analysis and aggregate the results. Finally, we overview the GitHub pull
based development platform as a methodology to automate the analysis and show its results in a more
intuitive manner. Our goal is to increase the accessibility of static analysis tools to smart contract
developers.
Keywords: Blockchain; Ethereum; Smart Contracts; Static Analysis; SmartBugs; SARIF; SASP;
GitHub

1. Introduction
Blockchain technology [28] has gained massive at-
tention since the introduction of Bitcoin’s white pa-
per in 2008 [22]. Blockchain earned its name for
being a growing list of blocks where each block con-
tains the hash of the previous one, such as they
are linked to each other. In this network no node
trusts each other, however due to its cryptographic
properties, they will always agree by maintaining a
shared global ledger while overcoming the missing
trust [3, 25].
Since Bitcoin’s introduction, several other

Blockchain platforms, extending the technol-
ogy’s applications, have emerged. In particular,
Ethereum [5, 4] can be seen as an extension of the
Bitcoin Blockchain to support a wider range of ap-
plications. In order to establish trusted contracts
without the need for a third party, Vitalik Buterin
implemented the concept of Smart Contracts [32]
into the Blockchain technology.
Due to the rich financial nature of the Smart

Contracts running in the EVM, there are a lot of

motivated hackers trying to find ways to exploit
the system. Since once a contract is deployed it
is immutable, not even its creator is able to patch
any security vulnerability. In a study performed on
nearly one million Ethereum contracts using MA-
IAN1, 34,200 contracts were flagged as vulnerable
[24]. In another study performed on 19,366 exist-
ing Ethereum contracts using Oyente2, 8,833 were
flagged as vulnerable, including the TheDAO vul-
nerability which led to a 60 million US dollars loss
in June 2016[20].

In order to detect bugs and security flaws in their
Smart Contracts’ code [16, 13], developers use static
analysis tools to analyse their code. These are ul-
timately necessary for software developers to find
simple errors, serious vulnerabilities, performance
issues, libraries’ misuses3, and even to standout de-

1https://github.com/ivicanikolicsg/MAIAN
2https://github.com/enzymefinance/oyente
3In 28-12-2020, an incorrect library usage, managed hack-

ers to exploit $9.4 million US dollars from the COVER con-
tract. By misusing the keywords memory and storage, the

1

https://github.com/ivicanikolicsg/MAIAN
https://github.com/enzymefinance/oyente

sign flaws4.

According to a set of criteria [21], 10 static analy-
sis tools were selected to be a part of SmartBugs [9].
SmartBugs was created with the purpose of being
an extensible execution framework that simplifies
the execution of analysis tools on smart contracts.

Many static analysis tools have been created in
academia but only a few are actively used by devel-
opers [7]. Developers mostly use the tools that have
their results more easily accessible to them and are
built to be integrated with the programming en-
vironment (i.e. IDEs), unlike SmartBugs and any
other Solidity static analysis tool. However, this
integration is not trivial as different environments
consume different formats for the static analysis’
results, expect different plugins, and so forth.

1.1. Objectives and Contributions

Our major goal in this project is to bring static
analyzers, that focus on Solidity smart contracts,
a step closer to being adopted by smart contract
developers. With this, we hope to achieve a more
effective use of these tools leading to less vulnerable
programs being deployed.

To accomplish these goals, we will first provide an
overview of blockchain technology before focusing
on Ethereum smart contracts. We describe each
of the top ten vulnerabilities reported in Solidity
smart contracts.

Later, we present SmartBugs, a unique, extend-
able, and simple-to-use execution framework for
smart contracts that facilitates the study and execu-
tion of static analysis tools. We will implement our
researched improvements into SmartBugs, mostly
due to being a complex framework that aggregates
a comprehensive different set of analysis tools.

For our improvements we start by breaking down
a renowned standard for static analysis’ results, the
SARIF standard. We present our overview on this
standard and provide a minimalist way to imple-
ment it into any static analyzer’s environment, for
Solidity smart contracts or any other type of code.
By standardizing the output of an analysis tool, its
creator is allowing for it to be integrated with other
tools, i.e. GitHub.

Furthermore we research a possible methodology
for creating a service that provides static analysis
results when queried with an analysis request. We
implement the SASP service with the goal of de-
livering the entire set of results to the client in the
same format.

developers allowed for a serious security vulnerability in the
updatePool function to be exploited [33].

4In 25-09-2020, the BZX developers noticed an increase in
their iToken supply. This was due to a design flaw in their
transfer function which allowed any user to increase their
balance artificially by simply transferring money to himself
[17].

To conclude, we present an example of a platform
that would digest our service’s response and display
it in a more intuitive manner. In order to improve
the detection and awareness of the dangerous vul-
nerabilities that prey in Ethereum smart contracts,
we implement all of our research into this platform
in an automated form.

Our major contributions are enumerated here:

• We briefly review the vulnerabilities found in
smart contracts and a state-of-the-art tool,
SmartBugs, for the automated identification of
these vulnerabilities.

• We present an overview on SARIF, a standard
for static analysis tools’ output. We implement
it into the SmartBugs’ environment5 and pro-
vide a more accessible way to implement it in
other tools.

• We develop SASP6 and build it as a service for
reporting the SmartBugs’ results to the clients
who requested the analysis.

• We overview and program two GitHub
adapters7 for requesting static analysis results
from SASP and directly from SmartBugs.

• Lastly, we test all our implementations from
different perspectives in order to provide a fair
evaluation.

2. Background
BlockChain The name Blockchain comes from
the fact that it is a growing list of blocks, each
of them containing the hash of the preceding one.
This way, the links between the blocks are crypto-
graphically connected, making them essentially un-
breakable. The only way to switch an older block
would involve changing every single following block.
In the Bitcoin implementation, each block is made
up of a list of transactions that, once created and
added to the blockchain, become immutable, mean-
ing they can’t be modified or reversed, guaranteeing
the transactions’ integrity.

Thanks to Satoshi Nakamoto, the pseudonym be-
hind the Bitcoin paper, for proposing the first per-
missionless blockchain in 2008, the Bitcoin white
paper [22]. As it’s a permissioneless blockchain,
any user is able to interact and participate in the
network by simply publishing a signed transaction.
Satoshi not only published the white paper as well

5SmartBugs SARIF converters on GitHub:
https://github.com/smartbugs/smartbugs/tree/master/

src/output_parser
6SASP repository on GitHub: https://github.com/

dindonero/smartbugs-sasp
7SASP GitHub Adapter: https://github.com/

dindonero/smartbugs-static-analysis/

NoSASP GitHub Adapter: https://github.com/

dindonero/smartbugs-local-static-analysis

2

https://github.com/smartbugs/smartbugs/tree/master/src/output_parser
https://github.com/smartbugs/smartbugs/tree/master/src/output_parser
https://github.com/dindonero/smartbugs-sasp
https://github.com/dindonero/smartbugs-sasp
https://github.com/dindonero/smartbugs-static-analysis/
https://github.com/dindonero/smartbugs-static-analysis/
https://github.com/dindonero/smartbugs-local-static-analysis
https://github.com/dindonero/smartbugs-local-static-analysis

as also developed some of the earlier code versions
for the bitcoin network before disappearing in 2011.
Up to this day Nakamoto’s real identity still remains
a mystery.

Ethereum Ethereum [5] may be perceived as a
more robust version of the Bitcoin Blockchain which
enables a broader range of applications. Vita-
lik Buterin introduced Ethereum in 2014 as the
first blockchain platform to incorporate a Turing-
complete language. It has its own currency, called
Ether (ETH), with smart contracts as the plat-
form’s key component. Just like Bitcoin, Ethereum
is a permissioneless blockchain where any network
participant is allowed interaction with the network,
such as transferring Ether or interacting with a
smart contract.

Smart Contracts The idea of Smart Contracts
is not new. In fact, it’s been here for 25 years, with
Nick Szabo defining the concept in 1996. A smart
contract, according to Szabo, is ”a set of promises,
specified in digital form, including protocols within
which the parties perform on these promises”[31].
Solidity [30] is the world’s first Turing com-

plete programming language [12] to operate in a
Blockchain platform. With a structural design sim-
ilar to the JavaScript language, Solidity compiles to
EVM byte code [14] so it can be executed by the
multiple nodes running the EVM.
When consensus on the outcome of the execu-

tion of a smart contract is achieved by the net-
work of nodes, the contract’s state gets updated and
stored on the blockchain. Smart contract process-
ing sometimes demands intensive computing oper-
ations, and because these tasks are carried out by
the networks’ nodes, each computational operation
has a cost, which in Ethereum is referred to as gas.
These execution fees are the costs incurred by the
user in having code executed by the miners. Users
can engage with contracts and trade value or data
by posting signed transactions to the network.

Vulnerabilities of Ethereum Smart Contracts
There are numerous types of vulnerabilities in
Ethereum smart contracts, and they can manifest
themselves in various ways. Throughout Smart-
Bugs’ research, they chose the most comprehensive
and prevalent way of describing the vulnerabilities
observed in smart contracts, based on the DASP
Top 10 taxonomy[23]. All of SmartBugs’ tools
reported vulnerabilities were mapped into one of
these categories: Reentrancy, Access control, Arith-
metic Issues, Unchecked Low Level Calls, Denial of
Service (DoS), Bad Randomness, Front Running,
Time manipulation, Short Addresses, Unknown Un-
knowns.

SmartBugs The academic community has been
working on developing automated analysis tools to
find and eliminate vulnerabilities in smart contracts
[20, 34, 35, 11, 15, 27, 21]. However, it is diffi-
cult to compare and replicate that research since,
while some of the tools are open source, the datasets
used are not. Furthermore, most static analysers for
smart contracts must be installed, and some even
demand you to install dependencies on which they
rely. Others aren’t compatible with all operating
systems. Performing smart contract analysis with
many tools, running and installing each one sepa-
rately, can be a tedious procedure that wastes time.
As a solution, a tool was developed in 2019 to make
static analysers easier to use and to give a simple
interface via which the user could analyze various
contracts with multiple tools without having to in-
stall any of them.

SmartBugs is an extensible and simple-to-use ex-
ecution framework for smart contracts developed in
Solidity that facilitates the research and execution
of different automated analysis tools [21, 9].

Its code8 is written in Python 3 and the tools
are run using Docker images. These images can be
found on the Docker Hub9 or locally. The decision
to adopt docker images was made to simplify the in-
clusion of tools, to allow for reproducible execution,
and to maintain the same execution environment
for all tools, allowing the user to run SmartBugs
in any environment that has Python3 and Docker
installed.

SmartBugs’ authors gathered 35 possible suit-
able tools from a survey[6] and through research.
From those 35 state-of-the-art analysis tools, only
the following 10 were picked to be integrated
into SmartBugs’ environment: HoneyBadger, Ma-
ian, Manticore, Mythril, Osiris, Oyente, Securify,
SmartCheck, Solhint.

As the smart contracts datasets are not publicly
available, if a developer wants to test its new tool
and compare it to existing work, it would be neces-
sary to contact the authors of alternative tools and
hope that they would give access to their datasets.
To address this, SmartBugs supplies two smart con-
tracts datasets. The SBCURATED, a dataset of 143
Solidity smart contracts with 193 manually labeled
vulnerabilities, categorized into the DASP 10 tax-
onomy which can be used to test the precision of
analysis tools. And the SBWILD dataset which
has a total of 47,518 contracts and contains all
unique Solidity smart contracts in the Ethereum
Blockchain that have their source code available in
Etherscan10.

8SmartBugs (including SBCURATED):
https://github.com/smartbugs/smartbugs

9Docker Hub: https://hub.docker.com/
10https://etherscan.io/

3

https://github.com/smartbugs/smartbugs
https://hub.docker.com/
https://etherscan.io/

It was performed an experimental analysis [8] us-
ing seven tools on the SBCURATED dataset with
the purpose of calculating the tools’ ability to iden-
tify vulnerabilities in 69 contracts. Among the
seven tools, Mythril has the best accuracy. While
the average of all tools is 12 percent, Mythril cor-
rectly identifies 27 percent of all vulnerabilities.
The tools that detect the most different types of
categories are Mythril, Slither, and SmartCheck as
they detect 5 different categories. The authors rec-
ommend combining Mythril and Slither, as it de-
tects 37 percent of all vulnerabilities and provides
a decent ratio of performance and execution cost.
The second best pair, Mythrill and Oyente, identi-
fies 29 percent of all vulnerabilities.

SARIF Common static analysis tools usually
generate outputs in their own distinct format. As a
result, software developers are faced with the task
of parsing and aggregating various format outputs
so that they can comprehend and acknowledge its
information. In order to unify the output format of
distinct static analysers, a standard file format for
exchanging results was proposed. SARIF stands for
Static Analysis Results Interchange Format. It orig-
inated at Microsoft, and is now a standard being de-
veloped under OASIS11 (Organization for the Ad-
vancement of Structured Information Standards).
The technical committee has members from several
static analysis tool vendors and large-scale users [1].
SARIF is JSON based format and aggregates all

possible information about an analysis. From its re-
sults, to its metadata such as schema, version and
URI, and even to the execution path, SARIF’s stan-
dard concentrates all this information in a single
file. It has been increasing its popularity as recent
developed tools are exporting its outputs under this
format and older tools are converting to its stan-
dard (i.e. CogniCrypt12, Clang Static Analyzer13

and Pylint14) [2, 19].
The SARIF’s standard format [26] is composed

of three main root keys: version, $schema and runs.
The runs’ key is the array that contains all the in-
formation related to the analysis where each object
corresponds to a different static analysis tool and
its fields are divided into categories: The analysis
results, composed of the keys artifact, invocations,
results. And the analysis metadata, composed of
the tool key [18].
The analysis results details the information about

the analysis itself. The artifacts is a list describing
all files examined by the tool (even if results were
not detected) which must not start with a backslash

11https://www.oasis-open.org/
12CogniCrypt: https://www.eclipse.org/cognicrypt/
13CSA: https://clang-analyzer.llvm.org/
14Pylint: https://www.pylint.org/

and must be relative to the repositories root. The
invocations describes the invocation information of
the analysis, mainly the when and the how it was
analyzed. Finally, the results array contains the
results yielded by the static analysis tool. Each ob-
ject contains a defect reported by the analysis. It is
composed by the ruleId, the message, the level (can
be warning, error, note or none) and the locations
array.

The analysis metadata specifies all information
regarding the tool that run the analysis and pro-
duced its results. The tool key is composed of the
name, version, description and an array containing
the detailed rules for the warnings found by the
analysis.

SASP The Static Analysis Server Protocol
(SASP) [1] is a standardized communication pro-
tocol for communicating the static analysis tools’
results to their consumers. Furthermore it is also
designed for batch execution of analysis tools to ac-
tively communicate the results between each other.
Basically, SASP acts as a service where clients (i.e.
IDEs) can request results from static analysis tools
to be integrated in the code. For the protocol to
respond to this query quickly, it needs a common
output standard to aggregate all analysis results
efficiently. It achieves this by strongly leveraging
SARIF.

GitHub GitHub is a web hosting applications for
collaborative software development projects. More
and more frequently developers program collec-
tively in these online platforms. Either is because
modern programs require large bodies of code, or
because teams are distributed around the globe or
simply due to being more practical to have all your
code centralized in one place. We chose GitHub as
the ecosystem to further integrate SmartBugs.

Automation plays a very important part in
improving collaborative software development.
GitHub Actions enables developers to create cus-
tom software development life-cycle workflows di-
rectly from the GitHub repository. Since it’s fully
integrated into GitHub, a developer can use this
feature to perform any automated job at any stage
of GitHub workflow. It can perform changes on
the code and even collaborate over pull request
and issues, including CI. GitHub Actions are event
driven, meaning a developer can specify a series of
commands to be run after a specific event has oc-
curred. It uses the YAML syntax to define events,
jobs and steps. These YAML files are called Work-
flows and are stored in a project’s repository, inside
the directory ”.github/workflows”. A project can
have any number of YAML workflows.

One study [36] has shown that teams working on

4

https://www.oasis-open.org/
https://www.eclipse.org/cognicrypt/
https://clang-analyzer.llvm.org/
https://www.pylint.org/

CI-enabled repositories on GitHub are significantly
more effective at merging pull requests and are con-
siderably more able to discover bugs than teams not
using CI. Which suggests that CI improves produc-
tivity without having a negative effect on code qual-
ity.

3. Implementation

Even though SmartBugs incredibly eases the re-
search and reproduction of new static analysis tools,
there is still a big community of developers left out-
side of SmartBugs’ scope, the smart contract devel-
opers. While using SmartBugs for reviewing their
contracts, a developer tends to find himself with
a huge overhead on parsing the outputs, unifying
the results and acknowledge the information pro-
duced by its tools. Apart from missing an option to
discard duplicate results and false positives, Smart-
Bugs also lacks an easy and intuitive interface to
display its results.

Some developers also lacks the necessary com-
puter power to run the analysis. Or perhaps don’t
want to install the requirements to run SmartBugs
as they’re still required to install Python, Docker
and all the mandatory modules. If a developer has
all the conditions stated just now, it still needs to
manually run the analysis himself. What doesn’t
feel like a big burden, could be turned into some-
thing automatic, like a step in the continuous in-
tegration process, which means one less detail that
the developer needs to worry about.

We introduce SmartBugs as a Platform-as-
Service to automate and increase the usage of
static analysis tools from smart contract develop-
ers. SmartBugs now includes the possibility of dis-
playing the results of all analyses executed in an
unified single file, formatted in the same standard,
for all of its tools. Furthermore, it provides two
plugins for one end consumer where the developer
is only required to submit the code and SmartBugs’
automation handles the rest. Moreover we have
added Conkas, a new promising tool, to its frame-
work that is very low time consuming with great
accuracy metrics.

Our developed system’s architecture can be seen
in Figure 1. Basically, we have SmartBugs that
can now be integrated with other tools that con-
sume SARIF. We then have the SASP service who
is responsible for executing the analysis, whether re-
quested by GitHub or any other service consumer.
Finally, we have GitHub, our chosen end consumer,
which can request an automatic SmartBugs analy-
sis either directly on a GitHub allocated server or
through the SASP service. GitHub will then inflate
the repository code with the analysis results.

Figure 1: Overview of the final implementation.
This concept can be applied to any other static
analysis tool.

We hope with this work to bring out this stan-
dardized methodologies to the attention of all static
analysis developers in order to increase their adop-
tions. We also describe how they can replicate our
work to help build safer and more secure coding
practices.

SARIF Converters The SARIF converters for
each tool were written in Python based on the
sarif om15 module developed by Microsoft on
GitHub.

Each tool’s parser mechanism was developed with
a plugin design pattern, where each converter has
its own Python file, to ease the addition of con-
verters for other tools. These can be found in the
smartBugs/scr/output_parser/ folder. Further-
more we developed a sarif converter from sarif om
to SARIF JSON format which had already been re-
quested by multiple users on GitHub.

SARIF’s standard can be pretty complex and
confusing. In order to make not only our convert-
ers’ code easier to understand, but also to make
adding another converter a cleaner task, we have
created a class, the SarifHolder, and some parsing
functions for SARIF. They simplify the construc-
tion of SARIF outputs by reducing the number of
fields that a developer has to research while pro-
gramming the tool. These functions were developed
based on a balance from our research, SmartBugs
tools’ outputs and GitHub’s SARIF consumer pa-
rameters. They should not be regarded as definitive
nor exhaustive as they do not reflect all possible de-
tails on this standard. However they manage to ag-
glomerate all fields outputted by every tool added
so far and thus are deemed comprehensive enough
for our work.

15GitHub sarif om module: https://github.com/

microsoft/sarif-python-om

5

https://github.com/microsoft/sarif-python-om
https://github.com/microsoft/sarif-python-om

SARIF’s Vulnerabilities Mapping Table
Since SARIF requires more detailed information
than what most tools generate, we created a ta-
ble for mapping all vulnerabilities found. This table
serves two purposes: Identify each vulnerability and
inflate the SARIF output with extra required infor-
mation about what was reported; And facilitate the
addition of new SARIF keys in order to produce a
more comprehensive report in the future. This ta-
ble can be found in the smartBugs/src/output_

parse/sarif_vulnerability_mapping.csv file.

SASP We build SASP to work as a server for
communicating the static analysis tools’ results to
their end consumers. Basically, SASP’s objective
is to connect static analysis tools and development
platforms via itself in order to combine all analy-
sis tool outputs and provide a standardized results
output that can be consumed by the developer tool
that initiated the request.

On a practical level our objective for SASP is
when a developer submits the code, the end con-
sumer automatically sends an analysis request to
SASP who is then going to initiate an analysis for
the submitted code. This analysis’ result will be
returned to the end consumer who will then no-
tify the programmer of any reported vulnerabilities
found. A visual representation of SASP can be seen
in Figure 2.

Figure 2: Example of a end consumer working with
SASP to populate comments for an arbitrary code
submitting

SASP was developed using Python for compati-
bility reasons with SmartBugs, with the Flask mod-
ule. Its code is a single Python file that requires
SmartBugs repository installed in the computer and
declared in the $PY THONPATH environment
variable. We chose the Flask module due to its
simplicity and automatic thread handling when re-
ceiving requests from multiple users.

GitHub Review Bot In contemplation of pro-
viding a mechanism for a straightforward interpre-
tation of the results produced by these tools, we
created an automated GitHub review bot using
GitHub’s SARIF processing feature to intuitively
display the analysis results as inflated comments in
the code.

The automated analysis plugin is written in
YAML for GitHub Actions. Our Action takes as
input the tools that the user wants to run in the
analysis and the generated token github.sha, unique
to each GitHub account. The user must bear in
mind that the size of the repository and the num-
ber of tools chosen will exponentially increase the
cost in computation time, so we recommend choos-
ing at most 3 tools.

In order to run the SASP analysis, a user must
add a .yml file to its repository in the .github/

worflows and specify when to trigger the analysis
and the tools to be executed. An example for this
config file can be seen in Listing 1.

Our action’s implementation is based on execut-
ing a versatile Python file that reads the entire
repository and uploads it to our SASP server. This
design was selected so that it could be executed in-
dependently of the GitHub environment. Any IDE
or consumer that wants to use our service is able
to do so by simply running the Python code in our
repository or by directly making a request to our
server.

Listing 1: Example of the file .github/workflows/s-
martbugs.yml that triggers SmartBugs analysis au-
tomatically at every pull request

name : ”Run SmartBugs ana l y s i s ”

When the workflow i s run
on :
p u l l r e q u e s t :

j obs :
deployment :
runs−on : ubuntu− l a t e s t
s t ep s :
− name : Run SmartBugs Ana lys i s
uses : smartbugs/

smartbugs−s t a t i c −analys i s@v2
with :
Spec i f y the t o o l s

t o o l : ’ conkas oyente mythri l ’

NoSASP approach Alternatively to the SASP
approach that we have seen above, we also devel-
oped a server-free version of the automated analy-
sis for GitHub. This approach is independent of our
service and it runs SmartBugs directly on a free-of-
use GitHub hosted machine.

6

Even though this version of our work is more scal-
able, it presents other constraints. The GitHub ma-
chine comes with Python installed but every time
it runs an analysis it requires the download of: All
the Python modules required to run SmartBugs,
the entire SmartBugs repository (which includes
SBCURATED), and every tool requested by the de-
veloper. Furthermore it is bounded by 14 GB of
SSD storage which can constraint some projects on
using this service.

False positives GitHub’s SARIF interpretation
framework supports a straightforward mechanism
to tag every vulnerability found so that it can be
ignored the next time it is reported again. This
framework provides the following three tagging op-
tions: False positive, Used in tests and Won’t fix.
We hope to provide an more embraceable method-
ology to ignore unwanted results so that a developer
can focus on its code real security problems.

Conkas Conkas16 is a symbolic execution-based
static analysis tool for the Ethereum Virtual Ma-
chine (EVM). This tool was added to SmartBugs
through a contribution from its author. Further-
more we designed Conkas’ SARIF converter and
added it to our SASP framework. Conkas can now
be accessed like any other SmartBugs’ tool through
our service. This tool shows great promise as it is
one of the less CPU consuming tools, with great
accuracy metrics.

SmartBugs’ Methodology for adding tools
The process of adding tools to SmartBugs is de-
signed to be straightforward and practical, allow-
ing the user to determine how the tools are exe-
cuted based on their needs. The tools’ description
is stored in each tool plugin. The plugin defines the
Docker image’s name, the tool’s name, the com-
mand line to execute the tool, and, ideally, the
tool’s description. Once a docker image for the
tool is available, a user can add it to SmartBugs
by creating a new YAML configuration file inside
the smartBugs/config/tools/ folder.

This configuration is fulfilling enough for any
tool a user might want to add to the Smart-
Bugs’ framework. Nevertheless, if the objective
also comprises of enabling the tool into the Smart-
Bugs 2.0 adapter environment, a developer is ad-
ditionally required to create a SARIF converter
for his tool. The SARIF converter must be a
new Python file in the smartBugs/src/output_

parser/ folder, preferably named after the tool.
Inside the file there should be a function called
parseSarif which receives the original output as

16Conkas GitHub: https://github.com/nveloso/conkas

an argument and returns a SARIF Run object.
Furthermore, the developer must add all possi-
ble reported vulnerabilities from his new tool into
the sarif vulnerability mapping.csv table and fill all
necessary information.

4. Results

Our work validation consisted in three steps.
Checking the validity of our SARIF converter, veri-
fying the functionality of our SASP service and con-
firm the completeness of our GitHub adapter fea-
ture. For each of the stages we will make use of the
dataset SBCURATED incorporated in the Smart-
Bugs environment to the extent of verifying each
step capabilities and correctness.

4.1. SARIF converters

Execution While some tools have the same static
output, meaning that the output is always repre-
sented by the same fields, others present a more
dynamic one, where the output in some cases may
not contain certain fields and those fields may ap-
pear in different orders. On both output types, but
specially when converting a dynamic one, we no-
ticed some cases where the vulnerabilities were re-
ported defectively. The vulnerabilities that fall into
this case are discarded when converting to SARIF.

In this part of our work, the entire SBCURATED

dataset was used as an accuracy metric for testing
corner cases on our converters. Since we don’t catch
exceptions thrown by translation errors, we took ad-
vantage of that in order to acknowledge faulty con-
verters. Every tool converter against every smart
contract present in the dataset was executed and
fixed until all of them positively pass this stage.

Validation In this step, we used the public free
SARIF validation tool provided by Microsoft17 to
ensure our standard correctness. This tool comes
with a feature that checks as well for the GitHub
ingestion rules so it can validate that the entire
dataset’s results are correctly formatted for display
on the SARIF processing mechanism from GitHub.

Verification From the SBCURATED dataset we
retrieved an arbitrary subset consisting of one ran-
dom smart contract per DASP-10 category. We
chose one from each category so that we could man-
ually verify our converters against the most diver-
sified outputs. The 10 smart contracts were ana-
lyzed by the 11 tools producing 110 result files. The
results were manually checked for the integrity of
the translation from the original output to SARIF.
As expected, every correctly formatted vulnerabil-
ity was successfully translated.

17SARIF Validation Tool

7

https://github.com/nveloso/conkas
https://sarifweb.azurewebsites.net/Validation

For this step we used and recommend the The
SARIF Web Viewer18, which is a tool that allows
any developer to see a robust interface detailing the
SARIF file uploaded by the user.

4.2. SASP Service
Functionality Firstly we tested if server’s was
able to receive a request from a user, run the analy-
sis and reply with a single comprehensive SARIF
formatted file representing all of the analysis in-
formation. After reading the response file on the
client side and compare it against a local report we
reached the conclusion that so far everything was
working properly.
Secondly, we sent multiple badly formed requests.

The SASP service behaved exactly as expected, ig-
noring the requests when it was required. We also
tested it against the directory transversal attack
which was correctly mitigated by the algorithm pro-
vided by [10].
Finally, we decided to conduct a stress test to see

how our server would behave when queried by mul-
tiple requests from different users. With this test we
hope to deduce the approximate scalability of our
developed solution with the purpose of preventing
clogged or crashed services.
For a CPU intense analysis we combined Mythril

and Slither (due to their best combined perfor-
mance) analyzing two contracts, the SimpleDAO
and the Reentrance. To account for errors in mea-
suring time we ran the script three times and cal-
culated the median. We executed the tests from 1
to 45 simultaneous clients. The graph can be seen
in Figure 3.

Figure 3: SASP stress testing with Mythril and
Slither analysing SimpleDAO and Reentrancy

For our surprise, the SASP service is more scal-
able than we had anticipated. Up to 35 clients we
get a linear regression as the time increases con-
stantly as per number of clients requesting our ser-

18SARIF Web Viewer

vice. However when we get to 40 simultaneous
analyses, Docker service starts to crash and con-
sequently SASP stops all current analysis so that it
may recover from the crash. There is an existing is-
sue on GitHub that is being assessed, contemplating
this Docker bug [29] and it keeps us from reaching
further conclusions.

4.3. GitHub Adapter

Functionality For the functionality part, we will
establish that all smart contracts uploaded are
being correctly queried both to our SASP and
NoSASP service and that the adapter is accurately
processing the response, by comparing the outcome
with the output produced by SARIF’s converter.

As we tested the entire SBCURATED on the
SARIF Validation Tool with the GitHub ingestion
feature, there was no need to manually verify the
entire dataset. Therefore we chose two contracts to
manually ensure this stage of the evaluation. After
uploading the small subset to GitHub and analyz-
ing it with the 11 available tools, we were able to
verify that everything is working correctly.

Uniqueness For the uniqueness feature, we had
already verified that when consuming a duplicate
vulnerability, GitHub’s SARIF processing mecha-
nism automatically marks it as rediscovered instead
of detecting a new and different one. Moreover,
a developer is able to tag each vulnerability with
multiple labels so as to not be warned over a un-
wanted vulnerability report. Without the unique-
ness of the reported vulnerabilities our service could
result in confusing feedback for the smart contract
developer.

Intuitiveness At last, we will discuss if the com-
ments and the system as a whole are intuitive
enough for any programmer to be able to abstract
from the analysis and only focus on coding the
smart contract itself.

First of all we have increased the easiness and
lowered the human input necessary to run an anal-
ysis. Before a developer had to download Smart-
Bugs, Python and Docker, install all required mod-
ules and manually start the analysis every time
there was a need to do so. Now there is only the
need to add a workflow when running the analysis
for the first time and specify when GitHub is to
repeat it.

Secondly we substantially reduced the number of
outputs that a developer is required to read. With
SmartBugs the number of outputs was significantly
reduced from (the number of tools) x (the number
of smart contracts) to one single output file.

Finally, we feel that displaying the results in a
coding interface is an intuitiveness improvement

8

https://microsoft.github.io/sarif-web-component/

Figure 4: GitHub inflating the SimpleDAO contract with the Reentrancy Vulnerability reported by
Oyente

compared to the previous system. Not only for the
simplicity in acknowledging the vulnerability but
also because it becomes easier to discard and ig-
nore unwanted ones. Our final result can be seen in
Figure 4

5. Conclusions
As smart contracts popularity, use and financial
value increases, more vulnerabilities with bigger
repercussions are discovered. There is still not only
a lot of research lacking in this field but also some
scarcity of awareness towards the issues these vul-
nerabilities represent.
As the absence of executing static analysis tools is

often related to the difficulty of running the analy-
sis and the complexity of acknowledging its output,
in this paper we describe a method to expand not
just SmartBugs but any static analysis tool created
by making it more available and accessible to a de-
veloper. We discuss standardized methodologies to
ease the use of static analysis and furthermore we
describe a method to inflate the code with the anal-
ysis’ results so that a developer may abstract him-
self of the analysis and treat a vulnerability just like
an minor error message.
Using SmartBugs, we were able to verify the cor-

rectness of our system. Firstly we fixed our con-
verters from each tool’s original output to SARIF

based on the validity of the output produced when
analyzing the entire SBCURATED dataset. Fur-
thermore we manually checked a smaller subset of
outputs to increase our converters’ trustworthiness.
We also tested SASP both on the functionality and
on the amount of work it is able to sustain, lead-
ing to a maximum of 35 users concurrently ana-
lyzing with our service. At last, we tested both
GitHub adapters for their functionality, uniqueness
and intuitiveness where we found that everything
was working as expected.

We achieved the goals we set for ourselves
through our work. For the future we would like to
see other static analysis tools playing SmartBugs’
role in the diagram in Figure 1.

References

[1] P. Anderson. Static analysis results: A format and
a protocol: Sarif & sasp, 2018.

[2] P. Anderson, L. Kot, N. Gilmore, and D. Vitek.
Sarif-enabled tooling to encourage gradual techni-
cal debt reduction. In 2019 IEEE/ACM Interna-
tional Conference on Technical Debt (TechDebt),
pages 71–72. IEEE, 2019.

[3] A. M. Antonopoulos. Mastering Bitcoin: unlocking
digital cryptocurrencies. ” O’Reilly Media, Inc.”,
2014.

9

[4] A. M. Antonopoulos and G. Wood. Mastering
ethereum: building smart contracts and dapps.
O’reilly Media, 2018.

[5] V. Buterin. Ethereum whitepaper. 2013.

[6] M. Di Angelo and G. Salzer. A survey of tools for
analyzing ethereum smart contracts. In 2019 IEEE
International Conference on Decentralized Applica-
tions and Infrastructures (DAPPCON), pages 69–
78. IEEE, 2019.

[7] Y. Ding, C. Wang, Q. Zhong, H. Li, J. Tan, and
J. Li. Function-level dynamic monitoring and anal-
ysis system for smart contract. IEEE Access, 2020.

[8] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz.
Empirical review of automated analysis tools on
47,587 ethereum smart contracts. In Proceedings
of the ACM/IEEE 42nd International Conference
on Software Engineering, pages 530–541, 2020.

[9] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu.
Smartbugs: a framework to analyze solidity smart
contracts. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software
Engineering, pages 1349–1352, 2020.

[10] M. Flanders. A simple and intuitive algorithm
for preventing directory traversal attacks. arXiv
preprint arXiv:1908.04502, 2019.

[11] I. Grishchenko, M. Maffei, and C. Schneidewind.
A semantic framework for the security analysis of
ethereum smart contracts. In International Con-
ference on Principles of Security and Trust, pages
243–269. Springer, 2018.

[12] N. Gruhn. What makes a programming language
turing complete?, 2019.

[13] B. C. Gupta, N. Kumar, A. Handa, and S. K.
Shukla. An insecurity study of ethereum smart
contracts. In International Conference on Secu-
rity, Privacy, and Applied Cryptography Engineer-
ing, pages 188–207. Springer, 2020.

[14] L. Hollander. The ethereum virtual machine —
how does it work?, 2019.

[15] S. Kalra, S. Goel, M. Dhawan, and S. Sharma.
Zeus: Analyzing safety of smart contracts. In Ndss,
pages 1–12, 2018.

[16] Z. A. Khan and A. S. Namin. A survey on vulnera-
bilities of ethereum smart contracts. arXiv preprint
arXiv:2012.14481, 2020.

[17] K. J. Kistner. itoken duplication incident report,
2020.

[18] S. Kummita and G. Piskachev. Integration of the
static analysis results interchange format in cog-
nicrypt. arXiv preprint arXiv:1907.02558, 2019.

[19] L. Luo, J. Dolby, and E. Bodden. Magpiebridge:
A general approach to integrating static analyses
into ides and editors (tool insights paper). In 33rd
European Conference on Object-Oriented Program-
ming (ECOOP 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[20] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and
A. Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages
254–269, 2016.

[21] A. P. C. Monteiro. A study of static analysis tools
for ethereum smart contracts. 2019.

[22] S. Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008.

[23] NCCGroup. Decentralized application security
project (or dasp) top 10, 2018.

[24] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and
A. Hobor. Finding the greedy, prodigal, and sui-
cidal contracts at scale. In Proceedings of the 34th
Annual Computer Security Applications Confer-
ence, pages 653–663, 2018.

[25] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck.
Blockchain. Business & Information Systems En-
gineering, 59(3):183–187, 2017.

[26] Oasis. Static analysis results interchange format
(sarif) version 2.1.0.

[27] D. Perez and B. Livshits. Smart contract vul-
nerabilities: Does anyone care? arXiv preprint
arXiv:1902.06710, pages 1–15, 2019.

[28] A. Rosic. What is blockchain technology? a step-
by-step guide for beginners.

[29] sheridp. Container.wait with timeout raises con-
nection error · issue 1966 · docker/docker-py, 2018.

[30] Solidity. Solidity documentation.

[31] N. Szabo. Smart contracts: building blocks for
digital markets. EXTROPY: The Journal of Tran-
shumanist Thought,(16), 18(2), 1996.

[32] N. Szabo. Formalizing and securing relationships
on public networks. First Monday, 1997.

[33] R. O. Team. Cover infinite mint exploit, 2020.

[34] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy,
R. Takhaviev, E. Marchenko, and Y. Alexandrov.
Smartcheck: Static analysis of ethereum smart
contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engi-
neering for Blockchain, pages 9–16, 2018.

[35] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Ger-
vais, F. Buenzli, and M. Vechev. Securify: Practi-
cal security analysis of smart contracts. In Pro-
ceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages
67–82, 2018.

[36] B. Vasilescu, S. Van Schuylenburg, J. Wulms,
A. Serebrenik, and M. G. van den Brand. Continu-
ous integration in a social-coding world: Empirical
evidence from github. In 2014 IEEE international
conference on software maintenance and evolution,
pages 401–405. IEEE, 2014.

10

	Introduction
	Objectives and Contributions

	Background
	Implementation
	Results
	SARIF converters
	SASP Service
	GitHub Adapter

	Conclusions

