
Building chatbots for customer support: fast and serious

Diogo Fernandes
diogobfernandes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Conversational Agents are systems that are used in a wide variety of areas to assist the accomplish-
ment of a task by the user. However, creating a conversational agent usually requires a great amount
of data, which difficulties the development process to create agents for new tasks. To tackle this issue,
we investigate how to expedite the development process. Firstly, we provide two separate frameworks
that are able to create conversational agents in Rasa using the information available in the MultiWOZ
and Taskmaster-1 datasets. We conduct an automatic and a user evaluation, which show that it is
possible to expedite the creation of conversational agents using datasets, highlighting the importance of
annotating information such as the slots, the correspondent values, the user utterance intents and also
the information required by the user. Lastly, we provide a framework that using a Rasa conversational
agent created for the restaurant domain, is able to create a conversational agent for the hotel domain.
Our results suggest that it is possible to expedite the development of conversational agents by creating
agents for new tasks using information from a preexisting conversational agent.
Keywords: Conversational Agents, Rasa Open Source, MultiWOZ, Taskmaster-1, Knowledge transfer,
Development

1. Introduction

Conversational agents, also known as dialogue sys-
tems, have been a hot topic in Natural Language
Processing in recent times and can be divided in
two types: chit-chat (conversation without a rea-
son) and task-oriented (the user has a goal in mind).
This work focuses on the latter.

Dialogue systems are usually composed by three
different modules: a Natural Language Understand-
ing (NLU) module, a Dialogue Manager and the
Natural Language Generation component. To cre-
ate the best dialogue systems, many have tried to
improve the quality of each of these modules. For
example, Goo et al. (2018) attempted to improve
the intent classification and slot filling tasks for the
NLU module. For the dialogue manager, rule-based
(Habib, Zhang, and Balog 2020) and machine learn-
ing based (Li et al. 2017) solutions were proposed.
Moreover, many frameworks have been proposed in
order to develop conversational agents. Some of
these frameworks are Microsoft Bot Framework1,
Amazon Lex2, Dialogflow3 and Rasa4.

However, the authoring of conversational agents
faces two great obstacles: first, there is the need of

1https://dev.botframework.com/
2https://aws.amazon.com/pt/lex/
3https://cloud.google.com/dialogflow/docs
4https://rasa.com/docs/rasa/, version 2.2.0

a great amount of training data in order to train the
agents on a task. Often, the lack of training data
limits the number of tasks the agent is able to fulfill.
Second, the behaviour of the agent during the con-
versation also needs to be defined. This means that
a dialogue manager must be able to handle every
conversation path the user can pursue to perform a
task while engaging with the agent.

As a result of the reasons presented above, devel-
oping a conversational agent is often difficult. For
these reasons, it is important to expedite in any way
the process of developing a conversational agent,
which is the focus of this work. To do so, we con-
centrate on automatizing the development of the
NLU module and the Dialogue Manager module.
To test this process, we will use the Rasa frame-
work to create conversational agents, which is an
open source framework.

To tackle the lack of data, many datasets have
been proposed. This is the example of the Multi-
WOZ (Budzianowski et al. 2018) and Taskmaster-
1 (Byrne et al. 2019) datasets, that contain task-
oriented dialogues for several domains, developed
using Wizard-of-Oz approach (Budzianowski et al.
2018). In both datasets, the dialogues are anno-
tated. However, the annotations in each of the
datasets is different, which leads to a different pro-
cess of using the available information to create a

1

conversational agent. With these datasets, we want
to verify what is the process required to create a
conversational agent, and if the information in each
of the datasets is enough to create a complete dia-
logue system.

Furthermore, another possibility to expedite the
development of conversational agents is reusing ex-
isting conversational agents. We believe that it is
possible to transfer the knowledge gathered from
one domain to create a conversational agent in a dif-
ferent domain. In this work, we conduct an exper-
iment on transferring the knowledge acquired from
the restaurant domain to the hotel domain.

2. From the MultiWOZ dataset to Rasa

In this section, we address what is the informa-
tion required from the datasets to develop conversa-
tional agents using the MultiWOZ dataset. In the
process, we show the details of MultiWOZ, and ex-
plain our process to transform the dataset in a Rasa
agent.

2.1. The MultiWOZ Corpus

MultiWOZ is a dataset that contains dialogues cre-
ated using the Wizard-Of-Oz approach and it has
conversations from 8 different domains, where one
dialogue might have messages regarding a single do-
main or more.

Consider Table 1 for illustration purposes. Each
dialogue is composed by a set of turns, the user
turn and the assistant turn. In both the user and
assistant turns, the identity of the speaker and the
correspondent utterance is given. Furthermore, an
updated state of the dialogue is also given in every
user turn. This can be seen in Table 1, that in
the second user utterance, the state contains both
the information given in the previous turns and the
restaurant-food slot it just mentioned.

The dialogue state is composed by three different
types of information. First, there is the Active In-
tent. The Active Intent represents the general task
and objective that the assistant is trying to achieve.
Moreover, we also have the slots, which represents
all he information the user has given and can col-
lect in the the course of the conversation. For last,
MultiWOZ have requested slots, which represent in-
formation the user asks for in a turn.

2.2. Creating Domain and Adding Training Data to
Rasa Agent

To create a Rasa agent, the definition of the do-
main, as well as adding training data are manda-
tory. Since the information for both is analogous,
the retrieval of information results from a single
analysis of the dataset dialogues. For each user
turn, the state and utterance of the dialogue is anal-
ysed and gives information about certain aspects.

2.2.1 Creating Rasa Intents

MultiWOZ gives in each state what is the the Active
Intent. Also, the Active Intent can change during
the conversation. For example, the user can start by
looking for a place to stay (find hotel), and then
proceed to make a booking for place (book hotel).
During this section, we call the Active Intent as the
task of the user.

Every time the task in the dialogue changes, there
are two steps we perform: create the task as a Rasa
intent if it was never seen before, and label the ut-
terance as part of the same intent. Some intents and
labeled utterances are book train with the utter-
ance “Yeah, can you book 4 tickets for me?” and
the intent find taxi with the utterance “I’ll also
need to get a taxi to go between the 2 places”.

Take Table 1 as example. In many of the user
turns, the utterance contains new information that
is important for the task. For that reason, we create
a new intent: the inform intent that is responsible
to give more information to the agent. Any ut-
terance where the task is the same of the previous
state, then it is labeled as part of inform. In Table
1, since the task is the same in the first and second
user turns, then we label the second utterance as
inform.

However, not all utterances where the task did
not change had additional information. Take Ta-
ble 2 as a reference for the rest of this subsection.
Sometimes the user could ask for a recommenda-
tion (1), affirm (2), deny (3), request information
(4), or at most cases, give information (5). Since
each of these lead to different actions by the assis-
tant, then there is the need to differentiate all these
utterances.

To differ utterances where the user gave addi-
tional information, we take information from the
updated state of the dialogue. If there are new slots
in the current utterance, such as utterance 5 in Ta-
ble 2, then we know that the utterance contains new
information, labeling it as inform.

Moreover, the same logic applies to utterances
where the user requested information, since the
dataset contains the requested slots and these are
updated in the state, such as utterance 4 in Table
2. For this reason, we create the request intent.
If the user asks for information instead of giving to
the user, the utterance is annotated as request.
For the utterances like 1, 2 and 3 in Table 2 we

decided to not add them to the training data, since
it would add noise to the agent, and there was no
information in the dataset to indicate the intention
of each of them.

For last, at the end of the dialogue, there are ut-
terances where the task is NONE. For this reason,
we assume that every user utterance at the end of
the dialogue is for the purpose of ending the dia-

2

Utterance Dialogue State

USER: Can you help me find an
expensive restaurant in the west?

Active Intent find-restaurant

Slots
restaurant-pricerange: expensive

restaurant-location: west
ASSISTANT: Yes, what type of food
are you looking to eat?

-

USER: I would really like to have
Indian tonight.

Active Intent find-restaurant

Slots
restaurant-pricerange: expensive

restaurant-location: west
restaurant-food: indian

ASSISTANT: tandoori palace matches
your criteria. Would you like to make a
reservation?

-

USER: No, but could you give me the
phone number, please?

Active Intent find-restaurant
Requested Slots restaurant-phone

Table 1: Example of a dialogue state being updated after the user gives information over multiple turns
and asks for phone number.

Utterance

1
Not really. I’m down for anything what
would you recommend?

2 Yes that will be fine
3 No, that doesn’t matter
4 What is the address, please

5
I would like to leave on sunday and ar-
rive by 17:15

Table 2: Example of followup utterances after stat-
ing the intent of finding a restaurant.

logue, thus creating and labeling the utterances as
the intent goodbye. Some examples of the labelled
utterances are “Thanks, that’s all I need. Have a
nice day” and “Nope. I’m all set. Thanks again”.

2.2.2 Slot Recognition and Rasa Entity
Mapping

Just as we seen previously, utterances can contain
important information to complete the task cor-
rectly, which is represented as slots in MultiWOZ.
To use this information in Rasa, we create in the
domain an entity and slot for each of the slots that
exists in the MultiWOZ dialogue. Moreover, during
the dialogue, we use the value of the slot and the
utterance to annotate it for the training data.
In order to annotate the values of the slots in

the user utterance to add them as training data for
Rasa, we follow the following steps:

1. Filter all the slots to have only the new ones

2. For each slot, search for the slot value in the
utterance

3. If the word in the utterance is the same as the

slot value, then replace the word with the form
[slot value](slot name)

4. If the word in the utterance has bigger length
than the slot value, the replace the word with
[word](slot name) and add it as a synonim to
the slot value

5. If the word is not found, then discard the slot

6. If the annotated value is a hour or a number,
create a hour regex or a number regex, respec-
tively, for the associated entity.

Using this process, we guarantee that the slot val-
ues found in the utterances correspond to the latest
turn slots. However, this also leads to incorrect ut-
terance annotations, in cases where the user men-
tions a slot that has been mentioned in a previous
utterance. Moreover, we add the synonyms to add
simplicity of dealing with the values later during
the execution of custom actions. Furthermore, al-
though the creation of regex limits the speech for
the user (for example, the user can say “1” or “one”,
but regex forces the user to say “1”), this allows
that with limited training data, the agent is able
to recognize any number, and hour in the form of
hh:dd.

2.2.3 Mapping Requested Slots to Rasa En-
tities

Reminding the knowledge of the MultiWOZ
dataset, requested slots are slots that appear in the
state of a user turn of a dialogue, and represent the
information that the user requests in the utterance
during the current turn. Moreover, requested slots
do not have a value in the user utterance. An ex-
ample of this slot is restaurant-phone. To annotate

3

these slots, we create a Rasa entity with the name
requested info.
In order to annotate the slots in the utterances,

we consider the right side of the slot has the initial
value. Then, we perform the following steps:

1. Search for the value in the utterance

2. If the value is found, then replace the
value in the utterance in the form
[value](requested info).

3. If the word is the utterance has a bigger length
than the value found, replace the word in the
form [word](requested info).

4. If it was not found, divide the initial value in
two parts, and go back to step 1.

5. It the initial value has already been separated
in all possible ways, end the search.

This way, we guarantee that all slot names lead to
a match in the utterance. This is the example of the
slot restaurant-phone where the value “phone”
is found in the utterance, or the slot attraction-
entrancefee where the value “entrancefee” can be
found in the utterance, after being divided to “en-
trance fee”.

2.3. Creating Rasa Stories and Rules
In Rasa, a story is composed by a set of the user in-
tent and entities, followed by the action of the con-
versational agent. In this subsection, we proceed to
annotate the assistant utterances by creating Rasa
actions and Responses, and then use these to create
Rasa stories.

- story: dialogue 182

steps:

- intent: find_restaurant

entities:

- restaurant-name: cafe uno

- action: action_find_restaurant

- intent: book_restaurant

entities:

- restaurant-bookday: sunday

- restaurant-bookpeople: 7

- action: utter_ask_restaurant_booktime

- intent: inform

entities:

- restaurant-booktime: 16:15

- action: action_book_restaurant

- intent: goodbye

- action: utter_say_goodbye

Listing 1: Example of a designed story using our
solution

Take Listing 1 as an example. The story rep-
resented in this listing starts by the user stating

its will to find a restaurant called cafe uno. The
agent gives the information about the restaurant
and the user proceeds to make a reservation, giving
the information about the day of booking and also
the number of people. As there is information miss-
ing, the agent asks for the time of booking. The
user gives then the missing information and then
the booking is completed by the assistant. The di-
alogue ends just as the user states its intention to
terminate the conversation.

To create this story, we make two as-
sumptions: first, we consider that for ev-
ery Active Intent in the dataset, there is
an action with the name action active intent,
for example action find restaurant and ac-
tion book restaurant. Each of these actions is
responsible to fulfill the requests of the user and
also make any verifications that are required.

However, the assistant will not always have all
the information required to fulfill a task. For ex-
ample, to make a reservation for a restaurant, the
assistant needs to know the day and time of the
reservation, as well as the number of people. For
this reason, we create a Rasa response if any of the
requested slots for completing the task is missing.
This process is repeated for each of the valid dia-
logues of MultiWOZ, creating the number of con-
versation paths equal to the number of valid dia-
logues on the dataset. We consider that a dialogue
is valid if all the user utterances have been labeled
correctly with Rasa intents (utterance labeling is
explained in Subsection 2.2).

However, the dataset does not contain what are
the requested slots. For this reason, we divide
the dialogues in tasks, and calculate what are the
mandatory slots for each task using the following
formula:

a%(s, task) =
#a(s, task)

#dialogues(task)
∗ 100

For each slot, we calculate the number of times
it appears in the dialogues of a task, divide it by
the total number of the dialogues of the same task
and multiply the result by hundred. This result
represents the percentage of task dialogues where
the slot appears.

After calculating this value for every slot at ev-
ery task, we compare this value with a threshold
value. If the value of the appearances of the slot
is above or equal the threshold value, then the slot
is considered a mandatory slot for the task. We
adjusted the threshold value to 85%, which gave
us the best results. For example, the mandatory
slots for the task of book train are: the train day,
the train departure, the train destination, and the
train bookpeople.

4

Given that we already determined what are the
mandatory slots for each dialogue, the selection
of the action for both a task-specific intent and
the inform intent we defined in the previous sec-
tion for the story becomes simple. If the Rasa
intent of the user is a task-specific intent, or
the inform intent, then we check if all manda-
tory slots have been given. If not, then we se-
lect the action of the assistant to be of the type
utter ask slot name other slot name. Other-
wise, the action selected is action task.

For last, we create a simple response in the form
of utter say goodbye for the goodbye intent.
Also, for the request intent, instead of adding this
intent to the stories, we create a Rasa rule, since
the action performed by the agent in the presence
of this intent is always the same, regardless of the
conversation history. For this intent, we create the
action action get requested info. The rule cre-
ated for this intent is in Listing 2.

- rule: give requested info

steps:

- intent: request

- action: action_get_requested_information

Listing 2: Rule created for the handling of the intent
request.

Concluding, we were able to define all the prop-
erties required to create a conversational agent in
Rasa. In order to prepare the agent for training
and execution, we only to define the text for the
Responses, as well as the configurations and the im-
plementation of the Custom Actions, which can be
found in the repository5.

3. Knowledge Transfer
In this section, we continue the research on what
is the important information from datasets using
the Taskmaster-1 dataset to create a conversational
agent in Rasa. While creating the conversational
agent using Taskmaster-1, we also address the pos-
sibility of using the conversational agent created
from MultiWOZ to improve the dataset informa-
tion. Later in this section, we explore how can the
knowledge learned for one domain can be used in
another domain.

3.1. Adapting Taskmaster-1 Dataset to Rasa
The Taskmaster-1 dataset, just as MultiWOZ, is a
dataset that contains task-oriented dialogues. The
dialogues were created either using a self-dialogue
or a Wizard-Of-Oz(Byrne et al. 2019) approach.
Moreover, each dialogue can belong to one of six
domains: car repairing, restaurant reservation, or-
dering movie tickets, ordering coffee drinks, pizza

5https://github.com/Fogoid/MultiwozToRasa

delivery and taxi service. We focus on the restau-
rant reservation domain. Thus, examples and as-
sumptions done on this point forward are only in
regard to the restaurant domain.

Take Table 3 for illustration purposes. In
Taskmaster-1 dialogues, in each turn (user and as-
sistant) it is given the utterance, and information
about the slots. The information given by a slot is
its value, which is a part of the utterance, and the
annotation of the slot. If we look at the annota-
tion, we see that it can be broke down in domain,
followed by the slot type, then the name of the slot
and, optionally, ends with the acceptance (or not)
of the parameter by the agent at the moment of
the booking. One detail of the dataset is that only
slots that are mandatory to complete a task are
annotated. For example, the type of food during
the search for a restaurant are not considered as a
slot since they are optional in the task of booking
a restaurant.

Using this information, we can create the en-
tities and slots in the Rasa domain, as well
as annotating the slot values in the format
[slot value](slot name) to add as training data,
since the slot values are always part of the utter-
ance.

Aside from the slots, there is no more informa-
tion in the dialogues, which hinders creation of a
conversational agent in Rasa. However, we noticed
that the structure of the restaurant domain dia-
logues could be broken in two parts: finding and
booking a restaurant. Moreover, we also noticed
that there were also utterances where the user asks
for information (Table 4 exemplifies the cases we
mention).

Thus, to find this information, we took two ap-
proaches: the first one is by making assumptions to
divide the dialogue in parts and labeling the utter-
ances, and the second is to use the the MultiWOZ’s
restaurant domain agent to understand some in-
tents and extra entities from the utterances.

3.1.1 Creating Assumptions to Label Ut-
terances

To retrieve more information from the dialogue, we
performed the following assumptions:

• All the user utterances until the slot loca-
tion is found are merged in one and labeled
as find restaurant.

• After finding the location, we label each of the
following user messages as part of inform until
the first restaurant name is given by the assis-
tant.

In the results of the intent find restaurant, it is
suggested results suggested that the user had the

5

Utterances Value Annotation
USER: Tell me good Chinese restau-
rants in new york

new york restaurant reservation.location.restaurant.accept

ASSISTANT: Hakkasan and uptown
restaurant Philippe Chow are top
rated

Hakkasan restaurant reservation.name.restaurant
Hakkasan and uptown restaurant reservation.name.restaurant

Philippe Chow restaurant reservation.name.restaurant
USER: which one is near to airport? near the airport restaurant reservation.location.restaurant

Table 3: Taskmaster dialogue example for the restaurant domain and information available by utterance.

Utterance

1
I’m looking for a nice sit down restau-
rant in San Francisco, California.

2
No, that’d be fine. Let’s go with the
second restaurant, please.

3
Okay, and is there good actions for
kids?

Table 4: Examples of utterances where the user has
different intentions. The first and the second are
for finding and making a booking for a restaurant,
respectively, and the last one is to get information
about the restaurant.

intention of finding and later booking a restaurant.
However, the second assumption, the utterances we
labeled as inform could add information to the di-
alogue, such as the utterance “Okay. I’m looking
for a Greek restaurant with Greek food”, or add no
information, such as “Thank you.”, “No problem.”
and “What is that one?”.
We can conclude by this experiment that by

having only the information from the slots in the
dataset is not sufficient to create a conversational
Agent in Rasa without having noise in the training
data.

3.1.2 Using MultiWOZ to Add Information
to Taskmaster-1

In this subsubsection, we use the MultiWOZ restau-
rant agent and try to add new information to the
Taskmaster-1 dataset, such as the annotation of op-
tional slots, as well as trying to differentiate the ut-
terances labeled as inform by the second assump-
tion we described earlier.
To get the information from the MultiWOZ

dataset, we apply the agent to each utterance la-
beled as inform, and retrieve the information. We
can collect the most probable intent (as well as the
confidence of the rest of the intents) and the en-
tities predicted by the agent. Some of the results
we obtained are: for the utterances “I was thinking
Thai food.” and “Okay, is it is it cheap?” , the
predicted intent was inform, and no entities were
found. Moreover, in the utterance “Okay, what’s
the price like on that?”, the predicted intent was

goodbye, and the entity found was requested info
with the value price.

Looking at these, in the first utterance, we ex-
pected to extract the Thai entity as a restau-
rant food. On the second example, the utterance
but as an inform, which is incorrect. For the last
example, the agent is extracts the correct entity,
but classifies it as a goodbye, when it is a request.

Analysing the results of this experiment, we con-
clude that the MultiWOZ restaurant agent is insuf-
ficient to improve the information in Taskmaster-
1 dataset. This is for two reasons: first, the ut-
terances used for the training in the MultiWOZ
restaurant agent are not alike the utterances in the
Taskmaster-1 dataset. Moreover, it is sure that ut-
terances like ”no problem” can not be classified cor-
rectly which is expected, since this messages are not
considered for the training of the agent. For last, we
can conclude that the knowledge acquired from the
MultiWOZ restaurant agent is insufficient to add
information to Taskmaster-1. However, we argue
that if the training data of the agent was similar
to the Taskmaster-1, then it is possible to add new
information.

3.2. Creating New Agent Using Knowledge From
the Restaurant Domain

In this subsection, we create a Rasa agent for the
hotel domain using the agent previously created for
the restaurant domain. With this experiment, we
expect to understand if it is possible to improve
the development process, by using a conversational
agent that was previously created.

For the target domain, we believe that the tasks
of the target domain must be compatible with the
original domain. For that reason, we chose the hotel
domain as the target. First, the number of tasks is
the same. Moreover, each task has the same number
of mandatory slots.

To make the transfer from one domain to the
other, we maintain the intents, responses and ac-
tions in the domain, and the stories and rules
we defined. For the entities and slots, we create
a mapping from the restaurant slots to the hotel
slots. The mappings chosen are represented in Ta-
ble 5. Moreover, we maintain the required info
entity.

6

Restaurant Hotel
pricerange pricerange

area area
bookday bookday

bookpeople bookpeople
food type
name name

booktime bookstay

Table 5: Mapping of slots from the restaurant do-
main to the hotel domain

For the mapping of the slots, there are two things
that were considered: the mandatory slots, and the
slots required for each intent (find restaurant and
book restaurant). The mandatory slots for the hotel
domain were calculated using the same method as
described in Section 2.3. The mandatory slots de-
termined for the hotel agent are hotel-bookday,
hotel-bookstay and hotel-bookpeople.
However, there are two slots from the hotel do-

main that are not considered from the hotel domain:
the internet and parking slots, which could not
be correctly labeled in the utterances. Also, we do
not consider the slot stars because there is no di-
rect correspondent between the restaurant domain
and the hotel domain, and it is not mandatory for
the functioning of the agent.
We also change the NLU training data. To obtain

the training data, we use the approach described in
Section 2. Moreover, we adapt each of the Rasa sto-
ries by making the mapping of the slots, and select
a random value it can take from the annotated ut-
terances in the training data. For example, in the
story represented in Listing 1, the first user turn
would change the pair (restaurant-name, cafe uno)
to (hotel-name), allenbell).
Using this process, we guarantee that the ho-

tel agent recognizes utterances with information re-
garding the hotel domain, and are able to check if
the conversation paths defined by the stories in the
restaurant agent can be used for the hotel domain.
Concluding, we can now specify the text for the
Responses, implementing the Custom Actions and
choosing the agent configuration, which is detailed
in the repository6.

4. Evaluation
In this section, we describe how we implement the
remaining parts of the conversational agents, and
conduct the evaluation of our agents and the results.

4.1. Objectives
There are two objectives regarding this evaluation:

• Prove the quality of the framework devel-
oped in order to expedite the creation of Rasa

6https://github.com/Fogoid/KnowledgeTransfer

agents.

• Check if it is possible to transfer knowledge
between domains.

For the first objective, we perform an evaluation
on a restaurant agent created with only domain-
specific dialogues. For the second objective, we per-
form an evaluation on the hotel agent, which is cre-
ated by transferring knowledge from the restaurant
agent, as explained in Subsection 3.2.

For each agent, a two-part evaluation was de-
signed. In the first part of the evaluation, we per-
form an automatic NLU evaluation provided by
Rasa that allows to collect metrics such as Preci-
sion, Recall and F1-Score for both the intents and
the entities of the agents. These metrics are cal-
culated as a Micro, Macro, and Weighted average,
as well as for each intent/entity. Next, we perform
a human evaluation. This evaluation is composed
by an interaction with the agent’s agent, followed
by the fill of the questionnaire. During the interac-
tion, some metrics such as the NLU errors, action
choice errors, and number of turns required to com-
plete the task are noted. In the form, we collect
information about the user experience during the
interaction with the agent.

Thus, both the performance of the agent during
the interaction as well as the results from the ques-
tionnaire will allow us to determine if the interac-
tion with the agent was good, and take conclusions
as if the objectives of this evaluation were reached.

4.2. Materials
For the NLU evaluation, we require labeled utter-
ances with both the intents and entities for each.
Moreover, for the human evaluation, we need to
specify tasks for the user to perform and also to
create a questionnaire for the user to fill.

4.2.1 NLU Utterances

To test both the restaurant agent and the ho-
tel mode, we create the test utterances using the
methodology described in Section 2 using the Multi-
WOZ test set. This method allows to have domain-
specific utterances that have labeled intents and en-
tities that have been created by humans.

4.2.2 Tasks

For both agents, we create three different tasks for
the user to perform. For each of the tasks, we have
the following objective: 1) ability to find a restau-
rant/place to stay and make a booking, 2) get in-
formation from a restaurant/place to stay, and 3)
change some details of a booking. Taken these ob-
jectives, we then select some properties for the en-

7

tities of the agent and describe the task as a single
sentence for the user.

4.2.3 Questionnaire

The questionnaire we used to evaluate the agents
had three different parts. The first part of the ques-
tionnaire retrieves information such as the age, flu-
ency in English and familiarity with conversational
agents of the user. For the second part, we focus
on measuring the user experience using the UEQ
(Schrepp, Hinderks, and Thomaschewski 2017), by
analysing the scales of Attractiveness, Perspicuity,
Dependability and Stimulation. For last, the third
part will measure the quality of the different parts
of the system and the system as a whole. For the
last part of the questionnaire, we focus on the ca-
pabilities of the questionnaire. The capabilities we
evaluate are the ability of the agent to understand
the user (Understanding Capabilities), as well as if
any limitations have been felt by the user (Limita-
tions) . Also, we want to evaluate if the users felt
successful in the engagement (Experience), and if
the dialogues with the agent felt natural (Flow).

4.3. Automatic NLU Evaluation

As we mentioned previously, we used the labeled
test utterances to perform the automatic evalua-
tion using the Rasa testing capabilities. From this
evaluation, it was possible to conclude the quality
of the NLU module designed, although it presented
issues when labeling entities, where some entities
were labeled wrongly.

4.4. Human Evaluation

Our sample was composed of 14 participants. From
those, 7 (50%) people started by interacting with
the restaurant agent, and the remaining 7 (50%)
people started by interacting with the hotel agent.
The age of the participants ranged from 16 to 28
years old, where 9 (64.29%) participants identified
as male and 5 (35.71%) people identified as female.
Moreover, the testers evaluated their fluency with
a mean of 5.76 of 7 and the overall experience with
these type of agents were 3.71 out of 7. In this
section, for visualization purposes, we present the
results of the questionnaires on a scale of -3 to 3,
instead of a scale from 1 to 7. The metrics for the
questionnaire results for the two agents are in Table
6.

4.4.1 Restaurant agent Results

During the interaction with the restaurant agent,
the users interacted for a total of 279 turns, where
the agent had 57 (20.43%) turns with NLU errors
and 22 (7.89%) turns with action selection errors.
In the first task, the users did an average of 8.21

turns, with 2.38 turns with understanding errors
from the NLU and in 0.62 turns the action selected
was not correct. For the second task, an average
of 4.07 turns were required to complete the task,
0.84 turns of those were understanding errors. Only
one tester got an action selection error during this
task. Finally, in the third task, the users required
an average of 7.68 turns to complete it, where there
were 1.15 turns with understanding errors and 1.07
turns where the action selected was not appropriate.

Finally, regarding the opinion of the users, 7
(50%) of them mentioned interpretation errors and
1 (7.14%) mentioned being impacted by the action
choice. Moreover, the users said that overall, the
conversation was fluid to complete the tasks, and
praised the capabilities of the agent.

4.4.2 Hotel agent Results

During the interaction with the agent, there was a
total of 331 turns, where 107 (32.33%) turns had
understanding issues from the NLU and there were
10 (3.02%) turns where the action selected was not
correct. In the first task, there was a mean of 8.21
turns, having 2 turns with NLU errors and 0.3 turns
with a action selection errors. In the second task,
the number of turns required to terminate the task
were 8.07, and there were 3.69 turns with NLU er-
rors. In this task, the action selected was always
the best one. For last, in the third task, the users
required 7.35 turns to finish it, where 2.54 turns had
NLU errors and 0.46 turns where the action selected
was not the correct one.

Regarding the opinion of the users, 8 (57.4%) of
the users mentioned the errors of the NLU, but
praised the agent for being able to help conclude
the tasks. Moreover, the users mentioned that they
could talk like they talk with another person.

5. Discussion

In this section, we address the problems we faced
creating the conversational agents, discuss the re-
sults of our evaluation and see how does it affect
the objectives of this work.

5.1. Parsing Data From Datasets

To populate dialogue systems that are divided in
the three modules (NLU, dialogue manager and
NLG), the correct annotation of the dialogues is
extremely important to create these type of sys-
tems. This could be seen by the analysis of the two
datasets (MultiWOZ and Taskmaster-1), that are
two datasets with dialogues where the annotations
of both differ.

8

agent Metric
UEQ Capabilities

Attract. Persp. Dep. Stim. Und. Cap. Exp Lim. Flow

restaurant

Mean 1.657 1.662 1.515 1.176 1.59 1.92 1.82 1.79
Var. 0.79 1.51 0.67 0.76 1.15 0.69 0.70 1.27

Std. Dev 0.891 1.228 0.817 0.874 1.07 0.829 0.834 1.126
Conf. 0.423 0.584 0.388 0.415 0.509 0.394 0.397 0.535

hotel

Mean 1.569 1.471 1.5 1.441 1.49 1.16 1.57 1.26
Var. 0.86 1.48 0.91 1.00 0.9 1.16 1.11 1.12

Std. Dev 0.93 1.215 0.952 0.998 0.951 0.936 1.053 1.059
Conf. 0.442 0.577 0.453 0.474 0.452 0.445 0.500 0.503

Table 6: Results of mean, variance, standard deviation and confidence with p=0.05 for the two parts of
the questionnaire for the two agents

5.1.1 Natural Language Understanding

The Active Intents and Slots of MultiWOZ allow
the labeling of a great part of the utterances as a
part of an Intent such as the find restaurant intent
or the inform intent. However, this was not possible
to do to utterances such as Affirmations, Refusals
or Recommendations that are part of a dialogue
the dialogue, which blocks the creation of a more
complete NLU module. This could be seen during
the definition of the custom actions for the agents,
where the agent message was designed in order to
avoid responses from the user that would affirm or
negate.

To address this problem, one possibility is to cre-
ate in the dataset an Intent annotation, which al-
lows the users to differentiate all the utterances dur-
ing the development of the conversational agent.

Besides, there are slots where the search for the
value was complicated, or in the worse case, were
not able to be considered for the agent. This is the
case of hotel-wifi, since its state value was not found
in the utterance. The lack of this slot hinders the
creation of conversational agents, diminishing the
functionalities of the agent.

One possible solution for this problem is by stor-
ing two values during the annotation of slots in the
dataset: the state value and the utterance value,
which would simplify the search and mapping of
the value in the utterance to the state value.

Looking at the results of the automatic evalua-
tion and user evaluation, we can conclude that us-
ing the information from the dataset, we are able to
create an agent that is able to understand natural
language. This is supported not only by the results
of the automatic evaluation, but also by the third
part of the questionnaires filled by the users.

However, the agent is by no means perfect. This
can be seen by the results of the interaction, where
there were 7.89% of the turns in the restaurant
agent and 32.33% of the turns in the hotel agent
had understanding errors. Furthermore, the results
of the automatic evaluation also suggest that are

improvements to be made. While the turn percent-
age with NLU errors of the restaurant agent is in
concordance with the results of the automatic eval-
uation. However, in the hotel domain there is a dis-
parity of the two values. There are two possibilities
for this happening. First, although unlikely, since
we performed the same process to create the train-
ing data for the restaurant agent, the utterances
from the users in the test differ from the ones used
in the training data. Another possibility is the fact
that Rasa is not able to distinct correctly between
the slots hotel-bookstay and hotel-bookpeople,
since both use a number regex. To solve this last
problem, we could create a single regex, and change
the training data to be able to specify the type of
number, based on the context.

5.1.2 Dialogue Manager

The results of the human evaluation suggest that
we were able to create a good base for the dialogue
paths. This is supported by the low percentage of
turns where the action selected was not the correct
one (7.89% of all turns in the restaurant agent).
Moreover, the users stated that the agent helped
to conclude the tasks and knew what to say to the
agent most of the times. This means that using by
using Intents, Slots and also the mandatory slots
that we computed, it is possible to create the re-
quired actions, as well as the stories to define the
dialogue manager module.

Just as we mentioned, only 7.89% of the turns
had errors while choosing the action to take. We
consider that the main reason for this issue is the
lack of stories due to the presence of some errors in
the dialogues of MultiWOZ. This would lead often
to missing Intents on some utterances, which often
led to the elimination of the dialogues. One other
possibility is the existence of too many dialogues,
where two stories that are equal until a certain turn
t, take different actions at turn t+1. To bridge this
problem, we could perform a filter on the dialogues,
eliminating any redundancies. One other possibility

9

would be to create annotations for the agent actions
in the dataset, aiding the development process.
However, the results we obtained might not be

completely accurate. First, the number of users
that interacted with the agent for the evaluation
is low. Second, there were no restrictions in the
way the users talked, which means it is not possible
to access the quality of the stories created
Concluding, we believe that the benefits of using

datasets to create a conversational agent outweigh
the constraints imposed by some of the annotation
properties. As supported by the results of the UEQ
part of the questionnaire, using the datasets can
create an agent that is good, motivating to use,
where the users feel in control the conversation and
interact the way they intend, qualities that are re-
quired in a conversational agent.

5.2. Knowledge Transfer
Comparing the results of the human evaluation be-
tween the hotel and restaurant domains, we con-
sider that the knowledge transfer between domains
was a success. In fact, there were less errors con-
cerning the action selection in the hotel agent that
were in the domain agent. Furthermore, although
the results of the third questionnaire represent a
significant diminish of the quality of the flow, we
believe that this scale had worse results due to the
influence of the errors caused by the NLU module
of the agent. Moreover, as the results of the UEQ
suggest the agent is still a good exciting product
to use, despite all the understanding errors that it
presented.
However, we consider that this method of trans-

ferring is still extremely limited. First, the only
module to be retained is the dialogue manager. This
is for obvious reasons, given that the training data
for the NLU module is domain-specific. This can
be confirmed by our attempt at adding information
to the Taskmaster-1 dataset using the MultiWOZ
restaurant agent, where even in dialogues with the
same domain, the complexity and language of both
datasets differed.
Moreover, in order to transfer knowledge, it is

mandatory that the tasks are compatible. In our
approach, to have compatible tasks, it is obligatory
that the domains have the same number of tasks,
and the same number of mandatory slots for each
correspondent task, which sometimes is not feasible.

6. Conclusions and Future Work
In this work, we propose different methods to expe-
dite the development of conversational agents. We
do so using the Rasa Open Source Framework. In
a first method, we use the annotations in Multi-
WOZ and Taskmaster-1 datasets to create a con-
versational agent. For last, we explore the possibil-
ity of adapting an existing conversational agent to

new tasks. We perform an automatic and human
evaluation on both methods, which show the effec-
tiveness of using datasets to support the creation of
new conversational agents, as well as highlighting
the possibility of reusing conversational agents.

References
[1] Pawel Budzianowski, Tsung-Hsien Wen, Bo-

Hsiang Tseng, Iñigo Casanueva, Stefan Ultes,
Osman Ramadan, and Milica Gasic. “Multi-
WOZ - A Large-Scale Multi-Domain Wizard-
of-Oz Dataset for Task-Oriented Dialogue
Modelling”. In: CoRR abs/1810.00278 (2018).
arXiv: 1810.00278. url: http://arxiv.org/
abs/1810.00278.

[2] Bill Byrne, Karthik Krishnamoorthi, Chin-
nadhurai Sankar, Arvind Neelakantan, Daniel
Duckworth, Semih Yavuz, Ben Goodrich, Amit
Dubey, Kyu-Young Kim, and Andy Cedilnik.
“Taskmaster-1: Toward a Realistic and Diverse
Dialog Dataset”. In: 2019.

[3] Chih-Wen Goo, Guang Gao, Yun-Kai Hsu,
Chih-Li Huo, Tsung-Chieh Chen, Keng-Wei
Hsu, and Yun-Nung Chen. “Slot-Gated Mod-
eling for Joint Slot Filling and Intent Predic-
tion”. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers).
New Orleans, Louisiana: Association for Com-
putational Linguistics, June 2018, pp. 753–757.
doi: 10.18653/v1/N18- 2118. url: https:
//www.aclweb.org/anthology/N18- 2118

(visited on 12/08/2020).

[4] Javeria Habib, Shuo Zhang, and Krisztian
Balog. “IAI MovieBot: A Conversational
Movie Recommender System”. In: CoRR
abs/2009.03668 (2020). arXiv: 2009 . 03668.
url: https://arxiv.org/abs/2009.03668.

[5] Xiujun Li, Yun-Nung Chen, Lihong Li, Jian-
feng Gao, and Asli Celikyilmaz. “End-to-End
Task-Completion Neural Dialogue Systems”.
In: the 8th International Joint Conference on
Natural Language Processing. IJCNLP 2017,
Nov. 2017. url: https://www.microsoft.
com/ en- us/ research/publication /end -

end- task- completion- neural- dialogue-

systems/.

[6] Martin Schrepp, Andreas Hinderks, and Jörg
Thomaschewski. “Construction of a Bench-
mark for the User Experience Questionnaire
(UEQ).” In: Int. J. Interact. Multim. Artif. In-
tell. 4.4 (2017), pp. 40–44.

10

