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Abstract

A surgical voucher transfer system has been implemented in Portugal, with the aim of guaranteeing a timely surgical
response by healthcare services. Despite its promising potential, this programme has not performed satisfactorily,
mainly due to low acceptance rates among patients.

This study encompasses a comprehensive behaviour operational research of vouchers’ lack of acceptance, starting
with an exploratory factor analysis, followed by structural equation modelling techniques, which enabled the validation
of the health belief model to represent the psychological determinants of patients’ intention to accept a transfer offer.
Results showed that especially perceived barriers, but also cues to action, were the key factors responsible for ultimate
behaviour. Furthermore, a simulation model was developed so that different behavioural scenarios could be tested. It
was shown that a 50% decrease in patients’ perceived barriers was enough to produce a 75.5% voucher acceptance in
the simulation, leading to about less 32 000 patients waiting for their treatment, after a one-year simulation run.

Such tools of behaviour investigation are valuable to health authorities, in order to plan effective policies that can
change patients’ behaviour and to predict their possible impact on the national surgery waiting list.
Keywords: Surgery waiting list, Health-related behaviour, Health belief model, Agent-based simulation

1. Introduction
Excessively long waiting lists and times for surgery have
been a problem of the Portuguese healthcare system
over the years, compromising one of citizens’ most funda-
mental rights – the access to timely care treatments [1].
Since 2004, the management of the Portuguese surgery
waiting list (SWL) has been executed based on an inte-
grated system, SIGIC, where maximum waiting time limits
for surgery scheduling and delivery (TMRGs) are defined,
according to different levels of patients’ clinical priority.
These limits, displayed in Table 1, must be obeyed by all
hospitals.

Table 1: TMRGs and maximum waiting times until surgery scheduling,
for different levels of clinical priority and types of pathologies [1].

When a certain hospital does not have enough delivery
capacity to schedule a surgery within those limits, the law
dictates that a transfer offer must be issued to the patient
of concern, in the form of a surgical voucher (SV), so that
he/she can be treated at another facility. The SV contains
a list of both public and private providers, from which pa-
tients can choose where they want to be transferred to.

Patients receive their first SV after waiting 75% (for
priority level one) or 50% (for priority level two) of their

TMRG. They can refuse such transfer and have a sec-
ond SV emitted to them later, at 100% of their TMRG. In
case they send no positive or negative response to health
authorities before the SV’s expiration date, their SWL en-
rolment gets cancelled [1].

Despite the potential that the SVs’ policy could have
had, by transferring part of the high demand for surgery
from public to private healthcare services, it has fallen
short to the expectations. Proof of that is the lack of
improvements registered in the SWL’s statistics over the
last years. Data from 2017 to 2019 is displayed in Ta-
ble 2, where it is possible to observe that the total num-
ber of surgeries performed has been continuously smaller
than the number of new entrances. Furthermore, waiting
times have not registered significant improvements, just
like the percentage of waiting patients who already sur-
passed their TMRG [2].

Table 2: Statistics of surgical demand and supply in Portugal, between
2017 and 2019 [2].

The main reason behind the SVs’ system poor results
seems to be a very low acceptance rate, since the big
majority of patients either refuses or ignores their trans-

1



fer offer, preferring to wait longer for treatment at their
home hospital. In 2019, for example, the percentage of
accepted SVs was only 18.8% [2].

Therefore, in order to guarantee a timely provision of
care, it is crucial to perform comprehensive studies re-
garding SIGIC methodologies and their current efficacy.
More specifically, it should be of great value to understand
the reasons why such a high percentage of SVs end up
not being accepted by patients.

A study based on a telephonic enquiry made to patients
from the five Portuguese ARSs (Regional Health Authori-
ties) who declined being transferred, back in 2007, deter-
mined the main motives behind SVs’ refusals [3]. These
were grouped in the following four categories: patients
did not want to be treated by a different doctor or at a
different hospital (34% of the cases), patients were un-
available to use the SV within its expiration date (30%),
patients did not want to be treated outside their residence
area (26%), and lack of information regarding the transfer
programme’s functioning (10%).

Although this previous study has provided some insight
regarding the main motives behind SVs’ refusals, it is
still imperative to investigate which factors determine
patients’ decision-making process regarding this matter,
so that health authorities may be enlightened regarding
possible impacting reforms, capable of increasing vouch-
ers’ acceptance levels and its effects on the national
waiting list.

2. Literature Review

BOR applied to healthcare:
Behavioural Operational Research (BOR) stands for a

special stream of Operational Research (OR) dedicated
to the study of behaviour and OR models’ interrelation.
Namely, a big part of the BOR literature explores the de-
gree to which stakeholders’ behaviour can impact sys-
tem’s functioning and performance, with a final goal of
making some kind of intervention or just to better un-
derstand a certain problem. Some of the BOR analysis
techniques include modelling and simulation, which will
be further explored in this chapter [4, 5].

Among the many contexts to which BOR can be ap-
plied, healthcare emerges as an important field of inter-
est, since it is made out of multiple complex systems, de-
pendent on different stakeholders’ behaviour (whether it
is patients, practitioners, or health services’ managers).
Studies have shown that individuals must be modelled
according to their condition of, as the name suggests,
individual entities, whose actions are the result of differ-
ent backgrounds, beliefs, intuitions and personal biases,
rather than as completely rational beings [4, 6].

Concerning patients, their individual health-related be-
haviour can influence a varied set of clinical procedures,
services, and policies. Studying it can be of an immense
value to health authorities, in order to provide them with
information regarding possible interventions.

As health-related behaviour can be a quite vague con-
cept, it is important to better define it – it designates
“overt behavioural patterns, actions and habits that relate
to health maintenance, restoration and improvement”, ac-
cording to the Handbook of Health Behaviour Research

[4]. Habits such as smoking, diet, physical activity, sex-
ual behaviours, and alcohol consumption are examples
of relatively well studied individual behaviours related to
health matters. Nevertheless, BOR has also been applied
to explore patients’ dynamics with certain health services:
resource consumption, screening compliance, vaccina-
tion intake, special programmes or tools’ acceptance [6].

By studying the literature available regarding the ap-
plication of BOR to healthcare settings, it is possible to
observe common trends and, therefore, to group these
articles into three subcategories, according to their main
focus of analysis: modelling individual behaviour, simu-
lating individual behaviour and, finally, a combination of
both.

Modelling individual health behaviour:
Individual health-related behaviour can be modelled

with the help of psychological models, which comprehend
the factors that determine a certain action and how they
might be intertwined. From those, the Health Belief Model
(HBM) is one of the most often used in BOR research.

According to HBM (Figure 1), the likelihood of an indi-
vidual taking a certain health-related action or adopting
a given behaviour is related to seven dimensions: per-
ceived susceptibility (perceived individual risk of contract-
ing a disease/developing a condition), perceived severity
(perception of the harmfulness of a disease and its con-
sequences), perceived benefits (personal assessment of
the benefits of adopting the behaviour to avoid a disease),
perceived barriers (evaluation of the disadvantages of
adopting the behaviour), cues to action (triggers that in-
centivize the adoption of the behaviour, such as physi-
cal symptoms, advice from family or health professionals,
media campaigns), health motivation (someone’s general
interest and concern regarding personal health), and, in
some cases, self-efficacy (someone’s perceived capacity
to carry out certain actions). HBM is deeply appreciated
by its simplicity of concepts and its adequacy to cover
health-related behaviour. On the other side, it lacks math-
ematical structure concerning the relationships between
its constructs [5].

Figure 1: Health Belief Model [7].

Thus, some papers are mainly (or only) focused on
modelling a specific health-related behaviour – dissecting
it in detail, along with its contributing factors (which may
be, for instance, psychologic, social or demographic), the
complexity of the correlations among them, and their cu-
mulative effects –, as an attempt to formally explain hu-
man actions and decisions concerning health. An ex-
ample of that is a study conducted in Taiwan to under-
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stand the causes behind low acceptance rates concern-
ing a technological tool for health self-management [8].
Almost four years after the implementation of the ”My
Health Bank”, only about 3.2% of citizens were using it.
A combination of HBM and other health and technology
behaviour models was used, based on answers extracted
from a survey, to identify the key factors behind people’s
intention to use (or not) their health passbook. The results
proved that health belief factors, such as perceived sus-
ceptibility, rewards, perceived barriers, self-efficacy, and
cues to action, as well as health literacy and technol-
ogy acceptance elements (perceived utility and perceived
easiness-of-use) were all key determinants of people’s
behaviour regarding health technology, more specifically,
of their willingness to use the health passbook.

Simulation of individual health behaviour:
Simulation techniques are commonly used when ap-

plying OR to healthcare contexts, facilitating decision-
making and problem-solving by mimicking how complex
systems evolve over time. By simulating a certain reality,
different policies can be tested before they are truly im-
plemented, enabling cost-effectiveness assessments and
comparisons of various possible scenarios. Furthermore,
it allows the performance of clinical trials which would not
be feasible to conduct in real-life [9, 10].

In the literature, it is possible to find many applications
of different simulation techniques to healthcare settings.
However, it is not so common for those simulation mod-
els to incorporate individual behaviour and, even when
they do so, it usually lacks the deterministic dimensions
that lead to those actions. That can be unexpected, es-
pecially if one thinks about how human health-related be-
haviour has the potential to influence health strategies’
success. While superficially including human behaviour
may be enough in some cases, particularly when the fo-
cus of study is on a larger dimension (like an evaluation
of the overall functioning of a healthcare facility, for exam-
ple, where it is important to include a few individual char-
acteristics of patients in order to simulate how they will
heterogeneously use that service and consume available
resources, but there is no interest in studying the causes
behind those individual behaviours), the same is not true
when researchers intend to investigate ways of inducing
behavioural change, since it is crucial to deeply under-
stand how certain factors influence subjects’ actions in
order to plan and simulate this kind of interventions.

The two simulation techniques usually used to incor-
porate individual behaviour are Discrete-Event Simulation
(DES) and Agent-Based Simulation (ABS). According to
the literature, these are the most suitable for the task,
since they admit the existence of individual units (enti-
ties or agents) which assume, at a given instant, a cer-
tain set of variables that characterize them. They can
exchange messages with the environment surrounding
them and take different actions accordingly to those stim-
uli and their personal traits. Therefore, each unit can act
differently from the others, originating a heterogeneous
set of ”characters”, appropriate to represent individual hu-
man behaviour. The main difference between the two
methods is mostly related to the fact that, in ABS, agents

can also exchange messages with each other [9, 10].
There are many examples in the literature of simulation

studies which incorporate stakeholders’ behavioural fea-
tures. Lopes et al. [11] developed a simulation model
to forecast the evolution of the medical workforce until
2050, in Portugal. Both supply and demand of physi-
cians were taken into account in a robust model intended
to help healthcare services planning. ABS was the cho-
sen simulation approach, due to its capacity to account
for doctors’ individual preferences and decision-making,
which play an essential part in the context of this study.

Modelling and simulating individual health behaviour:
As already stated, despite the fact that BOR has been

applied to healthcare contexts multiple times over the
years, few are the studies that contemplate both a de-
tailed modelling and simulation processes of the psycho-
logical fundamentals of individual health behaviour. Two
important examples of such comprehensive behavioural
studies were related to patients’ compliance with screen-
ing programmes – one for diabetic retinopathy, and an-
other for breast tumors.

Regarding diabetic retinopathy, Brailsford et al. [12] de-
veloped a model to predict patients’ intention to attend
an examination session, mainly based on HBM. Such
model enabled a complete description of various health-
related behaviour dimensions (from threat perception and
behaviour evaluation, to emotional, physical, cognitive
and social aspects), although it lacked scientific struc-
ture. The mathematical expressions used to build the
model were arbitrary and mainly based on assumptions;
for that reason, the authors considered that study as a
proof-of-concept, which showed the potential of includ-
ing behavioural constructs on health policies’ simulations,
and did not claim the validity of the developed model.
The results revealed that not considering individual vari-
ations of compliance with screening led to an overesti-
mation of patients’ attendance and, consequently, of that
programme’s beneficial effects. Furthermore, it showed
potential to help health authorities understanding the ulti-
mate impact of changes in different behavioural aspects
and how to plan screening policies in order to achieve
significant improvements.

Later on, Brailsford et al. [13] applied an alterna-
tive psychological model (Theory of Planned Behaviour,
TPB), once again to predict patients’ compliance, but
for breast cancer screening sessions. Due to the appli-
cation of TPB, this model had a sounder mathematical
structure; however, it lost some behavioural constructs,
namely the ones related to individual perceptions regard-
ing severity and susceptibility to the tumour. This study
also incorporated a model for the screening programme
stages, as well as for tumour’s progression. Simulations
proved how noteworthy improvements regarding the ef-
fectiveness of the programme could be achieved not only
by modifying the time interval between screenings, but
also through patients’ behavioural changes operational-
ized in the model (attitude towards behaviour, subjective
norms, and perceived behavioural control).

Both these articles represented an important starting
point when developing the methodology employed in the
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present study, due to their complete approach, where
both modelling and simulation techniques were used as
complementary methods to fully dissect the problems at
hand. As it is still not very common to find both tech-
niques being used together in behavioural studies, this
research intends to contribute to further explore this kind
of approach. Furthermore, no relevant BOR articles were
found regarding voucher acceptance behaviour, which
constitutes another gap in the literature this dissertation
intends to close.

3. Methodology

HBM conceptual model:
The HBM model was adopted to represent patients’ in-

dividual acceptance behaviour regarding SVs. All seven
constructs of the model presented in Figure 1 were in-
cluded and an equal number of conceptual hypotheses
were established:

− H1: Perceived susceptibility is positively associated
to intention to accept an SV;

− H2: Perceived severity is positively associated to in-
tention to accept an SV;

− H3: Perceived benefits are positively associated to
intention to accept an SV;

− H4: Perceived barriers are negatively associated to
intention to accept an SV;

− H5: Cues to action are positively associated to inten-
tion to accept an SV;

− H6: Self-efficacy is positively associated to intention
to accept an SV;

− H7: Health motivation is positively associated to in-
tention to accept an SV.

In order to evaluate the validity of such hypotheses, a
measurement instrument was developed and a quantita-
tive study was conducted to measure the model’s dimen-
sions and connections.

Quantitative study:
The measurement instrument created to operationalize

the HBM conceptual model consisted of an online ques-
tionnaire, shared on social media and also door-to-door
(in order to approach the eldery). The survey consisted of
two main sections: an initial part, that entailed some brief
demographic questions to better characterize the sam-
ple being studied (age, gender, district, education level)
as well as three other items concerning subjects’ overall
health perception and past experience on the SWL, and a
more extensive second part, which was intended to cap-
ture and measure HBM’s main constructs.

Since HBM constructs (latent variables) are unmea-
surable, they have to be implemented as sets of multi-
ple questionnaire items (indicators), which can indeed be
considered observed variables and that indirectly reflect
the HBM dimension they relate to. Thus, in the last part
of the survey, respondents were faced with 26 enquiry
items, organized into seven groups, as follows: perceived
susceptibility (measured by two items of the survey, Q1

and Q2), perceived severity (measured by four items, Q3,
Q4, Q5, and Q6), perceived benefits (three items, Q7,
Q8, and Q9), perceived barriers (six items, Q10 to Q15),
cues to action (five items, Q16 to Q20), self-efficacy (two
items, Q21 and Q22), and health motivation (four items,
Q23 to Q26). To answer, respondents had to select their
level of agreement with each item statement on a five-
point Likert scale (ranging from ”completely disagree”,
level one, to ”completely agree”, level five). The majority
of the questions was adapted to this project’s context from
the literature, where similar surveys were used to develop
HBM models to other health-related issues [8, 14].

In addition, a final question was used to enquire partic-
ipants regarding their willingness to accept an SV if pre-
sented with that hypothesis (“If you would receive an SV
in the future, would you be willing to use it?”), in order to
measure intention to behave, the ultimate dimension of
the HBM model, implemented also in a five-point scale,
where category one referred to “definitely no” and cate-
gory five to “definitely yes”.

Given the impossibility of specifically directing the
questionnaire to patients currently enrolled on the Por-
tuguese SWL due to privacy policies, this questionnaire
was distributed among the general population. It should
not significantly compromise the results as, in the end,
everyone is susceptible of entering the waiting list for
surgery and be presented with the option to use an SV.

Answers were collected from June 28th 2021 to Au-
gust 25th 2021. Participants from Azores and Madeira
were excluded from the study, since these regions man-
age their own SWLs independently from the rest of the
country.

To start, a sociodemographic analysis of the obtained
sample was performed in order to assess if any of these
variables had an influence on SVs’ acceptance decisions.
Age, gender, ARS, and educational level were evaluated
by Fisher’s exact test of independence. To simplify this
comparative evaluation, answers regarding intention to
accept (Q27, the last question of the survey) were aggre-
gated from a five-point Likert scale and divided in only two
groups: “intending to accept”, which included answers
from levels three to five, and “not intending to accept”,
that considered replies of both values one and two.

The following survey question referred to respondents’
self-evaluation of their health status, on a scale from zero
(very poor) to ten (excellent). Its independence evaluation
regarding willingness to use an SV was performed using
the Mann-Whitney U test.

To conclude this first part of the questionnaire, partici-
pants were asked about their previous history on the SWL
and past experience using SVs (“Have you ever been en-
rolled on the SWL before?”, “If yes, have you ever re-
ceived an SV? Did you use it?”). As these are, once
again, nominal variables, Fishers’ exact test was used to
evaluate independence from intention to behave.

To understand if the 26 (Q1 to Q26) HBM-related ques-
tions truly implemented the seven-construct structure of
the model, Exploratory Factor Analysis (EFA) was per-
formed, using half of the collected sample. This type
of data-driven factor analysis is commonly employed to
evaluate newly developed measurement instruments and
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models, since it unravels the latent structure underlying a
group of observed variables [15].

If a certain subset of observed measures presents high
correlations among themselves, that group of variables
must be affected by a common latent variable. This com-
mon factor influences individual scores on each measur-
able indicator and accounts for the covariance among
them. Relationships between observed variables and a
set of constructs are computed as factor loading esti-
mates, λij . The non-shared variance between a set of
indicators of a same construct is attributed to measure-
ment errors, δi. Factors’ correlations, ϕjj , may also be
computed during EFA [15].

When performing factor analysis, the first step must be
to check the factorability of the variables’ correlation ma-
trix, with the Bartlett’s test of sphericity (that must produce
a significant p-value, lower than 0.05) and the Kayser-
Meyer-Okin (KMO) test (where a value ideally above 0.70
should be obtained) [15].

Mardia’s estimates were computed in order to verify if
polychoric correlation coefficients should be computed,
due to the ordinal nature of the survey’s data. The chosen
method for factors’ estimation was principal axis factoring.
Parallell analysis was used to determine the ideal number
of factors to extract from the data. Oblique factor rotation
(oblimin) was performed to facilitate output interpretation.

In this study, the cut-off value that determined which
loading coefficients were considered significant was set
to 0.50. During an EFA analysis, researchers should
aim at finding a solution where each factor is significantly
loaded by several variables, which, in turn, present sig-
nificant loading values on only one factor and negligible
values on all others (no cross-loadings) [15].

For an EFA solution to be considered acceptable, there
is still one more criterion to be met. Each factor should
obtain a Cronbach’s alpha coefficient higher than 0.70,
in order to prove to have internal consistency [16]. This
measure examines if the whole subset of items concern-
ing a certain construct measures the same thing consis-
tently, based on their average correlations.

After EFA was used to investigate if the underlying fac-
tor structure of the data matched the one intended for the
HBM-based model, it was necessary to confirm if such
structure was also present among a different subsample
(the remaining half of the total dataset). Cross-validation
was used to ensure that the results were replicable and
reliable. The causal relationships existent in the model
also needed to be computed. To do all that, Structural
Equation Modelling (SEM) was used, consisting on a two-
step study: first with Confirmatory Factor Analysis (CFA),
and afterwards with path analysis.

Unlike what happens during EFA, in CFA the factor
structure under study is defined a priori. The model ob-
tained is usually designated by measurement model and
it specifies each factors’ set of corresponding indicators
(xi), as well as their loading coefficients (λij). Besides
that, this model also includes error components (δi), and
correlations among different factors (ϕjj) [17, 18]. Such
errors can be defined as:

δi = 1−R2
i , (1)

where R2
i stands for an item’s determination coefficient

(the proportion of that item’s variance explained by its re-
spective factor in the model). Some authors argue that
R2

i is a measure of items’ internal reliability (ideally close
to one), while others attribute it to the square value of an
indicator’s standardized loading factor, λ2

ij . Nevertheless,
in general, R2

i and λ2
ij assume approximate values for a

same item i [17, 18].
In this case, where the measurement scales were

ordinal and a non-normal distribution of the data was
plausible (that was, nevertheless, examined by Mardia’s
estimates), diagonally weighted least squares was the
method chosen for the analysis.

Multiple model fit indices can be used to assess
how well a sample supports an hypothesized conceptual
model. As it is recommended in the literature, for this
analysis there were produced different types of fit indices:
absolute – χ2/df –; relative indices – Comparative Fit In-
dex (CFI) and Tucker-Lewis Index (TLI) –; and, finally, an
index of populational discrepancy – Root Mean Square
Error Approximation (RMSEA) [18, 19].

The χ2/df estimate classifies a data-model adjustment
as acceptable when it is lower than five and higher than
two, good if it is between one and two, and very good if it
is close to one. Regarding CFI and TLI, values between
0.8 and 0.9 are considered acceptable, between 0.9 and
0.95 good, and higher or equal to 0.95 very good. Lastly,
RMSEA must produce a significant result (p-value below
0.05) lower than 0.10 in order to the adjustment to be
considered acceptable – values between 0.05 and 0.10
indicate a good fit, and under 0.05 a very good fit [18].

Factors’ composite reliability (CR) was computed to
judge internal reliability of each construct. This estimate
evaluates the consistency with which a set of indicators
represents a certain latent variable. Values higher or
equal to 0.7 are considered adequate. CR of a k -item
factor is defined as:

ĈRj =

(∑k
i=1 λij

)2

(∑k
i=1 λij

)2

+
∑k

i=1 δij

, (2)

where each items’ error term, δij , is given by equation (1)
[18].

Regarding the evaluation of this study’s validity, to ex-
amine if the measurement instrument operationalizes or
not SVs’ acceptance behaviour, different aspects need to
be taken into account: factor validity, convergent validity,
and, lastly, construct validity. Factor validity respects to
items’ factor loadings, which should be higher or equal
to 0.5. Items’ internal validity contributes to factor va-
lidity and it’s given by the portion of an items’ variance
explained by its corresponding factor, which should be
higher or equal to 0.25. Convergent validity ensures that
the majority of items’ variance is explained by the factor
they are related to in the model. To assess that, factors’
average variance extracted (AVE) must be determined,
through the following mathematical expression:

ÂV Ej =

∑k
i=1 λ

2
ij∑k

i=1 λ
2
ij +

∑k
i=1 δij

, (3)
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considering, once again, a construct defined by k indica-
tors [18]. Obtained AVE values higher or equal to 0.5 are
a sign that this type of validity is verified. To conclude, a
model is said to possess discriminant validity when items
related to a certain factor are not correlated to any other
factors. Such property must be verified by confirming that
a factor’s AVE is higher or equal to the square values of
its correlations with all other factors of the model [17, 18].

During this CFA, all forms of validity were examined.
If the measurement instrument turns out to be valid, the
identified factor structure should meaningfully represent
HBM’s dimensions.

After CFA, SEM proceeded with path analysis, where
causal relationships between latent variables are estab-
lished in a structural model [18]. Upon this analysis, the
HBM relational model theoretically developed is further
explored. Path trajectories between the HBM causal con-
structs defined during EFA (perceived threat, perceived
benefits, perceived barriers, cues to action, and health
motivation) and the ultimate behavioural dimension – in-
tention to accept an SV –, associated to its one measure-
ment item (Q27), were estimated. Therefore, their impact
on behaviour could be evaluated.

SEM’s global model results from the union of both the
CFA’s measurement model and the path analysis’ struc-
tural model. Just like in CFA, goodness-of-fit tests (χ2/df ,
CFI, TLI, and RMSEA) were performed to evaluate the
quality of model’s adjustment to the data.

All the above analysis was performed in R, from the
demographic characteristics’ independence tests, to EFA
(psych package) and SEM (Lavaan package).

Simulation model:
Within the ambit of the second part of this dissertation’s

research, an agent-based simulation model of the wait-
ing process for surgery implemented in Portugal was built
in AnyLogic software. The goal of this simulation was
to better understand the effects of behavioural changes
in SVs’ acceptance levels and in the reduction of the
national waiting list. Patients were represented by indi-
vidual agents, who assumed different states and under-
went multiple transitions, representing the dynamics of
the waiting process.

The model was based on data referring to 2018 and
2019. During 2019 – the year mimicked during the simu-
lation run –, a total of 724 234 patients entered the SWL
and joined the 244 501 that had transited from 2018 [2].
Since these different groups of patients were, at the be-
ginning of 2019, in different points of the waiting pro-
cess, they had to be modelled according to the different
conditions they were in. Therefore, different agent-types
and their corresponding subpopulations had to be imple-
mented, in order to discriminate the different pathways
possible for them to follow in the model.

The patients that entered the waiting list in 2019 formed
the patients19 population. The remaining patients, who
were already on the waiting list at the start of the mod-
elling year, were subdivided into three distinct groups, ac-
cording to the stage of the waiting process they were in:
patients181 who, although already on the waiting list be-
fore 2019, had still not surpass 75% of their TMRG wait-

ing; patients182, that had waiting times between 75% and
100% of TMRG; and, finally, patients183 were the agents
who had surpassed 100% of TMRG waiting for surgery.
Data from a Portuguese public healthcare hospital was
used to define the distribution of waiting patients between
these three groups.

It is important to note that the used software did not
support such big numbers of agents, which imposed the
use of approximated values. In order to facilitate the in-
terpretation of results, it was determined that each agent
in the model represented 1 000 patients in real-life.

Agents of all categories were characterized by seven
parameters (Sex, Age, Region, Priority, PBr, CtA, ItA).
The distribution of the four demographic parameters was
defined according to the description of the SWL popula-
tion reported in a SIGIC’s study [3]. PBr, CtA, and ItA
represented each patient’s behaviour constructs of inter-
est – perceived barriers, cues to action and intention to
accept. PBr and CtA values were set according to their
respective indicators’ scores observed in the HBM ques-
tionnaire sample. The mathematical expression defining
ItA from PBr and CtA was implemented according to the
results of SEM’s global model, after path analysis.

Although more than one agent-type were considered
in order to represent patients in different circumstances
of their waiting journey, the sequence of states and tran-
sitions such agents experienced was always based on
adaptations of the same overall representation of the
waiting list’s universe – Figure 2 shows the statechart
scheme which illustrates the functioning of the general
model and, more specifically, the one followed by agents
from the patients19 subpopulation.

Figure 2: Statechart developed in AnyLogic to define agents’ states
and transitions in the simulation, as a representation of patients’

possible pathways on the Portuguese SWL.

Agents enter the model environment at the “Special-
ity Appointment” starting point, which symbolizes the first
speciality medical appointment they go to. Once enrolled
for surgery, they enter the “Waiting List” state, which in-
cludes multiple sub-states. At the beginning of the wait-
ing process, the agent is automatically directed to the
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“Waiting” state, from where it can either proceed to “Re-
ceived SV” (in pink), in case that patient’s surgery does
not get scheduled before the deadlines defined by law
causing an SV to be emitted, or to “Surgery Done” (in
green), if surgery is performed within the expected time
period.

What determines if a certain patient is going to directly
undergo surgery or, instead, to receive an SV, offering the
option to be transferred to another facility, is a database
table of true waiting times registered at a Portuguese hos-
pital for that specific patient’s priority level, which is de-
fined in both transitions “Wait P1” and “Wait P2” (for pri-
ority levels one and two, respectively). On the other hand,
transitions “SV P1” and “SV P2” have a fixed countdown
of 135 and 30 days, respectively and according to the in-
formation displayed in Table 1 regarding the timestamps
for the emission of SVs.

In cases where surgery waiting time is longer than the
time for emission of a transfer document, patients move
to the “Received SV” state. There, agents’ destiny is de-
pendent on their personal decision regarding the SV they
were offered – they can either accept it, decline it, or not
answer. The conditions on which patients proceed to one
of these states are defined by the transitions “Accepts”,
“Declines”, and “Does Nothing”. As the subject of inter-
est in this simulation study, “Accepts” was not fixed to a
given percentage of acceptance, but rather implemented
as a condition dependent on each agent’s ItA score. ItA
above a specific threshold denoted that patients’ intention
to accept an SV was high enough to originate that same
behaviour, while ItA values lower than that limit would re-
sult in SV’s refusal or in the absence of response.

To define that cut-off value, the survey’s sample was
used: participants’ ItA estimates were computed and the
top 18.8% of those scores was considered to result in
effective acceptance (in order to correspond to the real-
ity of 2019). The remaining SV-related transitions, “Re-
fused SV” and “Did Not Answer”, were modelled as fixed
parameters and also corresponded to percentages re-
ported by the Ministry of Health in 2019: from the non-
accepted vouchers, 67.2% were due to justified refusals
and the remaining caused by an absence of answer from
the patient [2].

From “Did Not Answer”, agents are moved to the “Can-
celled” state, representing the cancellation of patients’ en-
rolment on the waiting list, as it is predicted in SIGIC’s
guidelines [1]. They can then be re-enrolled on the list by
their hospital.

When a patient accepts the SV, he/she advances to
the “Surgery Done” state (in green), more specifically to
“Surg SV”, which indicates that surgery was performed
within the ambit of the transfer programme.

Finally, patients have the option to decline their trans-
fer. When patients answer negatively, they are returned
to their hospital’s waiting list (“Returns To SWL”), without
losing their previous position. Thus, this time they are
not sent to “Waiting”, but to “Waiting 2” (in yellow). From
there, the destiny options are similar to the ones previ-
ously explained for the “Waiting” state.

Guards implemented as Java code in ”Received SV”
guarantee that each patient gets a maximum of two SV

offerings, as it is defined in SIGIC’s regulation [1].
At any moment patients’ enrolment on the waiting list

can be cancelled (for a variety of reasons). The cancella-
tion percentage was set to 13.7%, according to what was
experienced in 2019 [2].

Controls were implemented to vary behaviour determi-
nants’ estimates. In an initial run, PBr and CtA were both
set to 100%, in order to achieve the baseline acceptance
rate registered in 2019, 18.8% – scenario A. After that,
six other simulation runs, where behavioural components
PBr and CtA were modified (PBr decreased and CtA
increased, so that acceptance would also grow), were
executed, in order to evaluate its effects on the SWL’s
outcomes after one year of simulation: scenario B (PBr
set to 75%, CtA set to 100%), scenario C (PBr set to
50%, CtA set to 100%), scenario D (PBr set to 100%,
CtA set to 125%), scenario E (PBr set to 100%, CtA set
to 150%), scenario F (PBr set to 75%, CtA set to 125%),
and scenario G (PBr set to 50%, CtA set to 150%).

4. Results & discussion

Characteristics of the sample:
The questionnaire obtained a total of 170 valid re-

sponses. Table 3 shows the demographic characteriza-
tion of the sample.

Table 3: Demographic characterization of the studied sample.

The sample used in this study was compared to the
one used in a SIGIC’s study, conducted in 2007 [3]. It was
observed an over-representation of young adults (21-40
years old) and an under-representation of older patients
(above 60) in the present group of citizens enquired, as
a result of the survey’s distribution having been mainly
carried out in online platforms. The middle-aged group
(41-60) were equally represented in both studies. Re-
gional representation also fell a little short in this specific
research. Nevertheless, it is expected that these differ-
ences do not tremendously affect the results.

Age, gender, ARS, and educational level all reached
p-values lower than the alpha significance level (0.05)
in Fisher’s test. Therefore, these demographic variables
were considered independent from intention to accept.

Regarding health self-evaluation, a similar conclusion
was drawn from the Mann-Whitney U test. Previous en-
rolments on the SWL also proved to be independent from
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intention to accept a future SV, and the same happened
when patients were divided into two different groups de-
pending if they had received an SV somewhere in the
past or not. On the contrary, the fact that one had previ-
ously accepted or not an SV showed influence on the last
question of the survey, presenting a significant p-value of
0.021, which suggested dependence between past and
future SV decisions. This shows that, in spite of the low
acceptance rates obtained among patients, the ones that
took advantage of the transfer opportunity were not disap-
pointed by the SVs system’s functioning and were willing
to use it again.

Factor structure:
Answers from one of the two sub-samples created and

imported to R (containing 87 responses) obtained statis-
tically significant values (p<0.05) for the absence of a
multivariate normal distribution on variables Q1 to Q26,
indicating polychoric estimates as the adequate correla-
tion coefficients to compute during EFA. The KMO value
(0.68) and Barlett’s test (p<0.05) proved the factorability
of the correlation matrix. Parallel analysis suggested five
as the ideal number of factors to extract from the data.

All variables achieved relevant loading coefficients in
a certain factor with the exception of Q21 and Q22. Q1
to Q6 were significantly loaded in the same factor, which
was, therefore, named perceived threat (PTh) as a refer-
ence to the HBM super-construct they relate to. Follow-
ing the same reasoning, variables Q7 to Q9 constituted
the perceived benefits construct (PBn); Q10 to Q15, per-
ceived barriers (PBr); Q16 to Q20, cues to action (CtA);
and, lastly, Q23 to Q26 represented the health motivation
(HM) dimension. No cross-loadings were identified.

Questions Q21 and Q22 were written with the intent
of representing the self-efficacy variable of HBM, but did
not obtain significant loading results. There seems to be
no theoretical arguments that could justify the inclusion of
such variables in further analysis since the health-related
behaviour here considered concerns a personal medical
decision, that does not require any special kind of skill
or capacity (either psychological, physical, or technical)
to be executed. That caused the exclusion of those two
items along with the self-efficacy construct. This also
meant that research hypothesis H7 was not supported by
the model. New factor loading estimations for the remain-
ing 24 variables were then obtained, but no significant
differences were observed for the lasting variables’ load-
ings. In total, the five factors structure accounted for 62%
of the measurement instrument’s variance.

High Cronbach’s alpha values (between 0.82 and 0.93)
were obtained for all factors, signalling that good internal
consistency was achieved. Such results are important to
support the reliability and validity of this model.

To wrap up the exploratory part of the study, it is possi-
ble to conclude that EFA exposed an HBM-similar latent
structure from the answers collected with the question-
naire developed within this dissertation. The above de-
scribed results show that a five-factor solution is adequate
to represent the SVs’ HBM-based model, at least for the
subsample being used. In order to infer about the robust-
ness of this instrument and its corresponding model when

a different dataset is considered, the following step was
to perform CFA with the remaining subsample of survey’s
answers.

Measurement model:
The remaining half of the original survey’s sample

(made out of 83 subjects) was imported to R. Mardia’s
multivariate normality revealed, once again, that poly-
choric correlation coefficients should be considered.

The results confirmed that the 24 considered indicators
represented satisfactorily well the structure of five factors
exposed during EFA. Nevertheless, some items showed
standardized factor loadings below the cut-off of 0.50 and,
for that reason, were eliminated at this stage of the study
– Q14 and Q15, from PBr. Then, CFA was redone witout
them.

As it can be observed in the a) part of Figure 3, fac-
tor validity is assured by items’ standardized loadings (all
higher than the defined cut-off) and by their satisfactory
individual validity (all items exhibited λ2

ij values of at least
0.25, and the majority of them also presented R2 esti-
mates higher than 0.50, meaning that a major part of their
variance was explained by their corresponding factor in
the model). However, some exceptions were detected:
indicators Q19, Q20, and Q24 obtained lower determi-
nation coefficients, of 0.293, 0.248, and 0.371, respec-
tively. These items were, nonetheless, satisfactorily cor-
related to their corresponding factors – CtA and HM –,
with loading coefficients equal to or slightly over the in-
clusion threshold. Since factor validity was not compro-
mised, they were kept in the analysis.

PTh and PBn were the two constructs with higher cor-
relation (0.53), followed by PBn and HM (0.37), CtA and
HM (0.36), PBn and CtA (0.34), and PTh and CtA (0.22).
PBn and PBr showed a negative correlation (-0.26). The
remaining values were all below |0.09|.

Regarding the quality of model’s fit, tests’ results indi-
cate a good to very good level of adjustment (χ2/df =
1.463, CFI = 0.994, TLI = 0.993, RMSEA = 0.075).

CR estimates (0.96 for PTh, PBn, and PBr; 0.89 for
HM; 0.83 for CtA) indicate good composite reliability for
all constructs.

Besides the already addressed (and proved) factor va-
lidity, convergent and discriminant validity were also eval-
uated. All factors’ AVE values were higher than 0.50,
therefore suggesting the presence of convergent valid-
ity. In addition, for every factor, its AVE was considerably
higher than the square values of its correlations with any
other factor, as it may also be observed in Table 4. Thus,
the developed model also presented discriminant validity.

Table 4: Comparison of each factor’s AVE value (in bold) and its
correlation square values with all other factors.

To conclude, this CFA corroborated the structure un-
ravelled by EFA of correlations between HBM’s indicators
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and constructs, with the exception of two items which
did not produce significant correlations to remain in the
model. A good adjustment to the data was achieved,
showing sound proofs of reliability and validity – assuring
that the final considered questionnaire items did indeed
measure the HBM constructs they were related to in the
measurement model, and did so in a consistent way.

Global model:
The measurement model was completed with a repre-

sentation of the causal relationships among latent vari-
ables (which include the behaviour predictor, intention to
accept (ItA), measured by Q27), originating the SEM’s
global model presented in Figure 3.

Figure 3: Global model obtained during after path analysis, resulting of
the union between the measurement model, a), and the structural
model, b). Correlations among factors (ϕjj ) are represented as

double-ended arrows, while factor loadings (λij ) are directed arrows
from each factor to their corresponding indicators. Directed arrows

from the five independent constructs to ItA are represented along with
their respective path coefficients (γj ), signalled with an * when
statistical significance was achieved (p<0.05). Indicators’ error

components (δi) are represented as dotted arrows pointing to each
measured variable’s square.

The global model presented a good fit to the data, as it
can be confirmed based on the quality adjustment tests’
results (χ2/df = 1.368, CFI = 0.995, TLI = 0.994,
RMSEA = 0.067). Thus, the measurement instrument
here developed, and operationalized through the model
displayed in Figure 3, proved to be adequate to represent
SVs’ acceptance behaviour.

Path analysis revealed that “PBr -> ItA” was the most
significant trajectory of the model, with a standardized
weight of -0.63 (p=0.000). “CtA -> ItA” came in second
place, with a trajectorial weight of 0.19 (p=0.025). All the
other three constructs (PTh, PBn, and HM) did not obtain
significant weights in relation to ItA: 0.10 (p=0.179), 0.10
(p=0.346), and 0.12 (p=0.126), respectively.

Therefore, regarding the six research hypotheses still
under study, only H4 (“PBr are negatively associated to
ItA”) and H5 (“CtA are positively associated to ItA”) could
be accepted. Although PTh, PBn, and HM had reached
positive causal weights in relation to ItA, as hypothesised,
such values did not show statistical significance and, be-
cause of that, H1, H2, H3, and H7 could not be accepted.

The fact that PBr significantly influenced patients’ ItA
an SV corroborated the conclusions obtained in a SIGIC’s
study [3], where some of those barriers were pointed

by patients themselves as the main reasons for SVs re-
fusals. Furthermore, incentives from people whose opin-
ions patients value, such as family, friends, or their family
doctor, as well as a deterioration of their health condi-
tion while waiting for surgery – which together form CtA
– seemed to also have a somewhat important impact on
their final decision to use an SV.

Simulation model:
In order to evaluate the AnyLogic model’s capacity to

reliably simulate the reality of the Portuguese SWL, it was
mandatory to start this simulation study with scenario A,
since it is equivalent to the real conditions experienced in
2019 and reported by the Ministry of Health. At the one-
year mark of the simulation running, 18.8% of the emit-
ted vouchers had been accepted, just like it was regis-
tered in 2019 [2]. The real and simulated surgical delivery
statistics were considerably close – the total number of
surgeries performed was estimated with an error of 0.5%,
while the number of patients leaving the SWL differed in
1.7% and the number of patients remaining on the SWL
in 6.6%. Slightly bigger differences were registered in the
number of SVs emitted (10.4%) and accepted (10.7%), as
well as in the number of enrolment cancellations (15.3%).
The outputs of the model seemed acceptably close to the
ones observed in reality, confirming the adequacy of the
developed SWL’s model to study the effects of changes in
patients’ behaviour regarding a transfer offer.

Figure 4 shows the changes in SVs’ general accep-
tance percentage among patients, detected for scenarios
B to G. As expected, variations in PBr (B and C) had a
much stronger impact in ItA than modifications of the CtA
construct (D and E). In fact, while a 25% decrease in PBr
made the acceptance percentage more than duplicate,
an equivalent growing in CtA did not have a significant
impact on the considered output. It is also important to
mention the impressive value of 75.5% of acceptances
obtained after a 50% reduction of PBr.

Figure 4: SVs’ acceptance percentage for simulation scenarios B to G.
The black dashed line marks the reference acceptance percentage,

registered for scenario A.

Figure 5 shows the effects of the simulation scenar-
ios on the total number of surgeries performed. With the
exception of scenario D, where the number of surgeries
was close to the one reached in scenario A, all the oth-
ers presented a considerable increase in surgery delivery.
In particular, scenarios E and F obtained similar results,
with 687 and 690 surgeries performed – which would cor-
respond to approximately 687 000 and 690 000 in real-
ity. In scenario C, 720 surgical procedures were con-
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ducted (more 95 than in scenario A). Scenario G, as ex-
pected, reached an even more impressive improvement,
with 110 more surgeries than in the baseline situation.
Once again, these values would have to be converted to
thousands in order to foresee their possible impact in re-
ality.

Figure 5: Total number of surgeries performed for simulation scenarios
B to G. The black dashed line marks the reference number of

surgeries, registered for scenario A.

When comparing scenarios B and C with the reference
A, for example, it was observed an increase of 19 and
32 patients leaving the SWL, respectively. Such improve-
ments, especially when converted to thousand units to
predict real-life impact, show how behavioural changes
regarding PBr have the potential to significantly decrease
the SWL’s length.

Therefore, and in order to achieve the improvements
explored above, public health authorities should make ef-
forts to refine the SVs’ programme policies, especially
aiming at minimizing the obstacles felt by patients to ac-
cept their transfer (and, consequently, at reducing their
PBr, the construct with higher impact on SWL’s numbers).
Thus, offering more options of hospitals closer to patients’
residential area, as well as more transportation and ac-
commodation aids are examples of possible measures to
reduce the percentage of transfer refusals. Besides PBr,
CtA also proved to be an important contributing factor
to patients’ ItA. Strategies targeting this latter construct
could also be effective – some examples may be: recom-
mending family doctors (or the doctors who initially pro-
posed surgery at the home hospital) to incentivize pa-
tients’ acceptance of the SV, as well as promoting the
general population’s knowledge about the benefits of this
programme.

Nevertheless, it is important to reinforce that the esti-
mations presented in the above graphs were extracted
from a simulation model which has a certain degree of
error associated to it, as it was observed with the outputs
obtained for scenario A that, although close to what
was experienced in reality, showed, nonetheless, slight
discrepancies. Several approximations were adopted
when developing the model, which might have originated
these differences. For example, the fact that, while SVs’
acceptance, refusal, and cancellation statistics were
based on national values, waiting times were extracted
from a single hospital’s database and may, therefore, not
exactly represent the national scenario. Furthermore, as
any model representation of a real system, some aspects
of the SWL’s functioning were simplified or not included
(such as patients’ reenrolment after ignoring an SV).

5. Conclusions
Despite the important results achieved in this study, it also
presents some limitations. For instance, it would be ben-
eficial to perform a similar analysis with a larger sample
of patients currently enrolled on the SWL, which would
allow researchers to monitor their real behaviour in case
their are offered an SV. Moreover, the simulation model
could be refined, for example, by including national-wide
data regarding waiting times.

All things considered, and despite the identified short-
comes, this research contributed with sound tools to help
policymakers developing effective behavioural policies
and understanding the impact that patients’ behavioural
changes could have on the evolution of the SWL.

Following the strategy implemented in Portugal with
SIGIC, of better distributing surgical demand among
the already existing (public and private) supply capacity,
this decrease in the SWL’s length should also cause a
meaningful reduction in patients’ waiting times, which, ul-
timately, would result in more accessible and responsive
healthcare services, as well as in a healthier population.
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[18] J. Marôco, Análise de equações estruturais: Fundamentos teóricos, software
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