
GameCourseUI
Mariana Saraiva

Instituto Superior Técnico
Lisboa, Portugal

mariana.saraiva@tecnico.ulisboa.pt

ABSTRACT

Gamification is defined as the use of game design elements
in non-game contexts and, recently, has been introduced in
many fields. The User Interface (UI) of the system has a
huge impact on how it is accepted because, even if the
system fills all the requirements, its ease of use and visual
appeal can lead to rejection by users. GameCourse is the
system used to gamify the Multimedia Content Production
MCP course at Instituto Superior Técnico (IST), whose UI
has been improved since the previous year. The purpose of
this thesis is, besides improving some UI features that are
already implemented, add features and mechanisms to
allow customization of some views for students with
different profiles, as well as ease the configuration and
management of the courses. We accomplished our goals by
easing the personification of the view as well as improve
the User Experience (UX) in the module configuration
pages.
Author Keywords
Gamification; Gamification in Education; User Interface;
User Experience.
ACM Classification Keywords
HCI
INTRODUCTION
For the past few years, the learning process has benefited
from the introduction of several activities which turn it
more fun and engaging. Mainly in the education field,
different learning processes have been employed by
providing students with a more motivating system, in which
they feel engaged, without losing their interest in the
subject. With monotonous classes, students may lose
motivation, and their interest ending up failing. The
innovation of the learning process by taking different
approaches could be helpful to make it more attractive.

These new learning processes include introducing new
elements, mainly game elements, that keep students
motivated. This is called gamification, defined as “the use
of game design elements in non- game contexts” [1]. The
impact of the User Interface (UI) on students can change
the way they accept gamification. The visual appeal of the
interface and its ease of use, which it influences, are
determinants for users to continue using it and, thus, keep
them engaged within the application [2]. Therefore, in the
education context, gamification can be better received by

students if the interface has a good visual appeal and is easy
to use.

In the Master’s degree in Computer Science and
Engineering at Instituto Superior Técnico (IST), there is a
successfully gamified course - Multimedia Content
Production (MCP), where elements such as a leaderboard,
badges, and points are used to create an engaging
environment, resorting to the GameCourse system.
Currently, this system needs improvements to its UI, and
also in the customization of the interface displayed to each
student, in order to give the best experience to everyone.

The goal of this thesis is to improve the current
GameCourse interface and, particularly, create mechanisms
to build different views for students with different profiles
and ease the configura- tion and management of the
courses.
RELATED WORK
Gamification
Defined as “the use of game design elements in non-game
contexts” [1], gamifica- tion has become extremely popular
in recent years. Its benefits in increasing intrinsic
motivation [3] and the ability to add an entertaining
dimension to monotonous tasks has led to its usage in a
wide range of settings.

The concept of flow, introduced by Mihaly
Csikszentmihalyi, is highly related to competence since
flow’s properties can lead to a feeling of competence [4].
Flow describes a mental state reached when a person is
entirely immersed in an activity [5]. This is experienced
when someone’s perceived skills are balanced with the
perceived challenges. When these two things are balanced,
you are in the Flow Zone. Different people have different
flow zones for each task/game. If you are overqualified for
an activity, you will end up in a boredom state because
there are no challenges and the activity is too easy for you.
On the other hand, if the challenge is much bigger than your
perceived skills, you lose the state of flow and you go to an
anxiety state. A well-designed game maintains players in
their Flow Zones, and that is why those games are
successful - the players enjoy and have fun while playing.
Gamification in Education
One of the main fields in which Gamification is applied is
education. The purpose of applying gamification to the

learning process is to make it more engaging for students
and, consequently, maximize their success.

To study how gamification affects students’ engagement,
Garden and Rivera [6] presented a framework based on
three theories - Landers’ Theory of Gamified Learning [7],
Kahu’s Framework for Student Engagement [8], and
Bedwell’s Taxonomy of Game Attributes [9]. The elements
from the different theories that are linked to each other are
mapped into a single state. The states are connected
according to their cause-effect relation. For example, the
antecedents of Engagement (e.g. assessment) state precedes
the Engagement state (e.g. behaviours/attitudes). In turn,
the latter precedes the Consequences of Engagement state
(e.g. learning outcome). Kahu proposes that this whole
process (Engagement) is circular. Thus, he believes that
increased engagement leads to increased learning outcomes
(e.g. academic performance), which can directly affect the
antecedents of engagement, for instance, the motivation.
User Interface
Another important factor to drive motivation and
engagement in a learning app is its visual appeal and ease
of use [2]. In general, perceived visual appeal significantly
influences the perceived ease of use. And perceived visual
appeal can affect trust stronger than ease of use. Website
design features have a different effect on website trust
evaluation for different genders. Men consider both visual
appeal and ease of use to evaluate a website trust while
women give more attention to the website visual design and
less to its ease of use.

As we have seen so far, the use of gamification is
increasing fast in this later decade. However, some features
should be improved, for instance, the customization of the
gamification. Monterrat et al. presented a model to adapt
the gamification features taking into account the player
profile of the learners, providing them with game features
suitable to their personality [10]. The main goal was to
present different interfaces, with different game elements,
depending on their profile.
Multimedia Content Production
MCP is an MSc course in Information Systems and
Computer Engineering at IST. MCP has been a gamified
course for almost 10 years, being a target for studying
student engagement and behaviour in a gamified system
[11] [12].

Currently, MCP assessment is divided into in-class
assessment, such as weekly questionnaires and lab
assignments, and online, through the Moodle platform, with
online assignments, of which not all are mandatory, that is,
the students have the freedom to choose what they want to
do to achieve their goals. Online assignments are graded
along with helpful and useful feedback. All the assessment
objects are graded with Experience Points (XP) and
throughout the semester students are gathering XP that, in

the end, will be translated to their final grade
(corresponding to their level in the leaderboard).

Gamification has been employed by adding game elements
such as a leaderboard, where students can see their
performance relative to the others, their total points and
corresponding level as well as other students’ points and
level; badges, for which students need to complete
accomplish- ments, for instance, attending to theoretical
classes, participate in Moodle by providing extra material
about each class and show creativity and quality in their
online assignments; and a skill tree, which is a set of
assignments, distributed in four levels, and possible to
complete at any time of the semester. To achieve level 2,
you have to complete the required assignments from level 1
and so on. This allows students to have numerous possible
paths to gather the maximum XP of the skill tree. Both
badges and skill tree are elements than can be checked in
the profile page of each student as well as their performance
and progress through the semester.
THE GAMECOURSE UI
The main technology used to develop the UI of the system
is AngularJS1. It takes care of the interaction between
pages through states, controllers, and scopes. On states, the
routing of the GameCourse system is defined, that is, we
define which pages are available to navigate and through
which URLs. On the controllers, the pages’ HTML
structure is generated and the needed requests to the API to
obtain the desired data are made. This data is stored in the
scope, managed using scope functions, and associated with
GUI elements, which enabled automatic re-renders when
the associated information changes.

The front-end part of the project includes, essentially:

• Controllers, which are JavaScript files that build
the pages with the information gathered from the
Application Program Interface (API). The API
functions are defined in PHP files.

• Other JavaScript files that create dynamic pages.
• Images, Cascading Style Sheets (CSS) files, and

other user handlers.

On the Courses and (system) Users pages we can add new
ones, import more data such as new courses or new users,
export a file with that information, filter and change the
order in which it is presented (Figure 1).

Once inside a course, the navigation bar presents the pages
of the course (in this case, the AwardList), the Users tab, in
which we can see all the users (students and professors) of
that course, and the tabof the Settings of the course,
depicted in Figure 2. This Users page has the same features
as thesystem users, described above. However, in this page,
we can see the role each user has in that course, for
example, whether it is a teacher or a student, for example.

Figure 1. Courses page

Figure 2. Course Users page

To better understand how the GameCourse system works,
regarding the UI, we first need to be aware of the concepts
of views and pages. Views are built with the help of a view
editor (Figure 3), which has different layout elements
available – text, image, table, block, chart and template,
where the charts are available only if the modules charts is
enabled – , and the system’s Expression Language (EL),
which allows us to present the viewswith dynamic content.
A view can be a single element, such as an image or text.
By compounding these small views, we can create more
complex views. For example, we can create a list of images
by repeating one single view previously built. When we
have a view, we can choose to show it as a page with a
certain name. Then, this page can be available on the
navigation bar whose content is that view.

Figure 3. View editor
The system automatically selects the more suitable aspect
for each user when he/she enters. There are two types of
aspects for views:

• Role - Single: a view that can show a different
aspect according to the viewer’s role.

• Role - Interaction: a view that can show a
different aspect according to the roles of the
viewer and the user associated with the page. For
example, a profile page will have as user the
person whose information is displayed and the
viewer is the person who is seeing the page.

Inside the view editor, when we select a part of the layout,
some buttons appear at the bottom of the page. By clicking
on these buttons, we can edit fields, change the layout,
delete items, switch a part of it for another possible,
duplicate a part and save the layout as a template.
DEVELOPMENT
First, we needed to have a stable version of GameCourse
from which we could start our implementation of the new
features or the necessary improvements. Thus, we started
by fixing the existing small bugs. Besides, as this was done
while I was writing my thesis project and my requirements
were not clearly defined, I also did some improvements
(required/suggested by my previous colleagues), for
example, the improvement of the import feature.
File Explorer
To allow the user to access the files in the server, or to
upload new ones, we created a modal from scratch in which
the user can either upload a file from their computer or
browse files saved on the server side (Figures 4 and 5).

On the upload tab, when the user uploads a file, it will be
saved on server side, and it will appear below. By clicking
it, it will be selected and then the user can delete it (clicks
on the delete button on bottom left) or select it to include it
on the page (clicks the select button on bottom right). On
the other hand, if the user wants to choose another one,
he/she must upload another file of their choice.

On the browser tab, the user can only browse files from the
current course. In this folder, the user can navigate through
every folder in the respective course.

This file explorer can be used in every page of the
GameCourse. However, in some cases, not every file
extension can be chosen. Thus, the developer is accountable
for allowing which type of files are acceptable in each case
by showing only the permitted ones, by provide a list of
allowed extensions to the function that will instantiate the
file explorer.

Figure 4. Upload file tab.

Figure 5. Browse file tab.

Modules Configuration
The modules’ configuration had a poor UI, and some
configurations were simple text boxes where the user must
copy and paste a text file to them, typically in csv format.
This part of GameCourse truly needed improvements in its
UI, and also UX. Besides, each module had its own
controller, and some- times there was duplicated code.
Thus, we decided to use one single Controller
(Configuration Controller) for most of the configurable
modules which had a similar configuration. For example,
XP and Levels, Badges and Skills all have a list of general
items - levels, badges, and skills, respectively.
XP and Levels
This module configuration page was composed of a text
box on the right where we pasted the content of a text file
with a button below to confirm the data and another one to
clear the box. On the left, we could check the values
introduced, as we can see in Figure 6.

Figure 6. Previous Levels configuration page.

In order to keep the system consistent, and give a better
look, as well as UX and usability, we changed this page
(Figure 7). We used the generic Configuration Controller,
which has three possible sections: General Inputs, Listing
Items and Personalized section. For this module, we only
needed one of the them: listing items. In the Levels module,
we defined in the function get_listing_items the name of the
list, in this case, Levels, the name of the columns (Level,
Title, and Minimum XP), the items to show, and the
corresponding attributes of each item to each column. The
items were given through a database query. Then, we
defined five new features, two of them are general features

that affect all the items – Import Levels and Export Levels -
, and the other three are individual features – Add Level,
Edit Level and Delete Level.

Figure 7. New Levels configuration page.

Skills
This module configuration page was similar to the levels
page. It was composed of three text boxes on the right - one
for the skills, one for the tiers, and one for setting up the
maximum skill tree reward. In the first two, we could paste
the content of a text file, and for each, we had a button
below to confirm the data and another one to clear the box.
In the bottom box, we wrote the number and then saved it
by clicking the save button. On the left, after saving all the
configurations, we saw the graphic visualization of the
configured skill tree (Figure 8).

Once again, in order to keep the system consistent, and give
a better look, as well as User Experience and usability, we
changed this page (Figure 9).

Figure 8. Previous Skills configuration page.

By using the generic Configuration Controller, we used the
three possible sections: generic items - for the maximum
reward -, listing items - for the skills, and the personalized
section - for the tiers. In the Skills module, for the general
item, we defined the function get_general_items, which, in
this case, will return the information only regardingthe
maximum XP. For the skills, we defined in the function
get_listing_items the name of the list, in thiscase, Skills, the
name of the columns (Tier, Name, Dependencies, and
Color), the items to show, andthe corresponding attributes
of each item to each column. The items were given through
a database query. For the tiers, we defined a personalized
function - get_tiers_items - that returns the information
forthe Tiers table, similar to the skills’ but the name of the
columns are Tier and XP. For these two lists weadded a

new feature – reordering. By adding two columns to the
lists, the user can manage and reorder the skills and the tiers
as he/she wants (moving up and moving down). These
changes are propagated to both tables, in other words, if the

user reorders the tiers table, the skills table will reorder
automatically to reflect those changes.

Figure 9. New Skills configuration page.

Regarding preventing unwanted moves, our mechanism
prevents moving upthe first tier or moving up the first skills
of a tier, as well for moving down the last tier or the last
skill of atier. The maximum reward box is now on the
general items section (on top of the page). Then, we defined
new features to deal with the management of these items in
this new configuration: add, edit and delete options for both
skills and tiers, as well as import and export skills.

Moreover, each skill has its description which is an HTML
page, and to write the description, we used a framework –
Quilljs - to help us building the text editor. We have look
for alternatives, such as the RichTextEditor, but we ended
up choosing Quilljs because it is cleaner, with a
customizable toolbar, where we can choose which settings
we want to include in it. The alternative had a default
toolbar with too many elements that would end up not being
useful to our system and even confuse the users. With
Quilljs, the user can build a page with text and images,
links, with many features such as using different fonts,
bullet points and format the text. Then, this page will be
saved as an HTML file in the server side, in the course
folder. For the image picking, we used the picking file
modal mentioned before.
Badges
This module already had its configuration page using the
Configuration Controller. However, this page only allowed
the user to add one badge at the time and set the maximum
reward value (Figure 10).

Consequently, the first thing we added was the import and
export features, to allow users to import a file with all the
badges and their information, such as name, XP,
description, among others. We have kept an add button if
the user wants to add only one badge (Figure 11).

By importing a text file, it is not possible to define the
image(s) for each badge. Previously, these images were in
the system, and they were global. To give more flexibility,

we moved the badges folder to the courses folders, since
courses may have different badges.

Badges can have up to 3 levels, worth extra points and be
bragging and worth nothing. All these features can be

Figure 10. Previous Badges configuration page.

represented with a layer in the badge image. These layers
were the same for all badges. Once again, to give
GameCourse more flexibility, these layers can now be
chosen in the badge configuration page. Alongside max
reward input, we added 4 new fields to pick up an image
(using our file explorer), one for each – extra overlay,
bragging overlay, level 2 overlay, and level 3 overlay.
These overlays will then be used for every badge of the
course. To permit a user to pick up an image for each
badge, we added a field in the new and edit badge modals
to choose an image, which use our file explorer to upload or
browse an image. After the user picks an image, we
generate the other images of the badges according to its
specifications (number of levels, is extra, is bragging). To
do so, we used a library that merge images. For each badge,

if it is extra, then we merge the extra overlay for every
level, and the same if it is bragging. Besides, for levels 2
and 3, if exist, we also merge the respective overlay.

Figure 11. New Badges configuration page.

View Templates and Pages
In the first place, there was a huge misunderstanding
regarding the difference between a page anda template and
the code reflected it. So, we start focusing on understanding
it, since our work would essentially lean over this part of
the project, and, therefore, we must have a clear
understanding of these concepts. We established the
difference between a view template and a page: View
Templates are acomposition of views, which are defined in

the chapter “The Gamecourse UI”. As we explained there,
when we have a view, we can choose to show it as a page
with a certain name. Due to these adjustments, other ones
werenecessary, especially, on the modules. Most of them
have a default template that is created when therespective
module is enabled. In addition, previously, it was also
created a page with the same content and included directly
in the navigation bar. The pages should be connected to the
modules, therefore, we no longer create any page as a
module is activated. If a user wants a page with the content
of the module’s view template, he/she should create a page
and choose that template to show.
Views Page
On the views page, many modifications were needed,
mainly due to the modifications in the view templates /
pages logic. Taking that into consideration, it did not make
sense to access the view editor by clicking on a page card to
edit it. So, we removed that, and we now only allow the
user to access the view editor when he/she wants to edit a
template. Another adjustment we made was to have the role
type related only to the templates. Previously, both pages
and templates had their role type, but it only makes sense to
keep it for those we create views and, perhaps, aspects.

Furthermore, when we created a page, it will always appear
on the navigation bar, and to remove it from there, we had
to delete it. This was not agood approach, because we might
want to deactivate it for a period. Hence, we added a new
propertyto the pages - isEnabled, whose value is stored in
the database. This new property allows us to managethe
pages that should appear (or not) on the navigation bar.
Besides, it was not possible to change any property of a
page or a template, such as their name. Consequently, we
add the configuration icon to the cards.
Navigation Bar
Even though we improved the functionality of the
navigation bar by adding the isEnabled property to the
pages, there was one feature that was not there. It did not
consider the role of the user. For example, if we create a
page whose template only has content for role = Teacher, it
should not appear on the navigation bar when the user has
role = Student. The navigation bar also needed one fix
respected to the highlights. In other words, when we were
on the users’ page, for instance, and then we reloaded the
page, the Users tab on the navigation bar did not appear
highlighted as it should, since this was the page we were at.
This also occurred for the custom pages. These two features
are now fully implemented, preventing those situations.
View Editor
The view editor was the focus and the main goal of this
project. This part was not fully implemented and the logic
behind the code was not appropriate for the required
functioning of the system. Therefore, many changes were
needed, including a redefinition of the schema of the
database.

Logical improvements
Before diving deep into the view editor’s functionality, we
fixed a bug that came from beforehand and brainstormed
about the restructuring of the database and how to interact
with the editor. The bug was regarding the toolbar of the
tables – if we clicked on the table and then on an outside
view, both respective toolbars would appear and therefore,
they would end up overlapping.

Furthermore, our brainstorming led us to change the logic
behind the aspects and the way we deal with them. First,
aspects are variations of a view for different roles. For
example, a view can be showed differently according to the
person who is seeing it. Previously, the views only had an
incremental id and an aspectClass (Foreign Key for the
table aspect_class). The value of the aspectClass field was
common to all the views of every aspect of the view
template, or, if the view template only had one aspect, it
was set to null. Then, we have the table view_template that
saves the template id and the correspondent view id. The
aspects of a view template were found by searching the
views whose aspectClass value was equal to the
aspectClass of the view whose id was on the view_template
table. Also, the first view of each aspect was found with the
condition part == block && parent == null, that is, they
were obligatorily blocks. This condition was changed and
now we can have view templates that are simply a text
element. Thus, we had to manage this logic, to find all the
aspects of a view regardless their type. As we have seen,
each view can have several aspects. Inside the view editor,
and while building the view templates, we use only views
and their aspects. So, we had to find a way to save these
correspondences between the views and the respective
aspects, which was important to further build the view to
present to each role. Therefore, the main changes regarding
the logic to deal with the aspects were:

• Removing the aspect_class table since it was
unnecessary in the new model as well as the
aspectClass column of the view table.

• Adding the column viewId to the view table in the
database, to identify all the aspects of a view.

• Saving each view / aspect according to its role. As
mentioned above, before we had one entire view
per aspect, it was not possible to create an aspect
for a view inside a template. Now, every view can
have aspects.

• Adjusting the flexibility for the aspects: now each
view template can have any part as main view
(block, text, image, etc.).

We could have maintained the aspect_class table and not
adding the viewId column, but, in this case, we could not
find the aspects of a specific view, which is now possible
with the viewId. Regarding the aspect_class table, we found
it useless in our new logic, and its usability was not clear
even previously. As stated before, we can add a template to
another view, and this can be done as a copy or by

reference, and, in this case, it means that the views will
have different parents in different contexts. This enforced
us to change the logic of the parent/child relation.
Beforehand, a view only had one parent and it was set on
the view table. We removed that column and created a new
table – view_parent -, which has as columns: parentId: id
of the parent view; childId: viewId of the child view;
viewIndex: indicates the order in that relation. The
parentId is the id of the view since a view only has one
parent. However, the childId is the viewId since a view can
have many aspects of a view as children.
UI improvements
Since we removed the page where the user would choose
which aspect he/she wanted to create or modify, we needed
to add this feature to the view editor. We decided to use
dropdowns to choose the different aspects. The options are
the aspects for which there is any content. By changing
these dropdowns, the view contents change accordingly.
When the role of the template is ROLE_SINGLE, only the
viewer dropdown appears, whereas when the role is
ROLE_INTERACTION, appears the user and viewer roles,
as we can see in the Figure 12. By having it in the view
editor, it allows the user to manage the aspects of a template
without leaving the view editor. Besides, it makes possible
to the user see which aspect he/she is seeing.

Figure 12. Aspects dropdowns for user and viewer roles.

To create new aspects for a view, we decided to add a new
tool to the toolbar of each part – the Manage Aspects tool.
At the end of the toolbar, we also added a new label that
shows which role will see the selected view.

We created a new modal that is shown after clicking the
Manage Aspects tool (Figure 13). And here we can:

• Change the aspect we want to see for that specific
view (without changing the global role, whichis
the one selected on the dropdown on top). If the
role is the same as the global, the view willappear
with a solid border. However, if the role we are
seeing does not correspond to the globalone, that
view will appear with a dashed border.

• Add a new aspect for this view. By clicking the
“Add Aspect” button, a form appears above to
selectfor which role we want to create an aspect
and how. The latter has 2 options: create from
scratch and create with the selected aspect as a
basis.

The preview section also needed some improvements since
we could not see exactly how the pagewill look like. The
preview section showed the views inside the boxes as it
happens in the view editor while editing, and it did not
position the elements as they will be in the page.
Therefore, we improved this section to give us the view as
it would appear when see in a page.

Figure 13. Manage Aspects Modal.

Edit Part Modal
While building a view resorting to the view editor, there are
properties of the parts that we want to change or add. For
this, in the toolbar, we have the edit part button. If the user
clicks it, the edit part modal opens. In this modal, the user
can define the function for the loop data, set new variables
and their value, set events, change the visibility, add
styling, among others specific for each part. Some of these
properties must be defined using the EL. In those, there was
an algorithm that gives suggestions, provides auto complete
and a green light sign regarding what the user write and
whether it was rightly written or not. However, only if the
users start to write, this auto complete appeared.

Although there is a button that takes the user to the
documentation page, in which there are some guidelines on
how to write using the EL, the live support was not helpful.
To tackle this problem, we expanded the modal (Figure 14),
and used the CodeMirror framework.

Figure 14. New edit part modal.

This framework was already used in the rules editor, so to
keep it consistent, we decided to use it too in this section.
For every input box that is filled resorting to the Expression
Language, we replaced them with a CodeMirror box. This
framework provides a suggestion box and an auto
complete functionality, according to what is written
(Figure 15). These suggestions are given by the system. We
check what is written and what is accepted andmanage
them accordingly. For example, in the loop data, the

expression should return a collection, so the user should
write (inside the curly braces) is whether a variable or a
module followed by function(s). The function that deals
with the suggestions, detects them using Regular
Expressions. For variables, itdetects with the % symbol. For

functions, it detects if it has a module name followed by a
dot or modulename followed by a dot, a function, and a dot
again. Variables can have properties, which are
detectedwith the % symbol followed by the variable name
followed by a dot.

Figure 15. Suggestions box provided while the user types.

Besides, on the right side, we placed a section for help. On
the top of this section, we have a box, in which we have:

• Tips section: here are some tips to guide the user
before/when he/she is writing. This list can
becollapsed using the arrow on the top right.

• Suggestions section: this section is dynamic, and
it changes according to what is written.
Thissection will only have content is the user
clicks one of the input boxes. If a function of a
module, ora variable, is selected, its properties,
such as arguments (for functions), return type and
description appear in this section. Otherwise, it
will appear the possible functions.

On the bottom, we have a preview button. By clicking it, it
will open a modal to preview the selected expression if one
is selected.
Course Settings Page
There were two tasks that was related to the course settings
– the change of order of pages on navigationbar and the
override of the default style with a personalized CSS file.
We decided to use the global course settings to place these
two new features. First, we added a section to change
theorder of the pages on the navigation bar - Navigation.
This section contains a table with all the pages but users
and course settings. To manage the order of each page, we
added a column to the page table, seqId, which indicates the
order in which each page appear in the navigation bar.

Regarding the theme feature, we created another section –
Styling. If the course has not a file yet, a button “Create
style file” appears. Once the user clicks it, a CSS file is
created and saved in the course folder. The styling in the
file will only apply to the respective course and it will

override the styles of every page of that course. When the
course already has a style file, this can be modified through
the User Interface, in an editor generated with CodeMirror.
With this feature, GameCourse leverages the power of the
styling, since it allows the customization of every view,
even every aspect, which will impact the way users see
each element, the system in general, and mainly howthey
will accept gamification.
EVALUATION
We conducted the user tests with a total of 20 users, the
minimum number for a meaningful analysis. Users were
asked to perform 13 tasks using the system, during which
we gathered meaningful metrics such as whether the task
was successfully completed, the number of errors and the
time expended in each task.

We gathered some details about our users, such as their age,
programming experience and whether they had previous
knowledge of the GameCourse system. Then we provided
them with some context provided regarding GameCourse
system, followed by a limited time for exploring the
systems before performing the tasks:

1. On the PCM course create a new Page.

2. Configure the module “XP and levels” by adding a new
level.

3. Configure the module skills by adding a new skill.

4. Configure the module badges by setting the overlay for
extra as theredborder.png image by uploading it from the
computer.

5. Go to your info and change your nickname to “Mariana”.

6. Now we want that the PCM course looks differently. We
want to change the look of some elements. For that, define
a new style for this course.

7. On the PCM course create a new view template.

8. Add a text part to the outside block.

9. Create a new aspect, from scratch, for role Teacher for
the outside block.

10. Create a new aspect, from scratch, for the text box for
which the content is “PCM” for role Student.

11. I want the textbox for which the content is “IPM” to
have another content: Student number of the user with the
id=1.

12. Add the class blue_border to the outside block. (use “;
blue_border;”).

13. I want this view to go through all the active courses.
How would you perform this?

These tasks were given randomly so there is no direct
influence of the learning curve of the system. We decided
to set a time limit for each task as a safeguard - 3min 30sec
for the hard tasks (tasks 11 and 13) and 1min 30sec for the

easier ones (the remaining tasks). After the tests, we
calculated the success rate as well as analyzed the other
measures we made, which can be seen in Table 1.

The 13 tasks we asked to be performed had different levels
of difficulty and different character. We asked users to rate
each task regarding their perception of difficulty in a scale
between 1 (Very Easy) and 7 (Very Difficult) after they
had completed it.

We start by analysing the tasks related to the basic
interactions with the views page, tasks 1 and 7, which
revealed to be the easiest tasks with an average rating below
2.0 in the difficulty scale. These tasks had a 100% of
success rate and only thetasks 1had some insignificant
errors, mainly, becausesome users did not remember where
pages are and ended up looking for the pages in other
sections.

Then, tasks 2, 3, and 4, which are related to the modules
configuration, also had a average ratingin the difficulty
scale between 1.0 and 2.5. We noticed that some users were
confused with the names of the modules and templates.
Task 2 was considered the easiest task and every user
performed itwithout any trouble. Task 3 required to add a
new skill in the module Skills. The system also had
thetemplate Skills in the views page. Therefore, one user
was confused and thought the task should beperformed in
the template, but as they re-read the task, they realized they
were in the wrong place, andwent to the modules page and
completed the task successfully. Task 4 asked to configure
the moduleBadges, and that confusion also happened to
another user, but they ended up completing the task. We
noticed a great increase in the interaction with modules
configuration. The users that made that mistakeperformed
the tasks in the very beginning. Then, when performing
other configurations in the modules,they were already
aware on where they should go.

Task 5 asks users to change the nickname of the logged in
user and had an average perceiveddifficulty below 2.0. This
task was specially interesting since some users did not see
the icon of the useron the top right corner of the page. This
issue led users to either not complete the task or use the
Userspage to do it, which was not the goal, since this page
will not be able for non-admin users. On the otherhand,
most users that performed successfully this task, by going
to the My Information Page, did it in a short time, and
immediately saw the icon. This can be because of its
location, which matches thelocation in many websites with
profiles such as social networks, for example, Facebook,
Instagram and LinkedIn.

We analyse tasks 6 and 12 simultaneously, since both may
require extra knowledge of CSS and, specially, the term
“class” in this context in order to understand what is asked.
Nevertheless, one of the users without this knowledge
completed both. They were both rated with an average
difficulty between 2.5 and 3.5.

Task 12, which asked to add a class to a view, was affected
essentially by the misunderstanding of the real meaning of
an element having a class and how they could change it.
Users without any programming experience found it extra
hard to perform however 2 of the 3 of this group could
complete it since they could find the class label in the edit
part modal. Regarding task 6, which asked to add new
styling to a course, was not completed only by 2 users with
no programming experience.

Tasks

Success
Rate

Avg.
completion

time

Avg.
number
of errors

1 100% 00:33 0.3
2 100% 00:29 0
3 100% 00:59 0.3
4 100% 00:53 0.15
5 85% 00:38 0.6
6 90% 00:54 0.6
7 100% 00:23 0
8 100% 00:38 0.85
9 100% 00:38 0.6
10 95% 00:51 0.6
11 30% 03:02 -
12 90% 01:09 0.7
13 30% 03:10 -

Table 1. Results of the tests.

We then analyse the tasks 8, 9 and 10 that were concerned
about the tasks within the view editor. Task 8 asked the
users to add a new part to the outside block. This task has a
perceived difficulty of around 2.5, mainly because users
struggled with the icons in the edit toolbar and what they
could do in which one. Regarding tasks 9 and 10, where
users must create new aspects, the main struggle was,once
again, find the right icon - the aspects icon. These last two
tasks had an average rating between 2.0 and 3.0. In all these
3 tasks, users tended to first click on the edit icon to open
the edit part modal. Then, they realized that the tasks could
not be performed in that modal and tried to explore more
the view editoruntil reach the correct icon. The main
struggle of the users was regarding the aspects icon and
theicon for edit layout that were not understandable or
intuitive. However, after the first task of creating na aspect,
users performed the second one easily. Also, a user
suggested having a label for each icon thatis visible on
hover. Although we already have labels, they do not appear
immediately when hovering and we need to wait a few
seconds until they appear.

Finally, we analyse tasks 11 and 13, the more difficult
tasks, with an average difficulty rated above 5, which asked

the user to write expressions using EL, which takes time to
understand how it works. All users that completed at least
one of these tasks already had programming experience and
it may be more logical after reading part of the
documentation. Even users with programming experience,
someonly could complete the task they performed in the
second place, after failing the first one. Most
usersconsulted the documentation page to try to write the
desired expression. But some did not understand it. In task
11, we expected the user to write
{users.getUser(1).studentNumber}. In the documentation,
we can see that the properties of the object user are
described as%user.studentNumber for the student number,
but for users with no programming experience, it was not
clear that %user was an user object. Task 13 asked the user
to get all the active courses. To write this expression,
almost every user started by using the variable %course and
the property isActive, that, by chance, we give as an
example for a visibility condition in the tips, and users
thought that they were supposed to use this property
because of the task asking for active course. Overall, when
it comes to write an expression using EL, we noticed some
struggle, mainly regarding: variables, Loop Data, Libraries
and Functions and Suggestions section.
CONCLUSION
As a successful technique, gamification has been used to
increase the motivation of users as well as their
performance while performing certain tasks. Its success
relies on an appropriate design to ensure its
meaningfulness, mostly in the education context. The
employment of gamification in education still has some
flaws regarding its adaptability since the different learners
could have a significant discrepancy in their needs.

For this thesis, we improved the GameCourse system by
adding new features and improving the UX of the system:
new configuration pages for some modules, with import
and export functionalities; in the view editor, we started by
restructuring the views logic, and then improve the view
editor to make it easier to use. Finally, we developed a
suggestion system to give more support to use the EL in the
view creation.

All the work we done has contributed to increase the
system’s flexibility and helped it to achieve the goal of
being used in other higher education courses as it has
aroused interest in other teacher of IST to use it in their
courses this school year.

As future work, regarding the view editor, although it is
working, the aspects deal with roles but not with specific
users. It would be interesting if it was added the possibility
to create an aspect for a specific user, for which we are
already working. Also, for a more friendly interaction, the
icons in the toolbar should be reviewed to be more
comprehensible. Regarding the file picker, it would be very
useful if it allows the creation and deletion of folders,
instead of just uploading and deleting files. Finally, the

GameCourse system already has a documentation page.
However, this needs to be updated and reviewed to reflect
all the changes that we made.
ACKNOWLEDGMENTS
This work was supported in part by the National Funds
through the Fundação para a Ciência e a Tecnologia (FCT)
under Project UIDB/50021/2020, and in part by the Project
GameCourse, Portugal, under Grant PTDC/CCI-
CIF/30754/2017.
REFERENCES
1. Deterding, S., Dixon, D., Khaled, R., and Nacke, L.

(2011). From game designelements to gamefulness:
Defining gamification. volume 11, pages 9–15.

2. Pengnate, S. F. and Sarathy, R. (2017). An
experimental investigation ofthe influence of website
emotional design features on trust in unfamiliar online
vendors. Computers in Human Behavior, 67:49–60

3. Mekler, E., Brühlmann, F., Opwis, K., and Tuch, A.
(2013). Disassembling gamification: The effects of
points and meaning on user motivation and
performance. pages 1137–1142

4. Brühlmann, F. (2013). Gamification From the
Perspective of Self-Determination Theory and Flow.
PhD thesis

5. Amaral, J. (2013). Gamecourse. Master’s thesis,
Instituto Superior Técnico

6. Garden, C. and Rivera, E. (2018). Putting theory into
practice: Gamificationfor student engagement.
InEDULEARN18 Proceedings, 10th International
Conference on Educationand New Learning
Technologies, pages 4563–4570. IATED

7. Landers, R. (2015). Developing a theory of gamified
learning. Simulation & Gaming.

8. Kahu, E. (2011). Framing student engagement in
higher education.Studies in HigherEducation, 2011

9. Bedwell, W. L., Pavlas, D., Heyne, K., Lazzara, E. H.,
and Salas, E. (2012). Towarda taxonomy linking game
attributes to learning: An empirical study.Simulation &
Gaming, 43(6):729–760

10. Monterrat, B., Desmarais, M., Lavou ́e, E., and
George, S. (2015). A playermodel for adaptive
gamification in learning environments

11. Barata, G., Gama, S., Jorge, J., and Gonçalves, D.
(2013a). Engaging engineering students with
gamification. InVS-GAMES 2013, pages 1–8. IEEE.

12. Barata, G., Gama, S., Jorge, J., and Gonçalves, D.
(2013b). Improving participation and learning with
gamification. In Gamification 2013, pages 10–17.

