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Abstract

The main objective of this thesis is to provide an overview of some quantum computation concepts.

An important concept is the Quantum Nonlocality concept, which was introduced by an intriguing
EPR (Einstein-Podolsky-Rosen) theoretical experiment. This concept was also explored in form of
games like the PR (Popescu-Rohrlich) box, and GHZ (Greenberger—Horne—Zeilinger) game to
emphasize the power of quantum mechanics. Bell’s contribution was fundamental to comprehend that
the hidden value argument couldn’t be the explanation for the obtained results. This thesis will explore
those experiments and games assuring that quantum superposition and quantum entanglement are real

by explaining them mathematically.

After presenting the experiments in a form of a card game or show, other concepts of quantum
computation, such as linear algebra, quantum bits, quantum measurement, density operator, Bloch

sphere representation, quantum gates, quantum parallelism, and the Deutsch algorithm will be clarified.

More complex quantum algorithms only make sense if it solves problems that classical computation
algorithms cannot solve. And this is exactly what happens with the large number factorization problem,
which today cannot be solved by classical computers and theoretically can be solved by quantum
computers. Although this seems to be good, there are some inherent security risks, because today this
difficulty is explored to make classical encryption code such as RSA (Rivest—Shamir—Adleman). This
thesis will also explain how Shor’s Algorithm (which solves the large factoring problem) could be used

to break RSA encryption code.

Keywords: Quantum Nonlocality, EPR Experiment, PR Boxes, GHZ Game, Quantum Computation,

Shor’s Algorithm



Resumo

O principal objetivo desta tese é dar uma visao geral de alguns conceitos de computacao quantica.

Um conceito importante é o conceito de nao localidade quantica, que foi introduzido pela intrigante
experiéncia tedrica EPR (Einstein-Podolsky-Rosen). Este conceito também foi explorado na forma de
jogos como as caixas PR (Popescu-Rohrlich) e jogo GHZ (Greenberger—Horne—Zeilinger) para
enfatizar o poder da mecénica quéntica. A contribuicdo de Bell foi fundamental para compreender que
0 argumento do valor oculto ndo poderia ser a explicacdo para os resultados obtidos. Esta tese ird
explorar essas experiéncias e jogos provando que a superposicdo quantica e o entrelacamento

quéantico séo reais, explicando-os matematicamente.

Apés a apresentacdo das experiéncias, outros conceitos de computacdo quéantica, como algebra
linear, bits quanticos, medicdo quéntica, operador de densidade, representacédo da esfera de Bloch,

portas quénticas, paralelismo quéantico e o algoritmo de Deutsch, sdo apresentados.

O desenvolvimento de algoritmos quanticos mais complexos s6 fazem sentido se resolverem
problemas que os algoritmos de computacao classica ndo consigam resolver. E € exatamente isso que
acontece com o problema da fatorizagdo de grandes nimeros, que hoje ndo pode ser resolvido por
computadores classicos e teoricamente pode ser resolvido por computadores quanticos. Embora isso
pareca ser bom, existem alguns riscos de seguranca inerentes, porque hoje essa dificuldade é
explorada para fazer criptografia classica, como RSA (Rivest-Shamir—Adleman). Esta tese também ira
explicar como o Algoritmo de Shor (que resolve o problema da fatoracdo anteriormente referido) pode

ser usado para quebrar o codigo de criptografia RSA.

Palavras-chave: Nao Localidade Quantica, Experiéncia EPR, Caixas PR, Jogo GHZ, Computacdo

Quantica, Algoritmo de Shor
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1.Introduction

1.1.State of the Art

To understand quantum computation it is necessary to go back to the origin of the computer field. It

all started with classical computation.

The computer science field started with the theoretical study of algorithms (sequence of
computational steps that transform a set of values which can be called input into other sets of values
that are called output [1]). The classical computer science field was born in 1936 when Alan Turing [2]
attempted to prove that mathematician David Hilbert's decision problem (Entscheidungsproblem)
solution was true. In this problem, David Hilbert believed that there was an algorithm that could tell if a
proposition was universally valid, given all the axioms of math. Turing developed a model for
computation (now known as the Turing machine) that proved Hilbert's decision problem was surprisingly
not true. Later, Church—Turing thesis corroborated that any algorithm can be run in a Turing machine.
Until this day, if an algorithm cannot be run in the Turing machine, then it's not computable. In fact, even

a Turing machine can be simulated in a (Universal) Turing machine.

So, how was an algorithm run in the first version of the Turing machine? The first version of the Turing
machine used tapes, divided into squares, to read and write symbols 0 and 1 (which today are called
bits). To demonstrate how a simple task is performed in this machine, let’s start with an input tape with

the following information: {0, 1, 1, 0}, meaning x = 2.

q0

Figure 1: Turing Tape with an input value {0, 1, 1, 0}, with tape head starting at point (q0 state)

The task could be done manually or performed by a tape head that ran throughout the tape and

made some operations.
The possible tape head operations from start to the end are:

eRead/Scan symbol below tape head(0/1,_, )
eUpdate/Write symbol below tape head(_,0/1, )
eMove the tape head one step right (_, , R)
eMove the tape head one step left (_,_, L)



The task could be to receive an input x and calculate a mathematical operation of that input and

transform that into an output f(x).

Being the input x (number of 1’s) and the output f(x) = x + 1, the tape head instructions are as

follows:

Figure 2:Turing State diagram to write f(x) = x + 1 on tape

With these instructions, the originated value on this slice of Tape is the output f(2) = 3

Figure 3: Turing Tape with an output value {0, 1, 1, 1}

Turing Machine is an abstract representation that defines the mathematical model of a computer and
this was the first software representation of the computer field.

In 1945, von Neumann proposed a complementary theoretical architecture that would be the baseline
to construct a classical computer. The innovation consisted in saving a program and its data in memory
before writing the output [3]. The architecture proposed by Von Neumann is now used in all classical

computers.

(Central Processing\

Unit
Input Output
ok sobh

g J

o O

Figure 4: Von Neumann Architecture



Von Neumann architecture contains the following components: a CPU (Central Processing Unit), a

memory unit, an input and output devices.

In 1947, John Bardeen, Walter Brattain, and Will Shockley developed the transistor that helped
computer hardware to grow rapidly [4]. The growth was so fast that in 1965, Gordon Moore stated that
the computer power would increase once every two years, keeping the cost constant (Moore’s law) [5].
To increase power one needs to increase the number of transistors in a dense integrated circuit which
leads to an increase in the number of components on a single silicon chip. However, this increase is not
indefinitely sustainable. As the size of the chip approximates into atomic sizes, the laws of classical
physics are challenged making it impossible to make more powerful computers. To overcome these
challenges Richard Feynmann initiated a revolutionary thought. He stated that to simulate physical
phenomenon’s it would be necessary to build quantum computers [6]. Before looking at the definition
and specificities of quantum machines, it is relevant to notice that in 1985, David Deutsch introduced an
important principle, the Church-Turing-Deutsch principle [7]. He showcased that all physical processes
can be simulated through a Quantum Turing machine which consists in a generalization of the previously

explained Universal Turing Machine.

Nowadays it is also known that quantum computers can be used beyond the simulation of physical
phenomenons. Quantum computers can do very specific tasks such as searching in large datasets,
assisting in drug development, and supporting traffic route optimization in a significantly shorter time
when compared to classical computing. Even though it is true that quantum computers can perform all
the tasks of classical computers, it is not true they should be used as a replacement. On one hand,
quantum machines are extremely expensive and therefore industry scalability is not viable. On the other
hand, using such machines to perform relatively simple (or not overly complex) tasks would not bring
relevant gains or benefits for the user (the trade-off between the time saved and the resources/energy

allocated to use the computer is not justified).

1.2.0bjectives/Motivation

According to the theory, all classical computers are Turing machines and use symbols that can be
either 0 or 1, but what about quantum computers? Quantum machines can have symbols that are 0,1
or a superposition of 0 and 1. What exactly is a superposition (atomically represented by particles like
photons or electrons)? It is a property that allows the computer to execute many computations at once,
giving a big advantage over classical computers. This thesis will explain exactly what it is and how it can

be used when constructing an algorithm.

Another property used by quantum computers is known as quantum entanglement. This property

provides the abilities described below:

= The ability of subatomic particles to “influence each other”, making values collapse in values

that could be related between them;



=>The ability to know a value by looking into the value of another subatomic particle.

Quantum entanglement differentiates classical and quantum computation and the reason for that to

happen is going to be explored in this thesis.

Nowadays, quantum computation solves some problems that were not possible to be solved before,

such as the factorization of large prime numbers.

The big problem that emerges is that some cryptographic algorithms such as RSA (Rivest—-Shamir—
Adleman) take the advantage of the complexity of the factorization of large prime numbers to encrypt
information, i.e. the RSA is extremely useful for decoding and encoding secret information over the

internet.

The emergence of quantum computation jeopardizes RSA, as it will allow performing complex and
challenging tasks such as factorization large prime numbers. As a consequence, the ability to keep

information secret or protected is threatened.

1.3.Structure

This thesis is an introduction to a growing field of quantum computation.

The first chapter is a brief initiation to the topic of quantum computation, and the main goal is to be

familiarized with the subjects that will be covered in the next chapters.

In the second chapter, Quantum Nonlocality will be explained using the EPR (Einstein-Podolsky-
Rosen), PR (Popescu-Rohrlich), and GHZ (Greenberger—Horne—Zeilinger) thought experiments. This
chapter is very important to understand the two main concepts used in quantum computation: quantum

superposition and quantum entanglement.

The third chapter covers the basic concepts of quantum computation, such as linear algebra,
quantum bits, quantum measurement, density operator, Bloch sphere representation, quantum gates,

quantum parallelism, and the Deutsch algorithm.

The following chapter, explains how the large number factorization problem could be solved using
quantum computation and how this could be used to break RSA (Rivest—Shamir—Adleman) encryption

code.

The last chapter is for conclusions and has some considerations about future work that can be

developed to better understand the subject of quantum computation.

Lastly, the appendix provides additional information to explore in more depth some of the topics that

were presented throughout the chapters.



1.4.0riginal contribution

With this research, | want to explain comprehensively the topics of quantum nonlocality, as well as

quantum computation.
The original contribution is the demonstration and how the topics are organized and explained.

For instance, in chapter two, concepts are introduced through a card show or game. Afterwards, they
are explained considering a subatomic experiment. Additionally, both classic and quantum approaches

are explained mathematically (with some notes in the appendix).

Further ahead the original contribution is the Bloch Sphere representation of what happens to a qubit

0 or 1 when the quantum gate is applied.

As a final note, in the fourth chapter, the original contribution is the way the topic is mathematically

explained.



2.Quantum Nonlocality

Quantum Nonlocality was a very controversial principle when discovered. The topic is counterintuitive

being Einstein the first person to find this intriguing.

2.1.Einstein-Podolsky-Rosen thought experiment

Quantum Nonlocality was and still is a counterintuitive principle because it indicates that one particle
property can be influenced by a different particle in a faraway distance and this is made instantaneously

(meaning in a velocity greater than the velocity of light).

This was so controversial, that Einstein claimed that properties of a particle in region B cannot be
affected by properties of another particle on faraway region A, rejecting the so-called spooky actions at
a distance [8]. Einstein advocated that each particle should have hidden values and these hidden values

would explain the correlation between two separated particles in each region.

This hidden value argument started in a thought experiment made in 1935 by Einstein, Podolsky,
and Rosen [9], but it was rejected mathematically by John Bell in 1964 [10] and later on (in the early
1980s) proved wrong experimentally by Alain Aspect [11].

2.1.1.Concept Definition — Alice and Bob Card Show

To better understand Einsteins’ hypothesis, a theatrical example will be presented. Two performers
called Alice and Bob (example of GianCarlo Ghirardi used in his book [12]) will gather a show where

each one receives one of the 3 numbered cards: {1,2,3}, from an audience member.

Figure 5: Cards {1,2,3} given to Alice and Bob

After receiving one of the three cards randomly, Alice and Bob have to write one of two possible

answers: {Yes, No} on a post-it:



Figure 6: Answers that could be written down by Alice or Bob

It is important to notice they are seated apart from each other and receive the cards randomly from
the audience members. Despite that, what happens empirically is that every time they receive the same

number, the answers they write are always equal {yes, yes or no, no}.
And this happens every time they perform.
They don’t have any type of communication device and as performers, both answer simultaneously.

So, what is happening? The audience could think that this is happening because they know what to

answer every time they receive a card to get coordinated responses. Would that be the case?

Considering the hidden value proposition, each card number {1,2,3} has its unique hidden value {yes;

no} and this value will help Alice and Bob have coordinated responses.
In the first performance they could have the following combination of hidden values:

Table 1: Combination of hidden answer YYY for Cards 123

Yes Yes Yes

Meaning they will always give the same answer (Yes) regardless of the number received (1,2 or 3)
by the audience member.

And in the second performance, they could change the combination. The combination used could
be:

Table 2: Combination of hidden answer YYN for Cards 123

Meaning, Alice and Bob will always give the same answer according to the number received 1, 2 or

e If they both receive 1 they will both answer Yes

e If they both receive 2 they will both answer Yes



o If they both receive 3 they will both answer No
In fact, all the combinations that can be used across their performances are described in Table 3:

Table 3: All possible combinations for the hidden values of cards 123

Yes Yes Yes
Yes Yes No
Yes No Yes
Yes No No
No Yes Yes
No Yes No
No No Yes
No No No

The below subchapters main goal is to understand if the hidden value is true for the subatomic world,

through Einstein, Podolsky and Rosen (EPR) thought experiment.

2.1.2.EPR’s Device

In this experiment, we have one device that produces two independent particles that go to opposite
sides in each run. One goes to region A (Detector A) and the other to region B (Detector B). In each run,
both particles collapse in different detectors with 3 different settings (1, 2 and 3) and the outcome will

be one of the following light colors: Green or Red (G or R).



Detector A Detector B

Particle A Particle B

Figure 7: A schematic representation of the EPR device and its two detectors
After millions of runs, the two main conclusions were:

1. When both switches have the same setting, the outcome is always the same color;

2. The likelihood of the outcome being the same colors or different colors is equal

Linking Alice and Bob Show to this subatomic device, it's possible to deduce that the card numbers
represent the settings on the detectors A (Alice) and B (Bob) and the output green and red represent

the answers written by Alice and Bob (Yes and No).

2.1.3.Hidden Value Argument

The hypothesis for explaining the correlation between colors of different regions is the hidden value
proposition which stated that the particles have values before they leave the device. There are no links
or communication between two particles after they leave the device (source). The detectors are also
independent. Table 4 presents the possible outcomes (outputs) according to the inputs (settings) for

each particle, once they collapse on each of their detectors.

Table 4: Individual outcomes and respective combination according to the configuration of settings 1, 2 and 3

G G R
G R G
G R R



R G R
R R G
R R R

The assumption is: the outcome for one particle has a hidden value associated to the combination
of detector settings and the collapse of the particle. To check if there is any type of correlation between
the setting and the light color, it is necessary to check the combination of settings of both detectors:
{11;12;13;21; 22; 23;31; 32;33} and their individual outcomes{G;R}. By performing this analysis,
conclusion 2. ‘The likelihood of the outcome being the same colors or different colors is equal’ will be

tested.

Each run can be represented by {12GR} and this means that the setting in detector Ais 1 and the

outcome color is Green and the setting in detector B is 2 and the outcome color is Red.

In the first row of Table 4 (row represented again in Table 5), we have (GGG) for any kind of setting

(123), which means that the two particles (A and B) will flash the same color G in each run.

Table 5: Combination of hidden answer GGG for Settings 123

G G G

{116G;126G; 13GG; 21GG; 226G; 23GG; 31GG; 32663 336G} > Priagenvarue (same color | GGG) =2 =1

Where Ppigdenvaine (Same color | GGG) can be read as the probability of flashing the same color

knowing that the hidden value in setting 123 is GGG.
Probability of 1 means that all runs have the same color output.

In the last row of Table 4 (row represented again in Table 6), we have (RRR) for any kind of setting

(123), which means that the two particles (A and B) will flash the same color R in each run.

Table 6: Combination of hidden answer RRR for Settings 123
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{11RR; 12RR; 13RR; 21RR; 22RR; 23RR; 31RR; 32RR; 33RR} = Priggenvarue (same color | RRR) =2 =1

(Probability of 1 means that all runs have the same color output).

For the second row we have (GGR) for setting (123), which means that the two particles (A and B)

will flash the same color in some of the runs.

Table 7: Combination of hidden answer GGR for Settings 123

G G R

{1166; 12GG; 21GG; 22GG; 33RR} — Priggenvarue (same color | GGR) = 2.

Applying the same logic for the remaining rows of Table 4 one conclusion stands out:

> 2.1
Priqdenvaie (Same color) = (6) (2.1)

This contradicts the conclusion from earlier subchapter: 2. ‘The likelihood of the outcome being the

same colors or different colors is equal.’

Because If
Prigaenvatue (Same color) + Phigaenvae (Dif ferent color) =1 (2.2)
And
Phiddenvaiue (Same color) = g (2:3)
Then
Phiggenvaiue (Same color) # Phiaaenvaiue (Dif erent color) (2.4)

For this reason, Bell concludes that the hidden value proposition cannot be true, meaning that there

is no hidden value in each particle once they leave the source.

2.1.4.Quantum Mechanics (QM) Argument

If there is no hidden value in each particle before it leaves the source, a new hypothesis arises - both
particles should be influenced by each other somehow and the particle does not have value until it

collapses. This means that the particle is in superposition form before it collapses.
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2.1.5.Quantum Superposition
To represent a particle, Dirac notation will be used (also known as bracket notation).

In this form, one particle is represented by ket | i ):

lY)=al0)+B1), apB €C 2.5)

Where a and 8 are the amplitudes with probabilities of |a|? and |8|? being |a|? + |B]?> = 1.

In this particular example, |0) represents horizontally (—) polarized amplitude and |1) represents
vertically (1) polarized amplitude. If a particle is only represented by one amplitude then the particle is
vertically or horizontally polarized being the other amplitude 0.

2.1.6.Quantum Entanglement

Each particle has its properties. So particle A is represented with | ¢ ), and Particle B with| ¢ )p
[P a=asl0)a+Ball)a a,p €C (2.6)
|Y)g=ap|0)p+Bs|1)g a,p €C (2.7)

But when particles are entangled both states are inseparable, hence cannot be studied as separate
states.

Which leads to a combined state represented by |¥)45:

[W)ap = Coo(10)4 @ [0)5) + Co1(10}4 ® 1)) + Cio(|1)a @ [0)5) + C11([1)4 (2.8)
® [1)p)

And the new state can simply be represented as:
[W)ap = Co0l00)4p + Co1l01)4p + Ciol10)4p + Ci1|11) 45, Co0, Co1,C10, €11 EC (2.9)

And in this case, particles generated are entangled photons.

For entangled photons:

1Co1l? = [Ciol> =0 (2.10)
And

[Cool® + 1C1 > =1 (2.11)

Hence
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[Cool® + [Co1|* + 1Ciol* +1C11 17 =1 (2.12)

If |Cool? = |C11]|? (meaning that probability of both particles A and B having same polarization |00) or
|11) are equal) then:

[Cool* + 1C11]* =1 (2.13)
[Ciil? + €y =1 (2.14)
2[C 1> =1 (2.15)
Co _1 (2.16)

V2

The final state is then, simply represented by:

_ i (2.17)
[¥)ap = 7z [100)45 + 111)451]

This example also proves that Cy, # a4. ag, Co1 # ay4. By, C1o # Ba- a5 and Cy; # B4. B because if
Co1 = 0 > ay.Bg = 0 (means that either a, or By are equal 0) (2.18)

Cio = 0 - B4.ap = 0 (means that eitherf, or ag are equal 0) (2.19)

Then we cannot have Cyy = a4.ag # 0and C;; = B4.85 #0

Coo # 0 > ay.ag # 0 (means that neither a, or ag could be equal 0) (2.20)

Ci1 # 0 > B4.Bg # 0 (means that neither B, or By could be equal 0) (2.21)

As there are three settings, this means that there are three types of polarization filters. Each filter is
polarized at a very specific angle. If the angle of polarization of the particle is the same as the polarization
filter the particle goes through the filter (the outcome is Green), otherwise it's blocked (the outcome is

Red). The particle only defines its orientation once it collapses on the filter.

The three settings number are represented in Figure 8 by their respective angles of polarization.
Each of the settings (1, 2 or 3) has two angles representation because they could have one of the two

directions represented.
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3300 270 210
Figure 8:Settings numbers 1,2 and 3 and respective angles of polarization

According to the Malus Law, the probability of having the same outcome is given by (details in
Appendix A.1/A.2):

P(8) = cos?(8) (2.22)

Where 0 is the difference between the angle of particle B and particle A once they collapse the filter.

If the settings are the same {11;22;33} they will flash the same color because P (0°) = cos?(0°) = 1.

If the settings are different {12;13;21;23;31;32} the particles have the probability of flashing the same
according to P(£300°) = P(+240°) = P(+120°) = P (+60°) = cos2(60°) = i

Which leads to

Py (Same color) (2.24)
= P(Same Setting).P(flashing same color |same setting)

+ P(Dif ferent Setting). P(flashing same color |Dif ferent Setting)

(2.25)

A+ +

1
Pou(Same color) = >

W =
N =

1
4

O| w
Nel o)

Therefore, according to the quantum mechanics hypothesis, the outcome same colors in both

detectors is as likely as different colors, not contradicting the EPR experiment.
Pou(Same color) + Py (Dif ferent color) =1 (2.26)

1
Pou(Same color) = Py (Dif ferent color) = > (2.27)
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2.2.Popescu-Rohrlich (PR) Box

Popescu and Rohrlich invented a theoretical device [13] that today is also known as PR boxes. These
boxes are presented as game boxes to demonstrate one more time that the hidden value argument

proposed by Einstein does not explain the results obtained in a subatomic world.

In the next subchapter, the experiment is presented in the form of a card game to get familiarized
with the concepts. The results of the hidden values argument will be compared with the quantum
mechanics values argument (in a subatomic world). The main objective is to see which strategy is better

to win the game.

2.2.1.Concept Definition — Alice and Bob Card Game

Starting with the rules of the game, two players (Alice and Bob) will each receive one of 2 numbered

cards: {0,1} randomly.

Figure 9: Cards {0,1}

After receiving one of two options randomly Alice and Bob should write one of two answers: {zero,

one} on a post-it:

Figure 10: Answers that could be written down by Alice or Bob

They are seated apart from each other, receive the cards randomly in each run, and respectively
write an answer. The main objective is to get a maximum score without communicating with each other.

Each one gets 1 point in each run if the conditions in Table 8 are satisfied:
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Table 8: Rules to score one point in Alice and Bob PR Card Game

Alice Receive Alice Receive

Card 0 Card 1

Bob Receive Alice and Bob Alice and Bob

Card 0 write the same write the same
answer answer

Bob Receive Alice and Bob Alice and Bob

Card 1 write the same write different
answer answers

What is the best strategy to win the game? For this purpose one of the following strategies could
be used:
A. Write always the answer zero;
B. Write always the answer one;
C. Write always the same number as the card received:
e |If the card number is 0 it's written zero;
e If the card number is 1 it's written one;
D. Write always the opposite number as the card received:
e If the card number is 0 it's written one;

e If the card number is 1 it’s written zero;
Both Alice and Bob could use different strategies in each run {A, B, C, D}.

There are 16 possible combinations, as shown in Table 9.

Additionally, each card received (input) by Alice, is represented with values x {0 or 1} and each card

received (input) by Bob with values y {0 or 1}. Each answer (output) given by Alice is represented by

values a {0 or 1} and each answer given by Bob is represented by values b {0 or 1}.
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Table 9: Table of results according to the strategy chosen

Alice Bob Results Results Results Results Maximum
Strategy Strategy forx=0 and forx=0 and forx=1 and forx=1 and score
y=1 y=0 y=1 possible

In the next subchapters, through a thought experiment using a device that produces two photons,
the probabilities of succeeding in this game will be calculated. Two arguments are applied: the hidden
values argument and the quantum mechanics argument. The main goal is to evaluate the best approach

to win the game.
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2.2.2.PR Device

In this thought experiment, we have one device very similar to the EPRs device. The PR device
produces two independent photons in each run that goes to opposite sides. One goes to region A
(Detector A) and the other goes to region B (Detector B). In each run, both photons collapse in different
detectors with 2 different polarization filters (0, 1) and the outcome will be one of the following values:
(0, 1).

Detector A Detector B

Particle A Particle B

Figure 11: A schematic representation of the PR device and its two detectors

2.2.3.Hidden Value Argument

Table 10 shows the possible outcomes (outputs) according to the inputs (settings), for each particle,

once they collapse on each of their detectors if a hidden values argument is used.

In the first two columns, the assumption is that both photons have a hidden polarization defined,
once they leave the source and that this will define if the photon goes through or if it is blocked once it

collapses on the polarization filter:

A. The Photon is always blocked by the polarization filter (independently of its value) meaning that
the outcome value on the detector is always 0;
B. The Photon always passes by polarization filter (independently of its value) meaning that the
outcome value on the detector is always 1;
C. The Photon is blocked or passes by a polarization filter according to the value of the polarization
filter:
e If the polarizer has a value of 0 the photon is blocked meaning that the outcome value
on the detector is always 0;
e If the polarizer has a value of 1 the photon passes, meaning that the outcome value on
the detector is always 1;
D. The Photon is blocked or passes by a polarization filter according to the opposite value of the
polarization filter:
e If the polarizer has a value of 0 the photon passes, meaning that the outcome value on

the detector is always 1;
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e If the polarizer has a value of 1 the photon is blocked, meaning that the outcome value
on the detector is always 0.

The value x represents the value of the setting of detector A and y the value of the setting of detector

B. Value a is the value of the outcome in detector A and b is the outcome value in detector B.

Table 10: Table of probabilities of scoring according to combination chosen

Photon A Photon B Results Results Results Results Probability

hidden’s hidden’s forx=0 and forx=0 and forx=1 and forx=1 and of Scoring

value value y=0 y=1 y=0 y=1

P, (Score)

19



a=0b=0 a=0b=1 a=1b=0 a=1b=1 Pp,(Score)

a=0b=1 a=0b=0 a=1b=1 a=1b=0

a=1b=0 a=1b=0 a=0b=0 a=0b=0

a=1b=1 a=1b=1 a=0b=1 a=0b=1

a=1b=0 a=1b=1 a=0b=0 a=0b=1

a=1b=1 a=1b=0 a=0b=1 a=0b=0

In this table the P, (Score|line_combination) is calculated, similarly, in each line.

Bellow the example, where line_combination = AA (first line of the table)

Scoreg Total (2.28)

Py, (Score|AA) = Non rorar
_rota

_ Scoreg (x = 0;y = 0) + Scoregs(x = 0;y = 1) + Scoregs(x =1,y = 0) + Scoregq(x = 1,y = 1)

NAA_Total

Nyarorr 1S the number total of possible choices and Scoreyy rory is the sum of each
score: Scorey,(x = 0;y = 0),Scorey,(x = 0;y = 1),Score,,(x = 1;y = 0) and Score,4(x = 1;y = 1). Each score

value is calculated accordingly to Table 11.

Table 11: Score Combination according to the input of Detector A (x,, x1) and B(y,, v1)

x=0 (xo) x=1 (x1)
VSUNEZY  If a=b, then score = 1 If a=b, then score = 1
else score =0 else score =0

Ve HEZW S If a=b, then score = 1 If a# b, then score = 1

else score =0 else score = 0

In the remaining rows (line_combination €
{AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}), the same logic of the first row is used

(line_combination = AA).

20



In conclusion :

3
Prigdenvatue (Score) < (Z) (2.29)

Phiddenvalue (SCOT'@) <75% (230)

This means that in the best case scenario it is possible to win the game 3 out of 4 times (75%) using

the hidden value proposition.

2.2.4.Quantum Mechanics (QM) Argument

In the previous subchapter was demonstrated that the maximum probability of scoring (running a
successful simulation) using the hidden value proposition was Z. In this subchapter, the same probability
will be calculated using the quantum mechanics proposition.

As seen in the EPRs subchapter, both photons are entangled and cannot be studied individually.
They will leave the source in the following state.

1 (2.31)
|¥)ap = 7z [100)45 + [11)4p ]

They are in a superposition state and the only thing that is possible to conclude before their collapse

in their respective detectors is that they both have i chances of collapsing as 0 (blocked) and ; chances

of collapsing as 1 (passing through the polarizer). Both photons, A and B, will have the same polarization
once they collapse on detectors. The outcome will be 0 or 1 according to the polarization of the filters

settings on Detector A and Detector B.

In this example, polarization filters (represented by the settings) have different axes in both detectors.
Detector A is represented by either x = 0 or x = 1 (with an angle of 45° between them). Detector B is

represented by either y = 0 or y = 1(with an angle of 45° between them).

Figure 12: Axes of detector A (x, and x; with an angle of 45° between them) and B (y, and y, with an angle of 45°
between them)

Figure 13 demonstrates the angle between axes of Detector A and B altogether.
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Figure 13: Polarization filter directions and angles between 4 different values of x and y

According to the Malus Law, the probability of having the same outcome is given by (details in
Appendix A.1/A.2):

P, = cos*(0) (2.32)

Where 0 is the difference between the angle of particle B and particle A once they collapse the filter.

Following the same law, the probability of having a different outcome is given by (details in Appendix
A.1/A.2):

P, = sin?(6) (2.34)

0=0;-80, (2.35)

Referring back to Figure 13, if the combination of the settings in detector Aand B are {00;01;10} then
the probability of having the same outcome is given by P, (22,5°) = cos?(22,5°).

If the settings are {11} the probability of having the different outcome is P; (67,5°) = sin?(67,5°) =
cos?(22,59).

This leads to:

Pou(Score) = P(xy;¥0).P(a = b |x4;¥0) + P(xo; ¥1)-P(a = b |xo; y1) (2.36)
+ P(x1;¥0)-P(a = b |x1;y0) + P(x1;¥1)-P(a # b |x1;y1)

1 1 1 1 2.37
Py (Score) = Z.COSZ(ZZ,SO) + Z.COSZ(ZZ,SO) + Z.cosz(ZZ,S") + Z.sin2 (67,5%) (2:37)

1
Poy(Score) = cos?(22,5°) = Z(Z ++2) =~ 85% (2.38)

In conclusion, we have a better probability of scoring using quantum mechanics preposition than

using hidden values preposition.
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Phiddenvalue (SCOT'E) < PQM (SCOTG) (239)

2.3.Greenberger—-Horne—-Zeilinger (GHZ) Game

The Greenberger—Horne—Zeilinger (GHZ) experiment is another important experiment that explains
nonlocality with an entanglement involving three particles. This leads to a new state (state of three
entangled particles) proposed in 1989, by the article Bell's theorem without inequalities [14], in which
statistical analysis is not required to contradict hidden variables theory, showing the accuracy of

quantum mechanics argument.

2.3.1.Concept Definition — Alice, Bob and Charles Card Game

Starting with the rules of the game, three players (Alice, Bob and Charles) receive one of the 2 cards
{X, Y} randomly.

Figure 14: Cards {X,Y}

After receiving one of the two options randomly, each player (Alice, Bob and Charles) should write

one of two possible answers: {-1, +1} on a post-it:

Figure 15: Answers that could be written down by Alice, Bob and Charles

They are seated apart from each other and receive the cards randomly, in each run. After that, they
write an answer separately in a post-it. The main objective is to get a maximum score without

communicating with each other. Each gets one point in every run if the conditions below are satisfied:

1. Alice, Bob, and Charles, all receive card X and an odd number of +1 is written as their answers

(either one player writes +1 and others writes -1 or all write +1)).
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2. Two out of three players (Alice, Bob, or Charles) receives card Y and the remaining one receives
the card X and an even number of +1 is written in the answers (either two players write +1 and

the other writes -1 or no one writes +1).
Table 12 summarizes the conditions to get one point.

In the table a is the output value of Alice, b is the output value of Bob, and c is the output value of

Charles. Also, r is the input value for Alice, s is the input value for Bob and ¢ the input value for Charles.

Table 12: Rules to score one point in Alice and Bob GHZ Card Game

Alice Input Bob Input Charles Input Condition to Possible outputs

win 1 point to gain one point
(a,b,c)

ODD number (+1,+1,+1)

, (+1,-1,-1)
+
of 1's as (—1.41,—1)
output (-1,-1,+1)
r=X s=Y t=Y EVEN number (+1,+1,-1)
) (+1, _1, +1)
+
of 1’s as (=141, +1)
output (-1,-1,-1)
r=Y s=X t=Y EVEN number (+1,+1,-1)
5 +1,-1,+1)
£+ (+1,-1,
° s as (1,41, +1)
output (-1,-1,-1)

r=Y s=Y t=X EVEN number
of +1's as

output
Is there any way to always win the game using a hidden value argument? And what happens if the
quantum mechanics argument is used?

In the next subchapters, through a thought experiment using a device that produces photons, these

2 questions will be answered.

2.3.2.GHZ Device

This device has a source that produces three photons, one goes to region A (Detector A), the second
goes to region B (Detector B) and the third goes to region C (Detector C). In each run, three photons
collapse in different detectors with 2 different polarization filters (X, Y) and the outcome will be one of

the following values: (+1, -1).
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Detector A Source Detector B

Particle A Particle B
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Detector C

Figure 16: A schematic representation of the GHZ device and its three detectors

2.3.3.Hidden Value Argument

Table 13 shows the combined outcomes (outputs), according to the inputs (settings) for each particle

once they collapse on each of their detectors if a hidden values argument is used.

Table 13: Measurement for the combined value of possible outcomes to succeed

Setting (r) in Setting (s) in Setting (f) in Condition Measurement for the

detector A detector B detector C to combined value of possible

succeed outcomes to succeed

My, = (@X b X c)

OoDD +1X+1Xx+1=+1

b f +1Xx—-1x-1=+1
number o “Ix+1x—-1=+1
+1’s as —1x-1x+1=+1
output
r=X s=Y t=Y EVEN +1Xx+1x-1=-1
+1Xx—-1x+1=-1
number of

—1Xx+1x+1=-1
—1x—-1x-1=-1
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+1’s as

output
r=Y s=X t=Y EVEN +1X+1x-1=-1
b f +1 X -1x+1=-1
numboer o “Ix+1x+1=-1
+1’s as o D I B |
output
r=Y s=Y t=X EVEN +1X+1x-1=-1
b f +1 X —-1x+1=-1
numboer o “Ix+1x+1=-1
+1’s as —1x-1x-1=-1
output

The detectors could have settings X or Y (polarized filters in x or y-direction).

The individual values of measurement (a, b or ¢) could be either +1 (photon passes through the

polarizer) or -1 (photon is blocked).
The combined value of the outcome mg,,. is a multiplication of their values a, b and c.

In summary, although there are 8 possible arrangements
{XXX; XYY;YXY;YYX;YXX; XYX; XXY;YYY}, there are only 4 arrangements of settings with relevant
useful information in the context under study {XXX; XYY;YXY;YYX}.

Choosing the value for X in detectors A, B and C of +1, it is easy to conclude that the combined

measurement is +1.

Table 14: Combined Result (m;,.) for combination of settings {XXX} in Detectors ABC

Detector Detector Detector Detector Detector Detector Result
Alnput Blnput Clnput A B C
Output Output Output

My = (@X b X c)

X X X +1 +1 +1 +1

This means that, to continue to have a successful simulation the output of detectors B and C,
knowing that Y is the input for both, should have opposite values of output (one should have +1 and the
other should have wvalue -1); because the combined value should be -1(
mgpe = a X b X ¢ = —1). Itis possible to make again an arbitrary choice (because there are two possible

choices) of having an output of -1 for detector B, if Y is the input and +1 for detector C, if Y is input.

26



Table 15: Combined Result (m;,.) for combination of settings {XYY} in Detectors ABC

Detector Detector Detector Detector Detector Detector Result
Alnput Blinput Clnput A B C
Output Output Output

Mype = (@X b X C)

To continue to have successful simulation, the value output value in detector A, knowing that the
inputis Y should be -1, otherwise, it's impossible to get m,;,. = a X b X ¢ = —1, because in earlier tables
were already defined that if detector B has X as input then output is +1 and if detector C has Y as input

then output is +1.

Table 16: Combined Result (m;,.) for combination of settings {YXY} in Detectors ABC

Detector Detector Detector Detector Detector Detector Result

Alnput Blinput Clnput A B C
My = (@X b X c)

Output Output Output

Finally, with earlier choices we have all hidden values defined:

e If Detector A has X as input, then the output is +1;
e If Detector Ahas Y as input, then the output is -1;

e If Detector B has X as input, then the output is +1;
e If Detector B has Y as input, then the output is +1;
e If Detector C has X as input, then the output is +1;

e If Detector C has Y as input, then the output is -1.

And with these hidden values defined it's impossible to have a successful simulation for the

arrangement {YYX} because the combined value m,;,. = a X b X ¢ = +1, instead of -1.

Table 17: Combined Result (m;,.) for combination of settings {YYX} in Detectors ABC

Detector Detector Detector Detector Detector Detector Result
Alnput Blnput Clnput A B C

mg,. = (@xXbXc
Output Output Output ave = )

Y Y X -1 -1 +1 +1 (instead of -1)
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Hence, it's only possible to win % of times using these hidden values. If the same exercise is done for

all hidden values and arrangements, the conclusion will always be the same: it's impossible to always

win the game using a hidden value approach.

2.3.4.Quantum Mechanics (QM) Approach

In the previous subchapter, it was shown that it's impossible to always win the game using the hidden
value approach. In this subchapter, we will see if it's possible to always win the game with the quantum

mechanics approach.

Each particle has its properties. So particle A is represented with | ¢ )4, Particle B with| ¢ )5 and
Particle C with| ¢ )¢

[Y)a=as|0)a+Ball)a, a,p €C (2.40)
[Y)p=ag|0)p+Ppl|l)s a,p €C (2.41)
[Y)e=acl0)c+Pcl1)e a,p €C (2.42)

But when particles are entangled states are inseparable, hence cannot be studied as separate states.

Which leads to

W) apc = Cooo(10)4 ® 10} ® [0)c) + Coo1(10)4 @ [1)s ® 10)c) + Co10([0)4 (2.43)
® [1)p ®10)c) + Co11(10)4 ® [1)p ® [1)c) + Cro0(|1)4 ® [0)p
® [0)c) + Ci10(I1)4a ® [1)p R 10)c) + C111(11)4 R [1)p ® [1)¢)

The equation (2.43) can simply be represented as

W) apc = Co00l000)apc + Coo11001)45c + Co10l010)4pc + Co111011) 4p¢ (2.44)
+ C1001100) 45c + Ci1011101) 45 + C1101110)4pc + C1111111) g,

Co00s Coo1» Co105 Co11s €100 €101, C110, €111 € C

And in this case, particles generated are entangled photons.

For that case of entanglement between photons, we find a special case of |Cyp;1%> = |Co10l? =
1Co111* = [Ci00l*> = [C101|*> = [C110/> = 0, @and [Cogol*> + [C1111> = 1 hence [Cogol® + [Coo1l? + 1Co10l* +
1Co111* + 1Cr0l* + 1Cr01]* + [Craol*+ |C114l* = 1

Since [Cyo0l? = |C1111% (polarization of particle A is equal to particle B and to particle C) then
2 1
2|Cy14] =1_’C111=\/_§

This means that the result of entangled photons are always equal when they collapse on their
respective detector, as a result they flash the same output with the same setting.
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1
|¥)apc = % [1000) 45c + 1111) 45¢ ] (2.45)

This example also proves that Cyo9 # 4. 5. A, Coo1 # Xa- 5. Bey Co10 # Aa- Bg- e, Co11 # A4 Bs- Be»

Cio0 # Ba- 5. ¢, Cio1 # Ba-Ag-Bes Ci1o # Ba.Bs-ac and  Ci1; # Ba. Bg. B¢ because if
Cooo # 0 = ay.ap.a; # 0 (means that neither a, ,ag or a. are equal 0) (2.46)

Ci11 # 0 = B4.Bs. Bc # 0 (means that neither S, , S5 or B are equal 0) (2.47)

Then we cannot have Cyy; = a4. 5. =0

Coo1 = 0 = ay.a5.Bc = 0 (means that a,, ag or B¢ should be equal 0) (2.48)

Not considering the entanglement factor, each measurement could be done in the x-axis (X) or y-
axis (Y), meaning that in the original state a linear transformation is applied, in order the get

measurement in the desired axis.

To get a measurement in the x-axis, the Pauli matrix g, should be applied to the original state:
(0:)10) = 1) (2.49)
(o)1) = [1) (2.50)

To get a measurement in the y-axis, the Pauli matrix o, is applied should be applied to the original

state:
(0,)10) = i|1) (2.51)
(0,)I1) = —i|0) (2.52)

More details about Pauli matrices are available in Appendix B.

There are 4 arrangements of settings with useful information in the context that is being studied

{XXX; XYY;YXY;YYX}, itis also possible to have 4 combined measurements.

The measurements for each arrangement to the state |W),zc are given by the eigenvalues

mgy. Of the following transformations (detailed demonstration in Appendix B):

(0x ® 0x ® 0.)[W)apc = +|¥)anc, Mape = +1 (2.53)
(Ux ® gy, ® O'y)|LP>ABC = —|¥)4zc Mape = —1 (2.54)
(Uy Ko, ® O-y)|LP>ABC = —|¥)4zc) Mape = —1 (2.55)
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(0 ® 0y ® 0,)[W)ape = —[Phape,  Mape = —1 (2.56)

Table 18: Combined Result (my,;,.) for combination of settings {XXX; XYY;YXY;YYX} in Detectors ABC

Detector Detector Detector Result

A Input B Input C Input

My

X (o) X (ox) X (ox) +1

X (o) Y (ay) Y (ay) -1
Y (ay) X (o%) Y (ay) -1
Y, Y(5) X(g) -

In conclusion, we have a probability of scoring equal to 100% using quantum mechanics, therefore

there’s an incentive to continue to explore further the field.
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3.Quantum Computation

3.1.Linear Algebra

To better understand quantum computation it is important to understand some essential notions

about vector spaces and vectors:

e Avector space consists of an isolated physical system with a group of objects called vectors. In
quantum mechanics, the vector space is a complex vector space with an inner product (also
known as Hilbert space). An n-dimensional complex vector (represented as column matrice) is
a unit vector in the system'’s state space (with an ordered list of n complex numbers).

e The vector |u) is represented by:

Uy (3.1)
u
lu) = 22 , U, e, Uy, EC

Un

The sum of two vectors |u) and |v) results in another vector with component values equal to the sum

of each component of the vectors |u) and |v)

Uy 2 u, + v, (3.2)
u 1% U, +v
wy+ vy = |2+ =7 7
Un Un Uy + vy

Multiplication of |u) by a scalar number A, also results in another vector (with scalar number multiplied

by each component of the original vector)

wl [ (3.3)
Aju) = A uz _ /11:12
u, /1un

The dual vector is represented by bra (u| and represents the conjugate transposed vector of |u):
(ul =t =" =[u; u; .. wl ifu, = (a + ib) thenu, = (a — ib) (3.4)

The inner product of two vectors is represented by (u|v):
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W) = 1wty =[ui w3 .. u]

(2]
VU,

Un

If (u|]v) = 0 then vectors |u) and |v) are orthogonal.

The norm of vector |u) is ||ul|

=ujv; +usv, + -+ upyy,

llull = v {uu)

Vector |u) is normalized if ||u|| = 1.

Both vectors |u) and |v) are orthonormal if (u|v) = 0, ||lu|| =1 and ||v|| = 1.

The outer product of two vectors is represented by |u){v|:

U
.

! = o)t = |2 |vi 3

Up

vpl =

U g
Uy vy

Un V7

The tensor product of two vectors is represented by |u) & |v):

Uy U1
U, U2
e =72l
un Un

The tensor product |u) ® |v) could be also represented by |uv) or |u)|v)

lu) @ |v) = [uv) = |w)|v)

Uy

uv;
U, v;

*

Upv;

,ul vl —
U v,
U3V
U
Uy,
Uy Up

Up
Upv;

U, vy,

Uy
UpVp

UpVp

(3.5)

(3.7)

(3.8)

(3.9)

Linear transformations represent a modification on vectors and usually are represented by matrices

T11 T12
T= T21 T22
Tnl Tn2

(3.10)

A trace of a matrix represents the sum of all diagonal components. Hence, the trace of this matrix T

|S tT(T) = T11 + T22 + -+ Tnn
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A linear transformation on vector |u) is written as T |u)

Tll T12 e Tln u1 Tllul + leuz + b + Tlnun

_ T21 T22 e Tzn uZ _ T21u1 + T22u2 + b + Tznun
Tlu) - : : . : [ H

Thi Thz o Tanlltn Thiuy + Tty + -+ Ty

If the following condition is true:

Tlu) = Au)

Then is |u) is an eigenvector and A (scalar number) its eigenvalue.

(3.11)

(3.12)

It's also possible to apply the linear transformation T on dual vector (u|, which is represented by (u|T

T11 le e T1n

- «1|T21 T2 .. T
WT=[w u .. u 21 22 Zn
Thi Tnz oo Thn

The adjoint of a matrix T is equal to the transposed complex conjugated matrix.

T T3y o Tn
Tt = (T*)T — sz Tg*z rjfz
T Ton o Tpn
If T = Tt then the matrix is called Hermitian
Special matrix I is called the identity matrix
1 0 0
N
0 0 1

If identity transformation I is applied to a vector |u) it does not change the vector.

1 0 ... 0][Ww Uy
u u
= [0 b O =]

0 0 .. 1llun Un

Matrix U is called a unitary matrix when the below condition is true.
Uut=1e U t=U"

The result of two different linear transformations S and T could be applied to a vector

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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511 512 Sln Tll T12 Tln (318)
sro S S - SZn T21 T22 e Tonf _

Snl Snz . Tnn

S11T1y + S15Tor + 0+ 81Ty S1aTio + STop + 0 + Sln nz o S1Tin +S12Ton + o+ 10T
— S21T11 + 552 To1 + 0+ 8500 T So1Tiz +S22Top + 4 550 Tnz o SoaTin + 552 Ton + 0 + 53T
Sanll + Sn2T21 +oet SnnTnl Sanlz + SnZTZZ +oet SnnTnZ Sanln + SnZTZn +oet SnnTnn

Projection Operator of |u) is written as B, in bellow equation
= |u)(ul (3.19)
To be a projection an operation must obey the following conditions
P?=p, (3.20)

p, = B (3.21)

3.2.Qubit

Qubit (also known as Quantum Bit) is the fundamental unit of quantum computation. It is essential to
make operations and to create algorithms to solve logic problems. In classical computation, the essential
units are called bits and have values of 0 and 1. Qubits are usually represented with kets |0) and |1). In

mathematical terms the units could be represented as vectors:

10) = [(1)] (3.22)
1) = [(1)] (3.23)

In classical computation, the unit should be in one of the states 0 or 1, however, quantum

computation allows the superposition between the two states |0) and |1).

So one qubit could be represented by ket | ¢ )
[Y)y=al|0)+B]1), a,pB eC (3.24)

Where a and 8 are the amplitudes with probabilities of |a|? ,|8|? and |a|?> + [B]? =1

Qubits could be represented with| ¢ ) in a cartesian axis with |0) and |1) as the basis. In the below

figure, the vector | ¢ ) is represented in this cartesian axis
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0}
Figure 17: Representation of vector |y )

3.3.Quantum measurement

As seen before quantum computation allows superposition between states. Bellow, it will be

demonstrated what will happen if a measurement is performed on the state | ).

Measurement operator M,, acts on the state space of the system being measured. The index m
refers to the measurement outcomes that may occur. Collection {M,,} describes quantum

measurements satisfying completeness equation:
> (M) =1 (3.29)
m

Knowing that the state of the quantum system is [i) before the measurement, then the probability

that result m occurs is specified by:

p(m) = (IM) M) (3.26)
And the post-measurement state is
1 My, [¥) (3.27)
|¢m) = —Mm|¢> =
Vp(m)

,/<¢|MLMm|¢>

If )= al0)+pB]|1), we have M, given by

M, =10){0] (3.28)
And p(0) is
p(0) = (|M{Molip) = (] (10XONT(10)O0D ) (3:29)
p(0) = (|({0I10)") (10Y0D I} = (¥|(10X0D (100D I) (3.30)
p(0) = <1/JI0><£122(0|¢) = (¥[0)0[) (3.31)
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p(0) = (¥I0)0I(al0) + B [1)) = <¢|o><a@g>+ B <T>|T>>
1

We also have (| = a*(0| + B*(1], where a*and B*are the complex conjugate of « and 8

p(0) = (a".{0] + B*.(1|0). a

0
p(0) = (w.w + ﬁ*.@).a

p(0) = (a).a = |a|

Note that the post-measurement state is

60) = J%Mow}) - ('03%‘") =2 o)
Similarly, we have
My = 11|
With p(1)
p(1) = (8.8 = IBI?
And post-measurement state
0= gy = A _AODE

vp(1) 1BI? 1B

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

In this case each measurement operator M,, is Hermitian (M,,, = M;L), and Mg = M,, M} = M,.

Therefore the completeness equation is satisfied:

M{My + MM, = MZ + M? = My + M, = |0)0] + |1)(1] =1

(3.40)

An important special case of measurement is known as projective measurements (performed in

unitary transformations). This projective measurement is described by an observable, 0:

0 =Zum
m

(3.41)
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Observable 0 is a Hermitian operator defined by the projector B, (onto the eigenspace of M) and
eigenvalue m. Knowing that the state of the quantum system is |¢) before the measurement then the

probability that result m occurs is specified by:

p(m) = (Y|PylY) (3.42)
And the post-measurement state is
P .
6,y = Fuli) (3.43)
p(m)

The post-measurement state of the system is not always important and for that cases, there is a
formalism called Positive Operator Valued Measure (POVM). This formalism is the result of the general

description of measurements defined by E,,
E, =M M, (3.44)

The collection {E,,} describes POVM

If Measurement operators M,, is performed on the state | ¢ ), we have the probability that result m

occurs specified by:

p(m) = (WYIMI M) = W|En ) (3.45)

To make this assumption the operators E,,, should satisfy non-negativity and completeness condition:
> (MMy) = B =1 (3.46)
m m

vm:E,, >0 (3.47)

3.4.Density Operator

Quantum mechanics uses the language of state vectors, but there is an alternate formulation that

uses a density operator or density matrix.

Quantum systems whose states are not completely known could be described by a density operator:
p= ZPi| YiXyil (3.48)

Where p; is a probability of being in one of the states [y;)

The density operator p’ when unitary operator U is applied is described by the equation
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p'= > pUlwWIUT = Upu't (3.49)

It is also possible to perform measurements described by measurement operators M,,, and calculate

the probability of getting result m, with the initial state |y;):

p(mli) = (W |M My [} = tr (M My, [ )00: ) (3.50)

And this leads to the probability of obtaining result m:

p(m) = > p(mli).pi = Y tr(Mh My 1 Y1) (3.51)

p(m) = tr(M), My,p) (3.52)

The state after obtaining the result m is given by [[")

m M- 1:) 3.53
[Yi") = ———— (3:99)
(Wi | M Moy |1:)
And the post-measurement state is:
MIM,,.p (3.54)
Pm

tr (Mg M. p)

To make this assumption completeness condition should satisfied:
> (M) =1 (3:59)
m

Additionally, it defined that a pure state have tr(p?) = 1, while a mixed state (can only be represented

with density operator) has tr(p?) < 1

3.5.Bloch Sphere Representation

Qubit could be transformed from one state to another allowing to make logical operations. To
understand transformations and operations geometrically, equation (3.56) could be written in another

form.

[Py =al0)+pI1), ap €C (3.56)
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a and 8 being complex numbers could also be written as:
a=1e!® and p = re!®r, q,f €C (3.57)
So |p) becomes:
[p) = rpei®o |0) + ryei®r |1) (3.58)
Simplifying, the equation it turns into
[¥) = e/ (15]0) + 1/ (P17%0) |1)) (3.59)
As e'®0is an overall phase affecting both terms, it has no physical relevance

L (3.60)
[¥) = 1510) + e (P217P0)|1)

Knowing that |ry|? + |r;|?> = 1 and cos?(¢) + sin?(¢) = 1 the equation could be written as:
[) = cos(¢) |0) + sin(¢p) e'?|1) (3.61)

This will allow geometric representation using Bloch Sphere [4]. Rewriting |¢) in terms of 8 and ¢

obtaining the equation:

0 . 0
|1/J)=cosE|0)+el‘PsinE|1), 0<H<m;0<@<2m (3.62)
Equation (3.61) becomes (3.62) with the condition:
0 3.63
¢=2 (3.63)

To guarantee that |0) and |1) are antipodal points in geometric representation (opposite points the

sphere representation).

In Figure 18, |y) is represented inside the Bloch sphere geometrically:
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10y —11)
V2

|0} —i]1) |0) +i]1)

Figure 18: Bloch sphere representation of a qubit

The equation (3.62) gives state representation as a pure state (because it is on the surface of the

Bloch sphere), a mixed state is represented within the Bloch sphere.

Bloch vector is defined as follows:

A= (x,y,2)T = (cos ¢ sin 6, sin ¢ sin 0, cos )T (3.64)
Where
fl, = cos¢@sinf (3.65)
A, = sin sin @ (3.66)
fi, = cos O (3.67)

3.6.Quantum Gates Representation

Quantum gates represent the transformation of Qubit from one state to another. They are necessary
to make logical operations. There are 2 types of quantum gates: single-qubit gates and multiple qubit
gates. With single-qubit gates, there is a logical transformation of the unit that performs negation of the
initial state. This Unitary and Hermitian gate is called NOT gate (also known as Pauli-X Gate) and could

be represented with the following circuit diagram and as Pauli X matrix.
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D
D w [0 1]

110

Or

X

Figure 19: Circuit and matrix representation of NOT gate (Pauli-X)

Using | ¢ ) from equation (2.3) as input for the gate, it is possible to understand why the output is a
negation:

xvr=[) ollg] = [ (369

This represents a rotation around the x-axis of the Bloch sphere by 180°.

Considering two different input states [0) (¢ = 1; § = 0) and |1) (a = 0; 8 = 1), the transformation
results are described in Table 19.

Table 19: Representation of Pauli-X outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
D
1) Jan \
) (N> ). 10)

1) 11y

Considering that the Pauli X gate represents the rotation around the x-axis in the Bloch sphere, it is

possible to have rotation around the other two axes (Y or Z). Having said this, Pauli-Y Gate is
represented by:
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1 Py

Figure 20: Circuit and matrix representation of Pauli-Y Gate

Using | ¢ ) from equation (2.3) as input of the gate, we have:
_[0 —=O[*1_[ip (3.69)
Ylll))—[i 0][ﬁ]_[—ia

And this represents a rotation around the y-axis of the Bloch sphere by 180°.

Considering two different states |0) (@ = 1; f = 0) and |1) (« = 0; 8 = 1) as input, the output results
are described in Table 20.

Table 20: Representation of Pauli-Y outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
Y
10) 5 [ B i[1)
Y |
g, y, —i|0)
[1) : x

1 i

Pauli-Z Gate is represented by:

z Z:[(l) —01]

Figure 21: Circuit and matrix representation of Pauli-Z Gate

Using | ) from equation (2.3) as input of the gate, we have:
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) =[y 2llel =12l 570

And this represents a rotation around the z-axis of the Bloch sphere by 180°.

Considering two different states |0) (a = 1; = 0)and |1) (a = 0; 8 = 1) as input we have the results

described in Table 21, as output.

Table 21: Representation of Pauli-Z outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
z
|0) y, ’ [0)
1)
z
. —=[1)

2y 1

Besides Pauli gates, there are several other one-bit gates. The Hadamard gate is very important

because it can introduce a superposition into a well-defined input state |0) or |1).

The Hadamard gate is represented by:

-

Figure 22: Circuit and matrix representation of Hadamard Gate

Using | ¢ ) from equation (2.3) as input of the gate, we have:

) | ratp (3.71)
O P | et

Considering two different states|0) (« = 1; 8 = 0) and |1) (a = 0; 8 = 1) as input we have the results

described in Table 22, as output:
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Table 22: Representation of Hadamard gate outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
10} [0)
0 i 7 —30)+ 1)
<y oy v
11} 1)
" - 4 — (0~ 1)
y . B \/7

1 11y

Another possible gate is Phase Gate, represented in Figure 23:

5 s=l Y

Figure 23: Circuit and matrix representation of Phase Gate

Using | i ) from equation (2.3) as input of the gate, we have:
_[1 oyray_g@ (3.72)
stw)=[y 7lls] = lis

Considering two different states |0) (e = 1; § = 0)and |1) (« = 0; 8 = 1) as input we have the results

described in Table 23, as output:
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Table 23: Representation of Phase Gate outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
1)
S i|1)

11y 11y

/8 gate (also denoted as T Gate) is represented by:

1 O
T T: E
0 e4

Figure 24: Circuit and matrix representation of T Gate

Using | i ) from equation (2.3) as input of the gate, we have:
10 @ (3.73)
Ty = [0 elTn“ﬁ] B [elTB

Also

6% = cos (%) + isin (g) = g + i'g (3.74)

Considering two different states |0) (@ = 1; § = 0) and |1) (a = 0; 8 = 1) as input the output results

are described in Table 24:
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Table 24: Representation of T Gate outputs in Bloch Sphere according to their inputs |0) and |1)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
‘ T
|0) . E |0)
X V2
1) . &
y . y ﬁ
1) n + 1-7) |1)

It is also possible to make operations with multiple qubits. Quantum computation requires that all

operations and gates are reversible, meaning that all outputs should have a unique input.

The gate to make multiple bit operations is called the CNOT gate and it is represented as it follows

(two qubit representation):

CNOT =

o O O
o O RO
= o OO
(= =)

Figure 25: Circuit and matrix representation of CNOT Gate

Having two qubits requires an understanding of how they interact. To do it, it is necessary to
understand mathematically what happens. In mathematical terms, the two qubits units could be

represented as vectors:

’ [1] 17 (3.75)
|00>=|0>®|0>=[é]®[(1)]= 0[(1)] - 8

L Lo 0]

’ [O] 01 (3.76)
|o1>=|0>®|1>=[(1)]®[(1)]= 0[(1)] = (1)

L L1 0]
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0 [1] [0] (3.77)

_ _ 10 17 _ olj _10

o =wew=[laf]- ||

0 0]
0 [0] [0] (3.78)

_ _ 10 01 _ 11 _ |0

m=wemw=[lef]- [/

1 | 1]

So two-qubit system could be represented by ket | ¥ )

| W) = Cyl00) + Cy1|01) + C10]10) + C14]11), Co0,Co1,C10,C11 EC (3.79)

Where Cyg, Co1, C1o and C;, are the amplitudes with probabilities of [Coo|2 + [Co1|2 + [Ciol? + |C11]* =

Using | ¥ ) from equation (3.79) as input of the gate, we have:

1 0 0 0][Co0 Coo (3.80)
_[0 1 0 of|Cou|_|Cor
CNOT | %) = 0 0 0 1||C|  |Cis
0 0 1 0 Cll ClO

Considering four different states |00), |[01), |[10) and |11) as input the output results are described in
Table 25.

Table 25:Representation of CNOT Gate outputs in Bloch Sphere according to their inputs |00), |01), |10) and |11)

Input Input (Bloch Gate Output (Bloch Output
Sphere) Sphere)
100) - o |00)
|01)
|01)
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|10) A 4
: |11)

111) A 4
» 110)

3.7.Quantum Parallelism

In the earlier chapter, it was seen that quantum gates are essential to make logical operations.
Although one gate is important, sometimes complex problems cannot be solved using a single gate, it’s
necessary to have a quantum circuit with several gates. One big advantage used in quantum circuits is
quantum parallelism. Quantum parallelism allows having several values of output simultaneously in a

single run. Bellow, it is shown mathematically how that is possible.

Considering a binary function f:
f:{0,1} - {0,1} (3.81)
And an oracle Uy that making the following transformation:
Up:x,y) = %,y @ f(x)) (3.82)

An oracle is usually used in computation to represent a black box containing a circuit. To explain the
problem and the solution it’s not necessary to define the content of the black box, it’s only important to

know the behavior. Being said that, the circuit representation of (3.82) is:

Input: |x)—E— —E— Input’: |x)
| Ur |
Output: |y) : : Output’: |y @ f(x))
o) 1)
Figure 26: Oracle Uy transforming |x,y) into |x,y @ f(x))
If |x) is equal to % (state in sobreposition) and [y) is equal to|0), then |y,) is:
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0) + |1) (3.83)

[Yo) = [x) @ |y) = 7z ® [0)
o) = W (3.84)
Which leads to a [;):
[¥1) = Urlho) (3.85)
[Y1) =[x,y © f(x)) (3.86)
) = (10,00 f(O) +11,0& f(V) _ (0,£(0) + 11, fF(1)) (3.87)
V2 V2

And this concludes that state |y,) contains information about f(0) and f(1), simultaneously, in a

single run.

3.8.Deutsch’s Algorithm

Mathematically, quantum circuits that solve problems are called algorithms. One of the first algorithm
to show the power of quantum computation is the Deutsch Algorithm. This algorithm demonstrates that
if quantum computing is used it's possible to know, in a single run if one function is balanced or constant

in contrast to classical computation that only allows knowing this information in two runs.

Considering only binary functions f:
f:{0,1} - {0,1} (3.88)

It's possible to have four different functions, as shown in Table 26:

Table 26: Four types of function f(x)

Function Graph Type of function
fx)
1--"""-- 1 Constant
f@ =0 ;
! fA)=£(0)=0
—
0 1 x
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f()

Constant

|

fx)=1 f=f0)=1

(e)
U S
=

Balanced

fQ) # £(0)
f(x)=x
f)=1-£(0)

fW =70

Balanced

fQ) # f(0)
fX)=1-x
f() =1-f(0)

X

f =70

In classical computation, it's necessary to calculate f£(0) and f(1) and with these two results, it will

be possible to conclude if the function was balanced or constant.

Using oracle (3.82), the Deutsch circuit could be defined as described in Figure 27.

Input: |0) —I:— H xl: E X H —I:— Input’: I’
| | Ur | |
Output: |1) —E— H yE : E Output': 0’
o) 1) ) 3)
Figure 27: Deutsch’s circuit
If Input is |0) and output |1), then [y,) is:
liho) = 10) ® |1) (3.89)
Which leads to a |y,):
[¥1) = (HQ H)(|0) ® 1)) (3.90)
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[¥1) = H|0) ® H|1) (3.91)

1) = == (10) +11) @ —=(10) — 1)) = 2. [(10) + 1)) & (10} — [1)] (3.92)
YTz N 2
1
Y1) =5-[100®10) = 10) @ 1) + 1) ® |0) — 1) ® [1)] (3.93)
And |,):
[p,) = Uf|1/J1) (3.94)
1 _ _
lh2) = .10} ® £(0) = 10) ® f(0) + 1) ® F(1) = 1) ® F()] (3.95)
Where f(0) = 1@ f(0) =1—f(0)and f(1) =1® F(1) =1 - f(1)
For two types of function there two types of results:
o LI ® FO) - [0) ® FO) + 1) ® F(0) — 1D ® FO], fF) =f0) &%)
A 10 0 - 10 @ FO) + 1) ® FO) - 1) ® FO, £(1) = £(0)
= 2100 +11) ® £(0) - (10) + 1) ® F(O)], £(1) = £(0) (3.97)
TR0~ 1) ® £(0) — (10) — 1) ® FO)], F(1) = F(0)
= 3-010) + 1) ® [£(0) = F(O)), f(1) = £(0) (3.98)
Y300~ 1) ® [F(0) — FOL, £(D) = F(0)
And applying (H ® ) to the |y,) we finally have |y5):
¥s) = (H® Dlpy) (3.99)
—f 3.100
|1/J3> = [ =
£(0) - £(0)] _
[I1> ® " f(1)=1(0)

With this, it's possible to conclude in a single run that if I’ = |0) the function f(x) is constant and if

I' = |1) the function f(x) is balanced. The disadvantage of this algorithm is that it's not possible to know
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the information about the function of f(x), it's only possible to know if the function is balanced or

constant.
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4.Shor's Algorithm

In this chapter, the goal is to find a period of a function using a quantum computation algorithm and
give it a practical utility. The period of a function f(x) is a repetition of values at regular intervals of
multiples k of x. Finding the period (of a periodic) function is the key to factoring products of large prime
numbers. This is not an easy task, and that is why the most common security protocol to encrypt
information nowadays RSA (Rivest—Shamir—Adleman) protocol exploits this difficulty. Shor's factoring

algorithm will make breaking RSA protocol easier. In the next subchapters, it will be explained how.

4.1.Quantum Fourier Transform (QFT)

It's needed to introduce one important module, the Fourier Transform, and its meaning when used

in quantum computation.

In quantum computation, the quantum Fourier transform performs a change of bases from a

[0)+11) [0)-]1)
V2 T V2

in Shor's factoring algorithm, as it will be shown in further subchapters.

computational basis (|0}, |1)) to a Fourier basis ( ) This transform is essential to find a period

To better understand the quantum transform is important to comprehend the Discrete Fourier
transform (DFT). DFT is a type of transform that is performed in discrete sets of units. Mathematically,

this transform is represented by:

15 2mik 2mijk 2mjky  (2mjk (4.1)
bk=\/—NZaje N, e N =cos< N >+Lsm<T>

Jj=0
Considering the state |y) represented by:
a
) = a0l0) + ai[1) = [ ] (42)

Applying Uyrr,, to the state [)), the result could be calculated as follow:

ity (4.3)
Ugeryl$) = ) bilkc)
k=0
Leading to:
bo[0) 1 [ 2.1..0.0 2.1'[.1'.1.0] Nelkeo (4.4)
=—.|ape 2 +a,e 2 , =1k =
0 \/i 0 - 1 -
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1 1 ao (4.5)
bol) = - lao + @] = . [1 1]
1 2.m.i.0.1 2.mil1.1 (4_6)
b |1) =—|age” 2 +a,e 2z |, N=1k=1
\/E 1 -1
1 1 ao (4.7)
bilD) = lao @l = (1 -1][]
Concluding formula (4.3), the result becomes:
1 111 1771 (4.8)
e A N
Considering a |y) represented by :
@oo (4.9)
a
[1)) = agl00) + ag,]01) + a;0[10) + ay4|11) = ai;
azq
And by, b1, b1g, b11 aS:
1 2.7.i.0.0 2.7.i.1.0 2.7.i.2.0 2.1.i.3.0 (4.10)
boolOO) = —. aooe 4 +a016 4 +a106 4 +a116 4 )
\/Z 1 1 1 1
N = 4; k = 0(decimal)
b |01) 2.1.i.0.1 2.mil1 2.mi.2.1 2.m.i.3.1 (411)
01 = —. aooe 4 +a016 4 +a106 4 +a116 4 )
V4 1 i el 3
ez2 e 2
N = 4; k = 1(decimal)
1 2.7.i.0.2 2.7.i.1.2 2.7.0.2.2 2.1.i.3.2 (4-12)
biol10) = —.|agee” ¢ +ag e 4 +ae 4 +a e 4 ,
N = 4;k = 2(decimal)
b Ill) 2.1m.1.0.3 2.m.0.1.3 2.m.i.2.3 2.m.i.3.3 (413)
11 =—.|agpe *4 +ag e 4 +ape 4 +a;e 4 )
\/Z 1 3mi e3mi ami
e 2 e 2

N = 4; k = 3(decimal)

This results in:
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1 1 1
1 [ i i 3mi
1 ez e 2
UQFT4|1I)) = ﬁ'll o™  g2mi  G3mij*
3mi 9mi
1 ez e3m
"y ami,  oami miy
Writing w* = e n ™ = e+ “ = e2 ", the result becomes:
0 @ W w
0 1 2
U — |0 o @ w
QFT4|¢) \/Z 0w W 0wt w
w0 @ w® w

1

e 2

e 2

Qoo (4.14)
Qo1
(4510}
(4551
Qoo (4.15)

Reformulating the (4.15) as a linear operator of N components, the unitary quantum transform

becomes:

0 0 0
1 2 3
2 4 6
3 6 9

RESERSERSEES
RESERSERSIES

UQFTN = \/_N

..E g €¢8

@ N1 2(N-1)  3(N-1)

v (4.16)
-
w2W-1)

w3-1)

w®-DN-1)

Knowing that Uyrr, for N components are already defined, it's also important to define the circuit

represented.

Regarding a two-qubit system (N = 2™,n = 2) the oracle U,y is represented by:

1
1
:
Ugrr, | |
1
1
1
1
1

o) Hiba)

Figure 28: Uyrr, represented by an oracle (2 qubits)

Decomposing the oracle, it's possible to determine that:

Ugrr,I¥o) = [¥1) (4.17)
1 1 1 1 2‘190 t+ ap; ‘*;a'm tag . (4.18)
2mi 2mi 2mi [24) m Zmi 2T 4
—-1 —.2 —-3 2" 2 2"
1 |1 e2z22 e 22 e 22 Ao, 1 |a00+62 Agy +e2° ajgtez® ag
— 2mi 2mi 2mi = — 2mi 2mi 2mi
) —.2 — —-61"la ) - —4 —
V22 |1 e22” e22" e277| [0 V22 laoo+ez2 ag, +e22 7 ay +e2? a11|
|, iy iy i) ldn [ 2mi 2mi 2mi J
1 e2 ez ez apo+e2?7apg; +e2? ay+e2? ay,
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So if |[yy) =100) = | _|, the result of |1),) becomes:

O O O

[1 1 1 1 1 (4.19)
2mi 2mi,  2miog 1 1
1 |1 ez e2% e22'| 0 1 |1
—_—. 2mi 2mi 2mi . = —.
V22 |1 ezZ? ezt 22| |0 V22 |1
2mi 2mi 2mi 0 1
1 e22? e22° e227°
(4.20)

1
) = 51100 +101) +[10) + [11)]

1
I Y
vz |1
1

So it’s possible to conclude that the oracle has 2 Hadmard Gates because the input |00) becomes

~.[100) + [01) + [10) + [11)]:

1
1
R E— L1

1 1 H
' Ugrr, ,
| | H
o) 1)
Figure 29: Decomposing Uypr, Oracle components — Hadamard Gates
0
If [Yo) =101) = (1) , the result of |y,) becomes:
0
1 1 1 1 1 (4.21)
1 |1 e2 ez ez 1 1 |ez
—_— 2mi 2mi 2mi_|. = —.| 2mi
2% |1 e22? g2zt e22®| [0 22 |e2_2'2|
2mi 2mi 2 0 2mi
|.1 Q%B e%ﬁ e%gj le%ﬁj
1 1 (4.22)
27l .
) = — [6_‘ _ I["’_]I 1100 + e%101) + e™[10) + €7 ]11)]
1) == i, |=5."n|=5. +ez +e +ez2
2 2" 2 le 2
\/2_ |ezzn'i | [ EJ
2] L
EAT (429
1 lezt| 1 i 1 , .
|%>—7;F%QT5 _1| = 3-1100) +il01) — [10) — i|11)]
ez—’?s i
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