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Abstract—The main objective of this paper is to provide an 

overview of some quantum computation concepts. 

An important concept is the Quantum Nonlocality, which was 

introduced by an intriguing EPR (Einstein-Podolsky-Rosen) 

theoretical experiment. This concept was also explored in form of 

games like the PR (Popescu-Rohrlich) box, and GHZ 

(Greenberger–Horne–Zeilinger) game to emphasize the power of 

quantum mechanics. Bell’s contribution was fundamental to 

comprehend that the hidden value argument couldn’t be the 

explanation for the obtained results. This paper will explore those 

experiments and games assuring that quantum superposition and 

quantum entanglement are real by explaining them 

mathematically. 

More complex quantum algorithms only make sense if it solves 

problems that classical computation algorithms cannot solve. And 

this is exactly what happens with the large number factorization 

problem, which today cannot be solved by classical computers and 

theoretically can be solved by quantum computers. Although this 

seems to be good, there are some inherent security risks, because 

today this difficulty is explored to make classical encryption code 

such as RSA (Rivest–Shamir–Adleman). This paper will also 

explain how Shor’s Algorithm (which solves the large factoring 

problem) could be used to break RSA encryption code. 

Index Terms— Quantum Nonlocality, EPR Experiment, PR 

Boxes, GHZ Game, Quantum Computation, Shor’s Algorithm 

I. INTRODUCTION 

 

The computer science field started with the theoretical study 

of algorithms (sequence of computational steps that transform 

a set of values which can be called input into other sets of values 

that are called output [1]). The classical computer science field 

was born in 1936 when Alan Turing [2] attempted to prove that 

mathematician David Hilbert’s decision problem 

(Entscheidungsproblem) solution was true. In this problem, 

David Hilbert believed that there was an algorithm that could 

tell if a proposition was universally valid, given all the axioms 

of math. Turing developed a model for computation (now 

known as the Turing machine) that proved Hilbert's decision 

problem was surprisingly not true. Later, Church–Turing thesis 

corroborated that any algorithm can be run in a Turing machine. 

Until this day, if an algorithm cannot be run in the Turing 

machine, then it’s not computable. In fact, even a Turing 

machine can be simulated in a (Universal) Turing machine. 

 

 
 

Turing Machine is an abstract representation that defines the 

mathematical model of a computer and this was the first 

software representation of the computer field. 

In 1945, von Neumann proposed a complementary 

theoretical architecture that would be the baseline to construct 

a classical computer. The innovation consisted in saving a 

program and its data in memory before writing the output [3]. 

The architecture proposed by Von Neumann is now used in all 

classical computers. 

Von Neumann architecture contains the following 

components: a CPU (Central Processing Unit), a memory unit, 

an input and output devices. 

In 1947, John Bardeen, Walter Brattain, and Will Shockley 

developed the transistor that helped computer hardware to grow 

rapidly [4]. The growth was so fast that in 1965, Gordon Moore 

stated that the computer power would increase once every two 

years, keeping the cost constant (Moore’s law) [5]. To increase 

power one needs to increase the number of transistors in a dense 

integrated circuit which leads to an increase in the number of 

components on a single silicon chip. However, this increase is 

not indefinitely sustainable. As the size of the chip 

approximates into atomic sizes, the laws of classical physics are 

challenged making it impossible to make more powerful 

computers. To overcome these challenges Richard Feynmann 

initiated a revolutionary thought. He stated that to simulate 

physical phenomenon’s it would be necessary to build quantum 

computers [6]. Before looking at the definition and specificities 

of quantum machines, it is relevant to notice that in 1985, David 

Deutsch introduced an important principle, the Church-Turing-

Deutsch principle [7]. He showcased that all physical processes 

can be simulated through a Quantum Turing machine which 

consists in a generalization of the previously explained 

Universal Turing Machine. 

Nowadays it is also known that quantum computers can be 

used beyond the simulation of physical phenomenons. 

Quantum computers can do very specific tasks such as 

searching in large datasets, assisting in drug development, and 

supporting traffic route optimization in a significantly shorter 

time when compared to classical computing. Even though it is 

true that quantum computers can perform all the tasks of 

classical computers, it is not true they should be used as a 

replacement. On one hand, quantum machines are extremely 
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expensive and therefore industry scalability is not viable. On 

the other hand, using such machines to perform relatively 

simple (or not overly complex) tasks would not bring relevant 

gains or benefits for the user (the trade-off between the time 

saved and the resources/energy allocated to use the computer is 

not justified). 

II. QUANTUM NONLOCALITY 

 

Quantum Nonlocality was a very controversial principle 

when discovered. The topic is counterintuitive being Einstein 

the first person to find this intriguing. 

 

A. Einstein-Podolsky-Rosen thought experiment 

 

Quantum Nonlocality was and still is a counterintuitive 

principle because it indicates that one particle property can be 

influenced by a different particle in a faraway distance and this 

is made instantaneously (meaning in a velocity greater than the 

velocity of light).  

This was so controversial, that Einstein claimed that 

properties of a particle in region B cannot be affected by 

properties of another particle on faraway region A, rejecting the 

so-called spooky actions at a distance [8]. Einstein advocated 

that each particle should have hidden values and these hidden 

values would explain the correlation between two separated 

particles in each region. 

This hidden value argument started in a thought experiment 

made in 1935 by Einstein, Podolsky, and Rosen [9], but it was 

rejected mathematically by John Bell in 1964 [10] and later on 

(in the early 1980s) proved wrong experimentally by Alain 

Aspect [11]. 

 

1) EPR’s Device 

 

In this experiment, we have one device that produces two 

independent particles that go to opposite sides in each run. One 

goes to region A (Detector A) and the other to region B 

(Detector B). In each run, both particles collapse in different 

detectors with 3 different settings (1, 2 and 3) and the outcome 

will be one of the following light colors: Green or Red (G or R). 

 
Figure 1: A schematic representation of the EPR device and its two detectors 

 

After millions of runs, the two main conclusions were: 

1. When both switches have the same setting, the 

outcome is always the same color; 

2. The likelihood of the outcome being the same colors 

or different colors is equal 

 

2) Hidden Value Argument  

 

The hypothesis for explaining the correlation between colors 

of different regions was the hidden value proposition which 

stated that the particles have values before they leave the 

device. There are no links or communication between two 

particles after they leave the device (source). The detectors are 

also independent. Table 1  presents the possible outcomes 

(outputs) according to the inputs (settings) for each particle, 

once they collapse on each of their detectors. 

 
Table 1: Individual outcomes and respective combination according to the 

configuration of settings 1, 2 and 3 

1 2 3 

G G G 

G G R 

G R G 

G R R 

R G G 

R G R 

R R G 

R R R 
 

The assumption is: the outcome for one particle has a hidden 

value associated to the combination of detector settings and the 

collapse of the particle. To check if there is any type of 

correlation between the setting and the light color, it is 

necessary to check the combination of settings of both 

detectors: {11; 12; 13; 21; 22; 23; 31; 32; 33} and their 

individual outcomes{𝐺; 𝑅}. By performing this analysis, 

conclusion 2. ‘The likelihood of the outcome being the same 

colors or different colors is equal’ will be tested.   

Each run can be represented by {12GR} and this means that 

the setting in detector A is 1 and the outcome color is Green and 

the setting in detector B is 2 and the outcome color is Red. 

In the first row of Table 1, we have (GGG) for any kind of 

setting (123), which means that the two particles (A and B) will 

flash the same color G in each run. 

 
{11𝐺𝐺; 12𝐺𝐺; 13𝐺𝐺; 21𝐺𝐺; 22𝐺𝐺; 23𝐺𝐺; 31𝐺𝐺; 32𝐺𝐺; 33𝐺𝐺}

→ 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 | 𝐺𝐺𝐺) = 9/9 

 

Where 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 | 𝐺𝐺𝐺) can be read as the 

probability of flashing the same color knowing that the hidden 

value in setting 123 is GGG. 

Probability of 1 means that all runs have the same color 

output. 

In the last row of Table 1, we have (RRR) for any kind of 

setting (123), which means that the two particles (A and B) 

will flash the same color R in each run. 

 
{11𝑅𝑅; 12𝑅𝑅; 13𝑅𝑅; 21𝑅𝑅; 22𝑅𝑅; 23𝑅𝑅; 31𝑅𝑅; 32𝑅𝑅; 33𝑅𝑅}

→ 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 | 𝑅𝑅𝑅) = 9/9 = 1 

 

(Probability of 1 means that all runs have the same color 

output). 
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For the second row we have (GGR) for setting (123), which 

means that the two particles (A and B) will flash the same color 

in some of the runs. 

 
{11𝐺𝐺; 12𝐺𝐺; 21𝐺𝐺; 22𝐺𝐺; 33𝑅𝑅} → 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 | 𝐺𝐺𝑅) =

5/9. 

 

Applying the same logic for the remaining rows of Table 1 

one conclusion stands out:  

 

 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟) ≥ (5/9) (1) 
 

This contradicts the conclusion from the earlier section 

(EPR’s Device): 2. ‘The likelihood of the outcome being the 

same colors or different colors is equal.’  

Because If  
 

 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟)
+ 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟)
= 1 

(2) 

  And 

 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟) ≥ 5/9 (3) 
  Then 

 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟)
≠  𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟) 

(4) 

 

For this reason, Bell concludes that the hidden proposition 

cannot be true, meaning that there is no hidden value in each 

particle once they leave the source. 
 

3) Quantum Mechanics (QM) Argument 

 

If there is no hidden value in each particle before it leaves the 

source, a new hypothesis arises - both particles should be 

influenced by each other somehow and the particle does not 

have value until it collapses. This means that the particle is in 

superposition form before it collapses. 

a) Quantum Superposition 

 

To represent a particle, Dirac notation will be used (also 

known as bracket notation). 

In this form, one particle is represented by ket | 𝜓 ⟩:  
 

 | 𝜓 ⟩ = 𝛼 | 0 ⟩ + 𝛽 | 1 ⟩, 𝛼, 𝛽 ∈ ℂ (5) 
 

Where 𝛼 and 𝛽 are the amplitudes with probabilities of |𝛼|2 
and |𝛽|2 being |𝛼|2 + |𝛽|2 = 1. 

In this particular example, |0⟩ represents horizontally (→) 

polarized amplitude and |1⟩ represents vertically (↑) polarized 

amplitude. If the particle is only represented by only one 

amplitude then the particle is vertically or horizontally 

polarized being the other amplitude 0. 

b) Quantum Entanglement 

 

Each particle has its properties. So particle A is represented 

with | 𝜓 ⟩𝑨 and Particle B with| 𝜓 ⟩𝑩 

 

 | 𝜓 ⟩𝑨 = 𝛼𝐴 | 0 ⟩𝑨 + 𝛽𝐴 | 1 ⟩𝐴, 𝛼, 𝛽 ∈ ℂ (6) 

 | 𝜓 ⟩𝑩 = 𝛼𝐵 | 0 ⟩𝑩 + 𝛽𝐵 | 1 ⟩𝐵, 𝛼, 𝛽 ∈ ℂ (7) 
 

But when particles are entangled both states are inseparable, 

hence cannot be studied as separate states. 

 

The final state is then, simply represented by: 

 |Ψ⟩𝐴𝐵 =
1

√2
 [|00⟩𝐴𝐵 + |11⟩𝐴𝐵 ] (8) 

 

As there are three settings, this means that there are three 

types of polarization filters. Each filter is polarized at a very 

specific angle. If the angle of polarization of the particle is the 

same as the polarization filter the particle goes through the filter 

(the outcome is Green), otherwise it’s blocked (the outcome is 

Red). The particle only defines its orientation once it collapses 

on the filter. 

The three settings number are represented in Figure 2 by their 

respective angles of polarization. Each of the settings (1, 2 or 3) 

has two angles representation because they could have one of 

the two directions represented.  

 

 
Figure 2:Settings numbers 1,2 and 3 and respective angles of polarization 

 

According to the Malus Law, the probability of having the 

same outcome is given by:  

 

 𝑃(𝜃) = 𝑐𝑜𝑠2(𝜃) (9) 
 𝜃 = 𝜃𝐵 − 𝜃𝐴 (10) 
Where 𝜃 is the difference between the angle of particle B and 

particle A once they collapse the filter. 

If the settings are the same {11;22;33} they will flash the 

same color because 𝑃 (0𝑜) = cos2(0𝑜) = 1. 

If the settings are different {12;13;21;23;31;32} the particles 

have the probability of flashing the same according to 

𝑃(±300°) = 𝑃(±240°) = 𝑃(±120°) = 𝑃 (±60𝑜) =
cos2(60𝑜) = 1/4. 

Which leads to 

 

 𝑃𝑄𝑀(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟)

= 𝑃(𝑆𝑎𝑚𝑒 𝑆𝑒𝑡𝑡𝑖𝑛𝑔).𝑃(𝑓𝑙𝑎𝑠ℎ𝑖𝑛𝑔 𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 |𝑠𝑎𝑚𝑒 𝑠𝑒𝑡𝑡𝑖𝑛𝑔)
+  𝑃(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑆𝑒𝑡𝑡𝑖𝑛𝑔). 𝑃(𝑓𝑙𝑎𝑠ℎ𝑖𝑛𝑔 𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟 |𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑆𝑒𝑡𝑡𝑖𝑛𝑔) 

(11) 
 
 

 𝑃𝑄𝑀(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟) =
3

9
. 1 +

6

9
.
1

4
=
1

3
+
1

6
=
1

2
 (12) 

 

Therefore, according to the quantum mechanics hypothesis, 

the outcome same colors in both detectors is as likely as 

different colors, not contradicting the EPR experiment. 

 

 𝑃𝑄𝑀(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟) + 𝑃𝑄𝑀(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟) = 1 (13) 
 𝑃𝑄𝑀(𝑆𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟) =  𝑃𝑄𝑀(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑙𝑜𝑟) =

1

2
 (14) 
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B. Popescu-Rohrlich (PR) Box 

 

Popescu and Rohrlich invented a theoretical device [12] that 

today is also known as PR boxes. These boxes are presented as 

game boxes to demonstrate one more time that the hidden value 

argument proposed by Einstein does not explain the results 

obtained in a subatomic world.  

 

1) PR Device 

 

In this thought experiment, we have one device very similar 

to the EPRs device. The PR device produces two independent 

photons in each run that goes to opposite sides. One goes to 

region A (Detector A) and the other goes to region B (Detector 

B). In each run, both photons collapse in different detectors 

with 2 different polarization filters (0, 1) and the outcome will 

be one of the following values: (0, 1). 

 
Figure 3: A schematic representation of the PR device and its two detectors 

 

2) Hidden Value Argument  

 

Table 2 shows the possible outcomes (outputs) according to 

the inputs (settings), for each particle, once they collapse on 

each of their detectors if a hidden values argument is used.  

In the first two columns, the assumption is that both photons 

have a hidden polarization defined, once they leave the source 

and that this will define if the photon goes through or if it is 

blocked once it collapses on the polarization filter: 

A. The Photon is always blocked by the polarization filter 

(independently of its value) meaning that the outcome 

value on the detector is always 0; 

B. The Photon always passes by polarization filter 

(independently of its value) meaning that the outcome 

value on the detector is always 1; 

C. The Photon is blocked or passes by a polarization filter 

according to the value of the polarization filter: 

 If the polarizer has a value of 0 the photon is 

blocked meaning that the outcome value on 

the detector is always 0; 

 If the polarizer has a value of 1 the photon 

passes, meaning that the outcome value on 

the detector is always 1; 

D. The Photon is blocked or passes by a polarization filter 

according to the opposite value of the polarization 

filter: 

 If the polarizer has a value of 0 the photon 

passes, meaning that the outcome value on 

the detector is always 1; 

 If the polarizer has a value of 1 the photon is 

blocked,  meaning that the outcome value on 

the detector is always 0. 

The value x represents the value of the setting of detector A 

and y the value of the setting of detector B. Value a is the value 

of the outcome in detector A and b is the outcome value in 

detector B. 

 
Table 2: Table of probabilities of scoring according to combination chosen 
Photon 

A 
hidden’s 

value 

Photon 
B 

hidden’s 
value 

Results 
for x=0 

and 
y=0 

Results 
for x=0 

and 
y=1 

Results 
for x=1 

and 
y=0 

Results 
for x=1 

and 
y=1 

Probability 
of Scoring 

A A a = 0;b = 0 a = 0;b = 0 a = 0;b = 0 a = 0;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

A B a = 0;b = 1 a = 0;b = 1 a = 0;b = 1 a = 0;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

A C a = 0;b = 0 a = 0;b = 1 a = 0;b = 0 a = 0;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

A D a = 0;b = 1 a = 0;b = 0 a = 0;b = 1 a = 0;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

B A a = 1;b = 0 a = 1;b = 0 a = 1;b = 0 a = 1;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

B B a = 1;b = 1 a = 1;b = 1 a = 1;b = 1 a = 1;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

B C a = 1;b = 0 a = 1;b = 1 a = 1;b = 0 a = 1;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

B D a = 1;b = 1 a = 1;b = 0 a = 1;b = 1 a = 1;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

C A a = 0;b = 0 a = 0;b = 0 a = 1;b = 0 a = 1;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

C B a = 0;b = 1 a = 0;b = 1 a = 1;b = 1 a = 1;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

C C a = 0;b = 0 a = 0;b = 1 a = 1;b = 0 a = 1;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

C D a = 0;b = 1 a = 0;b = 0 a = 1;b = 1 a = 1;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

D A a = 1;b = 0 a = 1;b = 0 a = 0;b = 0 a = 0;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

D B a = 1;b = 1 a = 1;b = 1 a = 0;b = 1 a = 0;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

D C a = 1;b = 0 a = 1;b = 1 a = 0;b = 0 a = 0;b = 1 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟑

𝟒
 

D D a = 1;b = 1 a = 1;b = 0 a = 0;b = 1 a = 0;b = 0 
𝑷𝒉𝒗(𝑺𝒄𝒐𝒓𝒆)

=
𝟏

𝟒
 

 

In this table the 𝑃ℎ𝑣(𝑆𝑐𝑜𝑟𝑒|𝑙𝑖𝑛𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) is 

calculated, similarly, in each line. 

Bellow the example, where 𝑙𝑖𝑛𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝐴𝐴 (first 

line of the table) 

 

 𝑃ℎ𝑣(𝑆𝑐𝑜𝑟𝑒|𝐴𝐴) =
𝑆𝑐𝑜𝑟𝑒𝐴𝐴_𝑇𝑜𝑡𝑎𝑙
𝑁𝐴𝐴_𝑇𝑜𝑡𝑎𝑙

 (15) 

 

𝑁𝐴𝐴_𝑇𝑜𝑡𝑎𝑙 is the number total of possible choices and 

𝑆𝑐𝑜𝑟𝑒𝐴𝐴_𝑇𝑜𝑡𝑎𝑙 is the sum of each score: 𝑆𝑐𝑜𝑟𝑒𝐴𝐴(𝑥 = 0; 𝑦 =
0), 𝑆𝑐𝑜𝑟𝑒𝐴𝐴(𝑥 = 0; 𝑦 = 1), 𝑆𝑐𝑜𝑟𝑒𝐴𝐴(𝑥 = 1; 𝑦 = 0) and 

𝑆𝑐𝑜𝑟𝑒𝐴𝐴(𝑥 = 1; 𝑦 = 1). Each score value is calculated 

accordingly to Table 3 

 
Table 3: Score Combination according to the input of Detector A (𝑥0, 𝑥1) and 

B(𝑦0, 𝑦1) 
 x=0 (𝒙𝟎) x=1 (𝒙𝟏) 

y=0 (𝒚𝟎) If a=b, then score = 1 
else score = 0 

If a=b, then score = 1 
else score = 0 

y=1 (𝒚𝟏) If a=b, then score = 1 
else score = 0 

If a≠ b, then score = 1 
else score = 0 

 

In the remaining rows (𝑙𝑖𝑛𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈
{𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐴, 𝐵𝐵, 𝐵𝐶, 𝐵𝐷, 𝐶𝐴, 𝐶𝐵, 𝐶𝐶, 𝐶𝐷, 𝐷𝐴, 𝐷𝐵, 𝐷𝐶, 𝐷𝐷}
), the same logic of the first row is used (𝑙𝑖𝑛𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝐴𝐴).  

In conclusion :  
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 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑐𝑜𝑟𝑒) ≤ 75% (16) 
 

This means that in the best case scenario it is possible to win 

the game 3 out of 4 times (75%) using the hidden value 

proposition. 

 

3) Quantum Mechanics (QM) Argument 

 

In the previous subchapter was demonstrated that the 

maximum probability of scoring (running a successful 

simulation) using the hidden value proposition was 
3

4
. In this 

subchapter, the same probability will be calculated using the 

quantum mechanics proposition. 

As seen in the EPRs subchapter, both photons are entangled 

and cannot be studied individually. They will leave the source 

in the following state. 

 

 |Ψ⟩𝐴𝐵 =
1

√2
 [|00⟩𝐴𝐵 + |11⟩𝐴𝐵 ] (17) 

 

They are in a superposition state and the only thing that is 

possible to conclude before their collapse in their respective 

detectors is that they both have 
1

2
 chances of collapsing as 0 

(blocked) and 
1

2
 chances of collapsing as 1 (passing through the 

polarizer). Both photons, A and B, will have the same 

polarization once they collapse on detectors. The outcome will 

be 0 or 1 according to the polarization of the filters settings on 

Detector A and Detector B. 

In this example, polarization filters (represented by the 

settings) have different axes in both detectors. Detector A is 

represented by either 𝑥 = 0 or 𝑥 = 1 (with an angle of 45° 
between them). Detector B is represented by either 𝑦 = 0 or 

𝑦 = 1(with an angle of 45° between them). 
 

Figure 4 demonstrates the angle between axes of Detector A 

and B altogether. 

 
Figure 4: Polarization filter directions and angles between 4 different values 

of x and y 

According to the Malus Law, the probability of having the 

same outcome is given by:  

 𝑃𝑠 = 𝑐𝑜𝑠
2(𝜃) (18) 

 𝜃 = 𝜃𝐵 − 𝜃𝐴 (19) 
Where 𝜃 is the difference between the angle of particle B and 

particle A once they collapse the filter. 

Following the same law, the probability of having a different 

outcome is given by: 

 𝑃𝑑 = sin
2(𝜃) (20) 

 𝜃 = 𝜃𝐵 − 𝜃𝐴 (21) 

Referring back to Figure 4, if the combination of the settings 

in detector A and B are {00;01;10} then the probability of 

having the same outcome is given by 𝑃𝑠 (22,5
𝑜) =

cos2(22,5𝑜). 
If the settings are {11} the probability of having the different 

outcome is 𝑃𝑑  (67,5
𝑜) = sin2(67,5𝑜) = cos2(22,5𝑜). 

This leads to: 

 

 𝑃𝑄𝑀(𝑆𝑐𝑜𝑟𝑒) = 𝑃(𝑥0; 𝑦0). 𝑃(𝑎 = 𝑏 |𝑥0; 𝑦0) +  𝑃(𝑥0; 𝑦1). 𝑃(𝑎 = 𝑏 |𝑥0; 𝑦1)

+ 𝑃(𝑥1; 𝑦0). 𝑃(𝑎 = 𝑏 |𝑥1; 𝑦0)
+ 𝑃(𝑥1; 𝑦1). 𝑃(𝑎 ≠ 𝑏 |𝑥1; 𝑦1) 

(22) 

 𝑃𝑄𝑀(𝑆𝑐𝑜𝑟𝑒) =
1

4
. cos2(22,5𝑜) +

1

4
. cos2(22,5𝑜) +

1

4
. cos2(22,5𝑜)

+
1

4
. sin2(67,5𝑜) 

(23) 

 𝑃𝑄𝑀(𝑆𝑐𝑜𝑟𝑒) = cos
2(22,5𝑜) =

1

4
(2 + √2) ≈  85% (24) 

 

In conclusion, we have a better probability of scoring using 

quantum mechanics preposition than using hidden values 

preposition. 

 𝑃ℎ𝑖𝑑𝑑𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑆𝑐𝑜𝑟𝑒) < 𝑃𝑄𝑀(𝑆𝑐𝑜𝑟𝑒) (25) 
 

C. Greenberger–Horne–Zeilinger (GHZ) Game 

 

The Greenberger–Horne–Zeilinger (GHZ) experiment is 

another important experiment that explains nonlocality with an 

entanglement involving three particles. This leads to a new state 

(state of three entangled particles) proposed in 1989, by the 

article Bell's theorem without inequalities [13], in which 

statistical analysis is not required to contradict hidden variables 

theory, showing the accuracy of quantum mechanics argument. 

 

1) GHZ Device 

 

This device has a source that produces three photons, one 

goes to region A (Detector A), the second goes to region B 

(Detector B) and the third goes to region C (Detector C). In each 

run, three photons collapse in different detectors with 2 

different polarization filters (X, Y) and the outcome will be one 

of the following values: (+1, -1). 

 

 
Figure 5: A schematic representation of the GHZ device and its three detectors 

2) Hidden Value Argument  

 

Table 4 shows the combined outcomes (outputs), according 

to the inputs (settings) for each particle once they collapse on 
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each of their detectors if a hidden values argument is used. 

 
Table 4: Measurement for the combined value of possible outcomes to 

succeed 

 

The detectors could have settings X or Y (polarized filters in 

x or y-direction). 

The individual values of measurement (𝑎, 𝑏 𝑜𝑟 𝑐) could be 

either +1 (photon passes through the polarizer) or -1 (photon is 

blocked). 

The combined value of the outcome 𝑚𝑎𝑏𝑐 is a multiplication 

of their values 𝑎, 𝑏 𝑎𝑛𝑑 𝑐. 
In summary, although there are 8 possible arrangements 

{𝑋𝑋𝑋;𝑋𝑌𝑌; 𝑌𝑋𝑌; 𝑌𝑌𝑋; 𝑌𝑋𝑋; 𝑋𝑌𝑋; 𝑋𝑋𝑌; 𝑌𝑌𝑌}, there are only 

4 arrangements of settings with relevant useful information in 

the context under study {𝑋𝑋𝑋; 𝑋𝑌𝑌; 𝑌𝑋𝑌; 𝑌𝑌𝑋}. 
Choosing the value for X in detector A, B and C of +1, it is 

easy to conclude that the combined measurement is +1. 

This means that, to continue to have a successful simulation, 

the output of detectors B and C,  knowing that Y is the input for 

both, should have opposite values of output (one should have 

+1 and the other should have value -1), because the combined 

value should be -1 ( 
𝑚𝑎𝑏𝑐 = 𝑎 × 𝑏 × 𝑐 = −1). It is possible to make again an 

arbitrary choice (because there are two possible choices) of 

having an output of -1 for detector B, if Y is the input and +1 

for detector C, if Y is input. 

 To continue to have successful simulation, the value output 

value in detector A, knowing that the input is Y should be -1, 

otherwise, it’s impossible to get 𝑚𝑎𝑏𝑐 = 𝑎 × 𝑏 × 𝑐 = −1, 

because in earlier tables were already defined that if detector B 

has X as input then output is +1 and if detector C has Y as input 

then output is +1. 

Finally, with earlier choices we have all hidden values 

defined:  

 If Detector A has X as input, then the output is +1; 

 If Detector A has Y as input, then the output is -1; 

 If Detector B has X as input, then the output is +1; 

 If Detector B has Y as input, then the output is +1; 

 If Detector C has X as input, then the output is +1; 

 If Detector C has Y as input, then the output is -1. 

 And with these hidden values defined it’s impossible to have 

a successful simulation for the arrangement {𝑌𝑌𝑋} because the 

combined value 𝑚𝑎𝑏𝑐 = 𝑎 × 𝑏 × 𝑐 = +1, instead of -1. 

Hence, it’s only possible to win 
3

4
 of times using these hidden 

values. If  the same exercise is done for all hidden values and 

arrangements the conclusion will always be the same: it’s 

impossible to always win the game using a hidden value 

approach. 

 

3) Quantum Mechanics (QM) Argument 

 

In the previous subchapter, it was shown that it’s impossible 

to always win the game using the hidden value approach. In this 

subchapter, we will see if it’s possible to always win the game 

with the quantum mechanics approach. 

Each particle has its properties. So particle A is represented 

with | 𝜓 ⟩𝑨, Particle B with| 𝜓 ⟩𝑩 and Particle C with| 𝜓 ⟩𝑪 

 

 | 𝜓 ⟩𝑨 = 𝛼𝐴 | 0 ⟩𝑨 + 𝛽𝐴 | 1 ⟩𝐴, 𝛼, 𝛽 ∈ ℂ (26) 
 | 𝜓 ⟩𝑩 = 𝛼𝐵 | 0 ⟩𝑩 + 𝛽𝐵 | 1 ⟩𝐵, 𝛼, 𝛽 ∈ ℂ (27) 
 | 𝜓 ⟩𝑪 = 𝛼𝐶  | 0 ⟩𝑪 + 𝛽𝐶  | 1 ⟩𝐶 , 𝛼, 𝛽 ∈ ℂ (28) 

 

But when particles are entangled states are inseparable, hence 

cannot be studied as separate states. 

This means that the result of entangled photons are always 

equal when they collapse on their respective detector, as a 

result, they flash the same output with the same setting. 

 

 |Ψ⟩𝐴𝐵𝐶 =
1

√2
 [|000⟩𝐴𝐵𝐶 + |111⟩𝐴𝐵𝐶 ] (29) 

 

Not considering the entanglement factor, each measurement 

could be done in the x-axis (X) or y-axis (Y), meaning that in 

the original state a linear transformation is applied, in order the 

get measurement in the desired axis. 

To get a measurement in the x-axis, the Pauli matrix 𝜎𝑥 

should be applied to the original state: 

 

 (𝜎𝑥)|0⟩ =  |1⟩ (30) 
 (𝜎𝑥)|1⟩ =  |1⟩ (31) 

 

To get a measurement in the y-axis, the Pauli matrix 𝜎𝑦 is 

applied should be applied to the original state: 

 

 (𝜎𝑦)|0⟩ = 𝑖|1⟩ (32) 
 (𝜎𝑦)|1⟩ = −𝑖|0⟩ (33) 

 

There are 4 arrangements of settings with useful information 

in the context that is being studied {𝑋𝑋𝑋; 𝑋𝑌𝑌; 𝑌𝑋𝑌; 𝑌𝑌𝑋}, it 
is also possible to have 4 combined measurements. 

The measurements for each arrangement to the state |Ψ⟩𝐴𝐵𝐶  

are given by the eigenvalues  
𝑚𝑎𝑏𝑐 of the following transformations: 

 

 (𝜎𝑥⊗𝜎𝑥⊗𝜎𝑥)|Ψ⟩𝐴𝐵𝐶 = +|Ψ⟩𝐴𝐵𝐶 , 𝑚𝑎𝑏𝑐 = +1 (34) 
 (𝜎𝑥⊗𝜎𝑦⊗𝜎𝑦)|Ψ⟩𝐴𝐵𝐶 = −|Ψ⟩𝐴𝐵𝐶 , 𝑚𝑎𝑏𝑐 = −1 (35) 
 (𝜎𝑦⊗𝜎𝑥⊗𝜎𝑦)|Ψ⟩𝐴𝐵𝐶 = −|Ψ⟩𝐴𝐵𝐶 , 𝑚𝑎𝑏𝑐 = −1 (36) 
 (𝜎𝑥⊗𝜎𝑦⊗𝜎𝑦)|Ψ⟩𝐴𝐵𝐶 = −|Ψ⟩𝐴𝐵𝐶 , 𝑚𝑎𝑏𝑐 = −1 (37) 

Setting (r) 
in detector 
A 

Setting (s) 
in detector 
B 

Setting (t) 
in detector 
C 

Condition 
to succeed 

Measurement for the 
combined value of 
possible outcomes to 
succeed 
 𝒎𝒂𝒃𝒄 = (𝒂 × 𝒃 × 𝒄) 

𝑟 = X 𝑠 = X 𝑡 = X ODD number of 
+1’s as output 

+𝟏 × +𝟏 ×+𝟏 = +𝟏
+𝟏 × −𝟏 ×−𝟏 = +𝟏
−𝟏 × +𝟏 ×−𝟏 = +𝟏
−𝟏 × −𝟏 ×+𝟏 = +𝟏

 

𝑟 = X 𝑠 = Y 𝑡 = Y EVEN number 
of +1’s as 
output 

+𝟏 × +𝟏 ×−𝟏 = −𝟏
+𝟏 × −𝟏 ×+𝟏 = −𝟏
−𝟏 × +𝟏 ×+𝟏 = −𝟏
−𝟏 × −𝟏 ×−𝟏 = −𝟏

 

𝑟 = Y 𝑠 = X 𝑡 = Y EVEN number 
of +1’s as 
output 

+𝟏 × +𝟏 ×−𝟏 = −𝟏
+𝟏 × −𝟏 ×+𝟏 = −𝟏
−𝟏 × +𝟏 ×+𝟏 = −𝟏
−𝟏 × −𝟏 ×−𝟏 = −𝟏

 

𝑟 = Y 𝑠 = Y 𝑡 = X EVEN number 
of +1’s as 
output 

+𝟏 × +𝟏 ×−𝟏 = −𝟏
+𝟏 × −𝟏 ×+𝟏 = −𝟏
−𝟏 × +𝟏 ×+𝟏 = −𝟏
−𝟏 × −𝟏 ×−𝟏 = −𝟏
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In conclusion, we have a probability of scoring equal to 

100% using quantum mechanics. 

III. QUANTUM COMPUTATION 

A. Qubit 

 

Qubit (also known as Quantum Bit) is the fundamental unit 

of quantum computation. It is essential to make operations and 

to create algorithms to solve logic problems. In classical 

computation, the essential units are called bits and have values 

of 0 and 1. Qubits are usually represented with kets |0⟩ and |1⟩. 
In mathematical terms the units could be represented as vectors: 

  

 |0⟩ = [ 
1
0
 ] (38) 

 |1⟩ = [ 
0
1
 ] (39) 

 

In classical computation, the unit should be in one of the 

states 0 or 1, however, quantum computation allows the 

superposition between the two states |0⟩ and |1⟩. 
So one qubit could be represented by ket | 𝜓 ⟩ 
 

 | 𝜓 ⟩ = 𝛼 | 0 ⟩ + 𝛽 | 1 ⟩, 𝛼, 𝛽 ∈ ℂ (40) 
 

Where 𝛼 and 𝛽 are the amplitudes with probabilities of |𝛼|2 
,|𝛽|2 and |𝛼|2 + |𝛽|2 = 1  

 

B. Quantum Gates Representation 

 

Quantum gates represent the transformation of Qubit from 

one state to another. They are necessary to make logical 

operations. There are 2 types of quantum gates: single-qubit 

gates and multiple qubit gates.  With single-qubit gates, there is 

a logical transformation of the unit that performs the negation 

of the initial state. This Unitary and Hermitian gate is called 

NOT gate (also known as Pauli-X Gate) and could be 

represented with the following circuit diagram and as Pauli X 

matrix. 

 

 

X = [
0 1
1 0

]  

Figure 6: Circuit and matrix representation of NOT gate (Pauli-X) 

Considering that the Pauli X gate represents the rotation 

around the x-axis in the Bloch sphere, it is possible to have 

rotation around the other two axes (Y or Z). Having said this, 

Pauli-Y Gate is represented by:  

 

Y = [
0 −𝑖
𝑖 0

]  

Figure 7: Circuit and matrix representation of Pauli-Y Gate 

Pauli-Z Gate is represented by:  

 

Z = [
1 0
0 −1

]  

Figure 8: Circuit and matrix representation of Pauli-Z Gate 

Besides Pauli gates, there are several other one-bit gates.  The 

Hadamard gate is very important because it can introduce a 

superposition into a well-defined input state |0⟩ or |1⟩.   
The Hadamard gate is represented by:  

 

H =
1

√2
[
1 1
1 −1

]  

Figure 9: Circuit and matrix representation of Hadamard Gate 

Another possible gate is Phase Gate, represented in Figure  

10:  

 

S = [
1 0
0 𝑖

]  

Figure 10: Circuit and matrix representation of Phase Gate 

𝜋/8 gate (also denoted as T Gate) is represented by:  

 

T = [
1 0

0 𝑒
𝑖𝜋
4
]  

Figure 11: Circuit and matrix representation of T Gate 

It is also possible to make operations with multiple qubits. 

Quantum computation requires that all operations and gates are 

reversible, meaning that all outputs should have a unique input. 

The gate to make multiple bit operations is called the CNOT 

gate and it is represented as it follows (two-qubit 

representation): 

 

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]  

Figure 12: Circuit and matrix representation of CNOT Gate 

 

C. Quantum Parallelism 

 

In the earlier chapter, it was seen that quantum gates are 

essential to make logical operations. Although one gate is 

important, sometimes complex problems cannot be solved 

using a single gate, thus it’s necessary to have a quantum circuit 

with several gates. One big advantage used in quantum circuits 

is quantum parallelism. Quantum parallelism allows having 

Or 

X 

Y 

Z 

H 

S 

T 
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several values of output simultaneously in a single run. Bellow, 

it will be shown mathematically how that is possible.  

Considering a binary function 𝑓 and an oracle 𝑈𝑓 making the 

following transformation: 

 

 𝑈𝑓: |𝑥, 𝑦⟩ → |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩ (41) 
 

An oracle is usually used in computation to represent a black 

box containing a circuit. To explain the problem and the 

solution it’s not necessary to define the content of the black box, 

it’s only important to know the behavior. Being said that, the 

circuit representation of (41) is: 

 
Figure 13: Oracle 𝑈𝑓 transforming |𝑥, 𝑦⟩ into |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩  

If |𝑥⟩ is equal to  
|0⟩+|1⟩

√2
 (state in sobreposition) and  |𝑦⟩ is 

equal to|0⟩, then |𝜓1⟩ is: 

 

 |𝜓1⟩ = 𝑈𝑓|𝜓0⟩ (42) 
 |𝜓1⟩ = |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩ (43) 
 |𝜓1⟩ =

(|0, 𝑓(0)⟩ + |1, 𝑓(1)⟩)

√2
 (44) 

 

And this concludes that state |𝜓1⟩ contains information about 

𝑓(0) and 𝑓(1), simultaneously, in a single run.  

IV. SHOR'S ALGORITHM 

 

In this chapter, the goal is to find a period of a function using 

a quantum computation algorithm and give it a practical utility. 

The period of a function f(x) is a repetition of values at regular 

intervals of multiples k of x. Finding the period (of a periodic) 

function is the key to factoring products of large prime 

numbers. This is not an easy task, and that is why the most 

common security protocol to encrypt information nowadays 

RSA (Rivest–Shamir–Adleman) protocol exploits this 

difficulty. Shor's factoring algorithm will make breaking RSA 

protocol easier. In the next subchapters, it will be explained 

how. 

A. RSA Protocol 

 

Before trying to break the RSA protocol, it is important to 

understand how it works. 

RSA protocol is a secure encryption protocol that encrypts a 

message in a way that it’s almost impossible to decrypt by 

knowing only the encrypted message and the encryption rule 

(key). Four steps are involved: 

1. Key Generation; 

2. Key Distribution; 

3. Message encryption; 

4. Message decryption; 

In the key generation phase two keys (𝐾𝑠 and 𝐾𝑝) are 

generated 

𝐾𝑠 is the secret key (also known as private key) with 

components (𝑑 𝑎𝑛𝑑 𝑀).  
𝐾𝑝 is the public key with components (𝑒 𝑎𝑛𝑑 𝑀). 

To generate the keys the following rules should be followed: 

Choose two prime numbers (meaning that the numbers 

should have only 2 factors: 1 and themselves): 𝑝 and 𝑞 

Compute 𝑀 = 𝑝𝑞 (M equals to p times q) 

Choose 𝑒 in the way that 1 < 𝑒 < 𝜙(𝑀), where 𝜙(𝑀) =
(𝑝 − 1)(𝑞 − 1) 

Being  𝜙(𝑀) the Euler's totient function (a function that 

gives the number of integers that are coprime to M) with the 

following property:  

𝜙(𝑝) = (𝑝 − 1), a specific case of 𝜙(𝑀) = ∏  𝑀 (1 −𝑀|𝑝

1

𝑝
), for prime 𝑝 > 1 

𝜙(𝑞) = (𝑞 − 1), a specific case of 𝜙(𝑀) = ∏ 𝑀(1 −𝑀|𝑞

1

𝑞
), for prime 𝑞 > 1 

𝜙(𝑀) =  𝜙(𝑝) 𝜙(𝑞) = (𝑝 − 1)(𝑞 − 1) 
Moreover the greatest common divisor between 𝑒 and 𝜙(𝑀) 
(the largest positive integer that divides each of the integers) are 

equal to 1: gcd(𝑒, 𝜙(𝑀)) = 1 

Compute 𝑑 in the way that 1 < 𝑑 < 𝜙(𝑀), where  

𝜙(𝑀) = (𝑝 − 1)(𝑞 − 1) 

And 𝑒𝑑⏟
𝑎

≡ 1⏟
𝑏

 (𝑚𝑜𝑑 (𝜙(𝑀)⏟  
𝑆

)) 

These two integers (𝑎 and b) are said to be congruent  𝑆, if 

𝑆 > 1 ∈ 𝕫  is a divisor of their difference (a− b = k𝑆): The 

congruence relation could be written as a = k𝑆 + b 

The encryption process is described by the below example: 

Alice sends a message to Bob 

Alice receives from Bob the public key 𝐾𝑝 → (𝑀, 𝑒) 

Alice transforms the message (Text) into an integer (using 

for example the ASCII Code) T 

Alice sends to Bob ciphertext 𝐶: 

𝐶 ≡ 𝑇𝑒  (𝑚𝑜𝑑(𝑀)) 
Bob receives the message and understands the content 

Bob receives the ciphertext 𝐶 

𝐶 ≡ 𝑇𝑒  (𝑚𝑜𝑑(𝑀)) 

Having the secret key 𝐾𝑠 → (𝑀, 𝑑), bob applies d on 𝐶 

𝐶𝑑 ≡ (𝑇𝑒 (𝑚𝑜𝑑(𝑀)))
𝑑

 

Since 𝑒𝑑 ≡ 1 (𝑚𝑜𝑑(𝜙(𝑀))), the result becomes:  

𝐶𝑑 ≡  𝑇𝑒𝑑(𝑚𝑜𝑑(𝑀)) 

𝐶𝑑 ≡ 𝑇𝑒𝑑(𝑚𝑜𝑑(𝑀)) = 𝑇𝑘𝜙(𝑀)+1(𝑚𝑜𝑑(𝑀)) 

𝐶𝑑 ≡ 𝑇𝜙(𝑀)
𝑘
. 𝑇1 (𝑚𝑜𝑑 (𝑀)) 

Applying Euler’s Theorem the result becomes  

𝐶𝑑 ≡ 𝑇𝑀−1
𝑘
. 𝑇1(𝑚𝑜𝑑(𝑀)) 

Applying Fermat’s Little Theorem the result becomes 

𝐶𝑑 ≡ 1𝑘 . 𝑇1 (𝑚𝑜𝑑(𝑀)) = 𝑇 

Convert T to letters (using for example  ASCII Code) 
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B. Breaking RSA Protocol 

 

One of the practical utilities that the Shor algorithm has is 

breaking the RSA protocol. The Shor Algorithm has several 

steps that can be computed by classical computers. One of the 

steps should be performed by a quantum computer. The step 

performed by quantum computation is finding the period of 

modular arithmetic. 

Steps to break RSA protocol 

1) Firstly, to find factors (𝑝 and 𝑞) of the number 𝑀 (seen in 

the earlier subchapter), it’s necessary to find a coprime 

number 𝑎 with 𝑀 (meaning 𝑎 don’t share any common 

divisor with 𝑀 ). 

Choose an 𝑎, with the condition: 

 

 gcd (𝑎,𝑀) = 1 (45) 

2) Using quantum computation find the smallest 𝑟 of the 

function that makes the statement 𝑎𝑟𝑚𝑜𝑑(𝑀) ≡
 1 𝑚𝑜𝑑(𝑀) true. 

Being 𝑟 a period representation of the modular arithmetic of 

𝑀, 𝑟 can be repeated 𝑘 times. This means that the function 𝑓(𝑥) 
is equal to 𝑓(𝑥 + 𝑘𝑟)  

 

  𝑓(𝑥) = 𝑓(𝑥 + 𝑘𝑟) ≡ a𝑥 (𝑚𝑜𝑑(𝑀))

= a𝑥+𝑘𝑟 (𝑚𝑜𝑑(𝑀)),

𝑘 𝑎𝑛𝑑 𝑟 ∈ ℕ 

(46) 

3) Having calculated the value of 𝑟, it’s necessary to validate 

if 𝑟 is even or if it is odd. 

a) If the value of 𝑟 is odd: 

i) It’s necessary to choose a new value of 𝑎 and run 

step 1) again. 

b) If the value of 𝑟 is even: 

i) It’s necessary to calculate 𝑏: 

  𝑏 ≡ 𝑎
𝑟
2 (𝑚𝑜𝑑(𝑀)) (47) 

(1) If 𝑏 + 1 ≢ 0 (𝑚𝑜𝑑(𝑀)) then 

  {𝑝, 𝑞} = {gcd(𝑏 + 1,𝑀) , gcd(𝑏 − 1,𝑀)} (48) 

(2) Else It’s necessary to choose a new value of 

𝑎 and do step 1) again. 

Having 𝑝 and 𝑞, it’s possible to find 𝑒 and 𝑑 using the steps 

of the subchapter containing steps to compute RSA protocol. 

 

1) Quantum circuit to find period r 

 

To find period 𝑟 using quantum computation, it’s necessary 

to define the quantum circuit. 

And the circuit is defined in Figure 14.  

 
Figure 14: Shor circuit to find period 𝑟 

Now it’s possible to use quantum phase estimation on the 

unitary operator: 

 U|𝑦⟩ ≡ |𝑎𝑦 𝑚𝑜𝑑 𝑀⟩ (49) 
 

It’s possible to find the period 𝑟 (first integer different than 

zero that turns 𝑎𝑟 𝑚𝑜𝑑 𝑀 = 1) from a unitary Matrix 𝑈 with 

eigenvector |𝑢⟩ and eigenvalue 𝜆: 

 

 U|𝑢⟩ = 𝜆|𝑢⟩ (50) 
Where 𝜆 could be represented as 𝜆 = 𝑒2𝜋𝑖𝜃  as seen QPE 

subchapter (because this problem is in the fact a QPE 

disguised) 

 

 U|𝑢⟩ = 𝑒2𝜋𝑖𝜃|𝑢⟩ (51) 
 

Where the eigenvector is:  

 

 
|𝑢⟩ =

1

√𝑟
∑𝑒−

2𝜋𝑖𝑘
𝑟 |𝑎𝑘 𝑚𝑜𝑑 𝑀⟩

𝑟−1

𝑘=0

 
  (52) 

 

And the result is calculated as follows: 

 

 |𝜓0⟩ = |0⟩
⊗𝑛⊗ |𝑣⟩⊗𝑛 (53) 

 |𝜓1⟩ = (
1

√2
)
𝑛

[(|0⟩ + |1⟩)⊗𝑛] ⊗ |𝑣⟩⊗𝑛 (54) 

 |𝜓2⟩ = (
1

√2
)
𝑛

[(|0⟩ + 𝑈2𝑛−1|1⟩)⊗…

⊗ (|0⟩ + 𝑈2
0
|1⟩)] ⊗ |𝑣⟩ 

(55) 

 |𝜓2⟩ = (
1

√2𝑛
) [(|0⟩ + 𝑒2𝜋𝑖𝜃

2𝑛−1
|1⟩) ⊗…⊗ (|0⟩

+ 𝑒2𝜋𝑖𝜃
20

|1⟩)]⊗ |𝑣⟩ 

(56) 

 
|𝜓2⟩ =

1

√2𝑛
∑ 𝑒2𝜋𝑖𝑘𝜃|𝑘⟩

2𝑛−1

𝑘=0

⊗ |𝑣⟩ 
(57) 

 

The inverse QFT is given by:  

 

 
𝑈𝑄𝐹𝑇𝑁
−1 = [

1

√2𝑛
∑ ∑ 𝑒

2𝜋𝑖𝑘𝑗
2𝑛 |𝑘⟩

2𝑛−1

𝑗=0

2𝑛−1

𝑘=0

]

−1

 
(58) 

 

And the relation between phase 𝜃 and 𝑘 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 is: 

 

 𝜃 =
𝑘

2𝑛
 (59) 

 2𝑛𝜃 = 𝑘 (60) 
 

And r is given by 
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 𝑘 = 2𝑛 .
𝑠

𝑟
 (61) 

 

With 𝑠 being a random integer between 0 and 𝑟 − 1. 

Concluding the result becomes: 

 |𝜓3⟩ = |2
𝑛 .
𝑠

𝑟
⟩  ⊗ |𝑣⟩ (62) 

V. CONCLUSION 

 

As stated in the introduction, the computer field started with 

Alan Turing in 1936 [2], and the study of the quantum 

computing field started in 1982 with Richard Feynman [6]. In 

the beginning, it was a theoretical study. Then, theoretical 

concepts started to become more known and more solid. 

Concepts such as Shor’s Algorithm (originally designed to 

solve the problem of large number factorization) appeared, 

exposing some vulnerabilities of encryption codes such as RSA 

encryption code. The latest version is the RSA-2048 (which 

consists of a number with 617 decimal digits, equivalent to 

2048 bits, which are commonly used to exchange encrypted 

messages between two parties).  

In 2016, a real five-qubit computer was introduced to the 

world by IBM [14]. Although this was 5 years ago, today it is 

still not possible to have a fully functional computer with more 

than 200 qubits. 

Building a quantum computer is only useful if it can solve 

problems that no classical computer can solve in a feasible 

amount of time (such as factoring products of large prime 

numbers). When a quantum computer can do this it means that 

Quantum Supremacy was reached [15].  

The main reason for not reaching yet this era is Quantum 

Decoherence. Quantum Decoherence is the opposite of 

coherence, meaning that the result could be faulty, being 

impossible to know a result without errors and that affects the 

output result. In classical computation, the problem is solved 

mainly by adding redundancy. In quantum computation, the 

same is not possible because of the no-cloning theorem, which 

affirms that it is impossible to make a copy of a unitary state 

(qubit state) out of another unitary state [16]. There are two 

ways to solve this issue: by creating a quantum computer with 

more stable qubits or by improving quantum error correction 

techniques. Both solutions are complicated to implement, but 

there is still hope and every year we see small improvements 

that allow this field to grow.  

According to the latest state of art Google's Craig Gidney and 

KTH's Martin Ekera quantum journal paper, it will be necessary 

to build a quantum computer with 20 million qubits to break the 

RSA-2048 encryption code using an improved version of Shor's 

algorithm [17].  

Although there seems to be a  long way to go, history has 

taught us that change will happen and perhaps, sooner than we 

expect. 
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