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Abstract — A direct three-phase representation 
in power system analysis is advantageous when 
dealing with unbalanced networks under 
complex fault situations. The symmetrical 
components method, which considers that 
under certain conditions an unbalanced system 
may be represented as a superposition of three 
balanced systems, is a satisfactory solution for 
simple cases but has several limitations 
regarding complex fault analysis. Conversely, a 
direct three-phase approach can handle all kinds 
of fault situations, regardless of the additional 
computational complexity. Furthermore, with 
nowadays advanced computational means, and 
considering the necessity of a more meticulous 
and complete analysis, the obvious choice is to 
handle all fault calculations directly in the three-
phase domain. The work developed in this 
dissertation consists in a direct approach to fault 
calculations in the phase domain supported by 
computational tool MATLAB. First, the three-
phase admittance matrix of the system is built 
directly, supported by the well-known three-
phase models regarding each component. Then, 
according to the type of fault and considering its 
boundary conditions, the subsequent 
calculations are performed directly in the phase 
domain. This three-phase approach in fault 
calculations is a substantial improvement 
regarding power system analysis specially when 
dealing with complex networks and large 
number of buses. The results obtained in this 
work demonstrate that a direct three-phase 
approach is most adequate in fault analysis. This 
method, when supported by computational 
tools, can solve with less effort and more 
accurate results all the straightforward 
situations solvable by the symmetrical 
components method and countless situations 
impossible to handle by the traditional 
approach.  

Keywords — Power System Analysis; Direct Three-
phase Representation; Unbalanced Networks; 
Symmetrical Components Method; Fault Analysis; 

Fault Calculations in the Phase Domain; Three-phase 
Admittance Matrix; Three-phase Models. 

 
1. Introduction 

When we analyse a certain power system, that is 
supposed to keep continuous its power supply 
through all buses, we must consider that several 
events may occur and disturb the network. These 
events may have different natures, such as physical 
accidents, wind, lightnings, equipment failures, and 
so on. The main effect of this unpredictable 
happenings is a short circuit fault caused by a 
lightning and, in this case, we know it is a temporary 
fault. A short circuit fault happens when one phase 
wire of the transmission line touches the ground or 
when two phase wires touch each other. Also, when 
a conductor opens, we have an open conductor fault. 
Open conductor faults are series faults and short 
circuit faults are parallel faults. Although both types 
of faults have different probabilities of occurrence, it 
is important to consider both in order to be able to 
perform a complete fault analysis in any power 
system. The main purpose of this work is to 
demonstrate that the traditional method used for 
fault analysis, which is the symmetrical components 
method, is not appropriate to solve all the situations 
that we may find. On the other hand, the direct three-
phase representation method will solve all the 
problems that the traditional method already solves, 
but we can go further and solve situations that 
without this method we would not be able to. In 
order to understand the traditional method, one 
must consider that it depends on turning the three 
phasors of the system into a new kind of 
components, which are the positive, negative, and 
zero sequences. Through the years, the main 
obstacle regarding the three-phase system analysis 
was the fact for large systems the calculations were 
too much to handle for a computer in the past. For 
instances, for a system with n buses, the sequence 
method will generate three [n x n] matrices for our 
fault analysis, while the three-phase method would 
have to handle a [3n x 3n] matrix. Nowadays, with 
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the increasing computational capacity of our 
computers, we can perform all these calculations 
without much effort, even for complicated 
situations. These two methods will be tested for all 
transformer configurations, and regarding all types 
of faults and line openings, in order two verify the 
accuracy of the results obtained without 
symmetrical assumptions by the direct three-phase 
representation method. 

 
2. Symmetrical Components 

The symmetrical components method is currently 
very important tool in the analysis of unbalanced 
power systems. When a fault occurs in a three-phase 
power system it unbalances the system. If it occurs 
in an initial balanced power system, our analysis 
gets a lot easier. It is only needed to perform the 
calculations for one of the three phases because the 
other two are just phase displaced. However, for an 
unbalanced system this single-phase approach is not 
valid. In these cases, which are most common, the 
symmetrical components method is a good 
approach to perform our analysis. This method 
converts the unbalanced three-phase currents and 
voltages of the system into three sets of balanced 
ones. These three new balanced systems, the so-
called symmetrical components, are represented by 
a positive, negative, and zero sequence networks. 
This method also allows us to decouple the 
impedances of the system from each other, which 
simplifies all the calculations. 

 

Figure 1: (a), (b), (c), and (d) Progressive resolution of 
voltage vectors into sequence components. 

It is known that the generators of a symmetric three-
phase balanced system produce balanced voltages, 
with its phases displaced by 2𝜋 3⁄ = 120° from each 
other. For a three-phase system, the relation 
between phase components and sequence 
components of the voltage is given by 

𝑉𝑎𝑏𝑐 = 𝑇 𝑉012 (2.1) 

where 𝑇  represents the Fortscue’s matrix. Notice 
that the reverse transformation can also be applied 
by inverting the transformation matrix. 

 

3. Unsymmetrical Fault Calculations 

In this section each type of fault is going to be 
analysed through the sequence method. This 
approach depends on the construction of three 
distinct sequence networks seen from the faulted 
point. The first step of this procedure consists in the 
reduction of the zero, positive, and negative 
sequence networks into a single Thèvenin sequence 
impedance. This approach relies on the fact that only 
the positive sequence network has a voltage source, 
that corresponds to the pre-fault voltage, being the 
only active network. In the following sections it is 
explained how one can manage these three separate 
networks, in order to perform unsymmetrical fault 
calculations, by connecting them in a certain way. 

 

3.1. Sequence Admittance Matrix 

Considering the three sequence networks, and 
neglecting the reference node, which is always at 
ground potential, one can apply the following 
equation to build each admittance matrix 𝑌  

𝐼 = 𝑌𝑉 (1) 
where  𝑉 is the node voltage vector and 𝐼 represents 
the node injected current vector. It is most common 
to define each current flow as positive when it goes 
toward the bus, and as negative when flows away 
from the bus. Also, the node voltage vector 𝑉 
represents the bus voltages measured from the 
reference node.  Finally, 𝑌  is the bus admittance 
matrix. Rewriting Eq. (1) in its matrixial form, one 
gets the following expression  

[

𝐼1
𝐼2
⋮
𝐼𝑛

] = [

𝑌11

𝑌21

⋮
𝑌𝑛1

  

𝑌12

𝑌22

⋮
𝑌𝑛2

  

⋯
⋯
⋱
⋯

  

𝑌1𝑛

𝑌2𝑛

⋮
𝑌𝑛𝑛

] [

𝑉1

𝑉2

⋮
𝑉𝑛

] (2) 

Notice that 𝑌 is a square matrix of dimensions 𝑛 × 𝑛, 
where 𝑛  represents the number of buses in the 
system, without the reference bus. Its inverse matrix 
will be 

𝑍 = 𝑌−1 (3) 
where 𝑍  represents the bus impedance matrix, 
which can be formed simply by inverting the 
admittance matrix. This matrix is also square and of 
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dimensions 𝑛 × 𝑛 . Therefore, Eq. (1) can also be 
written as follows  

𝑉 = 𝑍𝐼 (4) 
 

3.2. Fault Current 

In order to do fault calculations, one must connect 
the faulted bus k to the ground through the fault 
impedance 𝑍𝑓 . Considering the Eq. (4), regardless 

the fault current, all the remaining node currents 
will be zero.  We can write two equations regarding 
the faulted bus k,  

𝐼𝑘 =
𝑉𝑘

𝑍𝑘𝑘

= −𝐼𝑓𝑘
(5) 

𝑉𝑘 = 𝑍𝑓𝐼𝑓𝑘
− 𝑉𝑎 (6) 

The fault current on Eq. (5) has the negative sign 
because it goes in direction do the ground, while the 
injected current goes towards the node. From Eq. (5) 
and (6), the fault current expression is given by 

𝐼𝑓𝑘
=

𝑉𝑎
𝑍𝑇ℎ

(7) 

where 𝑉𝑎  represents the Thevenin voltage of bus k 
before the fault and 𝑍𝑇ℎ = 𝑍𝑘𝑘 + 𝑍𝑓.   

 

3.2.1. Three-Phase Fault 

For a three-phase fault, all phases are short-circuited 
through equal fault impedances in series with a 
ground impedance, 𝑍𝑓 and 𝑍𝑔. This is a symmetrical 

fault, meaning that the vectorial sum of fault 
currents is three times the current in each phase. 

𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 3𝐼𝑎 (8) 
Since a three-phase fault is symmetrical,  

[

𝑉𝑎
𝑉𝑏

𝑉𝑐

] = [

𝑍𝑓 + 𝑍𝑔

𝑍𝑔

𝑍𝑔

 

𝑍𝑔

𝑍𝑓 + 𝑍𝑔

𝑍𝑔

 

𝑍𝑔

𝑍𝑔

𝑍𝑓 + 𝑍𝑔

] [

𝐼𝑎
𝐼𝑏
𝐼𝑐

] (9) 

Then, the sequence voltages are given by 

[

𝑉0

𝑉1

𝑉2

] = 𝑇−1 [

𝑍𝑓 + 𝑍𝑔

𝑍𝑔

𝑍𝑔

 

𝑍𝑔

𝑍𝑓 + 𝑍𝑔

𝑍𝑔

 

𝑍𝑔

𝑍𝑔

𝑍𝑓 + 𝑍𝑔

] 𝑇 [

𝐼0
𝐼1
𝐼2

]  

= [
𝑍𝑓 + 3𝑍𝑔

0
0

 
0
𝑍𝑓

0

 

0
0
𝑍𝑓

] [

𝐼0
𝐼1
𝐼2

] (10) 

 
Therefore, the fault current can be calculated by 

𝐼𝑎 = 𝐼1 =
𝑉𝑎

𝑍1 + 𝑍𝑓

 

𝐼𝑏 = 𝑎2𝐼1 (11) 
𝐼𝑐 = 𝑎𝐼1  

where k represents the faulted bus, and 𝑍𝑇ℎ = 𝑍1 +
𝑍𝑓 . 

 

3.2.2 Line-To-Ground Fault 

Let us assume that the fault occurs in phase 𝑎. Since 
the load current is neglected, the currents for both 
phases 𝑏  and 𝑐  are zero. The following expression 
gives us the voltage at the fault point 

𝑉𝑎 = 𝑍𝑓𝐼𝑎 (12) 
The sequence components of the currents are given 
by 

[

𝐼𝑎0

𝐼𝑎1

𝐼𝑎2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

𝐼𝑎
0
0
] =

1

3
[

𝐼𝑎
𝐼𝑎
𝐼𝑎

] (13) 

From (6), comes the following 

𝐼𝑎0 = 𝐼𝑎1 = 𝐼𝑎2 =
1

3
𝐼𝑎 (14) 

3𝐼𝑎0𝑍𝑓 = 𝑉𝑎0 + 𝑉𝑎1 + 𝑉𝑎2  
= −𝐼𝑎0𝑍0 + (𝑉𝑎 − 𝐼𝑎1𝑍1) − 𝐼𝑎2𝑍2 (15) 

The fault current can now be calculated by 

𝐼𝑎0 = 𝐼𝑎1 = 𝐼𝑎2 =
𝑉𝑎

𝑍0 + 𝑍1 + 𝑍2 + 3𝑍𝑓

(16) 

and 𝑍𝑇ℎ = 𝑍0 + 𝑍1 + 𝑍2 + 3𝑍𝑓 . 

And the total fault current is given by 

𝐼𝑎 = 3𝐼𝑎0 =
3𝑉𝑎
𝑍𝑇ℎ

(17) 

 

3.2.3. Line-To-Line Fault 

For a line-to-line fault, let us assume that the fault 
occurs between phases 𝑏  and 𝑐 , through a fault 
impedance 𝑍𝑓 . Therefore, the fault current only 

circulates through the faulted phases, from phase 𝑏 
to phase 𝑐. 

𝐼𝑎 = 0  
𝐼𝑏 = −𝐼𝑐 (18) 

𝑉𝑏 − 𝑉𝑐 = 𝑍𝑓𝐼𝑏  
The sequence components of the currents are given 
by 

[

𝐼𝑎0

𝐼𝑎1

𝐼𝑎2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

0
−𝐼𝑐
𝐼𝑐

] =
1

3
[

0
−𝑎 + 𝑎2

−𝑎2 + 𝑎
] (19) 

From Eq. (19), 𝐼𝑎0 = 0 and 𝐼𝑎1 = −𝐼𝑎2. 

𝑉𝑏 − 𝑉𝑐 = [0 1 −1] [

𝑉𝑎
𝑉𝑏

𝑉𝑐

] = [0 1 −1] [
1 1 1
1 𝑎2 𝑎
1 𝑎 𝑎2

] [

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2

]

= [0 𝑎2 − 𝑎 𝑎 − 𝑎2] [

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2

] (20)

 

Thus, 
𝑉𝑏 − 𝑉𝑐 = (𝑎2 − 𝑎)(𝑉𝑎1 − 𝑉𝑎2)

= (𝑎2𝐼𝑎1 + 𝑎𝐼𝑎2)𝑍𝑓

= (𝑎2 − 𝑎)𝐼𝑎1𝑍𝑓 (21)

 

Which gives 
(𝑉𝑎1 − 𝑉𝑎2) = 𝐼𝑎1𝑍𝑓 (22) 

Also 

𝐼𝑏 = (𝑎2 − 𝑎)𝐼𝑎1 = −𝑗√3𝐼𝑎1 (23) 

The sequence fault current can now be calculated by 

𝐼𝑎1 = −𝐼𝑎2 =
𝑉𝑎

𝑍1 + 𝑍2 + 𝑍𝑓

(24) 

and 𝑍𝑇ℎ = 𝑍1 + 𝑍2 + 𝑍𝑓 .  

The fault current is given by 

𝐼𝑏 = −𝐼𝑐 = −𝑗√3
𝑉𝑎
𝑍𝑇ℎ

(25) 
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3.2.4. Double-Line-To-Ground Fault 

For a double line-to-ground fault, let us assume that 
phases 𝑏  and 𝑐  go to ground through two fault 
impedances 𝑍𝑓 , and a ground impedance 𝑍𝑔 . 

Therefore, 𝐼𝑎 = 0, which implies 𝐼𝑎0 + 𝐼𝑎1 + 𝐼𝑎2 = 0.  
The voltage at the faulted point is given by 

𝑉𝑏 = (𝑍𝑓 + 𝑍𝑔)𝐼𝑏 + 𝑍𝑔𝐼𝑐 (26) 
𝑉𝑐 = (𝑍𝑓 + 𝑍𝑔)𝐼𝑐 + 𝑍𝑔𝐼𝑏 (27) 

And the sequence components of the voltages can be 
written as follows  

[

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

𝑉𝑎
𝑉𝑏

𝑉𝑐

]

=
1

3
[

𝑉𝑎 + 𝑉𝑏 + 𝑉𝑐
𝑉𝑎 + (𝑎 + 𝑎2)𝑉𝑏

𝑉𝑎 + +(𝑎 + 𝑎2)𝑉𝑏

] (28)

 

which gives 𝑉1 = 𝑉2, and 

𝑉0 =
1

3
(𝑉𝑎 + 2𝑉𝑏)

=
1

3
[(𝑉0 + 𝑉1 + 𝑉2) + 2(𝐼𝑏 + 𝐼𝑐)𝑍𝑓]

=
1

3
[(𝑉0 + 2𝑉1) + 2(3𝐼0)𝑍𝑓]

= 𝑉1 + 3𝐼0𝑍𝑓 (29)

 

The fault current can now be calculated by 

𝐼𝑎1 =
𝑉𝑎

(𝑍1 + 𝑍𝑓) + [(𝑍2 + 𝑍𝑓)||(𝑍0 + 𝑍𝑓 + 3𝑍𝑔)]

=
𝑉𝑎

(𝑍1 + 𝑍𝑓) +
(𝑍2 + 𝑍𝑓)(𝑍0 + 𝑍𝑓 + 3𝑍𝑔)

(𝑍2 + 𝑍𝑓) + (𝑍0 + 𝑍𝑓 + 3𝑍𝑔)

(30)
 

and 𝑍𝑇ℎ = (𝑍1 + 𝑍𝑓) +
(𝑍2+𝑍𝑓)(𝑍0+𝑍𝑓+3𝑍𝑔)

(𝑍2+𝑍𝑓)+(𝑍0+𝑍𝑓+3𝑍𝑔)
. 

 

3.2.5. One-Conductor Open Fault 

Let us consider that the conductor with respect to 
phase 𝑎 is open. 

𝐼�̅� = 0 (31) 

𝐼�̅�
(0)

+ 𝐼�̅�
(1)

+ 𝐼�̅�
(2)

= 0 (32) 

�̅�𝑘𝑘′,𝑏 = 0, �̅�𝑘𝑘′,𝑐 = 0 (33) 

The voltages across the two unbroken phase 
conductors are zero and the current on the broken 
phase conductor is also zero at the point of break. 

[

�̅�𝑎
(0)

�̅�𝑎
(1)

�̅�𝑎
(2)

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

�̅�𝑘𝑘′,𝑎

0
0

] =
1

3
[

�̅�𝑘𝑘′,𝑎

�̅�𝑘𝑘′,𝑎

�̅�𝑘𝑘′,𝑎

] (34) 

�̅�𝑎
(0)

= �̅�𝑎
(1)

= �̅�𝑎
(2)

=
1

3
�̅�𝑘𝑘′,𝑎 (35) 

Considering the equations above, one can conclude 
that the sequence networks can be connected in 
parallel. The positive sequence current, regarding 
phase 𝑎, is given by 

𝐼�̅�
(1)

= 𝐼�̅�𝑗
�̅�

𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(1)

+
�̅�

𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(2)

�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(2)

= 𝐼�̅�𝑗
�̅�

𝑘𝑘′
(1)

(�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(2)

)

�̅�
𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(1)

+ �̅�
𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(2)

+ �̅�
𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(2)

(36)

 

 The sequence voltage drops can be computed as 

�̅�
𝑘𝑘′
(1)

= 𝐼�̅�
(1) �̅�

𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(2)

�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(2)

(37) 

 Substituting 𝐼�̅�
(1)

 from Eq. (3.36), the expression can 
be simplified as 

�̅�
𝑘𝑘′
(0)

= �̅�
𝑘𝑘′
(1)

= �̅�
𝑘𝑘′
(2)

= 𝐼�̅�𝑗
�̅�

𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(2)

�̅�
𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(1)

+ �̅�
𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(2)

+ �̅�
𝑘𝑘′
(0)

�̅�
𝑘𝑘′
(2)

(38)
 

where 𝐼�̅�𝑗  is the pre-fault current in phase 𝑎 between 

buses 𝑖 and 𝑗. 
 

3.2.6. Two-Conductor Open Fault 

Now, let us assume that the conductors of phases b 
and c are open-circuited.  

�̅�
𝑘𝑘′

𝑎

(1)
= �̅�𝑎

(0)
+ �̅�𝑎

(1)
+ �̅�𝑎

(2)
= 0 

𝐼�̅� = 0 (39) 
𝐼�̅� = 0 

The voltage across the unbroken phase conductor is 
zero and the currents on the broken phase 
conductors are also zero at the point of break. 

[

𝐼�̅�
(0)

𝐼�̅�
(1)

𝐼�̅�
(2)

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [

𝐼�̅�
0
0

] (40) 

𝐼�̅�
(0)

= 𝐼�̅�
(1)

= 𝐼�̅�
(2)

=
1

3
𝐼�̅� (41) 

Considering the equations shown above one can 
conclude that the sequence networks can be 
connected in series. The sequence currents can be 
computed as follows 

𝐼�̅�
(0)

= 𝐼�̅�
(1)

= 𝐼�̅�
(2)

= 𝐼�̅�𝑗
�̅�

𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(1)

+ �̅�
𝑘𝑘′
(2)

(42) 

where  𝐼�̅�𝑗  is the pre-fault current in phase 𝑎 

between buses 𝑖 and 𝑗. Then, the sequence voltages 
are given by 

�̅�𝑘𝑘′
(0)

= −𝐼�̅�
(0)

�̅�𝑘𝑘′
(0)

= −𝐼�̅�𝑗
�̅�𝑘𝑘′

(1)
�̅�𝑘𝑘′

(0)

�̅�𝑘𝑘′
(0)

+ �̅�𝑘𝑘′
(1)

+ �̅�𝑘𝑘′
(2)

 

�̅�
𝑘𝑘′
(1)

= 𝐼�̅�
(1)

(�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(2)

) = 𝐼�̅�𝑗
�̅�

𝑘𝑘′
(1)

(�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(2)

)

�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(1)

+ �̅�
𝑘𝑘′
(2)

 

�̅�
𝑘𝑘′
(2)

= −𝐼�̅�
(2)

�̅�
𝑘𝑘′
(2)

= −𝐼�̅�𝑗
�̅�

𝑘𝑘′
(1)

�̅�
𝑘𝑘′
(2)

�̅�
𝑘𝑘′
(0)

+ �̅�
𝑘𝑘′
(1)

+ �̅�
𝑘𝑘′
(2)

(3.43) 
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3.3. Post-Fault Voltages 

The post-fault voltages for the zero, positive, and 
negative sequence networks are given by 

𝑉𝑖
012 = 𝑉𝑝𝑟𝑒

012 + ∆𝑉𝑖
012 = [

0
𝑉𝑎
0

] +

[
 
 
 
 −𝑍𝑖𝑘

(0)
𝐼𝑓𝑘
(0)

−𝑍𝑖𝑘
(1)

𝐼𝑓𝑘
(1)

−𝑍𝑖𝑘
(2)

𝐼𝑓𝑘
(2)

]
 
 
 
 

(44) 

where n represents the number of buses. 
 

3.3. Post-Fault Line Currents  

The post-fault voltages for the zero, positive, and 
negative sequence networks are given by 

𝐼𝑖𝑗
012 =

𝑉𝑖
012 − 𝑉𝑗

012

𝑧𝑖𝑗
012 =

[
 
 
 
 
 
 
 
 𝑉𝑖

(0)
− 𝑉𝑗

(0)

𝑧𝑖𝑗
(0)

𝑉𝑖
(1)

− 𝑉𝑗
(1)

𝑧𝑖𝑗
(1)

𝑉𝑖
(2)

− 𝑉𝑗
(2)

𝑧𝑖𝑗
(2)

]
 
 
 
 
 
 
 
 

 (45) 

where 𝑧�̅�𝑗  corresponds to the primitive impedance 

between buses 𝑖 and 𝑗. 

 

4. Direct Three-Phase Representation 

4.1. Three-Phase Models 

This section shows how one can model the 
components in a three-phase form in order to apply 
the direct three-phase representation method for 
fault analysis in a power system.   

 

4.2. Three-Phase Admittance Matrix 

Once all the system components are modelled, one 
can start building the three sequences admittance 
matrices. In order to perform a phase domain 
analysis, one must transform these sequence 
matrices into three-phase domain matrices. Then, 
the nodal branch-to-branch incidence matrix is 
given by: 

            1 2 … 𝑛 

𝐴 =

1
2
⋮
𝑚

[

𝑎11

𝑎21

⋮
𝑎𝑚1

 

𝑎12

𝑎22

⋮
𝑎𝑚2

 

…
…
⋱
…

 

𝑎1𝑛

𝑎2𝑛

⋮
𝑎𝑚𝑛

] (46) 

Where  𝑎𝑝𝑞 = 

{
   𝑈,
−𝑈,

   𝑍𝑒𝑟𝑜,
 
𝑖𝑓 𝑞 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 − 𝑒𝑛𝑑 𝑏𝑢𝑠 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑝
𝑖𝑓 𝑞 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 − 𝑒𝑛𝑑 𝑏𝑢𝑠 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑝

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

where 𝑈 is a [3𝑥3] identity matrix and 𝑍𝑒𝑟𝑜 a [3𝑥3] 
zero matrix, being 𝑚 the total number of lines, and 

𝑛  the total number of buses. Next, one must build 
the branch series impedance matrix for 𝑛 elements, 
without the transformer branch impedances, as 
follows: 

𝑧𝑎𝑏𝑐 =

[
 
 
 
𝑧1

𝑎𝑏𝑐 𝑍𝑒𝑟𝑜

𝑍𝑒𝑟𝑜 𝑧2
𝑎𝑏𝑐

⋯ 𝑍𝑒𝑟𝑜
⋯ 𝑍𝑒𝑟𝑜

⋮ ⋮
𝑍𝑒𝑟𝑜 𝑍𝑒𝑟𝑜

⋱ ⋮
⋯ 𝑧𝑛

𝑎𝑏𝑐 ]
 
 
 

(47) 

Then, one can easily obtain the branch series 
admittance matrix from the expression above, and it 
is given by: 

𝑦𝑎𝑏𝑐 = (𝑧𝑎𝑏𝑐)−1 (48) 
Finally, the entire three-phase admittance matrix for 
a n-Bus system is given by: 

𝑌𝑎𝑏𝑐 = 𝐴𝑇𝑦𝑎𝑏𝑐𝐴 =

[
 
 
 
𝑌11

𝑎𝑏𝑐

𝑌21
𝑎𝑏𝑐

⋮
𝑌𝑛1

𝑎𝑏𝑐

 

𝑌12
𝑎𝑏𝑐

𝑌22
𝑎𝑏𝑐

⋮
𝑌𝑛2

𝑎𝑏𝑐

 

…
…
⋱
…

  

𝑌1𝑛
𝑎𝑏𝑐

𝑌2𝑛
𝑎𝑏𝑐

⋮
𝑌𝑛𝑛

𝑎𝑏𝑐]
 
 
 

(49) 

Since this matrix does not include the shunt 
elements, one must perform some changes to it. 
First, the generators must be included. 

𝑌𝑖𝑖
𝑎𝑏𝑐 = 𝑌𝑖𝑖

𝑎𝑏𝑐 + 𝑦𝑔
𝑎𝑏𝑐 (50) 

Then, one must include all transformers. Let us 
consider one connected between buses 𝑖 and 𝑗.  

𝑌𝑖𝑖
𝑎𝑏𝑐 = 𝑌𝑖𝑖

𝑎𝑏𝑐 + �̅�𝑛𝑜𝑑𝑒𝑖𝑖
− 𝑈 

𝑌𝑖𝑗
𝑎𝑏𝑐 = 𝑌𝑖𝑗

𝑎𝑏𝑐 + �̅�𝑛𝑜𝑑𝑒𝑖𝑗
+ 𝑈 (51) 

𝑌𝑗𝑖
𝑎𝑏𝑐 = 𝑌𝑗𝑖

𝑎𝑏𝑐 + �̅�𝑛𝑜𝑑𝑒𝑗𝑖
+ 𝑈 

𝑌𝑗𝑗
𝑎𝑏𝑐 = 𝑌𝑗𝑗

𝑎𝑏𝑐 + �̅�𝑛𝑜𝑑𝑒𝑗𝑗
− 𝑈 

Finally, the three-phase admittance matrix of the 
system is completed.  

𝑌𝑎𝑏𝑐 = 𝑍𝑎𝑏𝑐−1
 (52) 

 

4.3. Fault Current 

The fault impedance, for different types of faults, can 
be defined as shown in Fig. 2. It is represented by the 
fault impedances, regarding each phase, and by the 
ground impedance.  

 

Figure 2: Fault impedances. 
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This set of impedances can be considered in a matrix 
form, given by 𝑍𝑓

𝑎𝑏𝑐  and 𝑍𝑔, as shown below. 

𝑍𝑓
𝑎𝑏𝑐 = [

𝑍𝑓𝑎 0 0

0 𝑍𝑓𝑏 0

0 0 𝑍𝑓𝑐

] (53) 

𝑍𝑔 = [

𝑧𝑔 𝑧𝑔 𝑧𝑔

𝑧𝑔 𝑧𝑔 𝑧𝑔

𝑧𝑔 𝑧𝑔 𝑧𝑔

] (54) 

where 𝑍𝑓𝑎,𝑏,𝑐  represent the fault impedance of each 

phase, and 𝑧𝑔 the ground impedance. For each type 

of fault, the fault impedance will be different, 
meaning that for each case one must understand 
which of the impedances referred above must be 
considered in order to compute the fault current. Let 
𝐼𝑓𝑘

𝑎𝑏𝑐  be the fault current vector regarding a shunt 

fault at bus 𝑘 , and 𝐼𝑓
𝑎𝑏𝑐  be the total fault current 

vector. Since the fault occurs at bus 𝑘 , the fault 
current will be zero in all buses except for the faulted 
bus, as shown below.  

𝐼𝑓
𝑎𝑏𝑐 =

[
 
 
 
 
 
 
 
 

0
0
0
⋮

𝐼𝑓𝑘

𝑎𝑏𝑐

⋮
0
0
0 ]

 
 
 
 
 
 
 
 

(55) 

 Finally, let us see how to compute the fault current, 
regarding the faulted bus, for different types of 
faults. 

 

4.3.1. Three-Phase Fault 

For a three-phase fault, the total fault impedance 
includes 𝑍𝑓

𝑎𝑏𝑐  and 𝑍𝑔, as shown in Fig. 3. 

 
Figure 3: Fault impedance for a three-phase fault. 

 
The fault current at the faulted bus is given by: 

𝐼𝑓𝑘

𝑎𝑏𝑐 = (𝑍𝑘𝑘
𝑎𝑏𝑐 + 𝑍𝑓

𝑎𝑏𝑐 + 𝑍𝑔)
−1

𝑉𝑘
𝑎𝑏𝑐 (56) 

 

4.3.2. Line-To-Ground Fault 

For a single line-to-ground fault, the total fault 
impedance includes only the fault impedance 
regarding the faulted phase. Let us consider that the 
fault occurs in phase 𝑎 , as shown in Fig. 4. Then, 
𝑍𝑓𝑏 = 𝑍𝑓𝑐 = ∞ , which can be represented for 

computation purposes by:  

𝑍𝑓
𝑎𝑏𝑐 = [

𝑍𝑓𝑎 0 0

0 ∞ 0
0 0 ∞

] (57) 

 
Figure 4: Fault impedance for a line-to-ground fault. 

 
Thus, the fault current at the faulted bus is given by: 

𝐼𝑓𝑘

𝑎𝑏𝑐 = (𝑍𝑘𝑘
𝑎𝑏𝑐 + 𝑍𝑓

𝑎𝑏𝑐)−1𝑉𝑘
𝑎𝑏𝑐 (58) 

 

4.3.3. Line-To-Line Fault 

For a line-to-line fault, the only fault impedance 
considered is the impedance between the two 
faulted phases, represented by 𝑍𝑓 .  

 
Figure 5: Fault impedance for a line-to-line fault. 

 
Considering that the fault occurs between phases 𝑏 
and 𝑐 , as shown in Fig. 5, the fault current at the 
faulted bus is given by: 

𝐼𝑓𝑘

𝑎𝑏𝑐 = (𝑍𝑘𝑘
𝑏𝑏 + 𝑍𝑘𝑘

𝑐𝑐 − 𝑍𝑘𝑘
𝑏𝑐 − 𝑍𝑘𝑘

𝑐𝑏 + 𝑍𝑓)
−1

[

0
𝑉𝑘

𝑏 − 𝑉𝑘
𝑐

𝑉𝑘
𝑐 − 𝑉𝑘

𝑏
] (59) 
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4.3.4. Double-Line-To-Ground Fault 

For a double-line-to-ground fault, the total fault 
impedance includes the fault impedances regarding 
both faulted phases and the ground impedance. Let 
us consider that the fault occurs in phases 𝑏 and 𝑐, as 
shown in Fig. 6. Then, 𝑍𝑓𝑎 = ∞ , which can be 

represented by:  

𝑍𝑓
𝑎𝑏𝑐 = [

∞ 0 0
0 𝑍𝑓𝑏 0

0 0 𝑍𝑓𝑐

] (60) 

 
Figure 6: Fault impedance for a double-line-to-ground 

fault. 

Thus, the fault current at the faulted bus is given by: 
𝐼𝑓𝑘

𝑎𝑏𝑐 = (𝑍𝑘𝑘
𝑎𝑏𝑐 + 𝑍𝑓

𝑎𝑏𝑐 + 𝑍𝑔)−1𝑉𝑘
𝑎𝑏𝑐 (61) 

 

4.3.5. Open Conductor Fault 

A fault between buses, such as an open conductor 
fault, is called a series fault. Let us consider that a 
series fault occurs in the branch between buses 𝑖 
and 𝑗 . According to this assumption, 𝑍𝑇ℎ,𝑖𝑗

𝑎𝑏𝑐  is the 

6 × 6  impedance matrix, related to the faulted 
buses, obtained from the total impedance matrix of 
the system.  

𝑍𝑇ℎ,𝑖𝑗
𝑎𝑏𝑐 = [

𝑍𝑖𝑖
𝑎𝑏𝑐 𝑍𝑖𝑗

𝑎𝑏𝑐

𝑍𝑗𝑖
𝑎𝑏𝑐 𝑍𝑗𝑗

𝑎𝑏𝑐] (62) 

 Also, let the 3 × 3  primitive admittance of the 
faulted line change from 𝑌𝑙

𝑜𝑙𝑑  to 𝑌𝑙
𝑛𝑒𝑤 , and 𝑌𝑙

𝑛𝑒𝑤  is 
given by Eq. (63).  

𝑌𝑙
𝑛𝑒𝑤 = (𝑧𝑙

𝑎𝑏𝑐 + 𝑍𝑓
𝑎𝑏𝑐)

−1
(63) 

where 𝑍𝑓
𝑎𝑏𝑐  depends on the opening phases. 

 
Figure 7: Block diagram representation of Thevenin’s 

equivalent circuit for series fault. 

 
The previous procedure will result in the change of 
the four block entries in 𝑌𝑇ℎ,𝑖𝑗

𝑜𝑙𝑑 . Also, notice that 

𝑌𝑇ℎ,𝑖𝑗
𝑜𝑙𝑑 = (𝑍𝑇ℎ,𝑖𝑗

𝑜𝑙𝑑 )−1. 

∆𝑌𝑓 = 𝑌𝑙
𝑛𝑒𝑤 − 𝑌𝑙

𝑜𝑙𝑑 (64) 

The modification of the admittance matrix will 
involve addition and subtraction of ∆𝑌𝑓 , depending 

on the block entry being diagonal or non-diagonal, 
respectively.  

𝑌𝑖𝑖
𝑛𝑒𝑤 = 𝑌𝑖𝑖

𝑜𝑙𝑑 + ∆𝑌𝑓 

𝑌𝑖𝑗
𝑛𝑒𝑤 = 𝑌𝑖𝑗

𝑜𝑙𝑑 − ∆𝑌𝑓 (65) 

𝑌𝑗𝑖
𝑛𝑒𝑤 = 𝑌𝑗𝑖

𝑜𝑙𝑑 − ∆𝑌𝑓 

𝑌𝑗𝑗
𝑛𝑒𝑤 = 𝑌𝑗𝑗

𝑜𝑙𝑑 + ∆𝑌𝑓 

This step can also be represented as follows: 
𝑌𝑇ℎ,𝑖𝑗

𝑛𝑒𝑤 = 𝑌𝑇ℎ,𝑖𝑗
𝑜𝑙𝑑 + [𝐸𝑖 𝐸𝑗] �̂�𝑓  [𝐸𝑖 𝐸𝑗]𝑇 (66) 

where  �̂�𝑓  is given by 

�̂�𝑓 = [
∆𝑌𝑓 −∆𝑌𝑓

−∆𝑌𝑓 ∆𝑌𝑓
] (67) 

and 𝐸𝑖  is a block vector given by 

𝐸𝑖(𝑗) = {
𝑂3, 𝑖 ≠ 𝑗
𝐼3, 𝑖 = 𝑗

(68) 

where  𝑂3 is a 3 × 3 size matrix of zeros, and 𝐼3 is the 
identity matrix of the same size. 
 
 The post-fault voltages for a series fault are given by: 

[
𝑉𝑖

𝑛𝑒𝑤

𝑉𝑗
𝑛𝑒𝑤] = (𝐼6 + 𝑍𝑇ℎ,𝑖𝑗

𝑎𝑏𝑐 �̂�𝑓)
−1

[
𝑉𝑖

𝑜𝑙𝑑

𝑉𝑗
𝑜𝑙𝑑] (69) 

And the fault currents are given by: 

𝐼𝑓𝑖𝑗

𝑎𝑏𝑐 = 𝑌𝑙
𝑛𝑒𝑤(𝑉𝑖

𝑛𝑒𝑤 − 𝑉𝑗
𝑛𝑒𝑤) (70) 

Notice that, for a series fault, the fault current vector 
will have to entries with opposite signs, as shown 
below: 

𝐼𝑓
𝑎𝑏𝑐 =

[
 
 
 
 
 
 
 
 
 
 

0
0
0
⋮

𝐼𝑓𝑖𝑗

𝑎𝑏𝑐

−𝐼𝑓𝑖𝑗

𝑎𝑏𝑐

⋮
0
0
0 ]

 
 
 
 
 
 
 
 
 
 

(71) 
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where 𝐼𝑓𝑖𝑗

𝑎𝑏𝑐  is the fault current from bus 𝑖  to bus 𝑗 , 

and −𝐼𝑓𝑖𝑗

𝑎𝑏𝑐  from bus 𝑗 to bus 𝑖, as illustrated in Fig. 7. 

 

4.3.5.1. One-Conductor Open 

Considering that only phase 𝑎  opens, the line 
impedance regarding the opening phase is 𝑍𝑓𝑎 = ∞, 

which results in the following modification to 𝑍𝑓
𝑎𝑏𝑐 . 

𝑍𝑓
𝑎𝑏𝑐 = [

∞ 0 0
0 𝑍𝑓𝑏 0

0 0 𝑍𝑓𝑐

] (72) 

Then, one can obtain 𝑌𝑙
𝑛𝑒𝑤  and perform all the 

calculations explained above. 

𝑌𝑙
𝑛𝑒𝑤 = (𝑧𝑙

𝑎𝑏𝑐 + 𝑍𝑓
𝑎𝑏𝑐)

−1
(73) 

 

4.3.5.2. Two-Conductor Open 

In this case, let us consider that phases 𝑏 and 𝑐 are 
the faulted conductors. Thus, the line impedance 
regarding the openings phases is 𝑍𝑓𝑏 = 𝑍𝑓𝑐 = ∞ , 

which results in the following modification to 𝑍𝑓
𝑎𝑏𝑐 . 

𝑍𝑓
𝑎𝑏𝑐 = [

𝑍𝑓𝑎 0 0

0 ∞ 0
0 0 ∞

] (74) 

Thus, as in the one-conductor opening case, one can 
obtain 𝑌𝑙

𝑛𝑒𝑤 , given by Eq.73. 
 

4.4. Post-Fault Voltages 

The changes in the post-fault bus voltages are given 
by: 

∆𝑉 = −𝑍𝑎𝑏𝑐𝐼𝑓
𝑎𝑏𝑐 (75) 

Let 𝑉𝑝𝑟𝑒  be the vector that represents all the bus 

voltages before the fault. 

𝑉𝑝𝑟𝑒 =

[
 
 
 
𝑉1

𝑎𝑏𝑐

𝑉2
𝑎𝑏𝑐

⋮
𝑉𝑛

𝑎𝑏𝑐]
 
 
 

(76) 

Then, the post-fault bus voltage vector is given by: 

𝑉𝑛𝑒𝑤 = 𝑉𝑝𝑟𝑒 + ∆𝑉 (77) 

 

4.5. Post-Fault Line Currents 

In order to compute the post-fault branch currents, 
one must obtain the voltage drops regarding every 
line of the system. Considering the post-fault bus 
voltage vector, the line voltage vector is given by:  

𝑉𝑙𝑖𝑛𝑒 = 𝐴𝑉𝑛𝑒𝑤 (78) 

where 𝐴  is the nodal branch-to-branch incidence 
matrix defined in Eq. 46. 

 Then, the post-fault branch current vector can be 
computed by: 

𝐼𝑙𝑖𝑛𝑒 = 𝑌𝑙𝑖𝑛𝑒𝑉𝑙𝑖𝑛𝑒 (79) 

where 𝑌𝑙𝑖𝑛𝑒  is the branch series admittance matrix 
including the transformer branch impedances. 

 

5. Experimental Results 

In order to compare both symmetrical components 

and direct three-phase representation methods, the 

five-bus power system shown in Fig. 8 was 

considered. 

 

Figure 8: 5-Bus system. 

The simulations were performed with a calculation 

tool, MATLAB. Several cases with different data were 

considered in order to validate the three-phase 

method. First, shunt faults were tested, such as 

three-phase fault, line-to-ground fault, line-to-line 

fault and double-line-to-ground fault. Then, open 

conductor faults, also known as series faults, were 

tested for one-conductor open and two-conductor 

open cases. In addition to this, other important 

variables were considered in the fault calculations, 

such as the faulted bus, fault impedances and 

transformer configurations. The results obtained for 

all situations of fault and data, like the ones 

described above, by the direct three-phase 

representation method were the ones expected, 

being precisely the same as the ones obtained by the 

symmetrical components method. 

 

6. Conclusions 

The objective of this dissertation was to apply a 
direct three-phase method in power system fault 
analysis and compare the results with the ones 
obtained through the traditional way, the so-called 
symmetrical components method. Considering the 
results obtained, one can say that these results were 
the ones expected since they are practically the 
same. Also, they demonstrate that not only the 
symmetrical components method is a good 
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approach in certain cases but that the direct three-
phase representation method is a much reliable 
method that requires only a computer with the 
ability to perform all the calculations. The method 
proposed in this dissertation articulates several 
progresses made in this specific area of fault analysis 
regarding power systems, despite the few 
paperwork on the matter so far. This work 
assembles some concepts already explored on they 
own on the subject and makes an important 
connection between them in order to structure a 
valid and appropriate method to perform all kinds of 
fault calculations with resource to computational 
tools that can support the computational complexity 
implied. In conclusion, considering the accurate 
results obtained in this dissertation and all the 
theoretical support behind the calculations and all 
the procedures, it is fair to say that this method is 
most appropriated when it comes to fault 
calculations regarding power system analysis. 

 
7. Future Work 

Further developments in this matter could be 
achieved and this dissertation could be a good 
starting point. Since all the computations regarding 
the direct three-phase method for fault analysis in 
power systems have additional computational 
complexity when compared to the traditional 
method, a good development to this work would be 
a more rigorous computer program with a proper 
interface to allow any person to perform all the 
calculations needed regarding any type of fault and 
any kind of power system. This would be a very 
helpful tool in this field of study and a very 
interesting challenge. Also, several additional tests 
may be required to fully validate this method 
regarding any real-life situation. 
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