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The pharmaceutical supply chain is responsible for ensuring the supply of medicines in the right place, at the right time and in
the right quantity and the industry is being pressured by a shifting paradigm and by changes on the trends and concerns of the
society. The optimising of pharmaceutical supply chain networks a promising research field. Recently, various optimisation models
have been built to optimise the design of the pharmaceutical supply chain network. Firstly, a literature review on these models is
performed to provide a theoretical basis. A second literature review identify the key elements to obtain an agile supply chain. In
this work, a mixed integer linear programming model is proposed as an optimisation tool to design a supply chain network for the
pharmaceutical industry. This model addresses a multi-product, multi-active ingredient, and multi-period network. The existence
of multiple storage conditions is also proposed. The decisions supported concern the facilities’ integration into a pharmaceutical
supply chain, along with inventories, productions and distributions. The objective is minimising the total costs of the supply chain,
guaranteeing the demand satisfaction. This model is tested through an example adapted from the literature, and then applied to a
case study about the COVID-19 vaccines distribution.
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I. INTRODUCTION

The pharmaceutical industry is a key asset of the economies
of the developed countries as major high-technology industrial
employers, moving trillions of dollars annually and employing
thousands of people. Its social importance must be also
mentioned due to its direct impact on the quality of life and
healthiness of the population, which guarantees economical
sustainability of the healthcare systems [11].

To guarantee a smooth and robust connection between the
pharmaceutical industry and the final customer, it is crucial to
ensure that the Pharmaceutical Supply Chain (PSC) is up to
the task. The PSC is being constantly challenged to improve
the efficiency of the drug supply. Continuous innovation and
development of new products and technologies, the emergence
of legal barriers and licenses, patents and regulations, entry
of new competitors with new products, and the pressure
prosecuted by the government and health care providers to
widen the therapeutic indications of the drugs to other areas
and diseases, raising the investment costs and reducing the
profit margins constitute some challenges to the industry [18].
A shortage of drugs is not tolerated because if critical drugs
lack in pharmacies and hospitals, people’s health and even
their life are at risk.

The pharmaceutical industry can be defined as a complex
set of processes, operations and organisations involved in
the discovery, development and manufacture of drugs and
medications [18]. The PSC comprises a network of manu-
facturers (primary and secondary, in-house and external con-
tractors), packaging facilities, wholesalers, and final health-
care providers such as hospitals and pharmacies. According
to [18], PSC involves four indispensable echelons: primary
manufacturers, secondary manufacturers, distribution centres
(DCs) and retailers.

The PSC represents the path through which essential phar-

maceutical products are distributed to the end-users with the
right quality, at the right place and at the right time. Therefore,
PSC is complicated to manage and greatly responsible for
ensuring that the appropriate drug is delivered to the right
people at the right time and in the right situation to fight
against sickness and sufferings [12].

II. LITERATURE REVIEW

Each of the reviewed models is characterised according to
its more relevant characteristics, objective functions, outputs
(or decision that the formulation aims to support) and solution
approach, which can be exact or non-exact.

A. Exact methods

[6] proposed a multi-period mixed integer linear program-
ming MILP model to minimise the total costs of a distribution
supply chain SC considering the production processes. In
order to reduce the computational time needed, the authors
introduced several aggregation schemes and a novel MILP
model formulation which is based on a continuous represen-
tation of time. [10] extended [15] to cope with uncertainty
on the outcome of the clinical trial. [21] developed a MILP
model aiming to for multi-period enterprise-wide planning in
pharmaceutical industry. The model integrates procurement,
production, distribution and inventory strategies on a long-term
perspective, and includes inventory holding costs, material
shelf-lives, and waste treatment. [13] developed a multi-period
bi-objective MILP model to minimise the total costs and
the unmet demand. The model aims to support decisions as
locating and planning the capacity of pharmaceutical manu-
facturing centres and main and local distribution centres over
a long-term planning, along with material flows over a mid-
term planning. They used a robust possibilistic programming
approach to deal with the uncertainty. The model is tested in a
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case study. [23] built a multi-objective MILP model to design
a PSC network. To combine sustainability and resilience in the
SC, four objective functions are proposed: minimise the total
cost of the system, maximise the job opportunity and economic
development of the region, minimise the total environmental
impact and minimise the non-resilience of the network. The
authors considered five measures of resilience. The approach
is validated through numerical examples and a case study. [22]
presented a model to minimise the total cost and the unmet
demand on a pharmaceutical supply network design problem
that supports decision about facility location, and flow of prod-
ucts from facilities in different or in the same echelon of the
SC. The authors an iterative fuzzy approach. [17] developed a
MILP to minimise the costs of a location-inventory problem
on a three-echelon PSC network that support both strategic
and tactical decisions as opening manufacturing and distribu-
tion centres, material flows in the network, and the optimal
inventory policy taking into account products’ perishability.
[7] proposed a bi-objective model to find an acceptable trade-
off between the total cost minimisation and the greenhouse
gases emission minimisation. [16] addresses crisis manage-
ment in PSCs by creating a multi-objective non-linear model
to minimise the network total cost and the unmet demand
and maximise the satisfaction of social responsibility. Product
perishability, substitutability and uncertainties are considered.
To obtain the Pareto front of the three objective functions,
a TH approach is used. [24] developed a bi-objective MILP
model for designing a perishable PSC network under demand
uncertainty. The objectives are simultaneously to minimise the
total cost of the network and the lost demand. The proposed
model is multi-product and multi-period and includes facilities
location, vehicle routing, and inventory management decisions.
A goal programming approach is developed to solve the bi-
objective problem.

B. Non-exact methods

[20] proposed a global SC network optimisation procedure
for pharmaceuticals. The authors developed a model that aims
to maximise the NPV to solve the problem of allocating and
determining product flows. They solved the problem using
two decomposition algorithms: a Lagrangian decomposition
method. [19] expanded the investigation of [20]. The authors
explored two decomposition algorithms to reduce the solution
time. In the first method, the SC is decomposed into two
sub-problems, one for each echelon and solve the MILP. [8]
designed a single-period distribution network under demand
uncertainty. To consider the uncertainty, a set of possible
scenarios and for each scenario, the distribution network was
optimised using a genetic algorithm. [3] proposed an approach
to optimise product flows between facilities. The authors
consider the oligopolistic competition across wholesalers that
drives price and demand fluctuations. They try to maximise the
profit of the company and propose the solution by determining
the Nash Equilibrium, and, then, using the interior-point
barrier algorithm. [1] proposed a location-allocation model for
pharmaceutical centres, trying to locate a set of new facilities
to minimise the transportation cost from these facilities to the
customer. They considered two objectives: minimisation of

costs and maximisation of customer satisfaction. [2] presented
a bi-level bi-objective model for a PSC that assigns distribution
centres to retailers, respective product flows and appropriate
vehicles to perform the transport, aiming to minimise total
costs along with the unmet demand. Uncertainty is consid-
ered in demand, inventory levels and shipping costs. Then
a robust approach was used based on the Benders decom-
position algorithm. [9] develop a multi-period multi-objective
model to design a pharmaceutical distribution network while
minimising the costs and the adverse environmental effects
and maximising the welfare of society. Location, allocation
and distribution decisions are supported by the model. The
authors use the NSGA-II algorithm to find the Pareto front. A
case study on a pharmaceutical distribution company is solved.
[25] studied a facility location and vehicle routing problem on
a distribution pharmaceutical network. The authors considered
two types of distribution centres: depots (main) and satellites
(secondary). They model the problem as a linear function
that aims to minimise the total cost. To solve the problem, a
technique is developed which iterates between an upper bound
and a lower bound, based on Lagrangian relaxation combined
with a branch-and-cut approach. [14] developed a four-echelon
multi-period approach to design a pharmaceutical distribution
network allowing the flow of products inside one level of
the SC considering fuzzy uncertainty on the demand. The bi-
objective model aims to maximise the service level while min-
imising costs. The authors developed an NSGA-II algorithm.
[5] proposed a model to design a multi-product multi-period
PSC network. The authors create a multi-objective approach
to minimise the total costs, minimise the delivery time and
maximise the reliability of the transportation system with the
objective of determining both strategic, tactical and operational
decisions. The authors compare five metaheuristics.

III. MODEL FORMULATION

This section describes the formulation of the proposed
model. Firstly, the characteristics considered in the model are
defined. Then, an appropriate mathematical formulation as a
MILP is presented by characterising the model parameters,
decision variables, constraints, and objective function.

A. Problem definition

The present model features a typical SC of the pharma-
ceutical industry, approaching location, allocation, inventory
and production decisions on a five-level SC:the primary man-
ufacturers, the secondary manufacturers, the main DC, the
local DC and the retailers (or demand zones). Two sets of
goods are considered: the set of APIs (Active Pharmaceutical
Ingredients), which are carried from the Primary Manufacturer
to the Secondary Manufacturer; and the products, which
are the actual drugs, that are carried from the Secondary
Manufacturer downwards on the SC. The model allows the
design of a PSC considering the flow of multiple API and
multiple products. The pharmaceutical products have strict
storage rules to prevent the damage to the product itself. For
that reason, considering a general inventory for all the products
can become insufficient when planning and designing a PSC.
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The current model support the existence of various storage
conditions in the inventory of each facility. It is considered that
each product must be stored under a specific storage condition
along the SC.

A concept of network is established in the present SC. This
is a group of entities that will work together to accomplish the
objective, which is to meet the demand with the least cost pos-
sible. Entities that integrate the network will incur in integra-
tion costs, henceforth designated fixed costs. Those costs can
be considered as the investments that each facility will need
to perform in order to enter in the distribution network. Those
investments may involve process integration technologies that
enable the cooperative relationships, partnerships, adaptation
of processes or acquisition of new technologies necessary to
enter a specific SC. Inventories exist in four levels of the SC.
In the Primary Manufacturer, an inventory of finished API
can be kept. In the Secondary Manufacturer, Main DC and
Local DC, there are inventories of finished products. Each
primary manufacturers and secondary manufacturers have their
own production capacity and their storage capacity. Each main
and local DC have their own handling capacity and storage
capacity

B. Model parameters

Let A be the set of API that must be carried from the
set of Primary Manufacturers, denoted by F to the set of
Secondary Manufacturers, denoted by S. In those Secondary
Manufacturers, the API are converted into a set of pharma-
ceutical products P . Those pharmaceutical products are then
shipped to the main DC M and therefore to the local DC L.
Finally, the products are transported from the local DC to the
retailers R, according to its demand. Let T be the set of time-
periods. On this problem, all entities have a cost to integrate
the consortia, except the Primary Manufacturers. Integration
costs of the Secondary Manufacturer s, the Main DC m and
Local DC are denoted by fcSs , fcMm and fcLl , respectively.

In each primary manufacturer, the API can be stocked, under
different conditions (room temperature, frozen, refrigerated,
etc.). The set of storage conditions are denoted by C. Regard-
ing the storage of API under condition c, a maximum capacity
of the primary manufacturer f is defined as sFfc and a cost of
storing a storage unit of API in primary manufacturer f is
defined as icFfc. A unit of API a occupied σac number of
units of storage space. Each primary manufacturer f has an
initial inventory of API a, iiFfa, and a maximum production
capacity of API a, pcFfa.

Then, the API are transported to the secondary manufactur-
ers with a tcafs cost per unit. In each second manufacturer,
there is not inventory of API, but products p can be stocked,
under different conditions also. Regarding the storage of
products under condition c, a maximum storage capacity of
the secondary manufacturer s is defined as sSsc and a cost of
storing a storage unit of a product p is defined as icSsc. A unit of
product p occupied σpc number of units of storage space. Each
secondary manufacturer s has an initial inventory of product p,
iiSsp, and a maximum production capacity of product p, pcSsp.
To produce a unit of product p, ρap must be consumed.

The product p are transported to the main DC with a tcpsm
cost per unit. In each main DC, each product p can be stocked
under a certain storage conditions c, so, a maximum storage
capacity of the main DC m is defined as sMmc and a cost of
storing a storage unit of a product p is defined as icMmc. A unit
of product p occupied σpc number of units of storage space.
Each main DC has an initial inventory of product p, iiMmp, and
a maximum handling capacity, hM

mp.
Then, the product p are transported to the local DC with a

tcpml cost per unit. In each local DC, each product p can be
stocked under a certain storage conditions c, so, a maximum
storage capacity of the local DC l is defined as sLlc and a cost
of storing a storage unit of a product p is defined as icLlc.
Each local DC has an initial inventory of product p, iiLlp, and
a maximum handling capacity, hL

lp. Finally, the product p are
transported to the retailers with a tcplr cost per unit. There are
not storage of products. The products are received according
the demand of product p in the retailer m at time-period t,
dprt.

C. Decision variables

The variables are divided into four categories. The decisions
of integrate the consortium is defined by the binary variable
X ∈ { 0 , 1 }. The product flows are non-negative integer
variables which indicates the quantity of each product, flowing
from each facility to each facility in the next level of the SC,
in each time period: Y ∈ N0. The final inventories decisions
are non-negative integer variables which indicates the final
inventory of each product, in each facility, in each time period:
I ∈ N0. The decisions of production are given by non-negative
integer variables which the production of each product, in each
manufacturing facility, in each time period: P ∈ N0 .

• XS
s , XM

m and XL
l are equal to 1 if the secondary

manufacturer s, the main DC m and the local DC l,
respectively, integrate the consortia and 0 otherwise;

• Qα
afst is the quantity of API a shipped from the manu-

facturer f to the secondary manufacturer s at period t;
• Qβ

psmt, Q
γ
pmlt and Qδ

plrt are the quantity of product p at
period t shipped from the secondary manufacturer s to
the main DC m, from the main DC m to the local DC l
and from the local DC l to the retailer r, respectively;

• IFfat is the inventory of API a in the primary manufacturer
f at the end of the period t;

• ISspt, I
M
mpt and ILlpt are the inventory of product p at the

end of the period t in the secondary manufacturer s, in
the main DC m, and in the local DC l, respectively;

• PF
fat is the quantity of API a produced in the primary

manufacturer f , in the period t;
• PS

spt is the quantity of product p produced in the sec-
ondary manufacturer s, in the period t.

D. Constraints

1) Demand Satisfaction
The demand satisfaction constraints set the minimum value

for the outgoing flows at Local DC. The demand satisfaction
group of constraints guarantee that the total flow of products
from all the Local DC to each Retailer is greater or equal than
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the demand existing on that retailer. The inequality must be
verified for all retailers, products and time-periods. The group
of constraints is expressed in Equation 1.∑

l

Ψδ
plrt ≥ dprt ∀ p, r, t > 0 (1)

2) Production Capacity
The production capacity constraints are the constraints

which limit the production of each manufacturing facility
according to its installed capacity. The rational behind these
constraints is that if a facility has capacity to produce a limited
number of units, the production at that facility cannot be higher
that that value. This group of constraint apply to all facilities,
products and time-periods.

Equation 2 guarantees that the quantity of API a produced
in the primary manufacturer f , does not exceed the capacity
of that facility for each API and time-period.

PF
fat ≤ pcFfa ∀ f , a , t > 0 (2)

Equation 3 guarantees that the quantity of product p pro-
duced in the secondary manufacturer s, does not exceed the
capacity of that facility, if it integrates the consortia, for each
product and time-period.

PS
spt ≤ XS

s ∗ pcSsp ∀ s, p, t > 0 (3)

3) API Consumption
In the secondary facility, API are used sole or combined

to produce pharmaceutical products. This conversion respects
to the proportionality parameter ρ. Since the secondary man-
ufacturer receives API just-in-time and the consumption is
considered immediate for the purposes of the present model,
the inflow of each API at each Secondary Manufacturer and
time-period will be equal to the consumption of that API.
Also, all the API consumed are considered to be converted to
pharmaceutical products (there is no waste). The consumption
of an API will, therefore, be the total production of products in
that facility and time-period multiplied by the parameter that
stores the ratio between products and API. The constraints
regarding this API to Product Conversion in expressed in
Equation 4.∑

p

(PS
spt ∗ ρap) =

∑
f

Ψα
afst ∀ s, a, t > 0 (4)

4) Storage Capacity
Storage capacity constraints guarantee that the storage ca-

pacity for each storage condition of each facility is never
exceeded in any facility, time-period and storage condition.
The inventory of API a, stored under condition c in the primary
manufacturer f , in the end of the period, cannot exceed the
storage capacity of that facility under that condition on each
time period t, as expressed in Equation 5.∑

a

(IFfat ∗ σa,c) ≤ sFfc ∀ f, c, t > 0 (5)

Equation 6 guarantees that the inventory of product p, stored
under condition c in the secondary manufacturer s, in the end

of the period t, does not exceed the storage capacity of that
facility under that condition (if it integrates the consortia) on
each time period. Similar equations apply also to main DCs
(equation 7) and local DCs (equation 8).∑

p

(ISspt ∗ τp,c) ≤ XS
s ∗ sSsc ∀ s, c, t > 0 (6)

∑
p

(IMmpt ∗ τp,c) ≤ XM
m ∗ sMmc ∀ m, c, t > 0 (7)

∑
p

(ILlpt ∗ τp,c) ≤ XL
l ∗ sLlc ∀ l, c, t > 0 (8)

5) Handling capacity
Handling capacity constraints are intended to limit the flow

exiting the distribution centres. The handling capacity is the
maximum quantity of products that the distribution centres
can handle in each time-period, since distribution centres
have limited resources. Equations 9 and 10 guarantee that the
outflow from each main DC and local DC, respectively, cannot
exceed their handling capacity for all products, in each time
period. ∑

p

∑
l

Ψγ
pmlt ≤ XM

m ∗ hM
m ∀ m, t > 0 (9)

∑
p

∑
r

Ψδ
plrt ≤ XL

l ∗ hL
l ∀ l, t > 0 (10)

6) Mass-balance
Mass-balance constraints guarantee that the inputs and out-

puts of each facility are equal in all facilities and time-periods,
and for all products. In primary manufacturers, the inputs are
the API productions and the inventory that comes from the
last period. The outputs are the final inventory and the outflow
to secondary manufacturers. In secondary manufacturers, the
inputs are the product productions (restricted by Equation 4)
and the inventory that comes from the last period. The outputs
are the final inventory and the outflow to main DC. In main
DC, the inputs are the inflow from secondary manufacturers
and the inventory that comes from the last period. The outputs
are the final inventory and the outflow to local DC. In local
DC, the inputs are the inflow from main DC and the inventory
that comes from the last period. The outputs are the final
inventory and the outflow to retailers.

Equation 12 guarantees that the initial inventory of API a,
plus the quantity of API produced, in the primary manufacturer
f , in the period t, is equal to the final inventory plus the
outflow of that API in that facility.

IFfat−1 + PF
fat = IFfat +

∑
s

Ψα
afst ∀ f, a, t > 0 (11)

Equation 12 guarantees that the initial inventory of product
p, plus the quantity of product produced, in the secondary
manufacturer s, in the period t, is equal to the final inventory
plus the outflow of that product in that facility.

ISspt−1 + PS
spt = ISspt +

∑
m

Ψβ
psmt ∀ s, p, t > 0 (12)
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Equation 13 guarantees that the difference in inventories
of product p in the main DC m at the end of the period t
corresponds to the balance of flows of that product in that
facility and period. A similar equation applies to the local
DCs (equation 14).

IMmpt−1 +
∑
j

Ψβ
psmt = IMmpt +

∑
l

Ψγ
pmlt ∀ m, p, t > 0

(13)

ILlpt−1 +
∑
k

Ψγ
pmlt = ILlpt +

∑
r

Ψδ
plrt ∀ l, p, t > 0 (14)

7) Initial inventory
Initial inventory constraints guarantee that the initial inven-

tory of the first period matches the initial inventory stipulated
in the model input parameters. Equations 15, 16, 17 and 18
guarantee that the inventory in the end of the time period zero
are equal to the initial inventory defined.

IFf,a,0 = iiFfa (15)

ISs,p,0 = iiLsp (16)

IMm,p,0 = iiMmp (17)

ILl,p,0 = iiLlp (18)

8) Binary variables
Equations 19 defines the binary decision variables of the

present model: the integration or not of a given facility in the
network.

XS
s XM

m , XL
l ∈ { 0 , 1 } (19)

9) Non-negative variables
Equations 20, 21 and 22 defines the non-negatives variables:

flows, inventories and productions cannot take negative values.

Ψα
pfst , Ψβ

psmt , Ψγ
pmlt , Ψδ

plrt ∈ N0 (20)

IFfat , ISspt, IMmpt, ILlpt ∈ N0 (21)

PF
fat , PS

spt, ∈ N0 (22)

E. Objective function

For the case in hands, the objective of the model will be
the minimisation of the SC costs, as the sum of the fixed
costs, distribution costs and inventory costs, and is expressed
in equation 23.

minimise z = Fixed costs + Transportation costs +
+ Inventory costs

(23)

Fixed costs are given as the sum to all facilities of the
product of the fixed costs associated to the entry of a facility
in the network and the binary variable that takes the value 1
if that facility integrates the network, and 0 otherwise.

Fixed costs =
∑
s

XS
s fc

S
s +

∑
m

XM
m fcMm+

+
∑
l

XL
l fc

L
l

(24)

Transportation costs are calculated as the sum for all prod-
ucts, time-periods, origin facilities and destination facilities of
the number of products transported from each origin facility to
each destination facility multiplied by the cost of transporting
that product in that path. The transportation costs are expressed
in Equation 25.

Transportation costs =
∑
a

∑
f

∑
s

∑
t

Ψα
afst ∗ dcαafs+

+
∑
p

∑
s

∑
m

∑
t

Ψβ
psmt ∗ dcβpsm+

+
∑
p

∑
m

∑
l

∑
t

Ψγ
pmlt ∗ dc

γ
pml+

+
∑
p

∑
l

∑
r

∑
t

Ψδ
plrt ∗ dcδplr

(25)

Inventory costs are the costs of storing an API in the primary
manufacturer or a product in other facilities for one period
of time. The inventory costs are calculated as the sum for
all storage conditions, facilities and time-periods of the final
inventory of each product in each facility and time-period,
multiplied by the storage space that that product requires for
the storage condition considered, and multiplied by cost of
one storage space under the storage condition considered, in
each facility. The inventory costs are calculated as expressed
in Equation 26

Inventory costs =
∑
t

∑
f

∑
c

(
∑
a

IFfat ∗ σac) ∗ icFfc)+

+
∑
t

∑
s

∑
c

(
∑
p

ISspt ∗ τpc) ∗ icSsc)+

+
∑
t

∑
m

∑
c

(
∑
p

IMmpt ∗ τpc) ∗ icMmc)+

+
∑
t

∑
l

∑
c

(
∑
p

ILlpt ∗ τpc) ∗ icLlc)

(26)

IV. COMPUTATIONAL EXPERIMENTS

In this section, computational experiments are performed
to validate the model proposed. First, the problem data will
be contextualised and explained. Secondly, the results are
presented and analysed. Finally, a discussion on the topic is
performed.

A. Data gathering

This computational experiment is inspired by the problem
addressed by [13]. The authors’ model is tested via an em-
pirical case study, based on the data collected from Iran’s
National Organisation of Food & Drug about the distribu-
tion of Amoxicillin. Despite their model approaches a multi-
product problem, the authors used a single product problem



PHARMACEUTICAL SUPPLY CHAIN NETWORK DESIGN 6

for simplification. According to the authors, designing the
SC for a single product does not limit the application of the
model, since, in the proposed model, different products are just
interconnected by sharing the same facilities. The conversion
of API to a product in these experiments will be considered
as one to one ratio. The storage requirement will be one unit
of storage space for one tonne of amoxicillin, and it will be
considered only one storage condition. Amoxicillin must be
stored at room temperature.

Regarding the possible locations for facilities and infras-
tructures, [13] considered the existence of 8 secondary man-
ufacturers. I will be assumed the existence of 4 primary
manufacturers, each one located near one of the biggest cities
of Iran. Ten locations for main DC are considered in the same
publication. Each province can be considered a demand zone
and also have a local DC candidate to enter the network.

Two experiments will be performed in this section:
• Experiment 1 is to test the model by analysing the outputs

for the empirical example developed by [13], considering
a network with one product only, one API and one storage
condition;

• Experiment 2 proposes the validation of the model with a
multi API and multi-product problem, with also multiple
storage conditions.

To analyse the sensibility of the model, a set of scenarios
will be analysed for each experiment: baseline scenario, half
the demand, double the demand and fixed costs variations are
performed.

B. Results analysis

1) Experiment 1: baseline
The CPLEX solver engine took 244 seconds to solve the

MILP and returned a total cost as an objective function of
C147982.40. The optimal number of facilities under this sce-
nario is 2 primary manufacturers, 2 secondary manufacturers,
3 main DCs, 11 local DCs and 31 retailers. The demand is
higher than the capacity of opened manufacturing facilities
in winter seasons, which correspond to periods 4, 8, 12,
and 16. Thus, to satisfy the demand for all the seasons,
two secondary manufacturers are required to open. Despite
the production capacity of a secondary manufacturer being
half of the production capacity of a primary manufacturer,
as depicted in section 5.2, two primary manufacturers are still
open to minimise the transportation costs between primary and
secondary manufacturers. This event happens because there are
no fixed costs to open a new primary manufacturer, and, there-
fore the model tends to connect the primary and secondary
manufacturers with the lowest transportation costs possible.
Those transportation costs vary according to the distances
between facilities and the far the cities where the facilities
a located, the higher the transporting costs between them.
Therefore, to supply API to a specific secondary manufacturer,
the closest primary manufacturer possible is chosen. In the
winter season, the demand exceeds the production capacity of
those periods. To balance this excess of demand, inventories
are built in local DC is the period previous to winter. The local
DC which are integrating the network are the facilities with

lower inventory costs of the entire network and, therefore those
are chosen to store products that will be supplied in winter. The
time-period with the highest demand is time-period 16, and in
that period the demand only exceeds the production capacity
of the primary and secondary manufacturers by 12.5%. The
decision to stock products in local DC to guarantee the
demand satisfaction in winter is preferred rather than opening
new secondary manufacturing facilities which would carry
significant fixed integration costs to supply only a total of
225 tonnes of product in the entire temporal horizon. Storing
225 tonnes of product represents, in the worst case, a cost of
C 9562.50, but choosing another secondary manufacturer to
reinforce the capacity of the network would carry a minimum
fixed integration cost of C 23400.

2) Experiment 1: half demand
The network is composed of 1 primary manufacturer, 1

secondary manufacturer, 2 main DCs, 6 local DCs and 31
retailers. As expected, less facilities integrate the network to
satisfy the minor demand. The objective function cost value
achieved is C 85724.16. An objective function with a cost
42% lower than the baseline objective function was achieved to
supply the demand 50% lower. This represents an increase of
15.7% in the total cost per tonne of product supplied. Similarly
to the baseline scenario, in the winter periods (4, 8, 12 and
16) the demand is higher than the total production capacity.
Therefore, the network planning model proposes the built-up
of inventory on local DC in periods that precede winter (3, 7,
11 and 15).

3) Experiment 1: double demand
Considering the scenario in which the demand is dupli-

cated, the network is composed of 4 primary manufacturers,
4 secondary manufacturers, 7 main DC, 22 local DC and
31 retailers. The total cost of the network is C 282887.54
and comparing it with the baseline scenario, represents an
increase of 91%. However, the total costs per tonne of product
provided to the retailer are around 5% lower. Therefore, the
network can respond to an increase of 100% of the demand,
and its efficiency increases since the cost per tonne supplied
decreases. Similarly to the baseline scenario, in the winter
periods (4, 8, 12 and 16) the demand is higher than the total
production capacity. Therefore, the network planning model
propose the built up of inventory on local DC in periods that
precede winter (3, 7, 11 and 15).

4) Experiment 1: varying fixed costs
In the scenario in which the facilities do not have to spend

on fixed integration costs, 53 facilities integrate the network.
This is the maximum number of facilities available on this
problem. As the fixed integration costs commence growing,
the number of facilities decreases to 33. Only 1% of the
fixed integration costs is enough to reduce the number of
facilities by almost 40%. Variations between 65% and 2000%
of the original fixed integration costs return more similar
networks, with the number of facilities varying in only 2
units. With higher fixed integration costs, the network becomes
more compact. The more compact a network is, the more
difficult is to subtract even more facilities without jeopardising
the demand satisfaction. When the fixed integration costs are
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lower, it carries fewer costs to add facilities into the network
than storing products to guarantee the supply in peak demand
periods. However, when the fixed integration costs are higher,
incurring in inventory costs reveals less expensive than adding
more facilities into the network, which leads to an increase
in the usage of inventory and to a reduction in the usage of
capacity.

5) Experiment 2: baseline
In the baseline instance of experiment 2 an objective

function of C 153206.04 was achieved. The optimal solution
contemplates the integration in the network of 3 primary man-
ufacturers, 3 secondary manufacturers, 7 main DCs, 22 local
DCs and 31 retailers. In the present scenario, the inventory
is only required on period 15 to store 4 tonnes of product
A. This happens since the total demand on period 16 is 844
tonnes of products and the total capacity of the 7 main DC in
the network is only 840 tonnes. Therefore, the solution that
carries fewer costs to the SC is to store 4 units of product 1
in one of the local DC. The fixed integration costs of opening
one more main DC would be higher than keeping 4 units of
product in inventory.

6) Experiment 2: half demand
Considering the scenario in which the demand was reduced

to one half, or 50% less, of the original baseline demand,
the network is composed of two primary manufacturers, four
secondary manufacturers, seven main DC and eleven local
DC. The optimal objective function cost is C 146300.88.
In the optimal solution, integrate the network 2 primary
manufacturers, 2 secondary manufacturers, 4 main DCs, 11
local DCs and 31 retailers. In this scenario the optimal solution
considers inventories equal to zero in all the facilities and in all
the time-periods, meaning that in this scenario, opening more
facilities is preferable rather than accumulating inventories.

7) Experiment 2: double demand
A problem with twice the demand as considered in the

baseline scenario was loaded into the optimisation model
developed. However, an infeasible situation was achieved due
to the excess of demand or lack of capacity in the SC facilities.
In order to be able to analyse a scenario in which the demand
is over the baseline demand, the demand was iterative from
the original demand on steps of 10% until a feasible problem
is achieved. With a demand 40% above the demand of the
baseline scenario, a feasible solution to the problem was found.
However, with a demand 50% above the baseline scenario, the
model becomes infeasible. The number of facilities integrating
the PSC network when the demand is 40% above the baseline
scenario is 4 primary manufacturers, 4 secondary manufactur-
ers, 11 main DCs and 31 local DCs. On this scenario, the total
cost of the optimal network is C 353177.84. A demand 40%
above the baseline scenario can be fulfilled without the use of
inventories, but a demand of 50% above the baseline scenario
cannot be fulfilled by the network. This happens because in
this scenario, all the facilities available are integrating the
network, which corresponds to a handling capacity of 1200
tonnes per time-period in main DC, and 1240 tonnes per time-
period in local DC.

8) Experiment 2: varying fixed costs
As in Experiment 1, when the fixed integration costs in-

crease, the optimal number of facilities also gets lower. In the
present experiment, two products are being supplied through
this multi-product network. Given this, the variation of the
number of facilities according to the fixed integration costs
becomes less relevant. One reason to justify this occurrence
is that while the facilities must pay the same fixed cost to
integrate the network, more products are being transported,
stored and delivered, diluting those costs. For example, when
the costs are zero, 52 facilities integrate the network and
when the costs are 1% of the original, 47 facilities are
still integrating. In the single product studied, instead of 47
facilities, 34 facilities were integrating the network.

When the fixed costs are lower than 50% of the original
fixed costs, there is no need to store products in inventory in
any of the facilities. When the fixed costs are lower than 150%
of the baseline fixed integration costs, the total inventory of
products in all the 16 time-periods is only 4 tonnes. This means
that when the fixed costs are lower than 50% of the baseline’s
one, opening more facilities to store products is preferred
rather than storing products in inventory. However, when the
fixed integration costs are over 150% of the originals, incurring
in inventory costs could compensate instead of adding more
facilities to the network.

C. Discussion

Regarding the demand parameter, the demand was first
reduced to half for all retailers, products and time-periods
and the optimisation model was applied. Then, the demand
parameter was also increased by a factor of 2, in the first
experiment, and by 40% in the second experiment. It was
found that the proposed optimisation model accomplish its
goal since efficient solutions were found in both scenarios.
Increases in the demand are normally associated to a smaller
increase in costs, which can be possible by optimising the
number of facilities integrating the network or recurring to
inventory in strategic points of the network. The allocation of
facilities in different levels of the supply chain also allows the
minimisation of the costs by the facilities supplying and being
supplied by other facilities with closer locations.

The model is sensitive to the variations in the demand of
the problem since the network design adapts to the different
demand scenarios. However, variations of the demand inside
specific temporal horizons do not affect the composition of
the network. Since the fixed integration costs are already
spent to satisfy the demand in periods of high demand, the
facilities are used along the other periods to guarantee resource
optimisation. Regarding fixed costs, the model reveals more
flexibility to the variations is fixed costs when those are lower.
Comparing scenarios with low fixed costs, big variations in
the number of facilities composing the network is perceived.
Comparing scenarios with higher fixed costs, it can be realised
that the variations in the fixed costs have little impacts on the
design of the network. High fixed costs are related to more
compact networks, and the more compact a network is, the
more difficult is to reduce even more the number of facilities.
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V. CASE STUDY: COVID-19 VACCINES DISTRIBUTION

COVID-19 is a pandemic disease that can cause light to
severe symptoms or even death; it has unknown long-term
consequences in people of all ages, including in healthy
people. Since the first moments of the pandemic, big phar-
maceutical companies raced to devise a product that could
cure or prevent the disease. COVID-19 vaccines are medicines
that are intended to prevent the disease caused by the novel
coronavirus SARS-CoV-2 [4].

In October 2021, four vaccines are available in the European
Union to prevent COVID-19, produced by Pfizer, Moderna,
AstraZeneca and Janssen. Modelling a problem of network
design for the COVID-19 Vaccine Distribution Network is
a complex process. Despite the demand data, location of
the secondary manufacturers, distribution centres and product
characteristics being publicly available, other parameters such
as costs and capacities can be challenging to collect.

The problem, in particular, addressed the distribution of
vaccines from the big pharmaceutical manufacturers located in
Central Europe to the Portuguese districts. The four vaccines
approved in Europe were considered as the four products,
which are produced by dedicated primary and secondary
manufacturers located in France, Belgium, Netherlands, Ger-
many, Switzerland and Austria. Before reaching the retailer
(or demand zone, located in the 20 Portuguese districts plus
2 autonomous regions), the vaccines must pass on one of
the main DCs (located in Porto, Coimbra, Lisbon, Évora
and Faro) and on one of the local DCs (located in each
Portuguese district). To produce each one of those products,
one API is required, and its storage must be under two different
storage conditions. The demand is the population electable for
vaccination in Portugal and it is distributed by the eighteen
districts and two autonomous regions accordingly. The demand
is also distributed along the eight time-periods of one quarter
each following the 3-phases vaccination campaign approved
by the Portuguese government.

The issue contemplates the allowance of backorders which
is the possibility of delaying the delivery of doses of vaccines
to the retailer. To solve the problem, a reformulation of the
model is proposed to enable the analysis of the trade-off
between backorder minimisation and cost minimisation. A
multi-objective MILP will be considered, with the second
objective function of minimising the number of backorders,
as expressed in equation 27.

minimise w =
∑
t

∑
r

∑
p

Bprt (27)

With Bprt := number of units of product p demanded, but
undelivered in retailer r, in the time period t, and,

Bprt = 0 , t = last period , ∀ p, r (28)

To obtain a set of optimal solutions for the multi-objective
MILP, the ϵ-constraint method is used to obtain an approxima-
tion of the Pareto front. The ϵ-constraint which will be added
to the cost minimisation model is formulated in equation 29.

∑
l

Ψδ
plrt ≥ dprt +Bprt−1 −Bprt ∀ p, r, t (29)

A. Results Analysis

The plot shown in figure 1 illustrates the approximation
of the Pareto front which contains the set of non-dominated
solutions for the problem in hands.

Fig. 1: Pareto front

Solution 1 corresponds to the case in which the minimal
number of backorders is achieved. Due to the excess of
demand in the first periods, it is not possible to fulfil all
the demand without delays even if all facilities integrate
the network, and therefore, 5493 thousand backorders still
exist. For this case, a total SC cost of approximately 1.86
million Euros is achieved. To achieve this scenario, four of
the secondary manufacturers that can produce Pfizer vaccines
must integrate the network, one secondary manufacturer that
produces Moderna does not integrate the network and all
facilities that can produce the other vaccines must open. All
main DCs and all local DCs must also integrate the network.
Solutions 2 to 9 corresponds to intermediate scenarios in which
a trade-off between backorders and costs must be considered.

From solution 1 to solution 2, the backorders increase 50%,
and the costs decrease 25% with the closure of 2 secondary
manufacturers (one of Pfizer and one of Johnson do not
integrate the network), 4 main DCs (only Coimbra main DC
remains in the network) and 5 local DCs are also out of the
network.

From solution 2 to solution 3, the number of backorders
increase 33%, while the costs reduced 12% with the closure of
one secondary manufacturer producing the AstraZeneca vac-
cine. The unique main DC continues Coimbra. From solution
3 to solution 4, the number of backorders increase 25% and
the costs reduce 14%. To achieve this, the local DC located in
Faro, Vila Real and Castelo Branco also do not integrate the
network, but the local DC located in Portalegre reintegrate the
network.

From solution 4 to solution 5, a lack of supply in the interior
regions is observed, which can be confirmed by an increase of
20% in the number of doses in backorder, but only a decrease
of 2% in the costs. From solution 5 to solution 6, the local DC
located in Viana do Castelo joins the group of local DC that
will not integrate the network, causing an increase of 17% in
the number of backorders and a decrease of 1% in the costs.

From solution 6 to solution 7, the minimum number of
secondary manufacturers is achieved. The local DC located
in Setúbal joins the group of facilities that will not participate
in the network. These events cause an increase of 14% in the
number of backorders, but a decrease of 16% in the costs.
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Indeed, increasing the number of backorders from 19273 to
22029 is the only time that the relative decrease in costs is
higher than the relative increase in backorders.

From solution 8 to solution 9, the local DC located in Leiria
also does not integrate the network, leading to an increase of
11% in the number of backorders and to a decrease of 1.2%
in the costs. From solution 9 to solution 10, the number of
backorders decreases 10%, but the variation in the costs is
almost imperceptible, 0.22%.

Analysing those observations along with the Pareto front
that resulted from the present problem, it can be realised
that the gradient of the curve is higher when the number of
backorders is lower. Actually, between solution 4 and solution
6, the difference in costs is almost unnoticeable, but the
number of delayed doses of vaccines administrated in 33%
lower. If the decision was between these two options, choosing
the option of having 16517 thousand backorders would be
recommended. The same occurrence happens after solution 8.
Between solution 7 and solution 10 the difference in costs is
negligible, but a difference of 38% in the number of backorders
is accounted.

The products which are preferably stored are the products
that are stored under condition C2, due to the storage cost,
which is ten times minor in this storage condition. Also, it can
be depicted that in solutions with a more limited number of
backorders, the inventory is more often used than in solutions
in which the main concern becomes cost minimisation. The
inventory utilisation is higher in the solution 1 to 4. Also, after
solution 4, inventory under condition C1 is no more used, and
after solution 7, inventory under condition C2 also ceases to
be used.

In solution 1, a concentration of the productions is observed
in the first four periods, following the demand profile, is
perceived. This is justified because the number of facilities
open haven the capacity required to fulfil the demand, leaving
a reduced number of backorders in comparison to the other
solutions. In the first two periods, the demand is below the
production capacity, justifying the inventory built up to prepare
the third period in which the demand is higher than the
production capacity. In solution 2, the large reduction in the
number of facilities when compared to solution 1, makes the
model suggest the use of more inventory in the first periods.
The quantity of products being stored increased from 4792
thousand vaccines to 5726 thousand vaccines. In solution 3,
the higher number of backorders allowed the SC to save costs
on inventories. With one less secondary manufacturers and
one less local DC, the manufacturing facilities will need to
produce also in periods 5 and 6 to guarantee that all the doses
accumulated in backorders will arrive on the retailers.

According to solution 4, the primary manufacturers no
more need to store API in inventory. The higher number of
backorders allowed the number of facilities and inventories to
decrease even more. In contrast, the production in manufactur-
ing facilities goes on until time-period 6 to satisfy the pending
demand that still did not receive its vaccine. In solution 6,
19273 backorders are allowed, which even higher than the
demand. This means that it is allowed to delay more than one
unit of demand for one period. In this situation, the inventory

is only 98 thousand doses in the main DC. Since having
backorders carries any cost, the model is now trying to save
costs by reducing inventories the much as possible. In solution
7 the inventory is used to allow the reduction of one more
secondary manufacturer and one local DC without delaying
the demand in the first two time-periods. In this scenario, the
network is becoming to much compact and backorders until
the sixth time-period are necessary. It can be noticed that in
time-period where the network is only supplying backorders,
the inventory is null. This happens since there is no cost to
have a backorder in the cost minimisation function, but an
inventory cost exists.

In solution 10, the minimal costs of the network are
achieved. In this situation, the production happens in all time-
periods leading to an accumulated value of backorders of
32097. The inventory is also totally avoided since it carries
extra costs and the network is the most compact as possible,
with only 5 secondary manufacturers open, one main DC and
6 local DCs. This causes the maximum production in a time-
period to be 2400 thousand doses, limited by the handling
capacity of the local DC. In this scenario, the administration
of each dose of the vaccine will suffer a delay of 0.79 time-
periods.

With this case study, it is found that while minimising
backorders allow the population to be vaccinated sooner, more
facilities must integrate the network to satisfy all the demand
in time. This carries extra costs which the decision-maker may
not consider investing. Also, the reduction in the number of
facilities is many times balanced by the increase in inventory
in the remaining facilities. In solutions that are biased for cost
minimisation, the vaccination campaign tends to get delayed
to the last periods. In any solution it is possible to satisfy
all the demand in the pretended time-period, meaning that
backorders are always necessary. This occurs since all the
demand is placed at the beginning of the temporal horizon.

VI. CONCLUSION

The study of models to enable the optimisation of the PSC
network design become a pertinent academic interest. In this
thesis, a model to optimise the PSC network is formulated and
proposed. The objective of the proposed model is to minimise
the total costs of the SC. The decisions considered encompass
decisions at the strategic level, specifically the number and
location of facilities, distribution, inventory positioning and
production.

The computational experiments performed revealed that
the model is sensitive to the variations in the demand of
the problem since the network adjusts to different demand
scenarios. The model is also sensitive to the fluctuation of the
fixed costs. More flexibility is encountered when fixed costs
are lower than when they are higher: with lower fixed costs,
the number of facilities participating in the network is higher.
A higher variation in the number of facilities when comparing
scenarios with lower fixed costs is also observed. The proposed
model addressed challenges as cost minimisation, reliability
on different scenarios and sensitivity to variations on the
demand and on the costs, which are important characteristics
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to guarantee that pharmaceutical products arrive to the final
customer with the maximum quality, in the right quantity and
with the necessary flexibility.

Finally, an application of the model to a COVID-19 vaccine
SC network is performed. In this problem, backorders are
allowed and the minimisation of backorders becomes a second
objective. It is found that while minimising backorders enables
the population to be vaccinated sooner, more facilities must
integrate the network to satisfy all the demand in time, carrying
extra costs to the SC. In the solutions that tend for cost
minimisation, the vaccination campaign gets delayed.

Using an optimisation model as the proposed one to per-
form the PSC network design allows the determination of
an optimum number and location of facilities, having into
account inventories, productions and distribution flow. In the
computational experiment performed, lower costs enabled
higher variations in the network design. Trying to model an
agile PSC considering facility construction costs or expensive
technological investments as fixed costs can limit the agility
of network; to model an agile PSC, working over a pool of
facilities already existing and considering only integration or
adaptation costs might reveal a good path. Another recommen-
dation is to consider the use of multi-objective approaches to
compare cost-minimisation with other indicators that consider
customer satisfaction. In fact, the objective of minimising the
delays of delivering vaccine doses is a benefit to the patient,
revealing itself also a good driver for agility: regarding the set
of solutions of the multi-objective problem analysed, solutions
more restrictive about the delay of delivering vaccine doses
also seems to allow more flexible networks.

As a future research proposal, including demand uncertainty
in the optimisation model parameters should be considered.
The PSC is very susceptible to market volatility, even more
under an ongoing paradigm shift. Other topic for future
work is the development of heuristic methods to address SC
network design problems, since when large scale problems
are considered, the computational time required to solve
them may become unreasonable. Finally, including additional
particularities of the PSC that are gaining importance in the
modern world, as product perishability and customisation can
be integrated in the SC optimisation models.
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