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Abstract

The pharmaceutical supply chain is responsible for ensuring the supply of medicines in the right

place, at the right time and in the right quantity and the industry is being pressured by a shifting paradigm

and by changes on the trends and concerns of the society. The optimising of pharmaceutical supply

chain networks a promising research field.

Recently, various optimisation models have been built to optimise the design of the pharmaceutical

supply chain network. Firstly, a literature review on these models is performed to provide a theoretical

basis. A second literature review identify the key elements to obtain an agile supply chain.

In this work, a mixed integer linear programming model is proposed as an optimisation tool to design

a supply chain network for the pharmaceutical industry. This model addresses a multi-product, multi-

active ingredient, and multi-period network. The existence of multiple storage conditions is also pro-

posed. The decisions supported concern the facilities’ integration into a pharmaceutical supply chain,

along with inventories, productions and distributions. The objective is minimising the total costs of the

supply chain, guaranteeing the demand satisfaction. This model is tested through an example adapted

from the literature, and then applied to a case study about the COVID-19 vaccines distribution.
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Resumo

A cadeia de abastecimento farmacêutica desempenha um papel fundamental na sociedade por

garantir o fornecimento de medicamentos no lugar certo, à hora certa e na quantidade certa. A

indústria está a ser pressionada por uma mudança de paradigma e por mudanças nas tendências e

preocupações da sociedade. A otimização das redes da cadeia de abastecimento farmacêutica é uma

área de investigação promissora.

Recentemente, vários modelos de otimização têm sido desenvolvidos para otimizar a rede da ca-

deia de abastecimento farmacêutica. Primeiramente, é realizada uma revisão bibliográfica dos mode-

los desenvolvidos para obter fundamentação teórica. Uma segunda revisão da literatura identifica os

elementos-chave para alcançar uma cadeia de abastecimento ágil.

Neste trabalho, um modelo baseado em programação linear inteira mista é proposto como uma

ferramenta de otimização para projetar uma rede de cadeia de abastecimento farmacêutica de cinco

nı́veis. Este modelo aborda uma rede multi-produto, multi-ingrediente ativo e multi-perı́odo. A existência

de múltiplas condições de armazenamento também é proposta. As decisões apoiadas dizem respeito à

integração das instalações em uma cadeia de abastecimento farmacêutica, juntamente com inventários,

produções e distribuições. O objetivo é minimizar os custos totais da cadeia de abastecimento, garan-

tindo a satisfação da procura. O modelo é aplicado a um exemplo adaptado da literatura e, em seguida,

é abordado um caso de estudo que envolve uma cabeia de abastecimento de vacinas contra a COVID-

19.

Palavras-chave: Agilidade, Cadeia de Abastecimento Farmacêutica, Otimização, Planeamento e

Desenho da Rede, MILP
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Chapter 1

Introduction

This current masters thesis is within the scope of the research project ”Pharmaceutical supply chain of

the future” (PTDC/EME-SIS/6019/2020). This chapter provides an introduction to the present thesis.

Section 1.1 gives a short context for the problem under study. Section 1.2 lists the objectives that this

work aims to achieve. In section 1.3 the structure of the present document is presented. In section 1.4

the investigation methodology to follow in the present thesis is addressed.

1.1 Overview

The pharmaceutical industry is a key asset of the economies of the developed countries as major high-

technology industrial employers, moving trillions of dollars annually and employing thousands of people.

Its social importance must be also mentioned due to its direct impact on the quality of life and healthiness

of the population, which guarantees economic sustainability of the healthcare systems (Marques et al.,

2020).

To guarantee a smooth and robust connection between the pharmaceutical industry and the final

customer, it is crucial to ensure that the PSC management is up to the task. The PSC is being constantly

challenged to improve the efficiency of the drug supply. Continuous innovation and development of new

products and technologies, the emergence of legal barriers and licenses, patents and regulations, entry

of new competitors with new products, and the pressure prosecuted by the government and health

care providers to widen the therapeutic indications of the drugs to other areas and diseases, raising

the investment costs and reducing the profit margins constitute some challenges to the industry (Shah,

2004).

The pharmaceutical industry plays a crucial role in the health system. With an increasing market

of the more and elder population, quickly growing economies and increasing prevalence of chronic

diseases, the pharmaceutical industry has been quickly growing Mehralian et al. (2015). Therefore, the

PSC has a great responsibility on delivering an adequate quantity of drugs to the right market, at the

right time.

At the same time, the world we live in is facing extreme changes. The population living in urban

1



areas is rising at an extreme pace, originating huge population clusters commonly named mega-cities

(Christopher, 2007). Society behaviour is also changing its patterns, looking with greater and greater

importance to the product customisation and becoming extremely rigorous about having the product in

the quantity needed, at the place needed in an adequate timing. A shortage of drugs is not tolerated

because if a critical drug is in lack in pharmacies or hospitals, people’s health and even their life are at

risk. PSC have extreme importance in the world and must in a constant effort to efficiently and quickly

adapt to the changing circumstances.

1.2 Objectives

This thesis has two main objectives.

1. Present the key concepts and define the problem under study:

• Contextualise the pharmaceutical industry environment and the life-cycle of a drug;

• Characterise the PSC, explaining its particularities;

• Define the decision-making structure of a typical pharmaceutical company;

• Understand the paradigm shift that the pharmaceutical sector is facing and define the relevant

concepts of the new paradigm;

• Analyse the concepts to consider when designing the SC of the future.

• Elaborate a literature review of the existing models for PSC network optimisation;

• Identify existing methodologies guarantee agility in a SC.

2. Proposed and validate an optimisation model for the PSC network design:

• Formulate the problem as a mixed-integer linear programming (MILP) model;

• Test and validate the model with an example from the literature;

• Apply the model to a case study and analyse its results.

1.3 Structure

This document is divided into seven chapters that follow the structure below:

Chapter 1 - Introduction

This introductory chapter provides a brief context for the problem under study. The objectives of the

thesis are enumerated and an overall structure for the document is proposed.

Chapter 2 - Pharmaceutical supply chain characterisation

In this chapter, the key concepts are defined and the problem under study is characterised. Firstly, the

pharmaceutical industrial environment is explained, as well as the product life-cycle. Secondly, the SC
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of a common large multinational pharmaceutical company is presented, interrelating with examples from

real-world players. At the end, the new paradigm that the pharmaceutical sector faced is analysed by

detailing its main characteristics.

Chapter 3 - Literature review

In this chapter, the literature review of the problem under study is performed. Firstly, a systematic

review of publications contemplating SC network optimisation models is described. Then, the existing

methodologies to provide agility to a SC are explored.

Chapter 4 - Problem Formulation

In this chapter, the mathematical formulation of the proposed network optimisation model is presented

and described. All parameters, constraints, decision variables and objective functions are detailed.

Chapter 5 - Computational Experiments

In this chapter, a computational experiment is performed to validate the model proposed in chapter 4.

Firstly, the example is presented, all the parameters associated with it are listed and a set of scenarios

to analyse is proposed. Then, the results of the computational experiment are detailed, interpreted and

a comparative analysis of the multiple scenarios is performed.

Chapter 6 - COVID-19 Vaccines Case Study

In this chapter, a case study regarding the network design of the COVID-19 Vaccine SC network for

Portugal is formulated and a solution proposal is provided.

Chapter 7 - Conclusion

In this chapter, the main conclusions of this thesis are drawn, and topics for future research are pro-

posed.

1.4 Research methodology

Figure 1.1 outlines the research methodology of the present thesis, which is composed of five stages:

Context regarding PSCs, literature review, a proposal of a model, an implementation of the model and

analysis of the results, and an application to a case study. Stages 1 and 2 are intended to provide

a strong theoretical basis for this topic. The subsequent stages have the objective of developing this

important matter which is the PSC optimisation. After all the stages of the methodology are finished, it

is expected that a proposal to design a PSC of the future have been constructed.
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Figure 1.1: Methodology

Stage 1: Context regarding PSCs

Stage 1 consists of having a solid theoretical basis and giving a context for the problem studied. The

typical PSC is characterised to understand the environment that enterprises in this industry are facing.

Some concerns regarding the future of this field are also presented, relating the paradigm shift that is

happening with the concepts that are gaining importance is Supply Chain Management (SCM). The

issues and challenges of the modern pharmaceutical industry are identified and their relationship with

SC optimisation is analysed.

Stage 2: State-of-the-art

Stage 2 consists of a literature review concerning PSC network design models and methodologies to

obtain agile SCs. The review of the state-of-art about PSC network optimisation is performed, analysing

the models that already exist in the literature. A literature review about the concept of agility is also

developed to understand how to improve the agility of a SC and the trends on this subject. The review

of the existing literature allows to properly identify a gap in the existing SC network optimisation models

trying to have a focus on agility issues. The relevant publications concerning PSC network design are

reviewed, by analysing and summarising the mathematical models proposed in each publication. As the

literature about agile PSC is almost nonexistent, publications about methodologies to obtain agile SCs

are investigated. This stage allows building a solid theoretical base to develop the next stages.

Stage 3: Proposal of a model

Stage 3 consists of the mathematical formulation of the identified problem. A mathematical model that

enables the redesign of a PSC network according to different circumstances will be proposed.

The mathematical model will consider the capabilities of an agile SC, as reducing the complexity of

the SC and decreasing the lead time and the cycle time. The model that will be developed will take into
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account some of the agility factors found in the literature and should improve the performance of the

current PSC. The decisions that the model support will focus on the strategic level decisions.

To design the optimisation model, appropriate characteristics will be selected from the literature, and

pertinent adaptations will be performed to present solutions to the challenges of the pharmaceutical

industry. Characteristics of SC that have not been considered yet will also make part of the model. All

should be addressed in the perspective of having control over the costs, to ensure that pharmaceutical

industries are also interested in the maintenance of reliable and flexible SCs.

Stage 4: Implementation and validation of the model

Stage 4 consists of performing computational experiments by using the model formulated to solve re-

alistic problems. The mathematical model will be solved with data collected from an example from the

literature review, reviewed in Chapter 3. The model will be solved with an exact algorithm, implemented

in optimisation software, namely IBM ILOG CPLEX Optimization Studio (CPLEX). Variation analysis to

some input parameters will be performed to test the sensitivity of the model and the validation of the

proposed new features.

The outputs provided by the model as the solution to the example problem defined will be detailed.

An analysis of that data will be performed to extract the most important information that the model can

output about SC network design. A focus will be pointed at the type and number of facilities integrating

the SC in a set of circumstances and time periods.

Stage 6: Application to a case study

In stage 6, the versatility of the model is confirmed by applying the proposed formulation to a problem

regarding the network design of a COVID-19 vaccine SC that will serve as a motivation example for

the applicability of the present model. In this model, the cost minimisation purpose of the network is

compared with a scenario in which there is no sufficient capacity to guarantee the supply to all the

demand in time. The analysis of a trade-off between SC costs and population with delayed vaccination

is proposed. The possible locations for the different facilities are discussed considering the trade-off

between a fast vaccination campaign with the minimum delays possible and cost minimisation.
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Chapter 2

The pharmaceutical supply chain

In this chapter the pharmaceutical SC is characterised. In section 2.1 the pharmaceutical industry envi-

ronment is contextualised. In section 2.2 the players involved in getting the drug from the manufacturer

to the patient are analysed. In section 2.3 the decision-making structure of a SC is explained. In section

2.4 relevant concepts to build the SC of the future are defined. In section 2.5 the paradigm shift that the

pharmaceutical industry is facing is presented. In section 2.6 some conclusions about this chapter are

drawn.

2.1 The pharmaceutical industry

The pharmaceutical industry can be defined as a complex set of processes operations and organisa-

tions involved in the discovery, development and manufacture of drugs and medications (Shah, 2004). It

is mainly composed of large Research & Development (R&D) multinationals, local companies, generic

manufacturers, manufacturing organisations without their own product portfolio, and biotechnology com-

panies highly focused on research and drug discovery (Shah, 2004; Sousa et al., 2011).

Large pharmaceutical manufacturers can be divided into two different business models: brand phar-

maceutical manufacturers and generic manufacturers. The pharmaceutical multinationals who produce

brand products dedicate part of their expenses to the scientific R&D of new drugs. Generic drug manu-

facturers normally do not develop new drugs but manufacture generic compounds that compete with the

original brand drug after the brand product’s patent has expired (KFF, 2005). The SCs of generic drug

manufacturers are mainly characterised by large portfolios of finished products and distribution chains,

avoiding the highly risky R&D and product development activities (Marques et al., 2020).

The PSC represents the path through which essential pharmaceutical products are distributed to the

end-users with the right quality, at the right place and at the right time. Therefore, PSC is complicated to

manage and greatly responsible for ensuring that the appropriate drug is delivered to the right people at

the right time and in the right situation to fight against sickness and sufferings (Mehralian et al., 2015).

Similarly to other consumer products, the general life-cycle of a pharmaceutical product starts with

product discovery, followed by the market launch and finally the commercialisation phase (Marques
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et al., 2020). Figure 2.1 illustrates this cycle, according to the global demand of the drug over time.

Figure 2.1: Drug life-cycle. From Laı́nez et al. (2012).

According to Azzaro-Pantel (2018) the pharmaceutical industry encompasses two very different

types of SCs: one to support the product development and market launch phases, and the other to

support the commercialisation of the drugs.

2.1.1 Product development and market launch

A new product development phase involves four main activities: discovery, pre-clinical tests, clinical trials

on humans, and approval and product launch, including the pharmaco-vigilance after launch (Laı́nez

et al., 2012). This translates into high expenditures, low success rates and long cycles.

The development of a drug means a large investment on R&D. The research phase consists in testing

thousands of more or less random compounds against the aimed therapeutic targets. On average it

takes ten years from the beginning of the research until the new drug is registered and patented. The

new drug is tested for safety and efficacy, involving trials for toxicity and for the ability to relieve the

symptoms or remove the disease. Only after that, an industrial process to produce the drug on a large

scale is developed. This set of activities typically takes plus six to eight years and is usually known as

the development phase.

Alongside the development of a new drug, the pharmaceutical company have to face a big num-

ber of regulatory challenges such as bio-equivalence, patent expiry, and the complexity involved in the

regulated market. Strict regulations and legislation vary between different countries and regions (Shah,

2004).

Drugs usually have a limited product shelf life due to chemical instabilities. Pharmaceutical products

shelf life correspond typically to the period of time in which the chemical stability of the compound is

higher than 90%. After that period the drug is no longer stable enough to guarantee its safe consumption.

The product perishability is, therefore, one of the most important challenges when designing a PSC.

Appropriate lead times that guarantee a fast delivery from the manufacturing site to the final customer

must be taken into account.

The product development process in the pharmaceutical industry is highly inefficient, with very low

levels of productivity. The total cost to approve a new compound is, on average, 2.6 billion dollars. At
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the development stage, the main challenges that a pharmaceutical company faces are the minimisation

of the development time, the time-to-market and minimisation of the development costs (Marques et al.,

2020).

2.1.2 Commercialisation

After the market launch, the process enters a growth phase in which companies try to capture and

establish the higher possible market share. The growth rate depends on the relative effectiveness of the

drug compared to alternative treatments and determines the demand that the product will achieve at the

maturity phase (Shah, 2004).

As a successful drug product gets closer to the end of its patent life, generic manufacturers will

introduce bio-equivalent products into the market. A PSC must have the ability to adapt to new realities.

A typical situation is when, at the end of the product patent life, the competition starts to produce the

generic drugs, lowering the final price of the drug and forcing the competitiveness (Laı́nez et al., 2012).

Pharmaceutical products can even be substituted with products with similar therapeutic indications

or by the same product in a different configuration. For example, higher doses can be replaced with

multiples of lower doses of the same principle (Zahiri et al., 2018).

2.2 Supply chain and logistics

In the commercialisation phase of the pharmaceutical product life cycle, the SC and logistical structure

play an essential role. In this section, the typical PSC and logistical structure will be analysed.

PSC comprises a network of manufacturers (primary and secondary, in-house and external contrac-

tors), packaging facilities, wholesalers, and final healthcare providers such as hospitals and pharmacies.

According to Shah (2004), PSC involves four indispensable echelons, as schematised in Figure 2.2: pri-

mary manufacturers, secondary manufacturers, DCs and retailers.

Figure 2.2: Levels of the PSC

Susarla and Karimi (2012) emphasises the particularity of each echelon having specific suppliers,

which complicates the distribution network of products and materials, as illustrated in Figure 2.3.

Due to globalisation, all these agents can be located in different places around the world, forcing

companies to deal with different regional policies, cultures and tax structures. Adding to this already

complex network, the raw material suppliers, the contractors, and the third-party logistics providers, fur-

ther extend the SC network, requiring a high level of coordination between all the agents, governments,

and regulators (Marques et al., 2020).
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Figure 2.3: Schematic of a large multinational pharmaceutical network. From Susarla and Karimi (2012).

Primary Manufacturers

Primary manufacturers produce the active ingredient of the pharmaceutical. The active ingredient is the

substance that will cause the intended pharmacological effect on the living being (Zahiri et al., 2018).

Plants require high investments, forcing large ranges of products to be produced in the same facility

to dilute the investment. This suggests the production of low quantities per batch. Since the productions

in those sites are characterised by long setup times for activities like cleaning and decontamination, the

use of long cycle times is preferred. A trade-off is encountered. To keep a low planning complexity, the

strategy of long production campaigns is often chosen, causing low equipment usage. Also, having to

manage several references of products, flexibility in the SC is mandatory.

Reports from the FDA (2019) and EFCG (2021) highlight the concern about the Active Pharma-

ceutical Ingredient (API) producers (or primary manufacturers) being now concentrated in emerging

economies. Figure 2.4 illustrates the geographic distribution of API manufacturers in United States of

America (USA) and European Union (EU) markets. On another side, America, Europe and Japan are

where 80% of the sales are concentrated. In 2018 North America only accounted for 48.9% of the world

drugs sales and in Europe this number was 23.2%. Global spending on medicines accounted for 1.2

trillion dollars in 2018 and it is expected to exceed 1.5 trillion dollars in 2023 (Marques et al., 2020). This

large distance between products and consumers puts increased pressure in the SCs, raising also the

risk of shortages or quality issues (FDA, 2019).

A small quantity (when compared to other industries) of API is enough to produce a very large quan-

tity of doses. This dilutes the transportation costs into many final products, lowering the transportation
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costs of the API to negligible values and allows the primary manufacturer to be anywhere in the world,

even far away from the Secondary Manufacturer. When deciding a place to locate the primary manu-

facturer can, though, be directed to taxes, labour supply, raw material provider, politics and economics

(Sousa et al., 2011).

Figure 2.4: Distribution of API manufacturers: USA market on the left; EU market on the right. Adapted
from FDA (2019); EFCG (2021).

Secondary Manufacturers

A drug is composed by its API and also by inert materials called excipients, which allow having a product

that can be sold as a tablet, capsule, liquid, cream, ointment or aerosol. Secondary manufacturers are

the plants that perform the laboratory process of mixing the API with the excipient (Zahiri et al., 2018).

There are often more secondary manufacturing plants than primary, serving local or regional markets.

Transportation from the primary manufacturer to the secondary manufacturer is in the order of weeks if

by ship, the most used transportation mean, and in the order of days if by aircraft Shah (2004).

The transportation cost between primary manufacturers and secondary manufactures can be ne-

glected as stated above, but the transportation cost downwards from the secondary manufacturer can

no longer be neglected. As the inert products are added, and the drugs are processed and packed, the

product gains volume and mass and the transportation costs get very significant. secondary manufac-

turers should, therefore, be located closer to the markets than the primary manufacturer (Sousa et al.,

2011).

Distribution Centre

The DC is the unit that will purchase the pharmaceutical products from the manufacturer and sell them

to the retailers. Very often, the DC accumulates the task of receiving the drugs in gross and packaging

the product into individual doses.

Some wholesalers sell to a broad range of potential clients while others specialise in sales of par-

ticular products (e.g. biologic products) or to particular types of customers. Wholesalers used to limit

their operations to the traditional distribution functions: link manufacturers to retailers by managing in-

ventories. Nowadays, wholesale distributors also provide some specialised services as special drug dis-

10



tribution, repackaging, provide electronic order services, customer support and reverse logistics (KFF,

2005).

According to EHDA (2020), in all EU countries except Cyprus, as well as China, Russia, Serbia and

Turkey, more than 750 full-service healthcare distributors are accounted, with 1260 warehouses. The

same source indicates 2.5 hours as the average delivery time to the retailers, with an average of 35

different pharmaceutical products per delivery from around 19 different manufacturers.

Retailers

Retailers are the final level of the PSC. Those are the channels through which the product is delivered

to the final customer. In the pharmaceutical industry, most products are only delivered in hospitals

and pharmacies since these drugs are subjected to regulatory laws that force the customer to have a

medical prescription proofing the necessity of the drug. On another side, some drugs are not subjected

to medical prescription thus, in some countries, are sold in other places like convenience stores and

para-pharmacies.

Pharmacies’ operations include maintaining an adequate stock of drug products, providing informa-

tion to consumers about the safe and effective use of prescription drugs, and facilitating billing and

payment for consumers participating in group health benefit plans.

Pharmacies also serve as a vital information link between drug manufacturers and wholesale distrib-

utors. Nowadays, PSC is highly automated and almost all transactions are handled electronically. Since

pharmacies are where the pharmaceutical products are delivered to the final consumer, pharmacies

serve as an interface to validate drug prescriptions and must exchange information with health service

providers KFF (2005).

According to PGEU (2018), 58% of EU citizens can reach the nearest pharmacy in 5 minutes and

98% can reach the nearest pharmacy in 30 minutes. This gives a sight of how many pharmacies exist

and how much they are geographically scattered. Fein (2016) counted 97000 pharmacies in EU and

64000 pharmacies in the USA.

2.3 Decision-making process

Managing manufacturing and distribution operations with the players spread across the entire world

requires an effective decision-making process.

According to Méndez et al. (2006), decisions that must be taken in the companies are grouped into

three enterprise levels, according to their planning horizon: the business management (long-term deci-

sions), the production management (mid-term decisions) and production process (short-term decisions),

as illustrated in Figure 2.5. Pharmaceutical enterprises generally follow the same decision hierarchy.

Strategical decisions are long-term decisions that imply high investments and have a higher impact

on the company operations. Therefore they are taken by executives or directors (Heintz et al., 2014).

These decisions can be the location and size of the different facilities and infrastructures, determine the
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production volume of critical products, and allocate the most valuable resources (Papageorgiou et al.,

2001; Zahiri et al., 2018).

Tactical decisions are mid-term decisions that have a medium impact on the company operations and

less weight on the company finances. Usually, they are taken by business units managers (Heintz et al.,

2014). These decisions are determinant to define the quantity of the inventories and the productions

(Zahiri et al., 2018).

Operational decisions are short-term decisions and have a lower impact on the firm budget. They

are taken on a regular basis by operational managers (Heintz et al., 2014). These decisions are, for

example, defining the schedules of the production, and allocating the resources on a daily basis (Zahiri

et al., 2018).

Figure 2.5: Levels of decision. Adapted from Heintz et al. (2014).

2.4 Future of supply chain management

Today’s market is characterised by higher levels of turbulence and volatility. Business, economic and

political environments are increasingly subjected to unexpected shocks and discontinuities. SCs are

vulnerable to disruption and, as a result, the risk to business continuity is increased (Christopher, 2007).

When the COVID-19 pandemic started, almost every country raised barriers to the movement of

people and products, and many companies suspended or reduced their production to avoid the spread

of the virus. China reacted quickly to the dissemination of the virus, minimising the disruption created

by the pandemic in the drugs supply. In India the scenario was different. As this country has the

largest number of Food and Drugs Administration (FDA) approved plants outside USA and accounts for

around 40% of the generic drugs in USA, the pandemic caused some turbulence in the supply of drugs

to the USA. Also, the pandemic is generating an increased sense of protectionism. Some countries

are stockpiling raw materials and drugs as insurance in the case of a global supply breakdown, either

denying the shipment of these products to the occidental countries or taking advantage of the situation

by increasing prices and taxes (Ras-Work, 2021).
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Despite drugs’ shortages having slightly increased in the last years, in middle 2020 the number of

drug shortages already had detonated the value of 2019, as illustrated in Figure 2.6.

Figure 2.6: Drug shortages in the USA between 2014 and 2020. Adapted from Lesmeister et al. (2020).

Guaranteeing a smooth and robust supply of pharmaceutical products to the global markets is crucial.

Agility and resilience have been identified as necessary characteristics of modern-day SCs (Gligor et al.,

2019). Their roles have been well recognised in helping firms and SCs to deal with challenges such as

globalisation, constant change, shorter product life cycles, diverse customer requirements and increased

uncertainty of demand (Christopher, 2000; Christopher and Peck, 2004). In this vein, agile and resilient

PSC can manage better the risks and the market volatility, avoiding shortages as identified. According

to Gligor et al. (2019), the ability to empower the customer and customise the products to meet the

customer needs is also a characteristic of an agile SCs.

The existing conceptualisations of agility and resilience are often contradictory or confusing. Because

of that, Gligor et al. (2019) studied a total of 439 agility-related articles and 1013 resilience-related

articles and developed a scheme to clarify the concepts, presented in Figure 2.7.

”Agile” was first time used in operations in 1992 by Nagel (1992), who proposed that agility would be

a key to gaining competitiveness. Three years later, Goldman et al. (1995) defined the concept of agility

in the SC as a strategy of responsiveness and readiness to change in a volatile market (Shashi et al.,

2020).

According to Ghatari et al. (2013), agility means the capacity of using the knowledge about the

market and about the organisation itself to explore opportunities of profiting in fast-growing markets and

on markets in constant change. An agile SC is a SC that rapidly adapts to variable demands.

As illustrated in Figure 2.7, Gligor et al. (2019) considered three key themes of agility. First, the SC

must have the ability to quickly change the direction of the organisation, independently of the existence

of disruption events. Second, an agile SC is characterised by the capacity to empower the customer

and the customisation of the products. And the last key theme is the ability to integrate processes within

and across organisations. It is not sufficient for organisations to integrate their internal processes, but

they must also integrate with their SC members, suppliers and customers.
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The growing customer and technological requirements are pushing manufacturers to develop agile

SC capabilities in order to keep competitiveness (Yusuf et al., 2004).

Whereas in the past the main objective in SC design was cost minimisation, the emphasis now must

be on resilience. Resilience refers to the ability of the SC to cope with unexpected disturbances. Even

the best-managed SC will hit unexpected turbulence or be affected by events that are impossible to fore-

cast. Hence, managers should incorporate resilience in the SC (Christopher, 2007). Usually, improving

the SC resilience requires taking strategic decisions, such as relocating facilities or changing sources

of supply. The impact of those decisions on the SC risk profile must be fully understood (Christopher,

2007).

As illustrated in Figure 2.7, according to Gligor et al. (2019), there are three key themes that charac-

terise resilience. First, resilience is about the ability to survive from disruptions, as the recent Covid-19

pandemic. An organisation should have adaptive qualities to overcome stressful moments. Second, a

resilient SC must be able to recover to the original form after the disruption. Lastly, a key objective of a

resilient SC is the capacity to avoid the shock caused by a disruption altogether, ”by breaking the tsunami

into small waves”. This involves proactive measures, where the disruptions are anticipated and actions

are taken before the disruption really takes place. Gligor et al. (2019) concludes by stating that strate-

gic resilience is about having the capacity to change before the case for change becomes desperately

obvious.

As illustrated in Figure 2.7, Gligor et al. (2019) realised that agility and resilience have some similar

meanings. The author considered that it is important to determine the distinct and common charac-

teristics of agile and resilient SCs because allocating resources to the development of the common

characteristics of agility and resilience can help companies to minimise the impact of such investments.

By investing in the common characteristics they will improve both, SC agility and SC resilience.

Gligor et al. (2019) identified three common themes, as illustrated in Figure 2.7. First, resilience and

agility are the ability to speed operations and processes. The ability to speed operations is not about

achieving the maximum speed, but rather the ability to accelerate and decelerate properly. Second,

resilience and agile SCs should have the ability to anticipate. The organisations must be capable of

scanning the environment and reading the real demand. Therefore, they can respond quicker and better

to changes or alerts. Lastly, flexibility, as the capacity to adjust, is mandatory.

According to Christopher (2007), flexibility also reflects the ability of the SC to adapt or reconfig-

ure its architecture in response to major changes on the demand side or the supply side. SCs with

enhanced structural flexibility are able to cope with the high levels of volatility commonly found in a

twenty-first-century business environment. The author claim that to obtain resilience and agility, a SC

must imperatively be flexible. To a SC become more agile and more resilient, the companies should

invest in the common themes since they have an impact on both agility and resilience.

Feizabadi et al. (2021) also considered agility as a source of superior firm performance. Moreover,

the authors enumerated adaptability and alignment as characteristics that will constitute the SC of the

future. SC agility is the ability to respond to short-term changes in supply, demand and business envi-

ronment. SC adaptability is the ability to respond to long-term and structural changes to supply, demand
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Figure 2.7: Agility themes, resilience themes, and common themes. Adapted from Gligor et al. (2019).

and business environment. Finally, SC alignment consists of aligning the incentives of SC partners by

sharing the risk and the rewards. Agility, adaptability and alignment are known as the Triple As (Feiz-

abadi et al., 2021).

According to Christopher (2007); Gligor et al. (2019); Feizabadi et al. (2021), the future of the SC

design will undergo an acquisition of characteristics and capabilities that provide flexibility and respon-

siveness to SC: agility, resilience, adaptability and alignment. The complexity of the SC should also be

minimised.

2.5 The new pharmaceutical paradigm

Disruptive alliances, innovations, and collaborations are forcing traditional “healthcare” companies to

bring patient services to the forefront. The industry as a whole has expanded efforts to develop com-

plementary support programs, customised to help ensure patients have the best possible experience.

According to the Chief Executive Officer (CEO) of Ayogo, ”a patient engagement software company,

to be successful today, the focus needs to be much more on patient and physician behaviour than on

product benefit and features” (PharmaVOICE, 2018).

Marques et al. (2020) developed an impact matrix on the SC, considering the drivers, challenges

and enablers of the pharmaceutical industry, and realised that companies are now evolving from their

traditional product-centric and margin-driven organisational perspective to an enterprise-wide perspec-

tive. The shift from an old paradigm to a new paradigm carries six main components, each one with a

different focus: outcome, efficiency, increased value, flexibility, market expansion, and overall welfare.

Figure 2.8 illustrate the different approaches of components on the old and new paradigms.

To improve the outcome of the PSC, companies will need to engage more strategically with patients,

focusing on understanding the patient needs, expectations and fears in order to continuously revise and

update the value proposition of their products. Patient-centricity is a paradigm that puts the focus on
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Figure 2.8: Old paradigm versus new paradigm. Adapted from Marques et al. (2020).

the customers. Therefore, new product-service solutions will be expected through the exploitation of

innovative technological breakthroughs, and new distribution and information channels will have to be

created to enhance relationships with patients and build partnerships based on trust (Marques et al.,

2020).

Increased drug specificity and demand uncertainty are adding a further level of complexity when it

comes to the design and operation of robust distribution networks. The pharmaceutical industry has

taken significant steps towards the improvement of existing and the development of novel processes

that promise agile, responsive, and reproducible manufacturing (Sarkis et al., 2021). In the future, PSCs

will not be driven by products and processes but by customer needs.

The cost-driven paradigm is becoming a focus for pharmaceutical companies as they recognise the

importance of having a competitive advantage. To achieve efficiency, companies must develop not only

cost-efficient processes but also advanced decision support tools capable of assisting the managers to

make informed decisions based on scientific evidence (Marques et al., 2020).

Pharmaceutical companies are now concerned with adding value by using targeted product strate-

gies based on market segmentation and customisation. In the pharmaceutical industry, beyond the

importance of analysing the market needs and specifications to develop a drug, it is now becoming a

reality the analysis of specific patients to maximise the potential of a drug (Marques et al., 2020).

According to Gligor et al. (2019), flexibility can be defined as the capacity to adapt strategies, tactics

and operations. In recent years, companies are betting on outsourcing and joint ventures strategies,

moving from single to extended collaborative SCs. In this way, pharmaceutical companies increase their

flexibility in matching market dynamics as well as capacity to manage risk.

With developing economies representing the most significant growth in the pharmaceutical indus-

try, the market for pharmaceuticals is becoming global and a market expansion is happening. Market

segmentation and multiple distribution channels will be critical strategies for companies to ensure drug

supply in a remote place. Higher levels of end-to-end visibility will become critical to ensure quality in
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the management and monitoring of the SC operations (Marques et al., 2020).

The pharmaceutical companies have to take into account the overall welfare. Strategic decision-

making should embrace the sustainability component and include strategies to reduce waste, minimise

resources consumption, and improve operational efficiency. Companies should also invest on innovative

decision-support frameworks that address social responsibilities, in conjunction with the agility needed

to tackle the other components (Marques et al., 2020).

Sarkis et al. (2021) agrees that the pharmaceutical sector is undergoing a paradigm shift where the

capabilities of decentralised models must be explored. The authors suggest the improvement of com-

munication between process units, production plants and distribution nodes. The authors also reinforce

the importance of decision support systems and modelling tools based on nowadays technology, as

mechanisms to obtain agility and productivity in the operations of the pharmaceutical sector.

One way to get closer to the patients and to satisfy better their needs is the development of digi-

tal tools. They are extremely useful for capturing patient symptoms, improving medication adherence,

monitoring activity and other elements that when charted or tracked provide critical insights to patients,

caregivers, and healthcare professionals (PharmaVOICE, 2018). A change of paradigm in the pharma-

ceutical industry suggests the need for a reformulation on the concerns when designing or redesigning

the PSC. This leads to a change of paradigm in the SC itself, driving managers to study new concepts

and approaches in an effort to understand the future of SCM.

2.6 Conclusion

According to Christopher (2007), in the relatively short time that companies have been focusing on man-

aging SCs, the world has changed dramatically. New thinking and new technologies are revolutionising

many industries.

Although, PSC is a highly conservative industry (Marques et al., 2020). It takes a long time to

implement changes. Usually, it implements concepts and ideas from other industries, that are more

innovative, but in a delayed way compared with another.

Now what is required to the SCs are that they become more agile and better able to cope with

rapid change and higher levels of variety and even customer customisation. Flexibility is increasingly a

prerequisite for doing business in a volatile and turbulent environment (Christopher, 2007). SC needs to

become resilient, agile, adaptable and aligned in order to face the challenges of the future.

Patient-centricity concept or new technological developments have been revolutionising the pharma-

ceutical industry (Marques et al., 2020). The pharmaceutical SCs not only must incorporate the new

capabilities but also needs to take into account this new concept and the evolution of the technologies.

In addition, Marques et al. (2020) propose opportunities for improvement the PSC: development

of SC agility and responsiveness, minimisation of production and distribution costs, reduction of SC

complexity, improvement in end-to-end visibility across the entire SC, strategies for seamless integration

and coordination across the SC network, inventory reduction at every node of the SC, and the integration

of sustainability aspects.
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Chapter 3

Literature Review

In this chapter, a review of the state-of-the-art of the PSC is elaborated. Section 3.1 consists of a

literature review of PSC network optimisation models. In section 3.2 the new capabilities concepts can

be found in the SC are defined and characterised. In section 3.3 a conclusion regarding this chapter is

drawn.

3.1 Pharmaceutical supply chain network optimisation

Optimal SC design is vital to the success of industries. Optimisation models and methods for SC network

design have been of great interest to industry and academia over the past decades (Garcia and You,

2015). PSC optimisation is an area of the SCM that has been using Operations Research (OR) as a

tool to improve its performance towards the existing challenges. SCM is a subject very studied since the

fifties. However, the specific case of the pharmaceutical industry was not approached in the literature

until the late nineties.

In this chapter, the PSC network optimisation models in the existing literature are addressed and its

solution approach is analysed.

Searches on Google Scholar and Web of Science databases were performed to encounter publica-

tions regarding PSC optimisation. The search was performed with keywords according to the following

logic: ”Pharmaceutical” AND ”Supply Chain” AND ”Network Design” AND (”Optimisation” OR ”model”

OR ”MILP” OR ”MINLP” OR ”Heuristic” OR ”Algorithm”).

The publications were screened to guarantee that the paper is published in a peer-reviewed journal

and that a quantitative optimisation-based approach was used to determine strategic decisions for a

PSC network. The literature reviews of the encountered publications were also carefully analysed to

ensure that all the relevant research made about the subject is included.

The search returned 27 relevant publications between 1999 and 2020, as plotted in Figure 3.1. Those

27 publications are published in 17 peer-reviewed journals, as plotted in Figure 3.2.
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Figure 3.1: Number of publications reviewed versus year of publication

Figure 3.2: Number of publications reviewed versus peer-reviewed journal

Each reviewed model is characterised according to its objective functions, its output (that is, the

decision that the formulation aims to support) and its solution approach. Table 3.3 summarises the

reviewed models.

The reviewed models address two types of solution methods to solve the PSC optimisation problem

proposed: exact and non-exact. Exact methods, denoted by the letter E, solve a problem guaranteeing

the optimality of the solution. Non-exact methods, denoted by the letter N, refer to optimisation tech-

niques that do not guarantee the optimality of the solution found. Subsection 3.1.1 includes the models

solved through exact methods and subsection 3.1.2 includes models solved through non-exact meth-

ods. Some of the models reviewed were solved through both exact and non-exact methods, which are

denoted by both the letters E and N. Those models are analysed in subsection 3.1.2.

to determine the efficiency and effectiveness of an existing system, the performance measures must
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be defined (Beamon, 1998). Performance measures are the objective functions of the models. The most

used objective functions to measure the PSC performance (Susarla and Karimi, 2012; Savadkoohi et al.,

2018; Zahiri et al., 2018; Goodarzian et al., 2020) are summarised in Table 3.1.

Table 3.1: Objective functions
Objective Function Notation

Maximisation of profit P

Minimisation of total costs TC

Minimisation of the unmet demand UD

Maximisation of the service level SL

Maximisation of the customer satisfaction CS

Minimisation of the environmental impact EI

Maximisation of the social welfare SW

Minimisation of the social impact SI

Maximisation of the net present value NPV

Minimisation of the delivery time DT

Maximisation of reliability R

Minimisation of the non-resilience NR

A model can support one or more decisions, then, it may have one or more outputs (Lashine et al.,

2006; Savadkoohi et al., 2018; Zahiri et al., 2018). Outputs and respective notation and meaning are

summarised in Table 3.2.
Table 3.2: Outputs

Output Notation Meaning

Location L decide about the location and capacity of the facilities of the SC

Allocation A decide about the assignment between facilities

Distribution D decide about the flow of products from one facility to another facility

Production P decide about the manufacturing quantities of the products

Routing R decide about the routing of the vehicles that will transfer the products

Inventory I decide about the quantities to store at each location

3.1.1 Exact methods

An exact approach was used by Rotstein et al. (1999) to model a SC of a pharmaceutical company

considering multiple scenarios. He proposed an optimisation based approach to determine the product

development, introduction strategy, capacity planning and investment strategy. Despite being focused

on a portfolio selection, this model is considered in the present review because it is the elder publication

concerning PSC optimisation found and it decides about investment or disinvestment on facilities basing

on the portfolio chosen. The authors formulated a MILP problem to minimise the Net Present Value

(NPV) and solved it with less instances. Since real case problems involve prohibitively large instances to

solve in a reasonable time, the authors proposed and validated a ranking-based hierarchical procedure.

Papageorgiou et al. (2001) applied a mathematical programming technique to facilitate the strate-

gic SC decision-making process for pharmaceutical industries. The authors proposed an optimisation-
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based approach to select both the optimal product development and introduction strategy together with

long-term capacity planning and investment strategy at multiple sites, considering also some particular-

ities associated with the pharmaceutical industry, as scaling and product lifetime constraints. Similarly

to Rotstein et al. (1999), the authors solved the MILP to tackle small instance problems and developed

a hierarchical procedure to deal with real-world problems.

Papageorgiou et al. (2001) left the challenge of developing a similar approach but considering the

uncertainty on the demand and the outcome of the clinical trial, common in this industry. Gatica et al.

(2003) worked on the uncertainty on the clinical outcome, developing a multi-period stochastic optimisa-

tion problem considering four scenarios for the outcome of one clinical trial. The authors formulated the

problem as a MILP.

In the same year, Grunow et al. (2003) proposed a multi-period MILP model to minimise the to-

tal costs of a distribution SC considering the production processes. To reduce the computational time

needed, the authors introduced several aggregation schemes and a novel MILP model formulation which

is based on a continuous representation of time. The authors also proposed an iterative near-optimal

solution procedure that can be successfully applied to even exceptionally large real-world problem in-

stances. The applicability of the approach is proven through a case study.

Levis and Papageorgiou (2004) also presented an extension of Papageorgiou et al. (2001) to cope

with uncertainty on the outcome of the clinical trial. This time the uncertainty considers the typical trading

structure of a typical pharmaceutical industry. Firstly, the authors propose a two-stage, multi-scenario,

MILP model to minimise the NPV. After, a hierarchical algorithm is proposed to reduce the time needed

for the solution of large-scale MILPs. The approach is validated by some illustrative examples.

Oh and Karimi (2004) proposes an approach in four steps to capacity-planning on the general chem-

istry industry. First, the authors introduce trade regulations that can significantly influence the busi-

ness operations of multinational companies. Second, the authors present a new deterministic capacity

expansion planning MILP model to maximise the NPV in which sizes of expansions or new facilities

are variables and domestic and international regulatory factors are explicitly taken into account. Third,

an extension of the deterministic model is proposed, to address distribution centres, outsourcing, and

stochastic uncertainty in problem parameters with a simple scenario-planning approach. Finally, some

illustrative examples are used to validate the approach. This publication is included in the present review

since the authors suggested that with the modification or addition of some constraints, the formulation

can accommodate and have utility in the pharmaceutical industry.

Susarla and Karimi (2012) developed a MILP model aiming for multi-period enterprise-wide planning

in pharmaceutical industry. The model integrates procurement, production, distribution and inventory

strategies on a long-term perspective, and includes some particularities of the sector: the international

tax differentials, inventory holding costs, material shelf-lives, and waste treatment and disposal. If the

model becomes prohibitively large to be solved through the exact approach in a reasonable time, the

authors propose to consider one specific variable as zero. This relaxes several constraints and enables

the resolution of the problem in an acceptable time, even in large instances, with a small compromise

on the quality of the solution.
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Mousazadeh et al. (2015) developed a multi-period bi-objective MILP model to minimise the total

costs and the unmet demand. The model aims to support decisions as locating and planning the capac-

ity of pharmaceutical manufacturing centres and main/local distribution centres over long-term planning,

along with material flows over mid-term planning. The authors used a robust possibilistic programming

approach to deal with the uncertainty in demand, unit manufacturing costs, unit transportation and tran-

shipment costs and safety stock levels. The model is tested in a real case study and the authors provide

a business interpretation of the results by applying the ε-constraint method and the TH approach, from

Torabi and Hassini (2008), to obtain good approximations of the Pareto front.

Zahiri et al. (2017) built a multi-objective MILP model to design a PSC network. To combine sus-

tainability and resilience in the SC, four objective functions are proposed: minimise the total cost of

the system, maximise the job opportunity and economic development of the region, minimise the total

environmental impact and minimise the non-resilience of the network. The authors considered five mea-

sures of resilience: node criticality (a node is critical if the total inflows and outflows exceed a certain

threshold); new technology (reassignment policy to transfer the production to a backup technology if the

less costly and less reliable technology fails); flow complexity (measures the total interaction between

the nodes of the network); node complexity (measures if the total number of active nodes is higher than a

pre-defined value); and unmet demand. To cope with the uncertainty on costs, environmental and social

impacts, incident probability and demand, a new fuzzy possibilistic-stochastic programming approach

is developed. To solve the problem, a novel Pareto-based lower bound method is proposed, as well

as a new metaheuristic algorithm based on the differential evolution algorithm, variable neighbourhood

search algorithm and game theory. The approach is validated through numerical examples and a case

study.

Zahiri et al. (2018) presented a model to minimise the total cost and the unmet demand on a phar-

maceutical supply network design problem that supports decision about facility location, and flow of

products from facilities in different or in the same echelon of the SC. Certain particularities of the phar-

maceutical sector were considered as the product perishability, substitutability and quantity discounts

and uncertainty in the transportation cost, fixed establishment cost, capacity and demand. The authors

developed a new fuzzy model and converted it into a conventional mathematical model, while managing

the uncertainties basing on various interpretations of the problem. In the second phase, the converted

mathematical model is solved by an optimisation technique. The derived solution is optimal to the con-

verted mathematical model but is not always optimal to the original fuzzy model. If the solution is not

optimal, the fuzzy model is rebuilt to a new mathematical model based on the improved interpretation

until the optimal solution is achieved. A modified game theory is used to convert the two objective

functions into a new objective function to find the Pareto optimal solution.

Savadkoohi et al. (2018) developed a model to solve a location-inventory problem on a three-echelon

PSC network that support both strategic and tactical decisions as opening manufacturing and distribu-

tion centres, material flows in the network, and the optimal inventory policy taking into account products’

perishability. The model is formulated as a MILP that aims to minimise the total cost with uncertainty in

demand, costs and capacities. The model is tested on a real case study and some business interpreta-
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tions are provided by conducting sensitivity analyses.

Halim et al. (2019) proposed a framework to support strategic decisions as supplier selection and

network design in a PSC. Initially, an analytic hierarchy process is used as a multi-criteria tool to rank

the suppliers. Then, a bi-objective MILP model is proposed to find an acceptable trade-off between the

total cost minimisation and the greenhouse gases emission minimisation. A network design tool (SC

Guru) is used to solve the optimisation problem and find the Pareto front.

Roshan et al. (2019) addresses crisis management in PSCs by creating a multi-objective non-linear

model to minimise the network total cost, minimise the unmet demand and maximise the satisfaction

of social responsibility. Product perishability, substitutability and uncertainties associated with the de-

mand and the transportation costs are considered. The possibilistic uncertainty is converted into a

non-possibilistic model so that the problem could be solved as a mixed-integer non-linear programming

(MINLP). To obtain the Pareto front of the three objective functions, the already mentioned TH approach

is used.

Singh and Goh (2019) proposed an approach to maximise supplier efficiency and minimise the total

logistics cost. The supplier efficiency is quantified by a reliability parameter given for a set of suppliers

that were pre-selected through a multi-criteria approach. The total logistic cost considers decisions

about production and inventory strategies. The model is formulated as a fuzzy multi-objective MILP,

with uncertainty associated with the demand parameter, supplier capacity and costs parameters and the

TH approach is used to obtain an efficient solution from the multi-objective problem.

Zandkarimkhani et al. (2020) developed a bi-objective mixed-integer linear programming model for

designing a perishable PSC network under demand uncertainty. The objectives of the MILP formulation

are to simultaneously minimise the total cost of the network and the lost demand. The proposed model

is multi-product and multi-period and includes facilities location, vehicle routing, and inventory manage-

ment decisions. A hybrid approach, based on fuzzy theory, chance-constrained programming, and goal

programming approach is developed to solve the bi-objective problem. The model is validated through

a real case study.

3.1.2 Non-exact methods

When the use of an exact method is impossible or impracticable to find the solution, non-exact methods

can be applied. Non-exact methods encompass heuristic and metaheuristic approaches. Heuristics are

strategies based on previous experiences with similar problems. Metaheuristics are a type of heuristics

that make use of random choices to obtain non-optimal solutions, demonstrating greater efficiency in

most cases. Both heuristics and metaheuristics are usually used to solve optimisation problems for

which exact algorithms are not efficient due to their high resource consumption (computational power or

time).

Sousa et al. (2005) proposed a global SC network optimisation procedure for pharmaceuticals. The

authors developed a model that aims to maximise NPV to solve the problem of allocating and determin-

ing product flows from primary manufacturers to secondary manufacturers and from secondary man-
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ufacturers to demand zones. The authors solved the problem using two decomposition algorithms: a

Lagrangian decomposition method and the Product Frames Algorithm heuristic.

Sousa et al. (2011) expanded the investigation of Sousa et al. (2005). The authors explored two

decomposition algorithms to reduce the solution time when solving: the spatial decomposition algorithm

and the temporal decomposition algorithm. In the first method, the SC is decomposed into two sub-

problems, one for each echelon and solve the problem as a MILP for each sub-problem. In the second

method, the main problem is separated into multiple independent problems, one per time period. The

multiple problems are solved in two stages: firstly, the constraints with continuous variables are modified

and the binary variables are calculated through a MILP; then, the binary variables are fixed and an LP

solves the continuous variables.

Considering a drug shortage scenario, Vila-Parrish et al. (2012) proposed a multi-period LP model

to minimise the total costs. The authors developed a multi-echelon perishable production and inventory

model. In the model, the production decision, which converts the raw material to the finished good,

increases the perishable nature of the product. The developed model involves two stages: the first

consists of the development of a Markov decision process to represent medicines demand as a function

of the patient condition; the second phase consists of the use of simulation to evaluate the inventory

policies characterised in the first phase (Franco and Alfonso-Lizarazo, 2020).

Kelle et al. (2012) discussed the PSC and the common practices in a case hospital, examining the

conflicting objectives that arise between various stakeholders and exploring the trade-offs present at

operational, tactical, and strategic levels of decision making. Despite focusing on the inventory man-

agement of a local storage centre, this publication is included in the present due to its high concern on

providing an exceptional service level, by avoiding shortages. The authors created a non-linear model

to minimise the total costs, simplified and linearised it and created a procedure to solve the model

iteratively, by using an exact approach to solve each variable at a time.

Izadi and Kimiagari (2014) designed a single-period distribution network under demand uncertainty.

To consider the uncertainty, a set of possible scenarios is created basing on the Monte Carlo simulation

method and for each scenario, the distribution network was optimised using a genetic algorithm. The

proposed model was validated with a pharmaceutical company case study.

Chung and Kwon (2016) proposed an approach to optimise product flows between facilities in differ-

ent levels of a PSC. The authors consider the oligopolistic competition across wholesalers that drives

price and demand fluctuations. The authors developed a model to maximise the profit of the company

and propose the solution by determining the Nash Equilibrium, and, then, using the interior-point barrier

algorithm which involves Gaussian elimination and the resolution of sub-problems formulated as MILPs.

Abbas and Hosseininezhad (2016) proposed a location-allocation model for pharmaceutical centres

trying to locate a set of new facilities to minimise the transportation cost from these facilities to the

customer. The authors considered two objectives: minimisation of costs and maximisation of customer

satisfaction by defining social justice. The authors solve the problem through exact methods and, after,

apply the ε-constraint method to find the Pareto solution.

Bijaghini and Seyedhosseini (2018) presented a bi-level bi-objective model for a PSC that assigns
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distribution centres to retailers, respective product flows and appropriate a appropriate vehicle to perform

the transport, aiming to minimise total costs along with the unmet demand. Uncertainty is considered in

demand, inventory levels and shipping costs. Then the robust approach was used to handle the associ-

ated uncertainty of related parameters and the resulted problem is solved by the Benders decomposition

algorithm. The solutions found for a numerical example for both objective functions are submitted to an

Analysis of Variance (ANOVA).

Janatyan et al. (2018) develop a multi-period multi-objective model to design a pharmaceutical dis-

tribution network while minimising the costs and the adverse environmental effects and maximising the

welfare of society. Location, allocation and distribution decisions are supported by the model. The au-

thors chose to use one multi-objective evolutionary algorithm that allows finding multiple Pareto-optimal

solutions in one single run, the non-dominated sorting genetic algorithm (NSGA-II). The approach is

applied to a case study of an Iranian pharmaceutical distribution company.

Zhu and Ursavas (2018) studied a facility location and vehicle routing problem on a distribution phar-

maceutical network. The authors considered two types of distribution centres: depots (main) and satel-

lites (secondary). The customer can be fulfilled directly from a depot, or a satellite if the vehicle route

starts in a depot. The authors model the problem as a linear function that aims to minimise the total

cost. To solve the problem, a technique is developed which iterates between an upper bound and a

lower bound, based on Lagrangian relaxation combined with a branch-and-cut approach.

Nasrollahi and Razmi (2019) developed a four-echelon multi-period approach to design a pharma-

ceutical distribution network allowing the flow of products inside one level of the SC considering fuzzy

uncertainty on the demand. The bi-objective model aims to maximise the service level while minimising

the system’s cost. The authors developed a modified non-dominated sorting genetic algorithm by in-

cluding a combination of elitism strategy and fitness proportional selection in the chromosome selection

to improve the quality of the solutions in the Pareto front and used the centroid method to perform the

”defuzzification”.

Goodarzian et al. (2020) proposed a model to design a multi-echelon multi-product multi-period PSC

network. The authors create a multi-objective approach to minimise the total costs, minimise the deliv-

ery time and maximise the reliability of the transportation system to determine both strategic, tactical

and operational decisions. To cope with the uncertainty on the transportation costs, purchase costs,

capacity of the warehouses, the distribution centres, and vehicles, the authors use a trapezoidal fuzzy

programming technique. To obtain the Pareto front of the multi-objective problem and using numerical

examples, the authors compare five metaheuristics: multi-objective social engineering optimisation al-

gorithm, multi-objective simulated annealing algorithm, multi-objective Keshtel algorithm, multi-objective

particle swarm optimisation algorithm, multi-objective firefly algorithm. The authors conclude that the

multi-objective firefly algorithm can detect better solutions in relatively less time, confirming its better

efficiency.
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3.1.3 Discussion

All reviewed models aim to minimise costs, maximise profit, or maximise the NPV. Also, the models

that aim to maximise the NPV include portfolio selection decisions. Multi-objective problems are also

presented in PSC models. Many authors developed multi-objective approaches by combining more than

an objective function, as social concerns, environmental concerns, or improvement of SC characteristics.

Models are used in the decision-making process and, therefore, each model addresses one or more

decisions. In the existing literature, the majority of the models involve location decisions, which are

usually addressed together with allocation and distribution decisions. Lower-level decisions as produc-

tion, routing and inventory are also modelled together with network design decisions, demonstrating that

those lower-level decisions can also have relevance when designing the PSC network design.

The size of the instances and the complexity of the model take the authors to use exact or non-exact

methods to solve the problem. Some authors consider only an exact method to solve the problem,

others apply an exact method and a non-exact method after having realised that the exact method is

not enough to get the optimal solution in a reasonable computational time. Others only use non-exact

methods.

A ”future” SC, as defined in section 2.4, must be flexible and responsive, being characterised by

the ability to be agile, resilient, adaptable and aligned. According to the reviewed literature, none of

the authors considered these characteristics in the models proposed, thus, the development of models

capable of carrying the tradition PSC to a future PSC is a fruitful research field.

Regarding the shift to the patient-centricity paradigm, the authors also do not consider it in detail.

Minimising the unmet demand could be one of the objective functions to take into account in future

models, aiming to achieve a SC focused on the patient.

In conclusion, mathematical models to optimise the PSC network design, considering the charac-

teristics identified as being the attributes of the future and the patient-centric paradigm, are not yet

developed.

3.2 The supply chain of the future

During the recent decades, SCM has become a popular agenda for both the pharmaceutical industry and

the non-pharmaceutical industry. Events such as globalisation, outsourcing, single sourcing, just-in-time

SC management, lean and agile SC have made PSC more sensitive to the environment. Therefore,

to survive and progress in the 21th century, pharmaceutical companies should learn how to manage

the ongoing challenges in their environment (Mehralian et al., 2015). Pharmaceutical companies must

manage their SC to become agile and take advantage of the recent changes in the world economy.

3.2.1 Agile supply chains

Despite the existence of literature on PSC optimisation, there are very few authors studying the agility

concept in PSC. Mehralian et al. (2015) introduces agility in a PSC through a Technique for Order of
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Preference by Similarity to Ideal Solution (TOPSIS) approach. Although no network design optimisation

model considering agility was found in the reviewed PSC literature.

The SC of the future must have the capabilities to adapt in different conditions: resiliency, agility,

adaptability and alignment. This literature review will address agility since this has been identified as

one of the most salient issues of contemporary SCM (Gligor and Holcomb, 2012).

Speed, quality, flexibility and responsiveness are the key elements of agility necessary to meet

the unique needs of customers and markets. Companies enjoy such agile characteristics by forecast-

ing uncertainties and allowing quick changes to respond to the requirements greatly in their business

(Baramichai et al., 2006).

As lean management suits best in markets of predictable demands and high volumes, agile man-

agement suits best for markets with unpredictable demands and lower quantities (Christopher, 2007).

As proposed by Naylor et al. (1999) and Christopher (2000), Figure 3.3 summarises the different ap-

plications of agility and leanness, in which two variables are compared: the variety of products and

variability in production. Low variety of products means that few types of products cross the SC and,

high variety of products means that the SC deals with a wide range of different products. Low variability

in production happens when the production rarely changes, usually in cases with predictable demand,

and high variability in production exists when the production suffers several changes, usually in cases

with unpredictable demand. Darker areas on Figure 3.3 tend towards leanness and the lighter areas

tend to agility (Naylor et al., 1999).

Figure 3.3: Lean versus Agile. Adapted from Naylor et al. (1999).

Agility means using market knowledge and a virtual corporation to exploit profitable opportunities in a

volatile market-place, while leanness means developing a value stream to eliminate all waste, including

time, and to ensure a level schedule (Naylor et al., 1999). The authors consider Agility and lean manage-

ment as opposite strategies. Nevertheless, by considering the differences between the two paradigms,

the authors show that the authors should not be considered in isolation.

Christopher and Towill (2001) developed a framework to obtain an agile SC by integrating both man-

ufacturing and logistic strategies. The model is a three-layer qualitative model. The first level represents
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the key principles that underpin the agile SC as rapid replenishment and postponed fulfilment. The

second level identifies the individual programmes as lean production, organisational agility, and quick

response which must be implemented. The third level specifies individual actions to be taken to support

the second level.

Christopher and Peck (2004) defended that the route to agility necessarily involves the occurrence

of a digitisation process in the SC. The author proposed four ”ingredients” to achieve agility in a fashion

industry SC, but the model can be extended to other manufacturing sectors. Those ingredients are

schematised in Figure 3.4. Are the authors market sensitivity, virtualisation, process integration and

network-basing.

An Agile SC is market sensitive if it is capable of reading and responding to real demand. Most

organisations are forecast-driven rather than demand-driven. Since the flow of information about the

order requirements is too slow, companies are forced to make forecasts based on past sales. Recent

technology allows sharing the demand data from the point-of-sale to all elements of the SC in real-time,

giving to the company the ability to track the market. A virtual SC is the creation of an information-

based SC that shares data in real-time between all its players. Shared information between all SC

players can only be achieved with process integration. It consists of collaborative working between

buyers and suppliers, joint product development, common systems and shared information. This allows

companies to focus on managing their core competencies and outsource other activities. The success

of the SC relies on the effort of every player, becoming like a confederation of partners linked together

as a network. Nowadays companies are recognising that individual businesses no longer compete as

stand-alone entities. Organisations should establish closer relationships with their partners, improving

the agility of their SC.

Figure 3.4: The four ”ingredients” to obtain an agile SC. Adapted from Christopher and Peck (2004).

Ismail and Sharifi (2006) proposed a conceptualisation of a holistic approach to an agile SC by

identifying the market influencing factors as the customer preference, product type, competition degree,

technology advancement, and external business environment.
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Lin et al. (2006) developed a fuzzy agility index to measure the agility in a SC. The model is devel-

oped from the concept of multi-criteria decision making with fuzzy logic and qualitative and quantitative

indicators, named agile SC attributes. The model is based on four pillars: dealing with change and

uncertainty; innovative management structures and virtual organisations; cooperative relationships; and

flexible and intelligent technologies.

Agarwal et al. (2006) stated that an SC can adapt to changes if it is flexible and agile. Flexibility is

important to counter the uncertainty associated with the decision parameters. The authors developed an

Analytical Network Process (ANP) encapsulating market sensitiveness, process integration, information

driver and flexibility measures of SC performance. The authors concluded that the desired service level,

lead-time, cost and product quality are the most important criteria that define an agile SC.

Wadhwa et al. (2007) state that since flexibility is considered a property that provides change capa-

bilities of different enterprise-wide resources and processes in time and cost dimensions, SC flexibility

can be considered a tool to meet agility needs. The authors propose a framework based on an ANP that

consists of a three-level network to attain agility from the perspective of market, product and customer.

The goal depends on sub-strategies taken by each actor constituted by manufacturing, logistic, sourcing,

and information technology flexibility decisions.

Abbasi et al. (2014) proposed an agile design for a three-echelon SC network design considering

interval data uncertainty. The authors formulated the problem as a MILP to minimise total costs, and

inserted the key characteristics of agile SC management, as direct shipments, outsourcing, different

transportation modes, discount and strategic alliances. Location, allocation, distribution and production

decisions are outputted by the model. Uncertainty is considered in fixed opening costs, outsourcing

costs, transportation costs, production costs, inventory costs, shortage costs, alliance costs and amount

of discounts. The uncertainty is accounted for in the MILP through a robust optimisation model. The

model is validated with numerical examples.

Sangari et al. (2015) developed a practical evaluation framework to identify critical factors for achiev-

ing SC agility. To start, the authors built a reference framework of the factors that contribute to achieving

agility in SC based on a systematic analysis of the literature. Then, a hybrid evaluation method inte-

grated fuzzy logic, the decision making trial and evaluation laboratory and ANP is created. The final

ranking of agility critical factors is calculated to an automotive industry case study.

Feizabadi et al. (2021) performed a survey of subjective measures to analyse the interaction between

the three As, agility, adaptability and alignment. The authors found that there is no empirical evidence

of three-way complementary between the three As. However, evidence of complementary in bi-variate

interactions for alignment and adaptability and a substitution relationship between all pairs of As were

observed.

Zhu et al. (2021) developed an agile SC framework that incorporates recent technological devel-

opments. Two sub-domains of Industry 4.0, Internet of Things (IoT) and block-chain technology, can

improve the visibility that facilitates ease of tracking and tracing, characteristics required in agile SCs.
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3.2.2 Discussion

According to the reviewed literature, quantitative measures of agile capabilities in a SC are not yet

defined. However, it is possible to identify some steps to improve the agility of a SC. According to the

different inputs obtained from the reviewed publications, Figure 3.5 was designed to summarise the

building blocks and factors identified that enable the achievement of an agile SC.

Figure 3.5: Fishbone diagram of concepts leading to agility

To improve the agility of a SC, it is crucial to quickly detect changes in the environment, identifying the

opportunities and perceiving the threats. Whereby, the SC becomes flexible, being capable to accelerate

and decelerate their operations and adjusting their tactics.

Flexibility is one of the building blocks identified. The SC must be flexible in its activities, meaning that

it can upscale and downscale the operations and tactics quickly. A fast reconfiguration of the SC network

is also required to respond to the changes in markets and the increasing customisation demanded by

the customer.

Unexpected shifts in supply and high demand variability are events that can occur and the SC should

be able to quickly respond. The quick response to these events is defined by responsiveness and is one

of the building blocks identified.

Process integration is also a building block, achieved by sharing the information: the SC always

should send the information about the needs to the suppliers and receive information from customers

demand. Cooperative relationships between the different players of the SC can be established.

The last building block is the enrichment of the customer. SCs should be not only able to fulfil

the demand but also to properly manage the customer expectations, delivering the orders on time

and with promised quality. This way, companies will retain and develop relationships with customers.

Customisation is a concept that must be implemented to meet the increasing customer expectations.
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Patient-centricity, or the focus of the organisation on the patient rather than on the product, is one of the

characteristics of the new paradigm of PSC management that is coming up.

In the future, a SC should integrate these concepts in its network design to achieve better perfor-

mance, better serve customers and keep up with the competition.

3.3 Conclusion

More and more companies are realising that to increase the performance of the company, the SC should

be optimised as a whole (Pan and Nagi, 2013). SC network design models have been studied in recent

years.

PSCs require efficient optimisation techniques to improve their performances (Shah, 2004; Masoumi

et al., 2012; Zahiri et al., 2018). In this chapter, publications regarding PSC optimisation were reviewed.

Despite existing several proposals of mathematical models to the network design of PSCs in the litera-

ture, none of the reviewed models considered ”future” characteristics as agility.

Then, a review of methodologies to achieve agility in a SC was performed. No methodology to

achieve agility specifically in the PSC was found, reinforcing the need to develop an optimisation model

to the network design of an agile PSC. The building blocks of agility were identified, which will reveal

themselves useful when building that model.

This state-of-the-art is a necessary step to perform since it provided a theoretical basis that enables

the advance to the formulation and of a novel optimisation model for the PSC network design.
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Chapter 4

Model Formulation

In this chapter, the problem of designing a Pharmaceutical Supply Chain Network will be mathematically

formulated. In Section 5.1 the problem is defined. Afterwards, in Section 5.2, the proposed mathematical

formulation is introduced, detailing the sets, parameters and variables. In Section 5.3, the constraints of

the model are presented and explained. In Section 5.4, the cost-minimisation objective function of the

mathematical formulation is proposed. In Section 5.5, some conclusions regarding the proposed model

are outlined.

4.1 Problem definition

The present model features the common SC of the pharmaceutical industry. It was inspired by the model

from Mousazadeh et al. (2015), however, major changes were performed to address multiple problems

and challenges faced by the pharmaceutical industry and not included in any of the models reviewed.

The model proposed by Mousazadeh et al. (2015) encompassed location and capacity decisions and

product flows on a four-level SC. Meanwhile, the present model approaches location, allocation, inven-

tory and production decisions on a five-level SC.

As explained in Chapter 2, the manufacturing of the pharmaceutical products is typically performed

in two different facilities: the Primary Manufacturer, which produces the API, and the Secondary Man-

ufacturer, which produces the final product. Those two manufacturing agents will be appended to the

model of Mousazadeh et al. (2015). Therefore, the proposed model should encompass a PSC with five

levels: the primary manufacturers, the secondary manufacturers, the main DCs, the local DCs and the

retailers (or demand zones).

The current model considers two sets of goods: the set of API, which are carried from the Primary

Manufacturer to the Secondary Manufacturer; and the products, which are the actual drugs, that are

carried from the Secondary Manufacturer downwards on the SC. The model allows the design of a PSC

considering the flow of multiple APIs and multiple products. Figure 4.1 illustrates the macro-structure of

the SC that will be addressed.

Pharmaceutical products have strict storage rules to prevent damage to the product itself. For that
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reason, considering a general inventory for all the products can become insufficient when planning and

designing a PSC. The current model supports the existence of various storage conditions in the inventory

of each facility. It is considered that each product must be stored under a specific storage condition along

the SC.

Figure 4.1: Levels of PSC considered for the model formulated

A concept of network is established in the present SC. This is a group of entities that will work

together to accomplish the objective, which is to meet the demand with the least cost possible. Entities

that integrate the network will incur integration costs, henceforth designated fixed costs. Those costs

can be considered as the investments that each facility will need to perform to integrate the distribution

network. Those investments may involve the agility drivers identified in Chapter 3, namely, process

integration technologies that enable cooperative relationships, partnerships and information exchange

between facilities. The share of data as demand, capacities and costs between the levels of the SC is

important to guarantee the accuracy of the parameters used and reduce the uncertainty associated with

those parameters. Other costs as adaptation of processes or acquisition of new technologies necessary

to enter the SC of determined product can also be included in this cost category.

Inventories exist in four-levels of the SC. In the Primary Manufacturer, an inventory of finished APIs

can be kept. In the Secondary Manufacturer, Main DC and Local DC, there are inventories of finished

products. Each primary manufacturers and secondary manufacturers have their own production capacity

for each type of product produced and per time period, and their storage capacity (maximum number

of products that can be stored from one period to another). Each main and local DC have their own

handling capacity (maximum number of products that can flow through each facility in each time period),

and storage capacity.

Minimising the total costs is the objective of the present model. The costs to be minimised are the

fixed costs, that is, the costs incurred by the entities to integrate the network, the distribution costs, that

is, the costs to transport the products between the entities and, the inventory costs, that is, the costs

incurred to store the APIs and the products.

4.2 Problem formulation

In this section, all the inputs to the problem, modelled as a MILP, will be presented. Sets, parameters

and decision variables will be addressed.

Let A be the set of APIs that must be carried from the set of Primary Manufacturers, denoted by F

to the set of Secondary Manufacturers, denoted by S. In those Secondary Manufacturers, the APIs is

converted into a set of pharmaceutical products P . Those pharmaceutical products are then shipped to
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the main DCs M and therefore to the local DCs L. Finally, the products are transported from the local

DCs to the retailers R, according to their demand. Let T be the set of time periods.

On this problem, all entities have a cost to integrate the consortia, except the Primary Manufacturers.

Integration costs of the Secondary Manufacturer s, the Main DCs m and Local DCs are denoted by fcSs ,

fcMm and fcLl , respectively.

In each primary manufacturer, the APIs can be stocked, under different conditions (room tempera-

ture, frozen, refrigerated, etc.). The set of storage conditions are denoted by C. Regarding the storage

of APIs under condition c, a maximum capacity of the primary manufacturer f is defined as sFfc and a

cost of storing a storage unit of API in primary manufacturer f is defined as icFfc. A unit of API a occupied

σac number of units of storage space. Each primary manufacturer f has an initial inventory of API a,

iiFfa, and a maximum production capacity of API a, pcFfa.

Then, the APIs are transported to the secondary manufacturers with a tcafs cost per unit. In each

second manufacturer, there is an inventory of APIs, but products p can be stocked, under different

conditions also. Regarding the storage of products under condition c, a maximum storage capacity of

the secondary manufacturer s is defined as sSsc and a cost of storing a storage unit of a product p is

defined as icSsc. A unit of product p occupied σpc number of units of storage space. Each secondary

manufacturer s has an initial inventory of product p, iiSsp, and a maximum production capacity of product

p, pcSsp. To produce a unit of product p, ρap needs to be consumed.

The product p are transported to the main DCs with a tcpsm cost per unit. In each main DC, each

product p can be stocked under a certain storage conditions c, so, a maximum storage capacity of the

main DCs m is defined as sMmc and a cost of storing a storage unit of a product p is defined as icMmc. A

unit of product p occupied σpc number of units of storage space. Each main DCs has an initial inventory

of product p, iiMmp, and a maximum handling capacity, hMmp.

Then, the product p are transported to the local DCs with a tcpml cost per unit. In each local DC,

each product p can be stocked under a certain storage conditions c, so, a maximum storage capacity

of the local DCs l is defined as sLlc and a cost of storing a storage unit of a product p is defined as icLlc.

Each local DCs has an initial inventory of product p, iiLlp, and a maximum handling capacity, hLlp.

Finally, the product p are transported to the retailers with a tcplr cost per unit. There are no storage of

products. The products are received according the demand of product p in the retailer m at time period

t, dprt.

Table 4.1 summarises the sets of the present model.

Tables 4.2 and 4.3 summarises the ten groups of parameters used in the current model.
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Table 4.1: Sets

Notation Description
a ∈ A Set of APIs
c ∈ C Set of storage conditions
p ∈ P Set of product
t ∈ T Set of time periods
f ∈ F Set of Primary Manufacturers
s ∈ S Set of Secondary Manufacturers
m ∈M Set of Main DCs
l ∈ L Set of Local DCs
r ∈ R Set of Retailers

1. Fixed costs - These costs are associated to the entrance of a facility in the network;

2. Transportation costs - These costs are associated to the shipment of a product or API from a

given facility to another facility. It is given as the cost per unit transported;

3. Storage costs - Those are the costs for storing one item in each facility, under each storage

condition for one time period. They are defined for each facility and for each storage condition.

Storage costs are given as the cost per storage space unit and per time period;

4. Storage capacity - The maximum number of units of storage space of each storage condition

that exists in each facility. These parameters are defined for each facility and for each storage

condition;

5. Production capacity - Each manufacturing facility can output a maximum quantity of each API or

product on each time period. That quantity is denoted as production capacity and can be defined

for each facility and for each API or product;

6. Handling capabilities - At each distribution centre, a maximum number of units of all products

can be handled in each time period. That quantity is denoted as handling capacity and can be

defined for each distribution centre;

7. Demand - It represents the number of units of each product that each retailer demands in each

time period;

8. Initial Inventory - A facility can start the planning horizon with a defined initial inventory. That initial

inventory can be defined for each facility and for each API (in the case of primary manufacturers)

or product (in the case of other entities, downwards on the SC);

9. Bill of Materials - APIs are produced by the Primary Manufacturer and sent to the Secondary

Manufacturer. The Secondary Manufacturer receives the APIs and converts them into finished

products. The bill of materials is used by the Secondary Manufacturer as a recipe to process

its products. In the current model, the parameter ρ represents that proportion between API and

product, or, by other words, the amount of each API necessary to produce one product;
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10. Storage Requirement - It is the number of units of storage space for each storage condition

consumed by a unit of API or product. When setting this parameter, it must be had into account

that this parameter also controls the storage condition in which an API or product must be stored.

Therefore, if the storage requirement for a given product and for a given storage condition is posi-

tive, the storage requirement for that product must be zero for all the other storage conditions.

Table 4.4 summarises the variables used in the model. The variables are divided into four categories.

The decisions of integrate the consortium is defined by the binary variable X ∈ { 0 , 1 }. The product

flows are non-negative integer variables that indicates the quantity of each product, flowing from each

facility to each facility in the next level of the SC, in each time period: Y ∈ N0. The final inventories

decisions are non-negative integer variables that indicates the final inventory of each product, in each

facility, in each time period: I ∈ N0. The decisions of production are given by non-negative integer vari-

ables which the production of each product, in each manufacturing facility, in each time period: P ∈ N0 .

Table 4.2: Parameters

Fixed Costs

fcSs Integration cost of the Secondary Manufacturer s

fcMm Integration cost of the Main DCs m

fcLl Integration cost of the Local DCs l

Transportation Costs

tcαafs Cost of transporting API a from the primary manufacturer f to the secondary manufacturer s

tcβpsm Cost of transporting product p from the secondary manufacturer s to the main DC m

tcγpml Cost of transporting product p from the main DC m to the local DC l

tcδplr Cost of transporting product p from the local DC l to the retailer r

Storage Costs

icFfc Cost of storing one storage unit, under conditions c, in the primary manufacturer f during one

time period

icSsc Cost of storing one storage unit, under conditions c, in the secondary manufacturer s during

one time period

icMmc Cost of storing one storage unit, under conditions c, in the main DC m during one time period

icLlc Cost of storing one storage unit, under conditions c, in the local DC l during one time period
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Table 4.3: Parameters (continuation)

Storage Capacities

sFfc Storage capacity of primary manufacturer f to stock APIs, under conditions c

sSsc Storage capacity of secondary manufacturer s to stock products, under conditions c

sMmc Storage capacity of main DC m to stock products under conditions c

sLlc Storage capacity of local DC l to stock products, under conditions c

Production Capacities

pcFfa Production capacity of API a in the primary manufacturer

pcSsp Production capacity of product p in the secondary manufacturer s

Handling Capacities

hMm Handling capacity of the main DC m

hLl Handling capacity of the local DC l

Demand

dprt Demand of product p in retailer r at time period t

Initial Inventories

iiFfa Initial inventory of API a in the primary manufacturer f

iiMmp Initial inventory of product p in the main DC m

iiLlp Initial inventory of product p in the local DC l

Bill of Materials

ρap Number of units of API a required to produce one unit of product p at the Secondary Manu-

facturer

Storage Requirement

σac Number of units of storage space under condition c, required to store a unit of API a

τpc Number of units of storage space under condition c, required to store a unit of product p
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Table 4.4: Variables

Network integration

XS
s 1 if the secondary manufacturer s integrates the consortia, 0 otherwise

XM
m 1 if the main DC m integrates the consortia, 0 otherwise

XL
l 1 if the local DC l integrates the consortia, 0 otherwise

Product flow

ψαafst Quantity of API a shipped from the manufacturer f to the secondary manufacturer

s at period t

ψβpsmt Quantity of product p shipped from the secondary manufacturer s to the main DC

m at period t

ψγpmlt Quantity of product p shipped from the main DC m to the local DC l at period t

ψδplrt Quantity of product p shipped from the local DC l to the retailer r at period t

Inventory

IFfat Inventory of API a in the primary manufacturer f at the end of the period t

ISspt Inventory of product p in the secondary manufacturer s at the end of the period t

IMmpt Inventory of product p in the main DC m at the end of the period t

ILlpt inventory of product p in the local DC l at the end of the period t

Production

PFfat Quantity of API a produced in the primary manufacturer f , in the period t

PSspt Quantity of product p produced in the secondary manufacturer s, in the period t

4.3 Constraints

Demand Satisfaction

The demand satisfaction constraints set the minimum value for the outgoing flows at Local DCs. The

demand satisfaction group of constraints guarantee that the total flow of products from all the Local DCs

to each Retailer is greater or equal than the demand existing on that retailer. The inequality must be

verified for all retailers, products and time periods. The group of constraints is expressed in Equation

4.1.

∑
l

Ψδ
plrt ≥ dprt ∀ p, r, t > 0 (4.1)
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Production Capacity

The production capacity constraints are the constraints that limit the production of each manufacturing

facility according to its installed capacity. The rationale behind these constraints is that if a facility has

the capacity to produce a limited number of units, the production at that facility cannot be higher than

that value. This group of constraint apply to all facilities, products and time periods.

Equation 4.2 guarantees that the quantity of API a produced in the primary manufacturer f , does not

exceed the capacity of that facility for each API and time period.

PFfat ≤ pcFfa ∀ f , a , t > 0 (4.2)

Equation 4.3 guarantees that the quantity of product p produced in the secondary manufacturer s,

does not exceed the capacity of that facility if it integrates the consortia, for each product and time period.

PSspt ≤ XS
s ∗ pcSsp ∀ s, p, t > 0 (4.3)

API Consumption

In the secondary facility, APIs are used sole or combined to produce pharmaceutical products. This con-

version respects the proportionality parameter ρ. Since, in the context of the model used, the secondary

manufacturer receives APIs just-in-time and the consumption is immediate, the inflow of each API at

each Secondary Manufacturer and time period will be equal to the consumption of that API. Also, all the

APIs consumed are considered to be converted to pharmaceutical products (there is no waste). The

consumption of an API will, therefore, be the total production of products in that facility and time period

multiplied by the parameter that stores the ratio between products and APIs.

Rephrasing, the quantity of API a necessary to produce all products which require that API in each

Secondary Manufacturer is equal to the inflow of that API in that facility. This logic applies to all facilities,

APIs and time periods. The group of constraints regarding this API to Product Conversion is expressed

in Equation 4.4.

∑
p

(PSspt ∗ ρap) =
∑
f

Ψα
afst ∀ s, a, t > 0 (4.4)

Storage Capacity

Storage capacity constraints guarantee that the storage capacity for each storage condition of each

facility is never exceeded in any facility, time period and storage condition.

The inventory of API a, stored under condition c in the primary manufacturer f , at the end of the

period, cannot exceed the storage capacity of that facility under that condition on each time period t, as

expressed in Equation 4.5.

∑
a

(IFfat ∗ σa,c) ≤ sFfc ∀ f, c, t > 0 (4.5)
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Equation 4.6 guarantees that the inventory of product p, stored under condition c in the secondary

manufacturer s, at the end of the period t, does not exceed the storage capacity of that facility under that

condition (if it integrates the consortia) on each time period.

∑
p

(ISspt ∗ τp,c) ≤ XS
s ∗ sSsc ∀ s, c, t > 0 (4.6)

Equation 4.7 guarantees that the inventory of product p, stored under condition c in the main DC m,

at the end of the period, does not exceed the storage capacity of that facility under that condition on

each time period.

∑
p

(IMmpt ∗ τp,c) ≤ XM
m ∗ sMmc ∀ m, c, t > 0 (4.7)

Equation 4.8 guarantees that the inventory of product p, stored under condition c in the local DC l,

at the end of the period, does not exceed the storage capacity of that facility under that condition (if it

integrates the consortia) on each time period.

∑
p

(ILlpt ∗ τp,c) ≤ XL
l ∗ sLlc ∀ l, c, t > 0 (4.8)

Handling capacity

Handling capacity constraints are intended to limit the flow exiting the distribution centres. The handling

capacity is the maximum quantity of products that the distribution centres can handle in each time period,

since distribution centres have limited resources.

Equations 4.9 and 4.10 guarantee that the outflow from each main DC and local DC, respectively,

cannot exceed their handling capacity for all products, in each time period.

∑
p

∑
l

Ψγ
pmlt ≤ X

M
m ∗ hMm ∀ m, t > 0 (4.9)

∑
p

∑
r

Ψδ
plrt ≤ XL

l ∗ hLl ∀ l, t > 0 (4.10)

Mass-balance

Mass-balance constraints guarantee that the inputs and outputs of each facility are equal in all facilities

and time periods, and for all products. In primary manufacturers, the inputs are the API productions and

the inventory that comes from the last period. The outputs are the final inventory and the outflow to sec-

ondary manufacturers. In secondary manufacturers, the inputs are the product productions (restricted

by Equation 4.4) and the inventory that comes from the last period. The outputs are the final inventory

and the outflow to main DCs. In main DCs, the inputs are the inflow from secondary manufacturers and

the inventory that comes from the last period. The outputs are the final inventory and the outflow to local
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DCs. In local DCs, the inputs are the inflow from main DCs and the inventory that comes from the last

period. The outputs are the final inventory and the outflow to retailers.

Equation 4.12 guarantees that the initial inventory of API a, plus the quantity of API produced, in the

primary manufacturer f , in the period t, is equal to the final inventory plus the outflow of that API in that

facility.

IFfat−1 + PFfat = IFfat +
∑
s

Ψα
afst ∀ f, a, t > 0 (4.11)

Equation 4.12 guarantees that the initial inventory of product p, plus the quantity of product produced,

in the secondary manufacturer s, in the period t, is equal to the final inventory plus the outflow of that

product in that facility.

ISspt−1 + PSspt = ISspt +
∑
m

Ψβ
psmt ∀ s, p, t > 0 (4.12)

Equation 4.13 guarantees that the inputs of product p in the main DC m (sum of the initial inventory

and the inflows) at the end of the period t corresponds to the outputs (sum of the final inventory and the

outflows) of that product in that facility and period.

IMmpt−1 +
∑
j

Ψβ
psmt = IMmpt +

∑
l

Ψγ
pmlt ∀ m, p, t > 0 (4.13)

Equation 4.14 guarantees that the inputs of product p in the local DC l (sum of the initial inventory

and the inflows) at the end of the period t corresponds to the outputs (sum of the final inventory and the

outflows) of that product in that facility and period.

ILlpt−1 +
∑
k

Ψγ
pmlt = ILlpt +

∑
r

Ψδ
plrt ∀ l, p, t > 0 (4.14)

Initial inventory

Initial inventory constraints guarantee that the initial inventory of the first period matches the initial in-

ventory stipulated in the model input parameters.

Equations 4.15, 4.16, 4.17 and 4.18 guarantee that the inventory at the end of the time period zero

are equal to the initial inventory defined.

IFf,a,0 = iiFfa (4.15)

ISs,p,0 = iiLsp (4.16)

IMm,p,0 = iiMmp (4.17)

ILl,p,0 = iiLlp (4.18)
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Binary variables

Equations 4.19 defines the binary decision variables of the present model: the integration or not of a

given facility in the network.

XS
s X

M
m , XL

l ∈ { 0 , 1 } (4.19)

Non-negative variables

Equations 4.20, 4.21 and 4.22 defines the non-negatives variables: flows, inventories and productions

cannot take negative values.

Ψα
pfst , Ψβ

psmt , Ψγ
pmlt , Ψδ

plrt ∈ N0 (4.20)

IFfat , I
S
spt, I

M
mpt, I

L
lpt ∈ N0 (4.21)

PFfat , P
S
spt, ∈ N0 (4.22)

4.4 Objective

For the case in hand, the objective of the model will be the minimisation of the SC costs. The objective

function, which is the minimisation of the sum of the fixed costs, distribution costs and inventory costs is

expressed in Equation 4.23.

minimise z = Fixed costs + Transportation costs + Inventory costs (4.23)

Fixed costs are given as the sum to all facilities of the product of the fixed costs associated with the

entry of a facility in the network and the binary variable that takes the value 1 if that facility integrates the

network, and 0 otherwise.

Fixed costs =
∑
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L
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Transportation costs are calculated as the sum for all products, time periods, origin facilities and

destination facilities of the number of products transported from each origin facility to each destination

facility multiplied by the cost of transporting that product in that path. The transportation costs are

expressed in Equation 4.25.

Transportation costs =
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Inventory costs are the costs of storing an API in the primary manufacturer or a product in other

facilities for one period of time.

The inventory costs are calculated as the sum for all storage conditions, facilities and time periods

of the final inventory of each product in each facility and time period, multiplied by the storage space

that that product requires for the storage condition considered, and multiplied by the cost of one storage

space under the storage condition considered, in each facility. The inventory costs are calculated as

expressed in Equation 4.26

Inventory costs =
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∑
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(4.26)

4.5 Conclusion

The mathematical model proposed considers the existence of a five-level SC for the pharmaceutical

industry. The model allows the existence of inventory in all manufacturing facilities and distribution cen-

tres, with multiple storage conditions. Having multiple storage conditions is an important feature in a

PSC since pharmaceutical products require specific and strict conservation characteristics to guarantee

the quality and the integrity of the compounds from the manufacturing until their consumption by the

final customer. The existence of limited resources in all facilities is assumed, namely production and

inventory capacities in manufacturing facilities and handling and inventory capacities in distribution cen-

tres. Regarding product considerations, the proposed model considers a multi-API and multi-product

network, in which, the conversion of API to product is performed in the secondary manufacturers as

common in the pharmaceutical industry.

The objective of the proposed model is to minimise the total costs. Those costs can be divided into

three categories, fixed costs, transportation costs and storage costs. Fixed costs are about expenses

that the facilities are required to have to integrate a flexible pharmaceutical network which can encom-

pass process integration investments, partnership costs, technological investment to allow the sharing

of information, and strategic adjustments to the facility modus operandi. Transportation costs are the

unit costs of transportation a product between two facilities. Finally, storage costs are the costs that a

facility will incur to store a unit of product for a time period.

It is expected that the proposed model allows the design of a flexible PSC network, providing a

competitive advantage to its agents and a secure and fast manner of redesigning the SC structure

according to market variations, cost variations and other sources of variability that exist in the real-world

pharmaceutical industry.
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Chapter 5

Computational Experiments

To test and validate the proposed model, two experiments will be performed. Firstly, a problem with

the parameters adapted from the publication of Mousazadeh et al. (2015); and, secondly, a multi-API,

multi-product and multi-storage condition problem, with data also inspired in the same authors.

In Section 5.1, a context about the data used to recreate this problem is provided. The main char-

acteristics of the problem in hands are highlighted and the locations of the different facilities available

to integrate the network are exposed. In Section 5.2, the parameters relative to Experiment 1 (single-

API, single product and single-storage condition) are proposed and detailed. The same exposition is

performed about Experiment 2 (multi-API, multi-product and multi-storage condition). In Section 5.3, the

results outputted by the model to address the problems identified for both experiments are detailed and

analysed. In Section 5.4, some conclusions regarding the computational experiments and respective

results analysis are drawn.

5.1 Context

The problem addressed in these computational experiments is inspired by the problem addressed by

Mousazadeh et al. (2015). The authors’ model is tested via an empirical case study, based on the

data collected from Iran’s National Organisation of Food & Drug. According to the total national sales

report, Amoxicillin 500 mg pill was the drug with most prescriptions and purchases, among more than

five thousand different drugs, from the ones on sale between 2004 and 2013 in Iran. According to the

data, around 900 million capsules are sold per year. This happens because amoxicillin can treat a broad

range of bacterial infections.

Despite their model approaches a multi-product problem, the authors used a single product problem

for simplification. According to the authors, designing the SC for a single product does not limit the

application of the model, since in the proposed model, different products are just interconnected by

sharing the same facilities.

The conversion of API to a product in these experiments will be considered as one to one ratio.

The storage requirement will be one unit of storage space for one tonne of amoxicillin, and it will be
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considered only one storage condition. Amoxicillin must be stored at room temperature.

Regarding the possible locations for facilities and infrastructures, Mousazadeh et al. (2015) con-

sidered the existence of 8 secondary manufacturers. As Mousazadeh et al. (2015) did not consider the

existence of the level of primary manufacturers in its pharmaceutical network design optimisation model,

it will be assumed the existence of 4 primary manufacturers, each one located near one of the biggest

cities of Iran. Ten locations for main DCs are considered in the same publication.

According to the experts’ opinion acquired by Mousazadeh et al. (2015), from the Iranian Ministry of

Health, each province can be considered a demand zone. Each one of the 31 Iranian provinces also

has a local DC candidate to enter the network. Table 5.1 summarises all this information.

Figures A.1, A.2, A.3 and A.4, which are available for consultation in the Appendix of the present

document, illustrate maps with the facilities considered and above mentioned.

Table 5.1: Number of facilities per level of the SC

Type of facility Number of facilities

Primary Manufacturer 4
Secondary Manufacturer 8

Main DC 10
Local DC 31
Retailer 31

5.2 Data gathering and adaptation

5.2.1 Experiment 1

The main purpose of Experiment 1 is to test and validate the model by analysing the outputs for the

empirical example developed by Mousazadeh et al. (2015). In this subsection, an explanation regarding

the sample data that will be solved afterwards is provided.

Retailers

Based on Mousazadeh et al. (2015), a temporal horizon of 4 years is considered. Mousazadeh et al.

(2015) had access to the forecast of the overall Iranian consumption of Amoxicillin from 2014 to 2017.

According to the expert’s indications, the consumption rate of amoxicillin varies among seasons following

the distribution expressed in Table 5.2, with an evident increase in demand in cold seasons, which is the

winter in the northern hemisphere. For this reason, a total of 16 time periods is considered, being one

time period equivalent to one yearly season, given a temporal horizon of 4 years.
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Table 5.2: Distribution of the annual demand per season

Season Percentage

Spring 11 %
Summer 9 %
Autumn 30 %
Winter 50 %

The seasonal demand for Amoxicillin is divided into retailers by considering the population of each

demand zone. Table A.1 details the demand of Amoxicillin expressed in metric tonnes, at each retailer

and in each time period.

Facilities’ parameters

The storage capacities, production capacities, fixed integration costs and inventory costs of the primary

manufacturers are available in Table 5.3. The same parameters, but associated with the secondary

manufacturers, is detailed in Table 5.4.

The storage capacities, handling capacities, fixed integration costs and inventory costs of each main

DC were adapted from the data provided by Mousazadeh et al. (2015) and are detailed in Table 5.5. The

same parameters of each local DC are detailed in Table A.2.

Table 5.3: Parameters: primary manufacturers

Primary Manufacturer ID Storage Cap. (ton) Prod. Capacity (ton) Inventory cost (C/ton)

1 36 360 37.5
2 36 360 42.5
3 36 360 40
4 36 360 40

Table 5.4: Parameters: secondary manufacturers

Sec. Man. ID Storage Cap. (ton) Prod. Cap. (ton) Fixed cost (C) Inv. cost (C/ton)

1 18 180 24000 75
2 18 180 24576 42.5
3 18 180 23400 40
4 18 180 24576 42.5
5 18 180 24576 37.5
6 18 180 24000 40
7 18 180 24000 40
8 18 180 24576 42.5
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Table 5.5: Parameters: main DCs

Main DC ID Storage Cap. (ton) Handling Cap. (ton) Fixed cost (C) Inventory cost (C/ton)

1 120 120 11520 75
2 120 120 6528 42.5
3 120 120 6144 40
4 120 120 6528 42.5
5 120 120 5760 37.5
6 120 120 6144 40
7 120 120 6144 40
8 120 120 6528 42.5
9 120 120 5760 37.5

10 120 120 6144 40

It is important to notice that the capacities are stated in metric tonnes and the currencies were

converted from Iranian Rials to Euro at an exchange rate of 1 Euro equivalent to 0.00002 Rials.

The transportation costs between secondary manufacturers, main DCs, local DCs and retailers were

estimated by Mousazadeh et al. (2015) based on the weight and volume of each Amoxicillin dose,

the average cost of transportation for 100 kilometres, provided by shipping agencies, and distances

calculated through Google Maps.

5.2.2 Experiment 2

Experiment 2 proposes the validation of the model with a multi-API and multi-product problem, with also

multiple storage conditions.

Two APIs are distributed throughout the network: the Amoxicillin and the Clavulanic Acid, which is an

enzyme inhibitor used to enhance the effectiveness of beta-lactam antibiotics as Amoxicillin. According

to Saudagar et al. (2008), Clavulanic Acid is often combined with antibiotics to prevent the development

of drug-resistant strains of bacteria, promoting also their therapeutic antibacterial effects.

Two products are also distributed by the network: Amoxicillin 500mg and the combination between

Amoxicillin 500mg/g and Clavulanic Acid 200 mg/g which will be hereinafter referred to as product A and

product B, respectively. Product B is also a very prescribed antibiotic, which has demonstrated more

effectiveness against some types of infections (Johnson, 2019) and is available on the market as a pill

and injectable solution.

This second product is composed of two APIs. For this instance, it will be considered that to produce

1 unit of the combination product Amoxicillin + Clavulanic Acid, it will be required 1 unit of the API

Amoxicillin (henceforth designated API1) and 1 unit of API Clavulanic Acid (henceforth designated API2).

Table 5.6 shows the bill of materials (APIs) of the two products which are now considered.

Table 5.6: Bill of Materials

Product API1 API2

A 1 0
B 1 1
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Multiple storage conditions are considered in this scenario. It considered that Clavulanic Acid re-

quires a special storage condition, as it must be conserved in a freezer, between 2 ºC and 5 ºC (hence-

forth designated storage condition C2). Therefore, product B also requires storage under that condition.

Each product requires 1 unit of refrigerated storage space. Product A can be stored at room temperature

(henceforth designated C1). Table 5.7 details the number of units of storage space required to store one

unit of each product.

Table 5.7: Storage requirement of the Products

Product Room Temperature (C1) Freezer (C2)

A 1 0
B 0 1

The demand of the product A will be considered the same as used for Experiment 1, which is avail-

able in Table Table A.1. For simplification reasons, the product B will be considered to have the same

demand profile proposed by Mousazadeh et al. (2015). Therefore, the demand parameters of the prod-

uct B can also be consulted in Table A.1. The production capacities of both primary and secondary

manufacturers were also considered to be the same as in Experiment 1. This means that the overall

production capacity has duplicated, but also the overall demand.

5.2.3 Analysis of different scenarios

To study the flexibility of the proposed SC network, a set of variations will be performed to those param-

eters and the results will be analysed and compared. The different scenarios studied in this subsection

have the purpose of understanding the network behaviour and sensibility to variations in the input pa-

rameters. To perform this approach, a set of scenarios is proposed in Table 5.8 and, after it, explained.

Table 5.8: Summary of the experiments and scenarios computed

Experiment 1 Experiment 2
(single product and single-API) (multi-product and multi-API)

Baseline Solve the problem with data from
Mousazadeh et al. (2015)

Solve the problem with the data
from Mousazadeh et al. (2015)
adapted to the characteristics of the
proposed model

Exploring
the demand

a) Resolve the baseline problem,
but with half the demand initially
considered

a) Resolve the baseline problem,
but half the demand initially consid-
ered

b) Resolve the baseline problem,
but with twice the demand initially
considered

b) Resolve the baseline problem,
but with twice the demand initially
considered

Studying
the fixed
integration
costs

Resolve the problem considering
different value for the fixed integra-
tion costs

Resolve the problem considering
different value for the fixed integra-
tion costs
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The first stage contemplates the computation and critical analysis of the results for the baseline

scenario.

In a second stage, the intention directs to test the model in a scenario with demand much above the

typical one. In this stage, two different demand scenarios will be considered. Firstly, the model will be

processed with half the demand initially considered. Secondly, the model will be processed with double

the demand initially considered.

In a third stage, the focus will turn to the variation of the fixed integration costs. To integrate the

network, entities will support integration costs, which can be considered as investments. As explained

above, secondary manufacturers, main DCs, local DCs and retailers must manage those fixed integra-

tion costs that impact the design of the SC network. To study the size of that impact, an analysis of

different scenarios is proposed to be performed. Firstly, the network where the fixed integration costs

are equal to zero in all the facilities will be computed. Secondly, the network will be studied when the

fixed integration costs take lower values than the in the baseline scenario. Specifically, the problem with

be solve for 1%, 5% 10%, 25%, 50%, 60%, 65% and 75% of the baseline fixed integration costs.

To study the flexibility of the proposed SC network, the problem will also be computed for fixed

integration costs higher than the original values, namely, 125%, 150%, 175%, 200%, 300%, 400%,

500%, 1000% and 2000% of the baseline costs. Due to lack of space in the present dissertation, only

the most relevant scenarios, in which the network suffers visible changes will be shown and analysed.

The computation and analysis of the set of scenarios will be performed for both Experiment 1 and

Experiment 2.

5.3 Results analysis

In this section, the problem presented in chapter 6 and the model proposed in chapter 4 were im-

plemented in DOcplex Python Modeling API, which uses the ILOG CPLEX Optimization Studio 12.9.0

(CPLEX). The optimisation model was executed for all sets using a personal laptop with a processor

Intel I5-5200U CPU @ 2.70 GHz and 12 GB of RAM.

In sub-section 5.3.1, Experiment 1 is performed. Firstly, the most important figures of the solution

of the baseline scenario are provided and interpreted. Then, the same approach is performed to the

scenarios in which the demand is increased and to the scenarios in which the fixed integration costs

are varied. In sub-section 5.3.2, the focus changes to Experiment 2 and the solutions of the different

scenarios tested are provided and analysed.

5.3.1 Experiment 1

Baseline

The CPLEX solver engine took 244 seconds to solve the MILPs with 2912 rows and 23089 columns and

returned a total cost as an objective function of C147982.40. The number of facilities that will integrate
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the network for each level of the SC and the total number of facilities available in each level is shown in

Table 5.9.

Table 5.9: Network structure: Baseline

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 2 4
Secondary Manufacturers 2 4

Main DCs 3 10
Local DCs 11 31
Retailers 31 31

It can be depicted that despite the existence of 4 primary manufacturers which are possible to inte-

grate the network, only 2 indeed integrated the network in the optimal solution. The same happens with

the other levels of the SC. From 8 secondary manufacturers, only 2 integrate the network; from 10 main

DC, only 3 integrate the network; and from 31 local DCs, only 11 integrate the network.

In Table 5.10, productions in primary manufacturers (Prod. F) and second manufacturers (Prod. S),

inventories in local DCs (Inv. L) and demand in the retailers are detailed for all each time period. The

values of the demand were rounded up to the next integer, as the proposed model is a MILP. All other

facilities except the local DCs do not store inventories.

Table 5.10: Outputs: Experiment 1 (baseline)

Time period Prod. F Prod. S Inv. L Demand

1 103 103 0 103
2 84 84 0 84
3 302 302 50 252
4 360 360 0 410
5 104 104 0 104
6 84 84 0 84
7 308 308 54 254
8 360 360 0 414
9 105 105 0 105

10 87 87 0 87
11 318 318 59 259
12 360 360 0 419
13 107 107 0 107
14 89 89 0 89
15 323 323 62 261
16 360 360 0 422

The demand is higher than the capacity of opened manufacturing facilities in winter seasons, which

correspond to periods 4, 8, 12, and 16 (highlighted in bold in the table). Thus, to satisfy the demand for

all the seasons, 2 secondary manufacturers are required to open.

Despite the production capacity of a secondary manufacturer being half of the production capacity of
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a primary manufacturer, as depicted in section 5.2, 2 primary manufacturers are still open to minimise

the transportation costs between primary and secondary manufacturers. This event happens because

there is no fixed cost to open a new primary manufacturer, and, therefore the model tends to connect the

primary and secondary manufacturers with the lowest transportation costs possible. Those transporta-

tion costs vary according to the distances between facilities and the far the cities where the facilities a

located, the higher the transporting costs between them. Therefore, to supply APIs to a specific sec-

ondary manufacturer, the closest primary manufacturer possible is chosen.

In the winter season, the demand exceeds the production capacity of those periods. To balance this

excess of demand, inventories are built in local DCs is the period previous to winter. The local DCs

which are integrating the network are the facilities with lower inventory costs of the entire network and,

therefore those are chosen to store products that will be supplied in winter.

The time period 16 is the one with highest demand, and in that period the demand only exceeds

the production capacity of the primary and secondary manufacturers by 12.5%. The decision to stock

products in local DCs to guarantee the demand satisfaction in winter is preferred rather than opening

new secondary manufacturing facilities which would carry significant fixed integration costs to supply

only a total of 225 tonnes of product in the entire temporal horizon. Storing 225 tonnes of product

represents, in the worst case, a cost of C 9562.50, but choosing another secondary manufacturer to

reinforce the capacity of the network would carry a minimum fixed integration cost of C 23400.

In figure A.5, a graph representing the network design diagram for this scenario in the time period 16

is provided since it is the time period with higher demand, and therefore, where the network complexity

is higher. The nodes represent facilities and edges represent the flow of products between facilities. A

node with the label Ff refers to the primary manufacturer f ; with the label Ss refers to the secondary

manufacturer s; with the label Mm refers to the main DC m; with the label Ll refers to the local DC l;

and, with the label Rr refers to the retailer r.

Half demand

Considering the scenario in which the demand is half of the original scenario, the network is composed

of 1 primary manufacturer, 1 secondary manufacturer, 2 main DCs, 6 local DCs and 31 retailers. Com-

paring it with the baseline scenario, the network is composed of half the number of the manufacturers.

The number of main DCs reduces from 3 to 2 and the number of local DCs reduces from 11 to 6. As

expected, fewer facilities integrate the network to satisfy the minor demand. Table 5.11 presents the

number of facilities integrating the network. The computational time to solve this problem was 393.77

seconds, and the MILPs contains 2912 rows and 23089 columns. The objective function cost value

achieved is C 85724.16. An objective function with a cost 42% lower than the baseline objective func-

tion was achieved to supply the demand 50% lower. This represents an increase of 15.7% in the total

cost per tonne of product supplied.
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Table 5.11: Network structure: Experiment 1 (half demand)

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 1 4
Secondary Manufacturers 1 8

Main DCs 2 10
Local DCs 6 31
Retailers 31 31

Table 5.12 summarises the outputs of the model for this scenario: production quantities in primary

manufacturers (Prod. F) and secondary manufacturers (Prod. S), inventories in local DCs (Inv. L) and

the total demand per period.

Similarly to the baseline scenario, in the winter periods (4, 8, 12 and 16) the demand is higher than

the total production capacity. Therefore, the network planning model proposed the built-up of inventory

on local DCs in periods that precede winter (3, 7, 11 and 15).

Table 5.12: Outputs: Experiment 1 (half demand)

Time period Prod. F Prod. S Inv. L Demand

1 58 58 0 58
2 50 50 0 50
3 164 164 32 132
4 180 180 0 212
5 58 58 0 58
6 50 50 0 50
7 168 168 35 133
8 180 180 0 215
9 58 58 0 58

10 50 50 0 50
11 174 174 37 137
12 180 180 0 217
13 59 59 0 59
14 51 51 0 51
15 177 177 38 139
16 180 180 0 218

In figure A.6, a graph representing the network design diagram for this scenario in the time period 16

is provided for being the time period with higher demand, and therefore, where the network complexity

is higher. The elements of the graph follow the same structure explained in the baseline scenario.

When comparing this network to the network obtained in the baseline scenario, it can be found that with

half the demand, a concentration of the flows happens in the primary manufacturer 1, the secondary

manufacturer 1, the main DCs 7 and 8 and the local DCs 7, 17, 18, 26, 27 and 29. According to the Iran

Map (provided in figure A.4), those facilities, which tend to integrate the network when the demand is

lower, are the facilities located near big cities, where the demand is higher, in an effort to minimise the

transportation costs.
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Double demand

Considering the scenario in which the demand is duplicated, the network is composed of 4 primary

manufacturers, 4 secondary manufacturers, 7 main DCs, 22 local DCs and 31 retailers. Comparing it

with the baseline scenario, the network is composed of twice the manufacturers and more than twice

the DC. Therefore, as expected, more facilities integrate the network to satisfy the demand. Table 5.13

presents the number of facilities integrating the network. The computational time to solve the MILPs with

2912 rows and 23089 columns was 126.91 seconds, which was faster than the baseline scenario.

Table 5.13: Network structure: Experiment 1 (double demand)

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 4 4
Secondary Manufacturers 4 8

Main DCs 7 10
Local DCs 26 31
Retailers 31 31

The total cost of the network is 282887.54 euros and comparing it with the baseline scenario, rep-

resents an increase of 91%. However, the total costs per tonne of product provided to the retailer are

around 5% lower. Therefore, the network can respond to an increase of 100% of the demand, and its

efficiency increases since the cost per tonne supplied decreases.

Table 5.14: Outputs: Experiment 1 (double demand)

Time period Prod. F Prod. S Inv. L Demand

1 206 206 0 206
2 168 168 0 168
3 604 604 100 504
4 720 720 0 820
5 208 208 0 208
6 168 168 0 168
7 616 616 108 508
8 720 720 0 828
9 210 210 0 210

10 174 174 0 174
11 636 636 118 518
12 720 720 0 838
13 214 214 0 214
14 178 178 0 178
15 646 646 124 522
16 720 720 0 844

Table 5.14 summarises the outputs of the model for this scenario: production quantities in primary

manufacturers (Prod. F) and secondary manufacturers (Prod. S), inventories in local DCs (Inv. L) and

the total demand per period. Similarly to the baseline scenario, in the winter periods (4, 8, 12 and 16) the

demand is higher than the total production capacity. Therefore, the network planning model proposes

the built-up of inventory on local DCs in periods that precede winter (3, 7, 11 and 15).
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In figure A.7, a graph representing the network design diagram for this scenario in the time period 16

is provided for being the time period with higher demand, and therefore, where the network complexity

is higher. The elements of the graph follow the same structure explained in the baseline scenario. When

comparing this network to the network obtained in the baseline scenario, it can be found that with the

double of the demand, the maximum capacity is achieved in main DCs 1 to 4, but not in main DCs 6, 7, 8

and 10. While main DC 1 is located near Tehran, where the demand is higher, main DCs 2, 3 and 4 are

spread across the country, providing good intermediate points to connect the manufacturing facilities to

remote retailers.

Varying fixed integration costs

In this section, the analysis of the behaviour of the network when the fixed integration costs are varied

is proposed, to understand the sensibility of the network to the variation of this model parameter.

Figure 5.1 illustrates the participating actors when the integration costs changes. As expected, when

the fixed integration costs are lower, more actors participate in the network and vice-versa.

In the scenario in which the facilities do not have to spend on fixed integration costs, 53 facilities

integrate the network. This is the maximum number of facilities available on this problem. As the fixed

integration costs grow, the number of facilities decreases to 33. Only 1% of the fixed integration costs

is enough to reduce the number of facilities by almost 40%. Variations between 65% and 2000% of

the base fixed integration costs return more similar networks, with the number of facilities varying in

only 2 units. With higher fixed integration costs, the network becomes more compact. The more com-

pact a network is, the more difficult is to subtract even more facilities without jeopardising the demand

satisfaction.

Figure 5.1: Number of facilities versus Fixed integration costs: Experiment 1

Table 5.15 presents the total production and the total inventory according to the variation of the fixed

integration costs. From Table 5.15, it is possible to depict that when the fixed integration costs are lower,

it carries fewer costs to add facilities into the network than storing products to guarantee the supply in

peak demand periods. However, when the fixed integration costs are higher, incurring inventory costs

reveals less expensive than adding more facilities into the network, which leads to an increase in the

usage of inventory and to a reduction in the usage of capacity.
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Table 5.15: Fixed costs, productions and inventories: Experiment 1

Coefficient Total Production Total Inventory L

0 3454 0
1% 3454 0

10% 3454 0
25% 3454 0
60% 3454 0
65% 3454 225

100% 3454 225
200% 3454 225
500% 3454 225
1000% 3454 1631
2000% 3454 1631

Figure 5.2: Optimal objective function versus Different multiples of the fixed integration costs

Figure 5.2 shows a plot that compares the objective function of the problem with the proportion of the

fixed costs when compared to the baseline scenario. This plot reinforces that in the present example, the

fixed costs have a great influence on the objective function, and, therefore, in the design of the present

SC network.

5.3.2 Experiment 2

Baseline

Experienced 2 was executed in the same machine as experiment 1. In the baseline instance, the

computational time to solve the MILP with 5416 rows and 46377 columns was 978.84 seconds, reaching

an objective function of 153206.04 euros. In Table 5.16, the number of facilities that will integrate the

network is indicated for each level of the SC.

Table 5.16: Network structure: Experiment 2 (baseline)

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 3 4
Secondary Manufacturers 3 8

Main DCs 7 10
Local DCs 22 31
Retailers 31 31
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In Table 5.17, productions of both products in primary manufacturers and second manufacturers and

inventories in both storage conditions in local DCs are detailed for each time period and each product.

Only values for these facilities are provided, since inventories in primary manufacturers, secondary

manufacturers and main DCs are equal to zero.

Table 5.17: Outputs: Experiment 2 (baseline)

Time period
Production F Production S Inventory L Demand
API1 API2 A B C1 C2 A B

1 206 103 103 103 0 0 103 103
2 168 84 84 84 0 0 84 84
3 504 252 252 252 0 0 252 252
4 820 410 410 410 0 0 410 410
5 208 104 104 104 0 0 104 104
6 168 84 84 84 0 0 84 84
7 508 254 254 254 0 0 254 254
8 828 414 414 414 0 0 414 414
9 210 105 105 105 0 0 105 105
10 174 87 87 87 0 0 87 87
11 518 259 259 259 0 0 259 259
12 838 419 419 419 0 0 419 419
13 214 107 107 107 0 0 107 107
14 178 89 89 89 0 0 89 89
15 526 261 265 261 4 0 261 261
16 840 422 418 422 0 0 422 422

In the present scenario, the inventory is only required on period 15, to store 4 tonnes of product A.

This happens since the total demand on period 16 is 844 tonnes of products and the total capacity of

the 7 main DCs in the network is only 840 tonnes. Therefore, the solution that carries fewer costs to the

SC is to store 4 units of product 1 in one of the local DCs. The fixed integration costs of opening one

more main DCs would be higher than keeping 4 units of product in inventory storage.

In figure A.8, a graph representing the network design diagram for this scenario in the time period

16 is provided for being the time period with higher demand, and therefore, where the network is under

more pressure. Solid black edges represent the flow of API1 and product A. Solid red edges represent

the flow of API2 and product B. Dashed black and red edges represent the flow of both products.

Half demand

Considering the scenario in which the demand was reduced to one half, or 50% less, of the original

baseline demand, the network is composed of 2 primary manufacturers, 4 secondary manufacturers, 7

main DCs and 11 local DCs. The computational time required to solve this problem was 394.58 seconds,

to reach an objective function cost of C 146300.88. The total computational time required to solve this

problem was 394.58 seconds, and the reduced MILP problem contains 5416 rows and 46377 columns.

In table 5.18, the optimal number of facilities to integrate each level of the SC for this scenario is

compared to the total number of facilities available.
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Table 5.18: Network structure: Experiment 2 (half demand)

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 2 4
Secondary Manufacturers 2 8

Main DCs 4 10
Local DCs 11 31
Retailers 31 31

In table 5.19, the productions in primary manufacturers, secondary manufacturers, inventories in

local DCs are compared with the demand for each time period.

Table 5.19: Outputs: Experiment 2 (half demand)

Time period
Production F Production S Demand
API1 API2 A B A B

1 116 58 58 58 58 58
2 100 50 50 50 50 50
3 264 132 132 132 132 132
4 424 212 212 212 212 212
5 116 58 58 58 58 58
6 100 50 50 50 50 50
7 266 133 133 133 133 133
8 430 215 215 215 215 215
9 116 58 58 58 58 58

10 100 50 50 50 50 50
11 274 137 137 137 137 137
12 434 217 217 217 217 217
13 118 59 59 59 59 59
14 102 51 51 51 51 51
15 278 139 139 139 139 139
16 436 218 218 218 218 218

In this scenario the optimal solution considers inventories equal to zero in all the facilities and in all

the time periods. This means that in this scenario, inserting more facilities into the network is preferable

rather than storing products in inventory.

In figure A.9, a graph representing the network design diagram for this scenario in the time period

16 is provided since it is the time period with higher demand, and therefore, where the network is more

complex. The elements of the graph follow the same structure explained in the baseline scenario.

Double demand

A problem with twice the demand of the baseline scenario was loaded into the optimisation model

developed. However, an infeasible situation was achieved due to the excess of demand or lack of

capacity in the SC facilities. To be able to analyse a scenario in which the demand is over the baseline

demand, the demand was iterative from the original demand on steps of 10% until a feasible problem is

achieved. With a demand 40% above the demand of the baseline scenario, the CPLEX solver engine
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found a feasible solution to the problem. However, with a demand 50% above the baseline scenario, the

model becomes infeasible.

Table 5.20, outlines the number of facilities integrating the PSC network when the demand in 40%

above the baseline scenario. On this scenario, the total cost of the optimal network is 353177.84 euros.

The total computational time required to solve this MILP with 5416 rows and 46377 columns was 5.08

seconds.

Table 5.20: Outputs: Experiment 2 (40% more demand)

Entity # Facilities integrating network # Total facilities

Primary Manufacturers 4 4
Secondary Manufacturers 4 8

Main DCs 10 10
Local DCs 31 31
Retailers 31 31

With the demand 40% above the demand of the baseline scenario, all the facilities must integrate the

network to guarantee the satisfaction of the demand.

Table 5.21 summarises the outputs of the model when the demand is increased by 40%. The pro-

duction of both products in primary manufacturers, secondary manufacturers, inventories in both storage

conditions in local DCs are detailed and compared to the demand in each time period.

In winter periods, the demand for both products is higher than in the other periods. On this occasion,

all the facilities are integrating the network, but only 2 units are stored in local DCs, in time period 14.

To investigate the cause for the demand 40% above the baseline scenario be fulfilled without the use

of inventories, but a demand of 50% above the baseline scenario cannot be fulfilled by the network, the

capacities of the main and local DCs must be recalled. In this scenario, the total number of facilities

available are integrating the network, which corresponds to a handling capacity of 1200 tonnes per time

period in main DCs, and 1240 tonnes per time period in local DCs. The difference in demand between

a scenario with the demand 40% above the baseline and a scenario with the demand 50% above the

baseline corresponds to 120 tonnes of product. This means that in a scenario with the demand 40%

above the baseline, a bottleneck (or point of congestion of the network) is situated in the main DCs, and,

therefore, products can be accumulated in the local DCs to fulfil the demand of peak periods (winter).
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Table 5.21: Outputs: Experiment 2 (50% more demand)

Time period
Production F Production S Inventory L Demand
API1 API2 API1 API2 C1 C2 A B

0 314 157 157 157 0 0 157 157
1 260 130 130 130 0 0 130 130
2 730 365 365 365 0 0 365 365
3 1168 584 584 584 0 0 584 584
4 318 159 159 159 0 0 159 159
5 260 130 130 130 0 0 130 130
6 734 367 367 367 0 0 367 367
7 1180 590 590 590 0 0 590 590
8 320 160 160 160 0 0 160 160
9 266 133 133 133 0 0 133 133
10 752 376 376 376 0 0 376 376
11 1194 597 597 597 0 0 597 597
12 326 163 163 163 0 0 163 163
13 272 136 136 136 0 0 136 136
14 760 379 381 379 2 0 377 377
15 1200 601 599 601 0 0 601 601

With the demand 50% above the baseline, the bottlenecks would be both main and local DCs, pre-

venting the satisfaction of the demand and turning the problem infeasible. In figure A.10, a graph repre-

senting the network design diagram for this scenario in the time period 16 is provided since it is the time

period with higher demand, and therefore, where the network is under more pressure. The elements of

the graph follow the same structure explained in the baseline scenario.

Varying fixed integration costs

To understand the sensibility of the model when fixed integration costs are varied, the problem was

repeatedly solved for different proportions of the fixed integration costs initially considered. In figure 5.3

a plot is available which compares the number of facilities with fixed integration costs. For this, a set of

scenarios similar to Experiment 1 was computed, which include no fixed integration costs at all, 1% of

the fixed integration costs, 5%, 25%, 50%, 100%, 150%,500%, 1000% and 2000%.

Figure 5.3: Number of facilities when fixed integration costs are varied.

As in Experiment 1, when the fixed integration costs increase, the optimal number of facilities also
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gets lower. In the present experiment, 2 products are being supplied through this multi-product network.

Given this, the variation of the number of facilities according to the fixed integration costs becomes less

relevant. One reason to justify this occurrence is that while the facilities must pay the same fixed cost to

integrate the network, more products are being transported, stored and delivered, diluting those costs.

For example, when the costs are zero, 52 facilities integrate the network and when the costs are 1%

of the original, 47 facilities are still integrating. In the single product studied, instead of 47 facilities, 34

facilities were integrating the network.

Table 5.22: Production and inventory according to the fixed integration costs

Production F Production S Inventory L

Coefficient API1 API2 A B C1 C2

0 6908 3454 3454 3454 0 0
1% 6908 3454 3454 3454 0 0
5% 6908 3454 3454 3454 0 0
25% 6908 3454 3454 3454 0 0
50% 6908 3454 3454 3454 4 0

100% 6908 3454 3454 3454 4 0
150% 6908 3454 3454 3454 225 225
500 % 6908 3454 3454 3454 225 225
1000% 6965 3470 3495 3470 1287 225
2000% 6908 3454 3454 3454 2901 361

Table 5.22 details the productions of both products and the inventories under both conditions accord-

ing to the fixed integration costs. When the fixed costs are lower than 50% of the original fixed costs,

there is no need to store products in inventory in any of the facilities. When the fixed costs are lower than

150% of the baseline fixed integration costs, the total inventory of products in all the 16 time periods is

only 4 tonnes. This means that when the fixed costs are lower than 50% of the baseline’s one, opening

more facilities to store products is preferred rather than storing products in inventory. However, when

the fixed integration costs are over 150% of the originals, incurring in inventory costs could compensate

instead of adding more facilities to the network.

Figure 5.4: Optimal objective function versus Different multiples of the fixed integration costs

Figure 5.4 plots the total cost of the network according to the incurred fixed integration costs, and as

expected, the fixed integration costs have a big impact on the SC total costs, making the relationship

almost linear.
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5.4 Conclusion

In this chapter, two experiments were formulated with data-inspired in the publication of Mousazadeh

et al. (2015). Experiment 1 was designed to validate the model with existing data from the literature, as

well as test the model capabilities under different scenarios by varying the model parameters. Experi-

ment 2 enabled the validation of the proposed features of the model, by adapting the input parameters

to match the model specifications. An analysis of the parameters demand and fixed integration costs is

proposed to investigate the model sensibility associated with those parameters.

Then, the results of the problem enunciated were obtained by solving the PSC optimisation model

proposed in Chapter 4.

To explore the sensitivity of the model, changes in the input parameters demand and fixed integration

costs were performed in both experiments to create a set of scenarios that can be analysed.

Regarding the demand parameter, the demand was first reduced to half for all retailers, products and

time periods and the optimisation model was applied. Then, the demand parameter was also increased

by a factor of 2, in the first experiment, and by 40% in the second experiment. It was found that the

proposed optimisation model accomplish its goal since efficient solutions were found in both scenarios.

Increases in the demand are normally associated with a smaller increase in costs, which can be possible

by optimising the number of facilities integrating the network or recurring to inventory in strategic points of

the network. The allocation of facilities in different levels of the supply chain also allows the minimisation

of the costs by the facilities supplying and being supplied by other facilities with closer locations.

The model is sensitive to the variations in the demand of the problem since the network design adapts

to the different demand scenarios. However, the variations of the demand inside specific temporal

horizons do not affect the composition of the network. Since the fixed integration costs are already

spent to satisfy the demand in periods of high demand, the facilities are used along the other periods

to guarantee resource optimisation. Regarding fixed costs, the model reveals more flexibility to the

variations in fixed costs when those are lower. Comparing scenarios with low fixed costs, big variations

in the number of facilities composing the network is perceived. Comparing scenarios with higher fixed

costs, it can be realised that the variations in the fixed costs have a smaller impact on the design of the

network. High fixed costs are related to more compact networks, and the more compact a network is,

the more difficult is to reduce even more the number of facilities.

The discussed characteristics are fundamental on a network optimisation tool to an application in

an industry like the pharmaceutical. Challenges as cost minimisation, reliability on different scenarios

and sensitivity to variations on the demand and the costs are important characteristics to guarantee

that pharmaceutical products arrive at the final customer with the maximum quality, in the right quantity

and with the necessary flexibility. A network that can provide multiple products flowing through multiple

locations and with reduced inventory is very important to guarantee the demand satisfaction in an indus-

try in which the service level must be 100% and the quality of the delivery system must be ensured to

guarantee the healthiness of the society.
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Chapter 6

Case Study: COVID-19 vaccines

In this chapter, a specific problem regarding the COVID-19 vaccine SC network is addressed. In section

6.1, the case is presented by providing a brief context and detailing the parameters and assumptions

performed. In section 6.2, the particular characteristics of the case are defined and a solution approach

is proposed to address them. In section 6.3, the case study results are presented and analysed, basing

on the model formulated in chapter 4. Is section 6.4, the maximum demand supported by the network is

computed. In section 6.5, the main conclusions of the chapter are discussed.

6.1 Case characterisation

Coronavirus Disease-2019 (COVID-19) pandemic has affected millions of people since December 2019.

This global crisis carried devastating health, social and economic impacts. COVID-19 is a disease that

can cause light to severe symptoms or even death. It has unknown long-term consequences in people

of all ages, including in healthy people. (EMA, 2021)

Since the first moments of the pandemic, big pharmaceutical companies raced to devise a product

that could cure or prevent the disease. COVID-19 vaccines are medicines that are intended to prevent

the disease caused by the novel coronavirus SARS-CoV-2 by triggering an immune response by the

human body. The European Commission has authorised several vaccines to prevent COVID-19 in the

European Union (EMA, 2021).

In October 2021, four vaccines are available in the European Union to prevent COVID-19: Comir-

naty (commercialised by Pfizer/BioNTech), Spikevac (commercialised by Moderna), Vaxzevria (commer-

cialised by AstraZeneca/Oxford), and Janssen (commercialised by Janssen Pharmaceuticals).

Gathering data for a problem of network design for an ongoing situation as the COVID-19 vaccine SC

is a complex process. Despite demand data, location of the secondary manufacturers, distribution cen-

tres and product characteristics being publicly available, other parameters such as costs and capacities

can be very challenging to collect.

Pfizer produces the API for its vaccine in Puurs-Sint-Amands (Belgium). There are 6 secondary man-

ufacturers of the mentioned vaccine, which are located in Puurs-Sint-Amands (Belgium), Saint-Rémy-
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Sur-Avre (France), Marburg (Germany), Frankfurt (Germany), Stein (Switzerland) and Kundl (Austria).

Since the facility in Belgium acts both as a Primary and Secondary Manufacturer, there will be con-

sidered no costs for the transportation between this pair of facilities. Pfizer vaccine storage requires

ultra-cold conditions (henceforth designated C1).

Moderna produces the API for its vaccine in Monts (France). Two secondary manufacturers are pro-

ducing that vaccine, located in Monts (France) and Visp (Switzerland). Since the facility in France acts

both as a Primary and Secondary Manufacturer, there will be considered no costs for the transporta-

tion between this pair of facilities. Moderna vaccine storage requires ultra-cold conditions (henceforth

designated C1).

AstraZeneca produces the API for its vaccine in Leiden (Netherlands). Two secondary manufacturers

are producing that vaccine, located in Leiden (Netherlands) and Seneffe (Belgium). Since the facility in

the Netherlands acts both as a primary and secondary Manufacturer, there will be considered no costs

for the transportation between this pair of facilities. AstraZeneca vaccine storage requires cold conditions

(henceforth designated C2).

Janssen produces the API for its vaccine also in Leiden (Netherlands). Two secondary manufacturers

are producing that vaccine, located in Leiden (Netherlands) and Dessau-Roßlau (Germany). Janssen

vaccine storage requires cold conditions (henceforth designated C2).

The primary manufacturers have sufficient capacity to supply the entire network. The production

capacities are defined according to the parcel of vaccines allocated by the European Union and the

inventory capacities will be maintained sufficiently high.

Since all the primary and secondary manufacturers are located in Central Europe, and the distances

between them are relatively short, the transportation mode considered for the transportation costs is

the truck, and the transportation costs will be calculated based on the average freight rate per mile and

tonne. The transportation costs for the present case considered an average freight rate per kilometre

and tonne of 0.078 C/ (km * tonne), in Europe and 2021, as provided by a freight quote agency. The

transportation costs were converted from cost per weight to cost per dose of vaccine at an average of

5 grams per dose. It was also considered that the transportation costs of the APIs are 10 times lower

than the transportation costs of the vaccines. Transportation costs between Primary and Secondary

Manufacturers and between Secondary Manufacturers and the Main DCs are available in Table B.1. A

matrix is available Transportation costs between Main DC and Local DCs and between Local DCs and

Retailers are available in Table B.3.

For the present case, an average of C 40 per tonne and per time period was considered as proposed

by Mousazadeh et al. (2015). For vaccines stored in cold conditions, C 0.20 per thousand doses and

per time period was considered. For vaccines stored in ultra-cold conditions, C 2 per thousand doses

and per time period was considered.

To estimate the production capacities, the total doses allocated for Portugal by the European Union

was considered. According to the Portuguese Health Ministry, 38 million doses are being distributed

to Portugal. It was considered that from those 38 million doses, 40% are of Pfizer vaccine, 20% from

Moderna, 20% from AstraZeneca and 20% from Jansen, as initially stated by the Portuguese Health
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Ministry. To allocate dose vaccines per time period, 8 time periods were considered during a 2-year time

horizon. This means that per time period can be produced 1.9 million doses by Pfizer, 950 thousand

doses by Moderna, 950 thousand doses by AstraZeneca and 950 thousand doses by Janssen. For the

producing capacity on secondary manufacturers was considered that 600 thousand doses are allocated

per time period and per facility for the Portuguese market. It will be considered that each manufacturing

facility (either primary or secondary) can store 400 thousand doses per time period in cold conditions

and 100 thousand doses per time period in ultra-cold conditions. Due to the difficulty in achieving

realistic information about the fixed costs of adapting a secondary manufacturer in Europe to participate

in a vaccine SC, the average cost of Mousazadeh et al. (2015) will be adapted to the European market

in proportion to the Gross Domestic Products (GDPs) of both regions, according to the World Bank.

Therefore, the fixed costs for each secondary manufacturer will be considered 150 thousand Euros.

Due to the urgency of the situation, the Portuguese government streamlined a warehouse in Montemor-

o-Velho, near Coimbra, where all conditions required to store pharmaceutical products are satisfied, to

serve as Main DC. However, for this case study, other possible locations for the Main DCs will be pro-

posed. The proposed locations are one for each NUTS-2 of the continental territory. Locations in Oporto,

Coimbra, Lisbon, Évora and Faro will be considered. To adapt a main DC in Portugal to participate in

a vaccine SC, the average cost of Mousazadeh et al. (2015) is adapted to the Portuguese market in

proportion to the GDPs of both countries according to the World Bank. Therefore, the fixed costs for

each main DC will be considered 28 thousand Euros. It will be assumed that each Main DC has the

capacity to handle 8 million doses per time period to guarantee that a single main DC is able to handle

all the vaccines in a time period. It will be assumed that the Main DC has the capacity to store four

hundred thousand doses per time period in cold conditions and 10 thousand doses ultra-cold per time

period in ultra-cold conditions.

For the local DCs let us suppose that one facility as local DC could integrate the network in each

Portuguese district to facilitate the delivery of vaccines from the main DC to the retailers. For the present

work, it will be assumed that the handling capacity of each one of these facilities is 400 thousand doses

per time period and that each one can store up to 10 thousand doses per time period in cold conditions

and 1 thousand doses per time period in ultra-cold conditions. Due to the difficulty in achieving realistic

information about the fixed costs of adapting a local DC in Portugal to participate in a vaccine SC, the

average cost of Mousazadeh et al. (2015) will be adapted to the Portuguese market in proportion to the

GDPs of both countries according to the World Bank. Therefore, the fixed costs for each local DC will

be considered 10 thousand Euros.

For the present work, it will be considered that each district will be a demand zone, and therefore a

retailer. It will also be considered that each district has a Local DC. In Portugal, there are 18 districts

plus 2 Autonomous Regions, and therefore, it will be assumed that the distribution network in hands

has 20 Local DCs and 20 retailers. The demand was calculated by considering the population in each

district and that 85% of the population will be vaccinated. It will be considered that 40% of the population

receive Pfizer vaccine, 20% receive Moderna vaccine, 20% receive AstraZeneca and finally, 20% receive

Janssen. To allocate the demand per time period, the vaccination phases proposed by the Portuguese
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Health Ministry will be considered: 10.8% of the population will receive their vaccine in the first time

period, 10.2% in the second time period and 79% in the third time period. It will also be considered

that 10.8% of the population will receive a third boost dose on the fourth period. Table B.2, available for

consultation in the Appendix of the present document details the demand for each retailer, time period

and product. Pfizer vaccine is denoted by Pf, Moderna vaccine by Mo, AstraZeneca vaccine by AZ and

Janssen vaccine by Ja.

6.2 Solution approach

In order to perform a network design of the vaccine SC network for the Portuguese market, some par-

ticular characteristics will be considered, due to the specificity of the situation.

The huge demand for vaccines at the beginning of the vaccination programme makes it impossible

to cover all demand with the installed capacity of the manufacturers. Moreover, despite the vaccination

of one individual have a contribute to the immunisation of the population in general, does not have a

direct impact on the individual’s health, as the vaccine is intended to prevent the disease and not for its

cure. For those reasons, it makes sense to allow the demand to delay and accumulate that demand to

the next time period. Within the context of this problem, delaying the delivery of one dose of the vaccine

for one period is a backorder. The concept of backorder will be considered as a decision variable, and

corresponds to the number of units of product p that will not be distributed to the retailer r in the time

period t, and, therefore, will be satisfied in the next time period.

Bprt := number of units of product p demanded, but undelivered in retailer r, in the time period t

The constraint in equation 6.1 will substitute the equation 4.1 to consider the existence of backorders

in the model formulated in chapter 4. This constraint guarantees that the flow from all local DCs to each

retailer is higher than the demand of that retailer, plus the backorders accumulated from the previous

time period, and minus the backorders that will be satisfied in the following time period.

∑
l

Ψδ
plrt ≥ dprt +Bprt−1 −Bprt ∀ p, r, t (6.1)

To guarantee that at the end of the time horizon, all retailers will end with their demand satisfied,

the equation 6.2 must also be added to the model constraints. Notice that NTP is the number of time

periods (and therefore, this constraint applies only for the last period of time).

Bprt = 0 , t = #NTP , ∀ p, r (6.2)

On one hand, the demand for vaccines will happen entirely at the beginning of the vaccination cam-

paign, and therefore, the concept of having backorders will become relevant. On the other hand, the

desire of the decision-makers might be the satisfaction of a greater portion of the demand as soon as

possible, even if it comes with a more expensive distribution network. For that reason, it is important
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to explore a multi-objective approach, using both minimisation of costs and minimisation of backorders.

The second objective function, which aims to minimise the total number of backorders in the network

as the sum of the backorders for all the retailers, all the products, and all the time periods is defined in

Equation 6.3.

minimise w =
∑
t

∑
r

∑
p

Bprt (6.3)

To propose a solution for this multi-objective model, the ε-constraint method was chosen to find an

approximation of the Pareto Front. The ε-constraint characterise the Pareto front which shows the set

of solutions beyond which it is impossible to improve one of the objective functions without jeopardising

the other one. Solutions in the Pareto front are non-dominated solutions since they cannot be improved

in both objective functions simultaneously. Outside the Pareto front, solutions are said to be dominated,

since it is possible to improve them in both objective functions simultaneously. Figure 6.1 shows an

illustrative example of those concepts. The blue line represents the Pareto front, being E1, E3 and E3

efficient solutions. The green point A represents a solution that does not exist and is impossible to

achieve. The orange point B represents an inefficient solution, whose both objective functions can be

improved.

Figure 6.1: Illustrative example of a Pareto front

To apply a ε-constraint method to this problem, the following approach will be performed.

Part A

This part is intended to define the research boundaries, by finding the two extreme points (E1 and E3 in

figure 6.1) of the Pareto front, and then, to perform its optimisation.

1. Solve the problem for the cost minimisation objective function (Equation 4.23).

2. Solve the problem for the backorders minimisation objective function (Equation 6.3).
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3. Solve the cost minimisation problem subjected to a constraint that guarantees that the maximum

number of backorders is the one found in 2., as formulated in Equation 6.4.

4. Solve the backorder minimisation problem subjected to a constraint that guarantees that the max-

imum cost is the one found in 1., as formulated in Equation 6.5.

minimise Equation 4.23 (6.4)

s.t. Equation 6.3 ≤ w∗

Equations 4.1 to 4.22

minimise Equation 6.3 (6.5)

s.t. Equation 4.23 ≤ z∗

Equations 4.1 to 4.22

Part B

In part B, the main purpose is to obtain a better resolution of the objective function, by determining

non-extreme points of the Pareto front (as E2 in Figure 6.1). This is possible by dividing the linear space

between the two extreme points in equidistantly vertical lines (with distance ε), and then determining

the ordinate of the point by adding the ε-constraint. ε-constraint, in equation 6.6, is a constraint that

should be added to the model and allows the optimisation of one objective function by defining the other

objective function as a constraint and limiting its value accordingly.

Equation 4.23 < z∗ + ε (6.6)

With,

z∗ := SC cost of the optimal solution found for the first objective function

ε := step, or vertical distance between the equidistantly horizontal lines mentioned above

6.3 Results analysis

In this section, the COVID-19 vaccine SC case study will be computed using the model formulated in

Chapter 4 with the adaption proposed in section 6.2. The case under study consists of a five-level PSC,

with 4 products and 8 time periods. Those 4 products are produced in 12 possible dedicated secondary

manufacturers, with 4 types of API which are produced in 4 dedicated primary manufacturers. Then,

the product is carried to 5 possible main DCs. From the main DC the product is carried to 20 possible

local DCs and therefore transported to the 20 retailers. The problem was solved through the ε-constraint

method, following the procedure described in section 6.2. An ε equal to multiples of 2966 was considered

in the ε-constraint to allow the exploration of 10 different optimal solutions.

The backorders and the total costs of each optimal solution are detailed for each optimal solution in

table 6.2. The number of secondary manufacturers (Sec. Man.), main DCs and local DCs, and what
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facilities will integrate the SC network are detailed in Table 6.2 and mapped in . Figure 6.2 plots the

curve of the Pareto front defined by the set of optimal solutions which result from the multi-objective

problem.

Table 6.1: Backorders and total cost for each optimal solution.

Solution Backorders Total cost

1 5493 1855707
2 8249 1393670
3 11005 1232674
4 13761 1062468
5 16517 1041569
6 19273 1031113
7 22029 871235
8 24785 870684
9 27541 860916

10 30297 859014

Table 6.2: Number of facilities and facilities for each optimal solution.

Solution # Sec. Man. Sec. Man. IDs # Main DC IDs Main DC # Local DC Local DC IDs

1 10 1,2,4,5, 7 to 12 20 All 20 All
2 8 1,2,5, 7 to 11 1 2 15 1 to 10, 13 to 16, 20
3 7 1,2,5, 7, 9, 10 11 1 2 14 1 to 10, 13 to 16
4 6 1,2,5,7,9,11 1 2 12 1 to 5, 7 to 10,13,15,20
5 6 1,2,5,7,9,11 1 2 10 1 to 5, 7 to 10,13
6 6 1,2,5,7,9,11 1 2 9 1 to 5,7,8,9,10
7 5 1,2,7,9,11 1 2 8 1,2,4,5,7,8,9,10
8 5 1,2,7,9,11 1 2 8 1,2,4,5,7,8,9,10
9 5 1,2,7,9,11 1 2 7 1,2,4,5,8,9,10

10 5 1,2,7,9,11 1 2 6 1,2,5,7,8,9

Figure 6.2: Pareto front of the COVID-19 vaccines case study

In figures B.4, B.5 and B.6, graphs representing the different solutions of network design for this

problem are provided. The diagrams chosen encompass the third time period, for being the time period
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with higher demand, and therefore, where the network is more complex. Due to the complexity of

representing four products in the same network, in this graph, only the network design is shown, and the

flows corresponding to each edge are hidden.

Solution 1 corresponds to the case in which the minimal number of backorders is achieved. Due

to the excess of demand in the first periods, it is not possible to fulfil all the demand without delays

even if all facilities integrate the network, and therefore, 5493 thousand backorders still exist. For this

case, a total SC cost of approximately 1.86 million Euros is achieved. To achieve this scenario, 4 of the

secondary manufacturers that can produce Pfizer vaccines must integrate the network (1, 2, 4 and 5),

one secondary manufacturer that produces Moderna does not integrate the network and all facilities that

can produce the other vaccines must open (7 to 12). All main DCs and all local DCs must also integrate

the network.

Solutions 2 to 9 corresponds solutions in which a trade-off between backorders and costs must be

considered.

From solution 1 to solution 2, the backorders increase 50%, and the costs decrease 25% with the

closure of 2 secondary manufacturers (one of Pfizer and one of Johnson do not integrate the network),

four main DCs (only Coimbra main DC remains in the network) and 5 local DCs are also out of the

network (Funchal, Ponta Delgada, Beja, Guarda and Bragança do not integrate the network). It is

interesting to notice that Funchal and Ponta Delgada have low connectivity to the remaining districts

since those are located in islands, serving only their own markets; supply products from there to the

other districts would carry high transportation costs. The other local DCs that close serve markets with

few demand and have other local DCs fairly close (Évora and Faro for Beja, Castelo-Branco and Viseu

for Guarda, and Vila Real for Bragança).

From solution 2 to solution 3, the number of backorders increases 33%, while the costs reduce 12%

with the closure of one secondary manufacturer producing the AstraZeneca vaccine. The unique main

DCs continues Coimbra. The local DC in Portalegre also do not integrate the network.

From solution 3 to solution 4, the number of backorders increases 25% and the costs reduced 14%.

To achieve this, the local DCs located in Faro, Vila Real and Castelo Branco also do not integrate the

network, but the local DC located in Portalegre reintegrate the network.

From solution 4 to solution 5, the levels of secondary manufacturers and the main DCs do not suffer

any changes. Nevertheless, the local DCs located in Castelo Branco and Portalegre join the group of

local DCs that will not integrate the network. This event start to cause a lack of supply in the interior

regions, which can be confirmed by an increase of 20% in the number of doses in backorder, but only a

decrease of 2% in the costs.

From solution 5 to solution 6, the local DC located in Viana do Castelo joins the group of local

DCs that will not integrate the network, causing an increase of 17% in the number of backorders and a

decrease of 1% in the costs.

From solution 6 to solution 7, the secondary manufacturer number 5, which produced the Pfizer

vaccine join the group of secondary manufacturers which will not integrate the network. Notice that

in this solution, the minimum number of secondary manufacturers is achieved. The local DC located
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in Setúbal joins the group of facilities that will not participate in the network. These events cause an

increase of 14% in the number of backorders, but a decrease of 16% in the costs. Indeed, increasing

the number of backorders from 19273 to 22029 is the only time that the relative decrease in costs is

higher than the relative increase in backorders. In solution 8, the model found the same network as

in solution 7; the 5% difference in the costs leads to 12.5% in the number of backorders because only

inventory optimisations are performed between these two solutions.

From solution 8 to solution 9, the local DC located in Leiria also does not integrate the network,

leading to an increase of 11% in the number of backorders and to a decrease of 1.2% in the costs.

From solution 9 to solution 10, the number of backorders decreases 10%, but the variation in the costs

is almost imperceptible, 0.22%.

Analysing those observations along with the Pareto front that resulted from the present problem, it

can be realised that the gradient of the curve is higher when the number of backorders is lower. Actually,

between solution 4 and solution 6, the difference in costs is almost unnoticeable, but the number of

delayed doses of vaccines administrated is 33% lower. If the decision was between these two options,

choosing the option of having 16517 thousand backorders would be recommended. The same occur-

rence happens after solution 8. Between solution 7 and solution 10 the difference in costs is negligible,

but a difference of 38% in the number of backorders is accounted for.

Figure 6.3 plots the inventory usage per storage conditions for the 10 optimal solutions computed

(S1 to S10).

Figure 6.3: Inventory usage per storage condition

By analysing the plot, it can be realised that when required, the products which are preferably stored

are the products that are stored under condition C2, due to the storage cost, which is 10 times minor

in this storage condition. Also, it can be depicted that in the solutions with a more limited number of

backorders, the inventory is more often used than in solutions in which the main concern becomes cost

minimisation. The inventory utilisation is higher in solutions 1 to 4. Also, after solution 4, inventory under

condition C1 is no more used, and after solution 7, inventory under condition C2 also ceases to be used.
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Tables 6.3 to 6.9 exhibit the results of the model per time period for the different solutions of the

resolution method adopted. Due to space limitations and the existence of similar solutions, solutions 5,

8 and 9 are not included. In those tables the results of the model regarding production in primary and

secondary manufacturers, inventory in primary manufacturers, secondary manufacturers, main DCs and

local DCs, the demand and the number of backorders (in thousand of doses) are presented per time

period.

Table 6.3: Outputs: Solution 1

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 3233 3233 0 924 400 0 1909 0
2 3756 3406 350 1712 1186 220 1612 0
3 4532 4882 0 0 0 0 12501 4501
4 4457 4457 0 0 0 0 948 (+4501) 992
5 992 992 0 0 0 0 0 (+992) 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

In solution 1, a concentration of the productions in the first four periods, following the demand profile,

is perceived. This is justified because the facilities open have sufficient capacity to fulfil the demand,

leaving a reduced number of backorders in comparison to the other solutions. In the first 2 periods, the

demand is below the production capacity, justifying the inventory built up to anticipate the peak demand

in the third period.

Table 6.4: Outputs: Solution 2

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 3133 2783 350 844 0 30 1909 0
2 3489 3459 380 2146 410 165 1612 0
3 4300 4582 98 1283 0 20 12501 6501
4 4300 4398 0 0 0 0 948 (+6501) 1748
5 1748 1748 0 0 0 0 0 (+1748) 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

In solution 2, the large reduction in the number of facilities when compared to solution 1, makes the

model suggest the use of more inventory in the first periods. Also, the number of products being stored

increased from 4792 thousand vaccines to 5726 thousand vaccines.
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Table 6.5: Outputs: Solution 3

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 2725 2725 0 762 0 54 1909 0
2 3247 3193 54 1833 410 154 1612 0
3 3950 4004 0 746 0 55 12501 6901
4 3950 3950 0 0 0 0 948 (+6901) 3098
5 2295 2295 0 0 0 0 0 (+3098) 803
6 600 600 0 0 0 0 0 (+803) 203
7 203 203 0 0 0 0 0 (+203) 0
8 0 0 0 0 0 0 0 0

In solution 3, the higher number of backorders allowed the SC to save costs on inventories. With one

less secondary manufacturers and one less local DC, the manufacturing facilities will need to produce

also in periods 5 and 6 to guarantee that all the doses accumulated in backorders will arrive at the

retailers.

Table 6.6: Outputs: Solution 4

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 2705 2705 0 786 0 10 1909 0
2 3123 3123 0 1765 410 132 1612 0
3 3600 3600 0 1047 0 60 12501 7701
4 3600 3600 0 0 0 0 948 (+7701) 3942
5 2283 2283 0 0 0 0 0 (+3942) 1659
6 1200 1200 0 0 0 0 0 (+1659) 459
7 459 459 0 0 0 0 0 (+459) 0
8 0 0 0 0 0 0 0 0

According to solution 4, the primary manufacturers no more needs to store APIs in inventory. The

higher number of backorders allowed the number of facilities and inventories to decrease even more. In

constraint, the production in manufacturing facilities goes on until time period 6 to satisfy the pending

demand that did not receive its vaccine yet.

Table 6.7: Outputs: Solution 6

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 1909 1909 0 0 0 0 1909 0
2 1710 1710 0 0 98 0 1612 0
3 3502 3502 0 0 0 0 12501 8901
4 3600 3600 0 0 0 0 948 (+8901) 6249
5 3287 3287 0 0 0 0 0 (+6249) 2962
6 1801 1801 0 0 0 0 0 (+2962) 1161
7 1161 1161 0 0 0 0 0 (+1161) 0
8 0 0 0 0 0 0 0 0

In solution 6, 19273 backorders are allowed, which is even higher than the demand. This means that

it is allowed to delay more than one unit of demand for one period. In this situation, the inventory is only
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98 thousand doses in the main DC. Since having backorders carries any cost, the model is now trying

to save costs by reducing inventories the much as possible.

Table 6.8: Outputs: Solution 7

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 2006 2006 0 87 0 10 1909 0
2 2336 2336 0 518 273 30 1612 0
3 2588 2588 0 209 0 0 12501 9301
4 3000 3000 0 9 0 0 948 (+9301) 7049
5 3000 3000 0 0 0 0 0 (+7049) 4040
6 2401 2401 0 0 0 0 0 (+4040) 1639
7 1639 1639 0 0 0 0 0 (+1639) 0
8 0 0 0 0 0 0 0 0

In solution 7 the inventory is used to allow the reduction of one more secondary manufacturer and

one local DC without delaying the demand in the first 2 time periods. In this scenario, the network is

becoming too compact and backorders until the time period 6 are necessary. It can be noticed that in

the time period where the network is only supplying backorders, the inventory is equal to zero. This

happens since there is no cost to have a backorder in the cost minimisation function, but an inventory

cost exists.

Table 6.9: Outputs: Solution 10

Time period Prod. F Prod. S Inv. F Inv. S Inv. M Inv. L Demand Backorders

1 1909 1909 0 0 0 0 1909 0
2 1612 1612 0 0 0 0 1612 0
3 2400 2400 0 0 0 0 12501 10101
4 2400 2400 0 0 0 0 948 (+10101) 8649
5 2400 2400 0 0 0 0 0 (+8649) 6249
6 2400 2400 0 0 0 0 0 (+6249) 3849
7 2400 2400 0 0 0 0 0 (+3849) 1449
8 1449 1449 0 0 0 0 0 (+1449) 0

In solution 10, the minimal costs of the network are achieved. In this situation, the production hap-

pens in all time periods leading to an accumulated value of backorders of 32097. The inventory is also

totally avoided since it carries extra costs and the network is the most compact as possible, with only

5 secondary manufacturers open, 1 main DC and 6 local DC. This causes the maximum production

in a time period to be 2400 thousand doses, limited by the handling capacity of the local DCs. In this

scenario, the administration of each dose of the vaccine will suffer a delay of 0.79 time periods.

6.4 Maximum demand

To calculate the maximum demand, instead of considering the element dprt in equation 4.1 a model

parameter, it will be considered as a decision variable. To obtain the maximum demand that the entire
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network can support, a sub-problem with the objective function expressed in Equation 6.7 will be solved

as an intermediate step.

maximise Demand =
∑
p

∑
r

∑
t

dprt (6.7)

The main objective of this analysis is to enable the search for the bottlenecks of the proposed net-

work. A bottleneck is an agent or a set of agents that limit the flow of products along the network

considered.

Solving the problem for this objective function, a total demand of 38 million doses that can be supplied

to retailers is obtained. This result confirms that the bottleneck of this network locates in the primary

manufacturer since the entire capacity of all these facilities is achieved. It also guarantees the integrity

of all the constraints of the used model, since the flows and mass balances through all the levels of the

SC are correctly defined, and, therefore, all the products produces at the primary manufacturers arrive

at the retailers.

6.5 Conclusion

In this chapter, an application of the proposed model to a case study regarding the current worldwide

issue of optimising the COVID-19 vaccine SC network was performed.

The problem, in particular, addressed the distribution of vaccines from the big pharmaceutical man-

ufacturers located in Central Europe to the Portuguese districts. The four vaccines approved in Europe

were considered as the four products, which are produced by dedicated primary and secondary manu-

facturers located in France, Belgium, Netherlands, Germany, Switzerland and Austria. Before reaching

the retailer (or demand zone), the vaccines must pass on one of the main DCs (located in Porto, Coim-

bra, Lisbon, Évora and Faro) and on one of the local DCs (located in each Portuguese district). To

produce each one of those products, one API is required, and its storage must be under two different

storage conditions. The demand is the population electable for vaccination in Portugal and it is dis-

tributed by the 18 districts and 2 autonomous regions accordingly. The demand is also distributed along

the 8 time periods of one quarter each following the 3-phases vaccination campaign approved by the

Portuguese government.

The objective of the case study is to determine how much and what facilities (secondary manufactur-

ers, main DCs and local DCs) should pay integration and modification costs to be able to integrate the

COVID-19 vaccine SC network. Due to the lack of information publicly available regarding production

capacities of the primary and secondary manufacturers, handling capacities of the main and local DCs,

inventory capacities of the facilities and respective costs, some assumptions and adaptations from the

existing literature had to be performed. Nevertheless, is expected that this limitation does not affect the

overall results of the model.

The issue contemplates the allowance of backorders which is the possibility of delaying the delivery

of doses of vaccines to the retailer. To solve the problem, a reformulation of the model proposed in
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chapter 4 is proposed to enable the analysis of the trade-off between backorder minimisation and cost

minimisation. The problem is formulated as multi-objective MILP, and the ε-constraint method is used to

obtain an approximation of the Pareto front which contain the set of efficient solutions.

It is found that while minimising backorders allow the population to be vaccinated earlier, more fa-

cilities must integrate the network to satisfy all the demand in time. This carries extra costs which the

decision-maker may not consider investing. Also, the reduction in the number of facilities is many times

balanced by the increase in inventory in the remaining facilities. In solutions that are biased for cost

minimisation, the vaccination campaign tends to get delayed to the last periods, and, therefore, the

manufacturing facilities must be allocated more time to the production of COVID-19 vaccines. In any

solution it is possible to satisfy all the demand in the pretended time period, meaning that backorders

are always necessary. This occurs since all the demand is placed at the beginning of the temporal hori-

zon. With any decision taken based on the results proposed, it is guaranteed that an efficient solution

is used. Nevertheless, solutions 5, 6, 8, 9 and 10 do not represent a great advantage regarding cost

minimisation but represent a great disadvantage regarding the number of backorders, when compared

to solutions 1, 2, 3, 4 and 7.
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Chapter 7

Conclusion

The pharmaceutical industry generates a big impact on society, enabling the treatment of diseases

and increasing people’s life expectancy and quality of life. The increase in average life expectancy

caused an aged population with more needs for pharmaceutical products. At the same time, society

has become health-conscious and customer expectation has enlarged. Pharmaceutical companies are

being constantly challenged by risks that can have consequences in the quantity and quality of supply

of medicines and their delivery to the customers at the right time. The pharmaceutical industry is facing

turbulent and volatile markets and disruptions. Another challenge of the sector is the undergoing shift of

paradigm from a cost-centred vision to a patient-centred vision.

A state-of-art review was performed concerning PSC network optimisation models. It returned that

some algorithms to support network design in this industry are already developed, but a limited number

of publications considers agility as a critical characteristic that the SC should have. A second literature

review, about methodologies to obtain agile SCs, was performed, in which any model considering agile

PSC was encountered. Several approaches to include agility in SCs were reviewed, where flexibility, re-

sponsiveness, process integration and customer enrichment were identified as building blocks. Chang-

ing environments force manufacturers to develop agile SC capabilities to remain competitive. Flexibility

and agility are required to respond in real-time to market needs.

The study of models to enable the optimisation of the PSC network design become a pertinent

academic interest. Those models should be capable of taking advantage of the environmental changes

and should adapt to varying demands, costs and expectations. In this thesis, a model to optimise

the PSC network is formulated and proposed. The proposed mathematical model considers a five-

level PSC with storage under multiple storage conditions in all manufacturing facilities and distribution

centres. A multiple storage condition inventory is an important characteristic of the PSC due to the strict

conservation policies that pharmaceutical products are subjected, to guarantee that they arrive with

quality to the final customer. Also, all facilities are assumed to have specific capacities. In manufacturing

facilities (primary and secondary manufacturers), production capacities limit the number of products

produced. In manufacturing facilities, handling capacities limit the number of products flowing through

that facilities. Inventory capacities are considered in both manufacturing facilities and distribution centres
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and limit the number of products stored. The proposed model considers a multi-API and multi-product

network, in which, the conversion of API to product is performed in the secondary manufacturers as

common in the pharmaceutical industry.

The objective of the proposed model is to minimise the total costs. Those costs are divided into three

categories, fixed costs, transportation costs and storage costs. Fixed costs include the expenses that

the facilities must have to order to integrate a flexible pharmaceutical network, encompassing process

integration investments, partnership costs, technological investment, information technologies, and ad-

justments to the infrastructure itself; transportation costs are the unit costs of transportation a product

between two facilities; finally, storage costs are the costs that a facility will incur to store a unit of product

for one time-period. The decisions considered encompass decisions at the strategic level, specifically

the number and location of facilities, distribution, inventory positioning and production.

To test and validate the model, two experiments based on the empirical examples proposed by

Mousazadeh et al. (2015): a single-API and single-product experiment, and a multi-API and multi-

product experiment. To explore the sensitivity of the model, changes in the parameters of the model

were performed, namely on the demand and on fixed integration costs to create a set of scenarios that

are analysed.

The computational experiments performed revealed that the model is sensitive to the variations in

the demand of the problem since the network adjusts to the different demand scenarios. The model

is also sensitive to the fluctuation of fixed costs. More flexibility is encountered when fixed costs are

lower than when they are higher: with lower fixed costs, the number of facilities participating in the

network is higher. A higher variation in the number of facilities when comparing scenarios with lower

fixed costs is also observed. The proposed model addressed challenges as cost minimisation, reliability

on different scenarios and sensitivity to variations on the demand and on the costs, which are important

characteristics to guarantee that pharmaceutical products arrive at the final customer with the maximum

quality, in the right quantity and with the necessary flexibility.

Finally, an application of the model to a COVID-19 vaccine distribution SC is performed. The case

study consists in determining the optimal secondary manufacturers, main DCs and local DCs to integrate

the network of vaccine distribution. The manufacturing facilities considered are located in Central Europe

and the markets considered are the districts and autonomous regions of Portugal for a temporal horizon

of two years. In this problem, backorders are allowed and the minimisation of backorders becomes

a second objective. To solve it, the problem was reformulated as a multi-objective MILPs, to study

the trade-off between backorder minimisation and cost minimisation. It is found that while minimising

backorders allow the population to be vaccinated sooner, more facilities must integrate the network

to satisfy all the demand in time, carrying extra costs to the SC. In the solutions that tend for cost

minimisation, the vaccination campaign gets delayed.

Using an optimisation model as the proposed one to perform the PSC network design allows the

determination of an optimum number and location of facilities, having into account inventories, produc-

tions and distribution flows. Connecting the analysis performed to the results with the agility research

performed, it is possible to understand that exists a trade-off between costs as agility. In the compu-
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tational experiment performed, lower costs enabled higher variations in the network design. For this

reason, when designing an agile PSC, attention must be paid to the fixed costs considered. Trying to

model an agile PSC considering facility construction costs or expensive technological investments as

fixed costs can limit the agility of the network. To model an agile PSC, working over a pool of facilities

already existing and considering only integration or adaptation costs might reveal a good path. Another

recommendation is to consider the use of multi-objective approaches to compare cost-minimisation with

other indicators that consider customer satisfaction. The objective of minimising the delays of delivering

vaccine doses is a benefit to the patient, revealing itself also a good driver for agility: regarding the set of

solutions of the multi-objective problem analysed, solutions more restrictive about the delay of delivering

vaccine doses also seems to allow more flexible networks. This reinforces that a cost-oriented vision

pushes a SC away from the agility.

As a future research proposal, including demand uncertainty in the optimisation model parameters

should be considered. The PSC is very susceptible to market volatility, even more under an ongoing

paradigm shift. Other sources of uncertainty should also be listed and analysed so that the network

optimisation models for the PSCs can become more reliable and the closest possible to reality.

Other topic for future work is the development of heuristic methods to address SC network design

problems, since when large scale problems are considered, the computational time required to solve

them may become unreasonable. Some authors in the literature had already studied the implementation

of heuristic methods in SC network design problem. However, it is a fruitful research area because of its

complexity.

Finally, including additional particularities of the PSC that are gaining importance in the modern

world, as product perishability and customisation can be integrated in the SC optimisation models. Con-

sidering other characteristics of SC networks as direct shipment and different transportation means

could reveal fruitful, specially if other objectives as environmental impacts or lead-times are analysed.
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Goodarzian, F., Hosseini-Nasab, H., Muñuzuri, J., and Fakhrzad, M. B. (2020). A multi-objective phar-

maceutical supply chain network based on a robust fuzzy model: A comparison of meta-heuristics.

Applied Soft Computing Journal, 92(106331).

Grunow, M., Günther, H. O., and Yang, G. (2003). Plant co-ordination in pharmaceutics supply networks.

OR Spectrum, 25(1), 109–141.

Halim, I., Ang, P., and Adhitya, A. (2019). A decision support framework and system for design of

sustainable pharmaceutical supply chain network. Clean Technologies and Environmental Policy,

21(2), 431–446.

Heintz, J., Belaud, J. P., and Gerbaud, V. (2014). Chemical enterprise model and decision-making

framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520.

Ismail, H. S. and Sharifi, H. (2006). A balanced approach to building agile supply chains. International

Journal of Physical Distribution and Logistics Management, 36(6), 431–444.

Izadi, A. and Kimiagari, A. M. (2014). Distribution network design under demand uncertainty using

genetic algorithm and Monte Carlo simulation approach: A case study in pharmaceutical industry.

Journal of Industrial Engineering International, 10(50).

Janatyan, N., Zandieh, M., Alem-Tabriz, A., and Rabieh, M. (2018). Designing sustainable distribution

network in pharmaceutical supply shain: A case study. International Journal of Supply and Operations

Management, 5(2), 122–133.

Johnson, J. (2019). Augmentin vs. amoxicillin: differences and side effects. https://www.

medicalnewstoday.com/articles/324218#augmentin-vs-amoxicillin. Accessed 2021-10-10.

Kelle, P., Woosley, J., and Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory

solutions for a hospital case. Operations Research for Health Care, 1(2-3), 54–63.

KFF (2005). Follow The Pill: Understanding the U.S. Commercial Pharma-

ceutical Supply Chain. https://www.kff.org/wp-content/uploads/2013/01/

follow-the-pill-understanding-the-u-s-commercial-pharmaceutical-supply-chain-report.

pdf. Accessed 2021-05-15.

Laı́nez, J. M., Schaefer, E., and Reklaitis, G. V. (2012). Challenges and opportunities in enterprise-wide

optimization in the pharmaceutical industry. Computers and Chemical Engineering, 47, 19–28.

Lashine, S. H., Fattouh, M., and Issa, A. (2006). Location/allocation and routing decisions in supply

chain network design. Journal of Modelling in Management, 1(2), 173–183.

82

https://www.medicalnewstoday.com/articles/324218#augmentin-vs-amoxicillin
https://www.medicalnewstoday.com/articles/324218#augmentin-vs-amoxicillin
https://www.kff.org/wp-content/uploads/2013/01/follow-the-pill-understanding-the-u-s-commercial-pharmaceutical-supply-chain-report.pdf
https://www.kff.org/wp-content/uploads/2013/01/follow-the-pill-understanding-the-u-s-commercial-pharmaceutical-supply-chain-report.pdf
https://www.kff.org/wp-content/uploads/2013/01/follow-the-pill-understanding-the-u-s-commercial-pharmaceutical-supply-chain-report.pdf


Lesmeister, F., Kwasniok, T., and Peters, D. (2020). A Strategy to Make Pharma

Supply Chains More Resilient. Bain & Company. https://www.bain.com/insights/

a-strategy-to-make-pharma-supply-chains-more-resilient/. Accessed 2021-05-12.

Levis, A. A. and Papageorgiou, L. G. (2004). A hierarchical solution approach for multi-site capacity

planning under uncertainty in the pharmaceutical industry. Computers and Chemical Engineering,

28, 707–725.

Lin, C. T., Chiu, H., and Chu, P. Y. (2006). Agility index in the supply chain. International Journal of

Production Economics, 100(2), 285–299.

Marques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., and Reklaitis, G. (2020). Decision-

support challenges in the chemical-pharmaceutical industry: Findings and future research directions.

Computers and Chemical Engineering, 134(106672).

Masoumi, A. H., Yu, M., and Nagurney, A. (2012). A supply chain generalized network oligopoly model

for pharmaceuticals under brand differentiation and perishability. Transportation Research Part E:

Logistics and Transportation Review, 48(4), 762–780.

Mehralian, G., Zarenezhad, F., and Rajabzadeh Ghatari, A. (2015). Developing a model for an agile

supply chain in pharmaceutical industry. International Journal of Pharmaceutical and Healthcare

Marketing, 9(1), 74–91.
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Appendix A

Computational Experiments

Figure A.1: Map of primary manufacturers in Iran

Figure A.2: Map of secondary manufacturers in Iran
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Figure A.3: Map of main DCs in Iran

Table A.1: Demand in each retailer

Retailer ID Year 1 Year 2 Year 3 Year 4

1 40 40 41 42
2 33 34 34 34
3 14 14 14 14
4 52 53 54 54
5 6 6 7 7
6 11 12 12 12
7 130 131 133 135
8 10 10 10 10
9 8 8 8 8

10 64 65 66 67
11 10 10 10 10
12 49 49 50 50
13 11 11 12 12
14 7 7 7 7
15 27 28 28 28
16 49 50 51 51
17 13 13 14 14
18 13 13 13 13
19 16 17 17 17
20 32 32 32 33
21 21 21 22 22
22 7 8 8 8
23 19 20 20 20
24 27 27 27 28
25 19 19 20 20
26 33 34 34 34
27 15 16 16 16
28 17 17 18 18
29 19 19 20 20
30 12 12 12 12
31 18 18 19 19
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Figure A.4: Map of retailers and local DCs in Iran

Table A.2: Parameters associated to Local DCs
Local DC ID Storage Cap. (ton) Handling Cap. (ton) Fixed cost (C) Inv. Cost (C/ton)

1 40 40 3840 42.5
2 40 40 2176 40
3 40 40 2048 40
4 40 40 2176 42.5
5 40 40 1920 40
6 40 40 2048 40
7 40 40 2048 75
8 40 40 2176 37.5
9 40 40 1920 37.5
10 40 40 2048 40
11 40 40 3840 37.5
12 40 40 2176 37.5
13 40 40 2048 37.5
14 40 40 2176 40
15 40 40 1920 37.5
16 40 40 2048 42.5
17 40 40 2048 40
18 40 40 2176 40
19 40 40 1920 37.5
20 40 40 2048 37.5
21 40 40 3840 37.5
22 40 40 2176 37.5
23 40 40 2048 40
24 40 40 2176 40
25 40 40 1920 37.5
26 40 40 2048 37.5
27 40 40 2048 37.5
28 40 40 2176 37.5
29 40 40 1920 37.5
30 40 40 2048 37.5
31 40 40 3840 40
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Figure A.5: Network diagram: Experiment 1 (baseline)
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Figure A.6: Network diagram: Experiment 1 (half demand)
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Figure A.7: Network diagram: Experiment 1 (double demand)
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Figure A.8: Network diagram: Experiment 2
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Figure A.9: Network diagram: Experiment 2 (half demand)
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Figure A.10: Network diagram: Experiment 2 (double demand)
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Appendix B

Case Study: COVID-19 vaccines

Figure B.1: Map of primary manufacturers: vaccine case study
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Figure B.2: Map of secondary manufacturers: vaccine case study

Table B.1: Transportation costs between primary manufacturers and secondary manufacturers and sec-

ondary manufacturers and main DCs

Primary Manufacturers Main DC
Puurs Monts Leiden (AZ) Leiden (J) Porto Coimbra Lisboa Évora Faro

Puurs 0.000 0.232 0.058 0.064 0.753 0.752 0.812 0.783 0.886
Saint-Remy 0.194 0.105 0.219 0.226 0.625 0.567 0.685 0.656 0.758

Marburg 0.170 0.099 0.177 0.217 0.883 0.883 0.943 0.914 1.016
Frankfurt 0.166 0.329 0.180 0.178 0.850 0.850 0.910 0.880 0.983

Stein 0.250 0.287 0.303 0.310 0.745 0.744 0.804 0.775 0.877
Kundl 0.349 0.438 0.375 0.373 0.909 0.896 0.969 0.939 1.042
Monts 0.232 0.000 0.286 0.288 0.525 0.524 0.585 0.555 0.658
Visp 0.311 0.304 0.364 0.371 0.749 0.747 0.809 0.779 0.882

Leiden (AZ) 0.058 0.283 0.000 0.006 0.809 0.804 0.869 0.839 0.942
Seneffe 0.028 0.204 0.085 0.093 0.727 0.725 0.786 0.757 0.859

Leiden (Jo) 0.064 0.288 0.006 0.000 0.810 0.809 0.869 0.840 0.942
Dessau 0.262 0.493 0.244 0.243 1.014 1.015 1.074 1.044 1.147
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Figure B.3: Map of main DCs: vaccine case study
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Figure B.4: Network diagram: Solution 1
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Figure B.5: Network diagram: Solution 2
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Figure B.6: Network diagram: Solution 3
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