
Automatic Chart Interpretation

Catarina Julião Relvas Pires

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Professor Vasco Miguel Gomes Nunes Manquinho
Professor Maria Inês Camarate de Campos Lynce de Faria

Examination Committee

Chairperson: Professor Alberto Manuel Rodrigues da Silva
Supervisor: Professor Vasco Miguel Gomes Nunes Manquinho

Member of the Committee: Professor Arlindo Manuel Limede de Oliveira

October 2021

ii

Acknowledgments

These past few years have culminated on a beautiful path of ups and downs, academic life and lock-

downs. They led me to meet new places, new friends and challenge myself with new experiences.

I would like to thank my supervisors Prof. Vasco and Prof. Inês for their insight and support on our

weekly meetings.

I would like to thank my grandparents who taught me values and love: Carlos, Mimi, Armando and

specially Silvia who is struggling and whom I miss so much. Thank you once again for everything.

The friends I made in Coimbra and Lisbon along the way. Specially Jessica and Gonçalo, you are for

life!

To my parents who never once doubted me ”Of course I knew you could do it!”. They are always

supporting my decisions, but also always ready to a warm and lovely welcome home. Love you. Couldn’t

forget my pet Nami for the company during the long lockdown months.

To João who has always been there for me. You’ve been by my side since my first algebra class,

which I missed due to the bus... and panicked. I love you.

This work was partially supported by Portuguese national funds through FCT, Fundação para a

Ciência e a Tecnologia, under projects UIDB/50021/2020, DSAIPA/AI/0044/2018, and project ANI 045917

funded by FEDER and FCT.

iii

iv

Resumo

Os gráficos são, atualmente, um formato de representação de dados indispensável, sendo utilizados em

diversos tipos de documentos. Geralmente, os dados subjacentes às imagens dos gráficos são também

considerados cruciais, no entanto, nem sempre estão disponı́veis. Um método preciso de extração de

dados de gráficos beneficiaria diversas áreas, tais como, melhorar os resultados de pesquisas web

relativas a gráficos ou ajudar os utilizadores com incapacidades visuais a compreender gráficos em

documentos. Uma outra aplicação é a sı́ntese de programas que utiliza a representação gráfica dos

dados. A ferramenta que motivou este trabalho de pesquisa é o UNCHARTIT, um sintetizador de pro-

gramas que, dada uma tabela de entrada e uma imagem de um gráfico, possibilita a recuperação das

transformações aplicadas aos dados.

Esta dissertação analisa as ferramentas já desenvolvidas com o objetivo de extrair dados de gráficos

e, com base nos métodos mais promissores, propõe uma nova ferramenta, o BARXTRACTOR. A nossa

ferramenta extrai dados numéricos e textuais a partir de imagens de gráficos de barras simples, agru-

padas e empilhadas. O BARXTRACTOR não requer interação humana, utilizando redes neuronais con-

volucionais (CNNs) para classificação do tipo de gráfico e Faster R-CNNs na deteção de elementos

existentes na imagem do gráfico, tais como barras e números. Para a extração textual é aplicada

uma ferramenta de reconhecimento ótico de caracteres (OCR). Adicionalmente, o BARXTRACTOR foi

integrado na ferramenta UNCHARTIT de modo a melhorar a sua precisão e eliminar a necessidade de

interação com o utilizador.

Os resultados experimentais provaram que o BARXTRACTOR é capaz de classificar, com sucesso,

gráficos de barras simples, agrupadas e empilhadas. Além disso, também foi possı́vel verificar que o

BARXTRACTOR supera as ferramentas do estado da arte que dependem da interação com o utilizador

para a extração correta de dados da imagem do gráfico. Adicionalmente, a integração do BARXTRAC-

TOR no UNCHARTIT permite melhorar a sua precisão na seleção do programa correto para as várias

transformações da tabela original. Finalmente, o BARXTRACTOR também possibilita a extração dos da-

dos textuais dos gráficos, que podem ser utilizados na melhoria da interpretação dos dados numéricos

extraı́dos.

Palavras-chave: Imagens de gráficos de barras, Extração de dados, Deteção de objetos,

Redes Neuronais Convolucionais, Reconhecimento ótico de caracteres.

v

vi

Abstract

Nowadays, charts are a key form of representing data, used in all sorts of documents. In many cases,

the data underlying the chart images is also crucial; however, it is not always available. An accurate

method to perform chart data extraction would benefit several areas: it can be used to improve web

search results for charts or help visually impaired users understand charts in documents. An additional

application is the synthesis of programs that uses graphic representation of data. The tool that motivated

this research work is UNCHARTIT, a program synthesizer to recover data transformations from chart

images given an input table and a chart.

This dissertation analyses the tools already developed with the aim of extracting data from charts

and, based on the most promising methods explored, proposes a new tool, BARXTRACTOR. Our tool

extracts both numerical and textual data from images of simple, grouped and stacked bar charts. BARX-

TRACTOR does not require human interaction, using Convolutional neural networks (CNNs) for chart

type classification and Faster R-CNNs for object detection within the chart image, such as bars and

numbers. For textual extraction an optical character recognition (OCR) engine is applied. Moreover,

BARXTRACTOR was integrated into the UNCHARTIT tool in order to improve its accuracy and to eliminate

the need of user interaction.

Experimental results for BARXTRACTOR show that it is able to successfully classify simple, grouped

and stacked bar charts. Moreover, results also show that BARXTRACTOR outperforms state of the art

tools that rely on user input to correctly extract data from the chart image. Additionally, the integration of

BARXTRACTOR in the UNCHARTIT tool allows to improve its accuracy in finding the correct program for

several table transformations. Finally, BARXTRACTOR is also able to extract textual data from the charts.

The textual data can be used to improve the interpretation of the extracted numerical data.

Keywords: Bar chart images, Data extraction, Object detection, Convolutional Neural Net-

works, Optical character recognition.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Figures . xii

List of Tables . xiii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Contributions . 3

1.3 Document Structure . 4

2 Preliminaries 5

2.1 Chart types . 5

2.2 Connected Component Analysis . 7

2.3 Convolutional Neural Networks . 8

2.3.1 Convolutional Layers . 8

2.3.2 Pooling Layers . 10

2.3.3 Fully Connected Layers . 10

2.3.4 Regularization . 11

2.3.5 ResNet . 12

2.3.6 Region Based CNNs . 13

3 Related Work 17

3.1 Chart images’ identification . 17

3.2 Chart type classification . 17

3.3 Data extraction . 19

3.4 Chart text extraction . 24

4 Automatic Bar Chart Extraction 27

4.1 Architecture . 27

4.2 Chart image Classifier . 28

4.2.1 Model and training . 28

ix

4.2.2 Classifier’s dataset . 29

4.3 Faster R-CNN . 29

4.3.1 Models and training . 29

4.3.2 Faster R-CNN datasets . 30

4.3.3 Simple bar charts dataset . 32

4.3.4 Grouped and Stacked bar charts datasets . 32

4.4 Post-Processing . 33

4.4.1 Simple bar charts . 33

4.4.2 Grouped bar charts . 34

4.4.3 Stacked bar charts . 34

4.5 Obtain the real chart values . 35

4.5.1 Optical Character Recognition . 35

4.5.2 Outliers’ detection . 36

4.6 Output of the system . 37

5 Results and Discussion 39

5.1 Numerical extraction evaluation . 39

5.1.1 Simple bar charts . 40

5.1.2 Grouped and Stacked bar charts . 43

5.2 Textual extraction . 44

5.3 Classifier . 45

5.4 Results’ summary . 46

6 Conclusions 49

6.1 Future Work . 50

Bibliography 55

x

List of Figures

1.1 Consumer complaints data from 2011 to 2016. [36] . 2

1.2 UNCHARTIT architecture. 2

1.3 In BARXTRACTOR, the input is a bar chart. In this example, a simple bar chart (a). Then,

the object detection step is displayed (b) and lastly the output is represented in a csv file

(c). 3

2.1 Bar charts. 6

2.2 Pie Charts. 7

2.3 Line Chart (a) and Area Chart (b). 7

2.4 Scatter Plot (a), Radar chart (b) and High-Low chart (c). 8

2.5 Connected Component Analysis Example. (a) Original image. (b) Correspondent CCA. . 9

2.6 Typical CNN architecture. Image extracted from [15]. 9

2.7 Application of two different filters. Image extracted from [15]. 10

2.8 Example of Convolution operation. 10

2.9 Example of Max pooling layer. 11

2.10 Example of overfitting of the training data. Image extracted from [15]. 11

2.11 Residual Block. Image extracted from [19]. 13

2.12 R-CNN. Image extracted from [17]. 13

2.13 Fast R-CNN. Image extracted from [16]. 14

2.14 Faster R-CNN. Image extracted from [39]. 15

2.15 IoU (Intersection over union) equals to the area of overlap divided by the area of union. . 15

3.1 Examples of a bar chart (a) and a pie chart (b). 19

3.2 Proposed pipeline for extracting numerical data. Image extracted from [54]. Step (1)

produces the feature vector. Steps (2) to (5) iteratively generate the numeric information,

that is, bar vector. 22

4.1 BARXTRACTOR’s architecture. 28

4.2 Labels contained in an image from the grouped bar charts dataset. Corresponding to the

annotations.csv on Table 4.1. 31

4.3 Labeled stacked bar chart example. 33

4.4 Example of a stacked bar chart (a) and the corresponding colors’ directed acyclic graph (b). 35

xi

4.5 Bar chart used as an example to explain the vertical axis numbers extraction. 36

4.6 Outlier detection with Random sample consensus (RANSAC). 37

4.7 Example of a simple bar chart and BARXTRACTOR’s csv output. 37

4.8 Example of a stacked bar chart and BARXTRACTOR’s csv output. 38

5.1 Mislabeled charts on the classification process. 45

5.2 Number of charts where the number of bars was correctly predicted. 46

5.3 MAE between the simple bar charts where the number of bars was correctly predicted. . 46

5.4 UNCHARTIT results on the number of queries solved both for latex (a), matlab (b) and

excel (c) bar charts. 47

xii

List of Tables

4.1 Example of the annotations.csv file. 32

5.1 Number of charts where the number of bars was correctly predicted among the 50 simple

bar chart images. 40

5.2 MAE of the bar values on the simple bar chart images with correctly predicted number of

bars, excluding charts with scientific notation. 41

5.3 UNCHARTIT results on the latex bar charts. 42

5.4 UNCHARTIT results on the matlab bar charts. 42

5.5 UNCHARTIT results on the excel bar charts. 43

5.6 Bar labels medium number of differences . 44

5.7 Bar labels success rate (number of totally successful reads) 44

xiii

xiv

Chapter 1

Introduction

Charts are widely used to visually represent various types of data: they can be found in reports, journal

and research articles, presentations, among many other documents. This visual representation of data

can compact and organize loads of information into a simple and accessible image. However, the

numerical and textual data underlying a chart image are not always accessible and might be challenging

to obtain. The chart’s data extraction is an important and useful topic that has already been explored in

several research works [2, 4, 7, 10, 24, 26, 33, 36, 43, 54], including different methodologies or subjects

of study. For instance, some focus on a chart type [2, 7, 10, 36, 54], others on textual extraction [34, 51].

Each one of the explored methods have their pros and cons and have been developed in order to

be applied in different contexts. Machine learning algorithms, specially Convolutional Neural Networks

(CNNs) [5], have provided good results when dealing with problems related to image processing. We

consider that this concept should be further explored for chart textual and numerical data extraction from

chart images.

1.1 Motivation and Objectives

Data analysis processes have evolved over the last decade and now play a major role for companies

in driving their informed decisions. This means that more data analysts have to be employed, some

of them without the ideal programming skills. For this reason, some tools for automating programming

tasks emerged [12, 13, 25, 27, 52, 53]. These tools work with examples where the user provides a series

of input-output examples and the tool recovers the program that matches the input to the output, without

requiring the user to program. However, until very recently, there were no tools to recover a program

where the user is able to insert a visual element as the output goal.

The UNCHARTIT1 tool [36] was proposed with the goal of recovering the program underlying a chart

image. Consider the example in Figure 1.1, which contains (a) a sample of the table with all customer

complaints from 2011 to 2016, and (b) the corresponding bar chart with the number of complaints

grouped annually. Suppose that a data analyst with limited programming skills needs to reproduce

1http://sat.inesc-id.pt/unchartit/home/

1

http://sat.inesc-id.pt/unchartit/home/

date received product . . .

08/30/2013 Mortgage . . .
08/30/2013 Mortgage . . .
08/30/2013 Credit reporting . . .
08/30/2013 Student loan . . .
08/30/2013 Debt collection . . .
08/30/2013 Credit card . . .
08/30/2013 Credit card . . .
08/30/2013 Debt collection . . .

(a) Sample of the consumer complaints table
(175.39MB).

2011 2012 2013 2014 2015 2016

0.44

0.89

1.33

1.77

·105

year

#
co

m
pl

ai
nt

s

(b) Bar chart with yearly number of consumer complaints.

Figure 1.1: Consumer complaints data from 2011 to 2016. [36]

Data Extraction

Candidate Generation Candidate Ranking

…

Candidates

Program Disambiguation (optional)

Q1. Consider
the input table:

Is the following
chart correct? (Y/N)

Q2. Consider
the input table:

Select the correct output:

Input data

Top-n candidates

Output chart Program

Program
Decider

Program
Generator

Candidate

Feedback

Noisy
Output Data

Figure 1.2: UNCHARTIT architecture.

an updated chart with the annual consumer complaints, but he does not have access to the program

underlying the generation of the chart in Figure 1.1b. UNCHARTIT should be able to recover the program

and data transformations applied to transform the table (a) into the bar chart (b), given only the table and

the chart as input. With the program recovered by UNCHARTIT, the data analyst could easily produce

an updated chart.

The program to be synthesized should include the chart generation, including the necessary data

transformations, and it can be recovered given: (1) an input table, with the data used to create the chart,

and (2) a desired output chart image, as it can be seen in Figure 1.2. Since the desired chart is given

through an image format, there is the need to extract the chart’s numerical data into a tabular repre-

sentation. Given the input table and the extracted table from the chart image, UNCHARTIT generates

program candidates that are evaluated by the Program decider. These candidates are ranked by the

most probable correct query and the user is given the opportunity to answer some simple questions in

order to disambiguate the top-n candidates. This candidate disambiguation step is optional and it helps

the user finding the final correct program.

UNCHARTIT proposes two ways of extracting data from bar charts. The first is using WEBPLOTDIG-

ITIZER [1], a tool that requires user interaction and calibration. The other is a CNN model that requires

the user to provide two y-axis values, the minimum and maximum values of the axis.

Our proposed approach emerged by the need to get highly confident results in the chart image

2

(a) Simple Bar Chart (input). (b) Object detection.

Team Score

France 16.15

Portugal 13.03

Croatia 3.12

Sweden 3.12

(c) Csv file (output).

Figure 1.3: In BARXTRACTOR, the input is a bar chart. In this example, a simple bar chart (a). Then, the
object detection step is displayed (b) and lastly the output is represented in a csv file (c).

extraction step, in order to obtain more accurate results in UNCHARTIT. Our main goal is to develop

a data extraction tool that does not require human interaction and that also includes the extraction of

textual data (e.g. axis labels and titles) that might help in the numerical extraction process and in the

candidate generation step from UNCHARTIT.

1.2 Contributions

In this dissertation, after the related work revision, BARXTRACTOR is proposed as a tool for extracting

values from three different types of bar charts: simple, grouped, and stacked bar charts. Its development

was motivated by UNCHARTIT. The user simply needs to enter a chart image and the extraction process

is automatic without any additional user interaction. It extracts both the numerical and textual values into

a table that is saved as a csv file.

BARXTRACTOR first uses a CNN to classify the bar chart type into either ’simple, ’grouped’ or

’stacked’. Then, it is composed of three Faster R-CNNs models, one for each chart type, which de-

tects the relevant chart elements, such as bars. For each element a bounding box is detected and the

correspondent label is assigned. The labels detected are extracted using optical character recognition

and the numerical labels are used to automatically extract the value of each bar. The output is a csv file

containing each bar value and the corresponding textual bar label.

BARXTRACTOR’s most relevant steps are summarized in Figure 1.3. A bar chart is inserted into

the system (a) and classified as ’simple’. The object detection phase detects the relevant objects and

classifies them (b). And lastly, the output of the system is a csv file (c) with the extracted values of each

bar and their corresponding labels.

On simple bar charts, the results obtained using BARXTRACTOR outperformed those obtained using

the previous UNCHARTIT method and the WEBPLOTDIGITIZER tool. BARXTRACTOR additionally sup-

ports the extraction of grouped and stacked bar charts, obtaining similar results to the simple bar charts.

BARXTRACTOR also extracts the textual labels automatically.

3

1.3 Document Structure

This document is organized in six chapters. The introduction aims to present the problem, the motiva-

tion for the project and a brief overview on the proposed approach. Chapter 2 explains the concepts

mentioned throughout the dissertation that are required to understand the following chapters. Chapter

3 provides an overview on the state-of-art of the tools and techniques to extract numerical and textual

information from chart images. It includes chart identification, chart classification, and chart numerical

and textual data extraction. The architecture and implementation of BARXTRACTOR are described in

chapter 4, followed by chapter 5 which presents and discusses the experimental results. Finally, chapter

6 concludes the dissertation.

4

Chapter 2

Preliminaries

This chapter provides a brief review on the most relevant topics and methods that are mentioned

throughout this dissertation and that are commonly employed in chart classification and data extrac-

tion. This includes the Connected Component Analysis (CCA), Convolutional Neural Networks (CNNs)

and Region Based CNNs. It also provides an introduction to the chart types explored in the following

sections.

2.1 Chart types

This section provides a brief overview on the chart types that are explored in the following chapters re-

garding the classification and data extraction of chart images. It covers bar, pie, line, area, scatter, radar

and high-low charts. Note that only a subset of these charts is being addressed in the BARXTRACTOR

tool. However, to comprehend Chapter 3, these chart types should also be presented.

Simple bar charts typically follow the layout presented in Figure 2.1a, with bars representing the

numerical data for each category. These charts have two axis, the x-axis contains each bar’s nominal

label and the y-axis represents the numerical values. A variation of the simple bar chart is the stacked

bar chart (Figure 2.1b) where each bar is divided into sub-bars. For instance, in the first bar ”A” it can

be observed that the ’Group1’ (blue) has a value of 57 and the ’Group2’ (red) has a value of 40, hence

the bar ”A” has a total value of 97. Another relatively similar type is the grouped bar chart (Figure 2.1c)

in which each group has multiple bars in the same nominal label. These charts usually contain a title

and a label for each axis. Its color legends may or not be present and can be placed in different chart

locations. Note that both charts can also be horizontal and that the bars’ labels can be non-horizontal

as in Figure 2.1a.

Pie charts are used to represent percentages and are divided into slices of different colors or pat-

terns. Note that these charts can be represented with distinct visual features (Figure 2.2). It can be a 2D

or 3D chart, the slices can have borders (a) or not (b), each slice’s percentage can be visible inside or

5

0

20

40

60

A B D E F G H

(a) Simple bar chart example.

0

25

50

75

100

A B D E F G H

Group2 Group1

(b) Stacked bar chart example.

horizontal axis

ve
rti

ca
l a

xi
s

0

20

40

60

A B D E F G H

Group1

Group2

Bar chart title

(c) Grouped bar chart example.

Figure 2.1: Bar charts.

outside (b) the slice, or not shown in the chart (a). The slice’s labels can also be represented in various

ways.

Line charts (Figure 2.3a) contain both a x- and y-axis and represent a series of data points linked in

a continuous line.

Area Charts (Figure 2.3b) are similar to line charts but the area between the line and the bottom

axis is filled by the line’s color.

Scatter plots (Figure 2.4a) are composed by several points in which each point represents values

for two distinct variables, one for each axis (x and y).

Radar charts (Figure 2.4b) represent multiple variables at the same time by having various equidis-

tant axis with the same origin point. Each polygon represents a category and is distinguished by its

unique color. Each polygon’s vertex represent its value for that axis.

High-Low charts (Figure 2.4c) are composed by multiple vertical lines. Each line represents a range

of values, where its topmost point represents the highest value observed, and its bottom point represents

6

A

B

D

E

F

(a)

F
18.9%

E
36.0%

A
22.5%

B
18.0%

D
4.5%

(b)

Figure 2.2: Pie Charts.

0

5

10

15

20

0 5 10 15

A B

(a)

0

5

10

15

20

0 5 10 15

A B

(b)

Figure 2.3: Line Chart (a) and Area Chart (b).

the lowest value observed. In high-low charts, the horizontal axis usually represents a measure of time.

The horizontal tick in the line can represent any chosen value, such as the average value or, for stock

market charts, a closing price for the day.

2.2 Connected Component Analysis

Connected Component Analysis (CCA) is an algorithm with the purpose of grouping neighboring pixels

with the same color, in binary images, or of similar color, in colored images. The algorithm groups similar-

color neighbor pixels, separating the image into groups, each group is a ”connected component”. The

analysis can be either ”Four-connectedness”, if only the four adjacent pixels are considered neighbors,

or ”Eight-connectedness”, if the pixels touching the corner are also considered neighboring pixels [21].

Figure 2.5 presents the application of CCA on an image with two bars. By analyzing the neighbor pix-

els in the image, the algorithm generates three connected components (CC), namely: the background,

since all the white pixels are connected, and the two bars represent two distinct CC, since even though

they have the same color, their pixels are not neighbors.

The CCA technique was previously applied to detect both graphical and textual elements on chart

images [2, 10, 24, 43]. Detecting the elements in a chart is useful for its classification or data extraction.

7

0

5

10

15

20

25

0 2 4 6

(a) Scatter Plot
(b) Radar Chart

(c) High-Low chart

Figure 2.4: Scatter Plot (a), Radar chart (b) and High-Low chart (c).

2.3 Convolutional Neural Networks

In this section we assume the reader is familiar with Neural Networks [5, 15].

Convolutional Neural Networks (CNNs) are a type of neural network inspired by the visual cortex

of the human brain [37]. These networks achieve good results in image recognition and classification

problems [5], which are both common applications.

Thus, CNNs are frequently used in chart classification [4, 26, 32, 33] and, although it has been little

explored, it can be a good basis for chart images data extraction [33, 54].

In order to further understand CNNs, the typical architecture of these networks is represented in

Figure 2.6. CNNs are typically composed by several layers, namely: input layer, convolutional layers,

pooling layers, fully connected layers and output layer.

2.3.1 Convolutional Layers

The convolutional layers have the goal of extracting image features by performing an operation named

”convolution”. It consists on applying filters (kernels) to the input, in order to extract feature maps. This

8

(a) (b)

Figure 2.5: Connected Component Analysis Example. (a) Original image. (b) Correspondent CCA.

Figure 2.6: Typical CNN architecture. Image extracted from [15].

input might be the inserted image, for the first convolutional layer, but it can be the output of other layers.

The filter goes through the input data starting on the top left corner. In the first convolutional layer, the

filters applied to the input image will extract low-level features such as lines. In the following convolutional

layers this process continues to be performed and more complex features can be extracted. Note that,

during the training phase, these filter’s weights are updated by the backpropagation algorithm [40].

Figure 2.7 illustrates the effect of applying a filter to the input image, for instance, the vertical filter

extracts vertical lines.

Two important concepts to understand the convolutional step are: stride and padding. Stride is

the number of pixels that the filter shifts when going through the input. Padding is a technique that

consists in filling the input’s edge pixels in order to make it wider. If this padding is applied with zeros it

is called Zero Padding. Padding is used to overcome some issues, such as: the image size shrinking

over the layers, or to avoid losing information from the image corners, since the kernel only takes them

into account once, contrary to the middle pixels that are accounted for multiple times.

To illustrate stride and padding, Figure 2.8 illustrates a convolution operation with an 3 × 3 input, a

2 × 2 filter kernel, a stride of 1 and zero padding. The padding is represented in the input by the cells

with dashed borders. In order to simplify the understanding of the convolutional operation two blocks are

highlighted in the input and their respective output is highlighted in the output matrix. For instance, the

highlighted red cell in the output matrix (10) consists in the dot product of the red block in the input by

9

Figure 2.7: Application of two different filters. Image extracted from [15].

0 0 0 0 0

0 0 1 2 0

0 3 4 5 0

0 6 7 8 0

0 0 0 0 0

Input 3x3

*

Kernel 2x2

0 1

2 3

0 3 8 4

9 19 25 10

21 37 43 16

6 7 8 0

Output

Stride 1
Zero Padding

Figure 2.8: Example of Convolution operation.

the kernel (2× 0 + 0× 1 + 5× 2 + 0× 3), this operation consists in the sum of products. The convolution

is performed for every block obtaining sequentially each entry in the output matrix.

2.3.2 Pooling Layers

The pooling layers are subsampling layers, with the aim of reducing the spatial size of the input. These

layers operate on each feature map. The most common pooling approach is max pooling [15]. In Figure

2.9 we can observe an example of max pooling, where only the maximum value in each kernel is stored.

2.3.3 Fully Connected Layers

The fully connected layers on a CNN receive the image features extracted by the convolutional and

pooling layers and outputs the class label, performing the classification. The output of the previous

layers is reshaped into a flat vector. The output represents the probabilities of the image corresponding

10

1 2 3 4

3 8 5 2

4 3 0 1

2 1 2 3

8 5

4 3

max pooling

Filter 2x2
Stride 2

Figure 2.9: Example of Max pooling layer.

Figure 2.10: Example of overfitting of the training data. Image extracted from [15].

to a certain class. In order to aim for a better classification accuracy, the fully connected layers weights

are also updated during the training phase, through backpropagation.

2.3.4 Regularization

Overfitting is a common problem in machine learning, it occurs when the model perfectly fits to the

training data but the results do not generalize [15]. Figure 2.10 shows an example of an overfitted model.

As we can observe, the model is attempting to fit to all the data points rather than having a generalized

form. In this situation a polynomial function with less degrees would be a better fit. This phenomenon

can happen when the model trains for too long or when it is a very complex model. Overfitting causes

high performance on training data and low on testing data, not generalizing to new instances.

One way of overcoming overfitting is to collect more training data, but that may not be possible or may

not solve the issue. A different technique to avoid overfitting is the use of regularization that introduces

a way of penalizing very complex models. Regularization can be considered any modification applied to

a model with the goal of reducing its generalization error (how accurately it predicts unseen data) [18].

Some common regularization methods will be described next. The Lasso regression (L1) and the

Ridge Regression (L2) are some common regularization techniques [15]. These add a penalty term to

the cost function that keep the model’s weights simple. To clarify, the cost function, also defined as the

loss function, represents the distance between the current output and the desired output [5, 15]. The

optimizer is responsible for minimizing this loss function by updating the weights.

Another common type of regularization is the dropout technique [15, 18], which essentially consists

11

in having a probability of temporarily ”dropping out” some neurons and making them temporarily inactive.

This works by making other neurons perform the predictions to compensate the missing ones, leading

to a more generalized model.

Early stopping is another regularization technique that consists in monitoring the training and valida-

tion errors and stopping the training process when the validation error starts increasing, or the accuracy

starts decreasing. Early stopping is usually implemented by saving the model whenever the best valida-

tion errors are observed, if it does not improve after a defined number of iterations, then we return to the

saved model.

Data augmentation is another technique that simply consists on generating more training data based

on the existing data, for instance, by resizing and rotating the images. This leads to a bigger training

dataset, which results in a more robust model.

2.3.5 ResNet

The residual neural network (ResNet) [19] is a CNN architecture, which was selected to perform several

tasks throughout this project. It was chosen for BARXTRACTOR since it won the 2015 ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [41] classification task. This subsection’s goal is to share

ResNet’s main characteristics.

With the evolution of convolutional neural networks, deeper models were being created by adding

more layers to try and learn more complex features. However, there is a point where adding more

layers causes the network’s performance to decrease. One of the reasons for the network’s decreased

performance is the vanishing gradient. When the network has too many layers, the gradient might shrink

tremendously while being propagated, influencing the learning process, by not allowing all the network’s

weights to be updated [19].

Residual Block

In order to solve the vanishing gradient problem and allow the training of deeper networks, ResNet [19]

proposes the introduction of residual blocks. Figure 2.11 presents a residual block which contains a skip

connection between the input x and the output F (x) of the block. These connections allow to skip layers,

thus the name. With this connection, the output of the layers is now H(x) = F (x) + x. By introducing

these connections the gradient does not tend towards zero when backpropagating. As a result, the

networks can be trained with a large number of layers without increasing the training error.

Architectures

ResNet has numerous variants mostly obtained by changing the number of layers. The first architecture

presented was ResNet-34 which is 34 layers deep and each residual block is two layers deep. Other

architectures include ResNet-50, ResNet-101 and ResNet-152 which have three layers deep blocks.

The ResNets with 50, 101 and 152 layers are more accurate than ResNet-34 [19] on ImageNet. In

12

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast intoF(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Figure 2.11: Residual Block. Image extracted from [19].

Figure 2.12: R-CNN. Image extracted from [17].

BARXTRACTOR the ResNet-50 was chosen for classification tasks since it is unnecessary to use 101 or

152 layers, which would be slower to train.

2.3.6 Region Based CNNs

To address object detection, given an input image, the goal is to output the various detected objects’

bounding box and their classification. Simple CNN architectures have a fixed output layer which is

ineffective for these type of problems.

Region based CNNs are object detection networks that, given an image, return for each detected

element: a bounding box and a classification. Faster R-CNNs are used in this project for object detection

tasks. There are other object detection systems, however Faster R-CNN was chosen since it achieves

a better accuracy for small elements [23] compared to other systems such as YOLO [38], SSD [31] and

R-FCN [9].

R-CNN

The first method proposed for object detection was R-CNN [17]. Figure 2.12 presents the architecture of

the system. Given an image as input, the system runs a selective search algorithm and extracts roughly

2000 region proposals. These regions, are warped into a square and fed to a CNN that extracts the

features for each region. The features are then fed to a Support Vector Machine (SVM) [8] that classifies

each region. The algorithm also outputs four values (xmin, ymin, xmax, ymax) corresponding to the

adjusted bounding box of the detected object.

13

Figure 2.13: Fast R-CNN. Image extracted from [16].

Fast R-CNN

Despite the good results presented by the R-CNN there were still issues mostly related to the training

and testing times. Ross Girshick proposed the Fast R-CNN [16] which achieves a better accuracy in

less time. Figure 2.13 presents the Fast R-CNN architecture.

In this proposal, the entire input image and a set of regions of interest (RoIs), obtained through

selective search, are fed to the CNN in order to generate a convolutional feature map. The feature map

is reshaped by using a RoI pooling layer which is fed to a fully connected network to generate a RoI

feature vector. The network outputs, for each RoI, the softmax probabilities for the object classification,

and the bounding box offsets.

The Fast R-CNN solves some of the R-CNN drawbacks including that the system can now be trained

end-to-end, since each step is not an independent component of the system as in R-CNN. Another

advantage is that instead of performing the convolution 2000 times, once for each region proposal like

in R-CNN, it is done once per image.

Faster R-CNN

The third network to arise was Faster R-CNN [39] whose architecture is presented in Figure 2.14, its

purpose was to improve the Fast R-CNN performance. Using selective search on the image to find

the region proposals was still slowing the Fast R-CNN. The Faster R-CNN, instead employs a Region

Proposal Network (RPN) which receives as input the images’ convolutional feature maps and returns

region proposals. Now, since it is using a network, it can be trained and customized to each detection

problem.

Important concepts related to object detection

There are some important concepts related to object detection that should be clarified since they are

commonly used as metrics in these types of problems.

The first concept is IoU (Intersection over union), illustrated on Figure 2.15, which consists on dividing

the amount of overlap by the area of union between the predicted bounding box and the ground truth

14

Figure 2.14: Faster R-CNN. Image extracted from [39].

Figure 2.15: IoU (Intersection over union) equals to the area of overlap divided by the area of union.

bounding box. The IoU values vary from 0 to 1 and the higher the better, since it means the predicted

area is almost overlapped with the ground truth area.

Another concept is the mAP (mean average precision) where we use the precison and the recall

values to calculate the average precision of each class. Precision is the ratio of relevant instances

among the detected instances and recall is related to the number of detected relevant instances among

all the relevant instances. The average precision (AP) is the result of the area below the precision-recall

curve which represents the trade-off between the precision and the recall. High results on AP mean

more accurate results. The mAP is the mean of the calculated AP for each class.

15

16

Chapter 3

Related Work

Automatic interpretation of chart images has been previously explored throughout the years, and differ-

ent approaches have been used to solve each of the following challenges. The first topic is related to

the identification of a chart image, either identify its location within a document or, given an image, cate-

gorize it as a chart or not. The second challenge concerns chart type classification (e.g. line chart, bar

chart, pie chart), as well as chart dimension classification, since it might be necessary to differentiate

between 2D and 3D charts before the extraction. Chart numerical data extraction is usually the main

goal of these projects and several technologies can be applied in order to obtain the chart values. The

extraction of text and labels from chart images is another topic, it can be useful to improve the accuracy

of the classification and the extraction of the numerical chart data, or it can be extracted just to provide

more information to the user. All these topics are detailed in the next sections.

3.1 Chart images’ identification

Before proceeding to chart data extraction, there may be other processes to take into account, depend-

ing on the project. For instance, it may emerge the need to categorize a given input image as a chart or

a non-chart [34]. Another example is when the input is a document image, as a scanned paper, and the

chart images need to be detected within the document [10, 28]. Paramita De [10] proposed the use of a

Region-based Convolutional Neural Network (R-CNN) model in order to identify pie charts and provide

its bounding region in the input document image.

In BARXTRACTOR, neither the classification of an image as a chart, nor the detection of charts within

a document is relevant since the chart image will be given as input by the user.

3.2 Chart type classification

Techniques to perform chart type classification have been the subject of several research works, each

using distinct means to address this problem. Nevertheless, machine learning is one of the most suc-

cessful approaches, using algorithms such as Convolutional Neural Networks (CNNs).

17

For instance, the CHARTSENSE tool [26] builds their chart type classification model based on CNNs,

more specifically the GoogLeNet model [49] was trained to perform the classification. GoogLeNet is a

CNN variation that won the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [41],

showing great results in image classification. Xiaoyi Liu et al. [33] also base their chart type classification

on CNNs, more specifically on VGG-16 [46], which was the 1st runner-up of the ILSVRC 2014 in the

classification task. The VGG-16 model was applied to identify the chart type, modifying only the output

layer into two output categories: ”bar chart” and ”pie chart”. Following the same approach, the CHART-

TEXT system [4] uses the MobileNet [22], which obtains a similar accuracy to VGG-16 using fewer

parameters on ImageNet. The images are resized to a fixed size and normalized before being fed to the

network. The network was previously trained with the ImageNet dataset and the weights were used as

a starting point to this classification problem. This technique is named transfer learning.

A different application of CNNs in chart classification was proposed by Xiao Liu et al. [32]. It consists

of a framework that combines CNNs and deep belief networks [15]. The chart image is given as input

to the CNNs and the deep hidden features of the chart are extracted from its fully-connected layers.

Then, based on these features, the deep belief network is employed to predict the category of the chart,

between 5 categories: pie chart, scatter chart, line chart, bar chart, and flow chart.

Other machine learning algorithms besides CNNs can be used to perform the classification. For

instance, the REVISION tool [43] uses both image and text feature vectors to perform classification using

Support Vector Machines (SVMs) [8], which is a supervised learning model. The image feature vectors

are obtained by extracting random patches from the image and applying K-means to them. This way,

the most common information on these patches can be found by obtaining each cluster’s centroid. This

information represents chart’s graphical marks, such as lines and arcs. The combination of the textual

feature vector, that contains information such as position and size, with the image feature vector proved

to increase the classification accuracy with SVMs. Karthikeyani et al. [28] also proposed a method that

uses three different classifiers for chart type recognition, namely Support Vector Machines (SVMs), a

multilayer perceptron (MLP) neural network and the K-Nearest Neighbor (KNNs) algorithm. The method

with the most promising results was the KNN classifier.

There are also more traditional solutions to tackle the classification problem, without machine learn-

ing algorithms. Huang et al. [24] proposed a model-based approach for chart classification, more

specifically for bar, pie, line and high-low 2D charts. First, feature extraction in performed using Con-

nected Component Analysis (CCA) to detect the features. The detected elements are categorized into

textual or graphical elements simply by analyzing the properties of each connected component. Sec-

ondly, for the graphical elements, edge detection and vectorization is performed. These steps are made

by analyzing each image pixels and generates vectors with the detected elements, such as lines and

arcs. Next, the algorithm analyses relationships between these vectors, such as, parallelism and per-

pendicularity. Finally, for the classification part, the authors defined a set of constraints that match each

chart type model. These constraints are based on the features and relationships analyzed in the previ-

ous steps. Using these set of constraints, the input chart is matched to the model whose constraints are

satisfied by its properties. A similar approach using a model-based classification method was proposed

18

(a) Bar Chart (b) Pie Chart

Figure 3.1: Examples of a bar chart (a) and a pie chart (b).

by Mishchenko and Vassilieva [34]. The features are extracted and matched with one of the models that

satisfies the constraints.

The classification problems previously presented cover the chart type categorization. However, a

different classification problem may arise when working with both 2D and 3D charts. The need to

discern between these two chart types is mandatory before proceeding to the data extraction, since the

extraction methods cannot be applied identically on both. Paramita De [10] proposed a method to find

this characteristic in pie charts. The program preprocesses the image in order to get a binary image

representing only the pie space in black, and removing the background and text, this process is further

explained in the next section. With this obtained image, the centroid of the black pixels is computed.

Then, the shortest Euclidean distance between the centroid and all the components in the image is

calculated. If there are differences between the computed normalized shortest Euclidean distances, it

can be inferred that the chart is 3D, since these charts have a group of pixels outside the circle to give

the idea of perspective. Otherwise, if there are no big differences, the chart is a perfect circle and is

labeled as 2D. Although this solution works for pie charts, it is not scalable for other types of charts.

3.3 Data extraction

This section provides an overview on the current state of the art methods to extract numerical data from

charts. As seen before, it is common to expect machine learning applications for chart type classification.

Despite not being the most usual approach for chart data extraction among the analyzed research works,

some recent studies explore machine learning methods to tackle this problem.

In 2003, Huang et al. [24] explored the extraction of numerical data from charts by using the detected

objects in the classification step to recover the data from bar, pie and high-low charts. For bar charts,

the height in pixels of each detected bar is calculated and the bars are sorted by size. However, the

real numerical values of each bar are not computed since the tool does not support numerical labels’

19

extraction. For pie charts, the pie slices are used, namely the angle of each slice is obtained and

converted to a percentage by knowing that the total angles’ sum is equivalent to 360º. The high-low

charts’ data is obtained by computing the difference between the highest and lowest points of a vertical

”bar” and its distance to the x-axis. However, these are not the real values but relative values. For line

charts, a sample rate is chosen and used to go through the image and recover some data points of the

line, again, not recovering the real values.

However, in 2011 the REVISION tool [43] was already able to extract real values from charts, focusing

on extracting data from 2D bar and pie charts. Since REVISION uses an image dataset from the web, the

first step is to apply a filter that reduces the noise of the images. The next step is to perform mark extrac-

tion. Regarding bar charts this includes bars and axes. The bars are identified by applying Connected

Component Analysis (CCA), grouping adjacent pixels of similar color and detecting the connected com-

ponents that form a rectangular shape. Some background rectangles, formed by grid-lines, may also

be identified but their removal is performed considering the fact that the bars and the background have

distinct colors. For example, in Figure 3.1a the bars are represented in blue and the background is

represented in white. Next, the chart orientation is determined by identifying the side that differs be-

tween bars. For instance, in vertical bar charts the height may be different, while the width remains the

same for every bar. Then, the baseline axis is detected, the x-axis usually touches the bottom of each

bar, for positive bar charts, but it can be touching the top, for charts representing negative values. The

text labels were previously extracted in the classification step and will now be useful for the numerical

data extraction. The y-axis labels are identified by finding the ones that are vertically equidistant. For

instance, in Figure 3.1a the vertically equidistant labels would be ”0”,”5”,”10” and ”15”. These can be

used to find the scaling factor, or pixel per data ratio, by obtaining the number of pixels between two

pair of labels. For instance, if between label ”10” and ”15” there are 50 pixels, this means each data unit

corresponds to 50/(15-10)=10 pixels. Having this information and the minimum value in the y-axis, the

numerical values of each bar can be recovered by analyzing its height in pixels and multiplying it by the

pixel per data ratio obtained.

For pie charts, the REVISION tool extraction is divided in two steps. The first consists in fitting an

ellipse in the pixels that represent the pie edge. For this, the pixels where the color changes sharply

are identified. The second step consists in identifying each sector’s edges. The pie is ”unrolled” into a

rectangle by uniformly sampling points from a circle with the same center as the pie and smaller radius.

In the obtained rectangle, the points where the color changes are identified, since they represent the

transitions between pie slices. As before, to find the percentage of each pie slice, the value of the angle

between each sector edge is used. In the REVISION tool, the extracted textual labels are assigned to its

elements in a simple manner. For bar charts, the label below the x-axis that is closer to the bar is the one

assigned to it. For pie charts, it is assigned the closest label to the slice’s arc. Note that this approach is

prone to errors, for instance in pie charts where the label is represented at a certain distance, or for bar

charts with rotated labels.

A similar method to the REVISION tool extraction of 2D bar charts was later proposed by Al-Zaidy and

Giles [2]. The input image is pre-processed and the textual and graphical components are extracted,

20

more specifically the bars and axes. As previously, the algorithm used to recover the bars is based on

the Connected Component Analysis (CCA) and the pixel per data ratio is obtained using the extracted

labels. With this information the chart data is inferred.

Another tool for chart data extraction is CHARTSENSE [26]. It is considered a semi-automatic sys-

tem because it requires multiple user interactions to perform the extraction. For line and area charts,

CHARTSENSE asks the user to specify some features such as the x-axis intervals of data. Since the tool

does not support text detection or extraction, it also asks the user to specify some y-labels’ positions and

their respective numerical values. The detection of lines is a set of processes based on the dominant

colors of the chart, where this automatic detection can be corrected by the users. For radar charts, the

extraction process also relies on various user interactions such as the identification of the center point,

the axes and the colors of the polygons. Bar chart numerical extraction uses a similar approach to REVI-

SION [43], applying CCA to identify the bars, but asking the user to specify some y-labels’ positions and

its correspondent numerical values. Pie charts numerical extraction is also similar to REVISION, where

1000 pixels are uniformly sampled along a circle with the pie center and with a smaller radius. For every

chart, in each step of the extraction, the user has the possibility to adjust the automatic detected parts.

For example, the user is able to adjust the pie chart’s center if needed.

Later, with the goal of recovering data from charts within a document image, Paramita De [10] pro-

posed a different algorithm to extract the numerical data of pie charts. For 2D charts this extraction is

performed in 4 steps. Considering that in this work the chart images are obtained from scanned doc-

uments, the first step consists in removing image noise, and after, converting the image to gray scale.

The second step, ”Gradient Analysis”, is based on the assumption that different chart slices are repre-

sented by different colors (Figure 3.1b). These local gradients are analyzed in order to isolate only the

image parts where the color changes between adjacent pixels and ignoring the rest. The result is then

binarized, forming an image containing, in black, the chart slices’ boundaries, the textual information and

possibly some noise. In order to get an image containing only the boundaries of the pie chart, the Con-

nected Component Analysis (CCA) algorithm is performed and only the largest connected component is

kept, which corresponds to the chart boundary, removing this way the text. For instance, in Figure 3.1b

the percentages inside or outside the pie would be removed. The third step inverts the image’s colors

and removes the background color, obtaining an image with each slice filled with black pixels and not

touching the others. Lastly, the chart data extraction step is very simple. The total number of black pixels

in the image is obtained and CCA is performed. At this point, each chart slice is a connected component

(CC), so the number of pixels in each CC is computed. The percentage of each slice is computed by

applying the following formula:

slicePercentage = (pixelsInsideSlice ∗ 100)/totalP ixelsInImage (3.1)

where pixelsInsideSlice represents the number of black pixels in the slice, and totalPixelsInImage the

total number of black pixels in the image. For 3D pie charts, the data extraction starts with a similar

preprocessing step. Then the 3D structures are removed and a perspective correction is applied to the

21

Figure 3.2: Proposed pipeline for extracting numerical data. Image extracted from [54]. Step (1) pro-
duces the feature vector. Steps (2) to (5) iteratively generate the numeric information, that is, bar vector.

image, in order to obtain a 2D chart. Now, the same data extraction methods can be applied as the ones

described before for a 2D pie chart.

CHART-TEXT [4] is another tool created with the purpose of generating a textual description for a

chart image. The object detection model chosen was Faster R-CNN [39]. Firstly, the detected text

is extracted using optical character recognition (OCR). Then, for bar charts, CCA is used to identify

and extract each bar. This algorithm also supports stacked bar charts, by identifying sudden changes

between pixel colors in a bar. Using the detected textual labels, a pixel per data ratio is obtained and the

numerical values are computed. For pie charts, a similar method to CHARTSENSE [26] is used, sampling

a number of pixels uniformly along the circle. The last step of this system is to generate a description of

the chart, given the extracted textual and numerical data.

SCATTERACT [7] is a tool that aims to extract data specifically from scatter plots, a chart type whose

extraction is less explored. It starts with object detection, using the REINSPECT tool [48], in order

to localize points, axis marks and values. Then, the axis values’ textual elements are extracted and

associated with its correspondent tick mark. After this, regression is used to find the mapping between

pixel and chart coordinates. The mapping is performed by using the ticks’ values and detecting possible

outliers caused in the text extraction. Having the previously extracted points and the data per pixels ratio,

it is now possible to generate the table with the scatter plot’s numerical values.

A different approach for bar chart data extraction was presented by Fangfang Zhou et al. [54]. Neural

networks are used to extract the numerical data, more specifically, with the encoder-decoder framework

presented in Figure 3.2. The encoder is implemented using a CNN, more specifically the Xception

CNN [6] with two additional layers. It receives the chart images as input and extracts their key features,

creating a feature vector (Figure 3.2 (a)). Then, an attention mechanism [3] is included, consisting of

a two layer neural network. It generates an attention vector (Figure 3.2 (b)) for the current iteration by

taking as input the feature vectors (a) and the hidden state of the decoder from the previous iteration

(f). This attention vector gives information to the decoder on what portion of the image it should analyze

next. Next, a context vector (d) is generated by combining the attention and the feature vector (c) with

the bar vector, produced in the previous iteration (e). The decoder interprets the context vector (d) in

order to iteratively generate the correspondent numerical data, namely the bar vector, that contains the

center coordinates and normalized height of each bar. This is implemented through a recurrent neural

22

network (RNN), more specifically a long short-term memory (LSTM) network is used, which is a type

of RNN capable of memorizing long-term dependencies. The LSTM network outputs the hidden state

vector (f) and is followed by a fully connected layer that transforms its output into the bar vector (e)

for the current iteration. Since the obtained heights of the bars by the encoder-decoder framework are

normalized, traditional algorithms are applied to obtain the actual heights of the bars. The pixel per data

ratio is obtained using the extracted y-labels, similar to previous research work [43]. The outliers in the

extracted y-labels are filtered since the labels’ extraction is prone to errors, such as, a label ”90” might be

recognized as ”9”. Although this tool extracts both the numerical and the textual information, including

x-axis labels and y-axis labels, it does not match the x-axis label to its corresponding bar.

Also using a machine learning approach, Xiaoyi Liu et al. [33] developed a deep learning model to

address bar and pie chart data extraction. There are two models, one for each chart type, and in order to

decide which data extraction model should be applied, the chart is classified first. The extraction starts

with object detection, which uses a model based on Faster R-CNN [39]. After the feature map generated

by the Faster R-CNN is obtained, it is applied a branch that aims to find relationships between the objects

detected (an object matching branch), based on relation networks (RN) [42] with some modifications.

This branch finds relationships between elements and matches, for instance, bars or pie slices to their

respective legend. For bar charts, the values are inferred by employing linear interpolation using pixel

locations. Since the pie charts’ slices are more difficult to detect using a rectangular bounding box, it

is predicted the whole pie chart location. Then, based on the feature maps, a two-layer LSTM is used

to obtain the angles of each slice’s boundary, recurrently outputting each sector’s angle. Each slice’s

feature map is obtained by rotating the whole pie by the predicted angle of its boundary. As a result, the

rotated feature map has each slice in a specific region. Using the slices’ and legends’ feature maps, the

object matching is performed as previously, by obtaining the relationships between legends and slices.

The data can be inferred by converting the extracted angles into percentages.

Recently, the UNCHARTIT tool [36], introduced in Chapter 1, also explored chart numerical data ex-

traction. Since the desired chart is given through an image format, there is the need to extract the

chart’s numerical data into a table. The article focuses on bar charts and proposes two ways of perform-

ing the extraction. The first is through WEBPLOTDIGITIZER [1] version 4.2, a semi-automatic tool that

is able to extract numerical data from simple 2D bar charts. However, the tool requires user calibration

and does not extract bar labels. The other proposed extraction method uses CNNs, more specifically

the EfficientNet-B7 [50] with an alternative output layer. As the first required information is the num-

ber of bars in the chart, the first n nodes of the output layer contain the probability that the chart has

i ∈ {1, 2, ..., n} bars. The other necessary information is the height of each bar, thus more n nodes

were added to the output layer, each node representing a relative height from 0 to 1, defining how full

the respective bar is. Then, using the maximum and lowest value of the bar chart (which are values

provided by the user) the real numerical value of each bar is obtained using linear interpolation. In this

approach the labels’ extraction was also not explored.

23

3.4 Chart text extraction

This section aims to present the current state of art in chart images text recognition and extraction. These

textual elements, depending on the chart type, may be composed of the title, the x-axis and y-axis title,

the x-axis labels, which are usually composed by characters, and the y-axis labels, usually constituted by

numerical characters. For pie charts, it also includes each sector’s label. This task requires rigorous text

detection, image preprocessing and text extraction steps, since it is not easy to achieve a good accuracy

and not all the previously mentioned research works extract text and labels. Chart textual elements have

some common characteristics that might hinder the extraction process. For instance, the text is usually

presented in a small font size and may be rotated to a non-horizontal position.

The REVISION tool [43] implemented a tagging interface that allows the user to manually specify

and annotate the textual regions’ location. After identifying these regions, optical character recognition

(OCR) is performed, more specifically the TESSERACT engine [47] is employed, which is the Google’s

open source OCR engine. After the text recognition, the user can then correct the results, if needed.

In the same year, Vassilieva and Fomina [51] proposed a fully automatic text detection algorithm

specific for chart images and their corresponding problems. The algorithm consists in a set of prepro-

cessing steps that are employed before the OCR. It starts by performing CCA and separating the results

with character characteristics. Then, the Hough Transform [11] is applied in order to detect lines and

their orientation, among the obtained characters. Now, the text regions can be found based on the de-

tected lines, since usually all characters in a label have the same direction, and based on the distance

between detected characters. Each detected textual region in the chart image is cropped and rotated to

a horizontal position before being fed to the OCR engine. In this case the TESSERACT engine [47] was

used to test the algorithm’s effectiveness. Mishchenko and Vassilieva [34] applied this preprocessing

algorithm in a chart data extraction framework combined with the TESSERACT engine.

Al-Zaidy and Giles [2] extract the textual data by first identifying the text regions in the image and then

performing OCR to each of them. Using the image previously binarized, the components whose area

occupy more space than a typical character are removed. In order to identify words, each character is

enlarged and CCA is performed which results in each connected component representing a word. Then,

the TESSERACT OCR engine [47] is employed to each word in its normal format, before the character

dilatation. Based on the text region characteristics, a class is inferred for each extracted text, for instance,

if its position is on the left of the y-axis, then the text is classified as an y-axis label or value.

The previously presented SCATTERACT [7] and CHART-TEXT [4] tools, first identify the bounding

boxes for each element. Secondly, they make use of the TESSERACT OCR engine [47] to extract the

text from the detected images. Some preprocessing steps are applied to the image before employing

OCR since it was shown to improve the accuracy results. This includes, for SCATTERACT, converting the

image to gray scale, and for CHART-TEXT, converting the image to a binary color representation. Both

tools rescale the images to a fixed height and rotate the image in order to be in a horizontal position

before the OCR application.

As explained in Section 3.3, Xiaoyi Liu et al. [33] employ Faster R-CNN [39] for object detection,

24

namely proposing a class and a bounding box for each detected object. Since charts commonly con-

tain non-horizontal text and the Faster R-CNN only generates horizontal bounding boxes, an additional

layer for orientation detection is added before the text recognition phase, so the non-horizontal text can

be rotated to a horizontal position. Furthermore, a text recognition model is employed, more specifi-

cally, Convolutional Recurrent Neural Network (CRNN) [44] which combines Deep Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs).

Fangfang Zhou et al. [54] propose the use of Faster R-CNN [39], an object detection network, to

extract the charts’ textual information. This extraction is made under the assumption that the chart

only contains horizontally and vertically oriented text elements. First, a chart image is given as input

to the Faster R-CNN, the network concurrently locates and classifies the textual elements. These can

be classified as title, legend, axis title or axis label (differentiating x-axis and y-axis). Now, having the

text elements’ bounding boxes, an OCR engine can be individually applied to each of these images, in

order to get the correspondent text. These images are binarized and scaled before the process, the

OCR recognition is applied three times in the same image using different rotation angles. The axis

labels and legends are sorted in accordance to their bounding box’s coordinates in order to facilitate

the combination of numerical and textual information when obtaining the bars’ heights using the y-axis

labels.

25

26

Chapter 4

Automatic Bar Chart Extraction

The software developed for this dissertation was named BARXTRACTOR and its goal is to extract the

visual information represented on a bar chart image into a data table with the values of each bar.

The detailed description of BARXTRACTOR’s architecture and methods used will be further explained

throughout this chapter specifying in each part of the system, which is mostly based on a classifier, an

object detection network and a few other procedures that help it get to the desired output.

4.1 Architecture

In order to further understand the whole concept of the system we should take a look at Figure 4.1. The

input of BARXTRACTOR is a bar chart image. That image is fed to the trained image classifier which

will label it in either a simple, grouped or stacked bar chart. After being successfully classified, the

image goes through one of the three Faster R-CNN models and outputs several bounding boxes with a

corresponding label. For instance, it finds several bounding boxes that translate to the ’bar’ label.

Then, a couple of post-processing techniques are added in order to tackle common issues, for in-

stance, detecting a bar label without detecting a corresponding bar often means the bar has a zero or

almost zero value. These techniques added after the visual elements’ detections attempt to understand

and correct if there are missing bars and other typical issues.

The labels that correspond to a textual or numerical value are cropped into a new image containing

only the textual/numerical information found. The resulting image is then subjected to an OCR procedure

to obtain its correspondent information. The detections that are believed to represent a ”number” in

the vertical axis, go through an outlier detection (RANSAC). Those numbers and their correspondent

coordinates in the image are used to calculate a ratio between pixels and data which is referred to as

pixel per data ratio. To obtain the real value of each bar, simple calculations are performed using the

ratio to transform the height in pixels of each bar in the real height in the units of the chart.

The title, labels and legends however are not used in the calculations and are utilized to create the

chart csv output file which may be represented in a different way for the three chart types. After all the

real bar values and textual labels are obtained, the output of the system is a csv file with all the extracted

27

Faster R-CNN
(grouped) OCR

Detect outliers

chart_data.csv
Bar Chart

image

nu
m

be
rs

title, labels and legends
Classifier

pixel_per_data ratio

Post-Processing

Faster R-CNN
(stacked)

Faster R-CNN
(simple)

Figure 4.1: BARXTRACTOR’s architecture.

information.

Each of these steps will be detailed in the next sections. The first and second sections focus on the

classifier and the three Faster R-CNN models respectively. The models, training and respective datasets

used are explained for both. The final sections of this chapter discuss the post-processing techniques

applied and the methods enforced to obtain the real chart values.

4.2 Chart image Classifier

The chart image classifier is the first step of the BARXTRACTOR system. It was integrated in BARXTRAC-

TOR since there are three disparate object detection models for the three bar chart types. It is necessary

to identify which of the three object detection networks is going to be employed in the data extraction

process. Given a chart image, the classifier returns a prediction of the chart type, which can be either

’simple’, ’stacked’ or ’grouped’ bar chart.

4.2.1 Model and training

To implement an image classifier, a model pre-trained on the ImageNet dataset was chosen, more

specifically, the ResNet-50 convolutional neural network. Before the training, all the images are resized

to the same dimensions and transformed into a tensor. The dataset is divided into 80% for training and

20% for validation. During the training phase, the pre-trained layers are not updated unlike the fully

connected layer which needs to be trained for our bar chart images. The chosen optimizer was Adam

[29] and the loss function was the negative log likelihood loss1, which is useful for classification problems.

In order to determine the parameters that would lead to the best classification results, the model was

trained with different parameters, learning rate and number of epochs. By analyzing the training and

test loss values, the best results were observed with a learning rate of 0.002 and 300 epochs of training.

After the model was trained, it can simply be loaded to resume the training or to perform a classification.

If given a chart image it will return a prediction for one of the three classes.

1https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

28

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

4.2.2 Classifier’s dataset

The dataset used to train the classifier is a compilation of images that were used in the Faster R-CNN

training and evaluation process (dataset explained in the next section), in addiction to 125 more images

for each chart type. These 375 images were collected from web search engines to try and generalize

the classifier to real charts used in different contexts and tools. These images were obtained by using

search queries such as ”bar charts” in the web search engines.

All the collected images were separated into three folders, one for each class: ’simple’, ’grouped’ and

’stacked’. Then, a random 10 percent of each class was removed from the training dataset to a separate

folder so that it could be used to evaluate the classifier after the training phase. Neither the training

nor the testing phases make use of this fraction of images. After this refinement, the classifier’s training

dataset is composed of a total of 5122 images.

4.3 Faster R-CNN

The Faster R-CNN, in the context of this work, is used to predict the bounding box and class of each

element of interest in a given bar chart image. This section will address BARXTRACTOR’s Faster R-CNN

models, datasets and training.

4.3.1 Models and training

A different model was trained for each of the three classes: simple, grouped and stacked bar charts.

After the classification step, the classifiers’ result defines which model will be used to extract the bar

chart information. The element detection step could have been performed using only one general model

although it would not be so precise for each chart type.

To train each model a custom pytorch dataset class had to be defined in order to return the images,

their ground truth labels and their bounding boxes.

The chosen model was the Faster R-CNN, which uses the ResNet-50 as the model’s backbone CNN.

The model is pre-trained on the diverse COCO dataset2. The decision of finetuning from a pre-trained

model was made since training a CNN algorithm from scratch requires much more time and data. Since

the classes we want to train are relatively distinct from one another, and typically found in the same

spots, a pre-trained model satisfies our needs and converges faster to the solution.

The first step is to configure the dataset and the model’s attributes. First, the images are transformed

into pytorch tensors. The dataset is split into 85% for training and 15% for testing. Then, the parameters

are defined, the chosen optimization algorithm was the stochastic gradient descent (SGD) with a learning

rate of 0.0005. A learning rate scheduler is also defined, with parameters that determine how the

learning rate value decays. The models for simple, grouped and stacked bar charts were trained 60,

65 and 60 epochs respectively. The number of epochs for each model was determined based on the

2https://cocodataset.org/

29

https://cocodataset.org/

outcomes of each epoch, namely the current AP values. The models do not need a huge amount of

training since they are pre-trained.

When all the parameters are defined, the model can be trained for a pre-defined number of epochs.

After each test, the training provides the user some important information to analyze, such as the aver-

age precision and average recall for different IoU values. This helps comprehending the model’s current

stage on learning to recognize the desired elements of an image. Unlike many object detection prob-

lems, for BARXTRACTOR it is crucial that the bounding boxes are tight to the exact space of the bars and

numbers for the computations to be accurate, which implies we must prioritize a high IoU. A sample of

the output values follows.

IoU metric: bbox

Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.823

Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 0.997

Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.956

The AP values for an IoU between 0.5 and 0.95 must be maximized in order to achieve high accuracy

in the chart elements’ detection.

After the training process the model is saved, and all that is required to utilize it or resume the training

is to load it. Given an image as input, the Faster R-CNN outputs a bounding box, a label and a score

related to the confidence in the prediction.

4.3.2 Faster R-CNN datasets

Three datasets were created, for training the simple, grouped and stacked bar charts models. The

datasets are composed by several images and a correspondent annotations.csv file containing several

bounding boxes with a correspondent label. The bounding box is represented through four values: xmin,

ymin, xmax, ymax. The images are generated using matplotlib and the coordinates of each region of

interest are stored along with the labels on the annotations file. The procedure used to generate the bar

chart images with each object’s corresponding coordinates was initially adapted3 from Fangfang Zhou

et al’s work [54]. The procedure was adjusted to include the random generation of grouped and stacked

bar charts, and it was also modified to include additional parameter variation for simple bar chart images.

Since for this object detection problem it is crucial that the bounding boxes are tight to the exact

space of the elements, the matplotlib method get window extent() is used to get the exact bounding

box of the elements within the image.

Each dataset entry is composed by an image and several bounding boxes with its corresponding

labels. Figure 4.2 shows an example of the bounding boxes required for the information contained in

a grouped bar chart image. Table 4.1 shows a sample of the annotations.csv file that contains the

annotations of the elements contained in Figure 4.2.

3https://github.com/csuvis/BarchartReverseEngineering/blob/master/generate_random_bar_chart.py

30

https://github.com/csuvis/BarchartReverseEngineering/blob/master/generate_random_bar_chart.py

b)

a)

c)

d)

e)

f)

Figure 4.2: Labels contained in an image from the grouped bar charts dataset. Corresponding to the
annotations.csv on Table 4.1.

There are six labels in all of these three datasets, which are:

• bar (the bar rectangle) (Figure 4.2 a))

• text bar (the labels below each bar) (Figure 4.2 b))

• text num (the vertical numerical values) (Figure 4.2 c))

• text label (the axis label x and y) (Figure 4.2 d))

• text title (the title of the chart) (Figure 4.2 e))

• text legend (the textual legend of each color (Figure 4.2 f))

Some labels are not mandatory in a bar chart image, for instance, in a simple bar chart it is uncom-

mon to find charts with a color legend since there is usually only one color present.

In all datasets several data parameters were changed in order to generate a diverse dataset. All

include changes in the number of bars, number of groups, the spacing between bars or groups, the

charts theme colors and style. Also the textual parameters are generated randomly and vary in size

and length: the titles, axis labels and bar labels. The figure quality and size, in height and width, is also

varied. The file format is also randomly assigned between .jpg and .png.

31

filename width height class xmin ymin xmax ymax

. .
test 660.jpg 728 637 bar 120 78 179 562
test 660.jpg 728 637 bar 179 90 238 562
test 660.jpg 728 637 bar 238 299 297 562
test 660.jpg 728 637 bar 407 268 466 562
test 660.jpg 728 637 bar 466 184 524 562
test 660.jpg 728 637 bar 524 530 583 562
test 660.jpg 728 637 text bar 193 581 224 599
test 660.jpg 728 637 text bar 481 581 509 599
test 660.jpg 728 637 text num 63 553 72 571
test 660.jpg 728 637 text num 46 449 72 467
test 660.jpg 728 637 text num 45 345 72 363
test 660.jpg 728 637 text num 45 241 72 259
test 660.jpg 728 637 text num 45 137 72 155
test 660.jpg 728 637 text num 38 33 72 51
test 660.jpg 728 637 text label 317 606 379 623
test 660.jpg 728 637 text label 14 249 31 355
test 660.jpg 728 637 text title 267 14 429 35
test 660.jpg 728 637 text legend 658 58 680 76
test 660.jpg 728 637 text legend 658 85 684 103
test 660.jpg 728 637 text legend 658 111 682 129

. .

Table 4.1: Example of the annotations.csv file.

4.3.3 Simple bar charts dataset

The simple bar charts dataset is composed of 1445 images. The initial number of images was 1000 but

the first results showed that some image parameters were missing, for instance, initially there was no

’legend’ label and when the image had a color legend present, the Faster R-CNN recognized it as an

extra bar. Another problem was that only the small titles were recognized. This proved that the dataset

had to be more diverse so new images with certain characteristics were added: images with more bars,

with lower distance between bars, larger titles and the color legend label.

4.3.4 Grouped and Stacked bar charts datasets

Both the grouped bar charts and stacked bar charts’ dataset are composed of 1300 images similarly

with diverse parameters. As before, the initial number of images was 1000 and the remaining 300

were added based on what was revealed to be missing on the dataset. Besides the simple bar charts’

variations, for these we must also consider changing the number of groups and bars per group. The

spacing between bars of the same group and between groups. The colors of the bars within a group

and its correspondent labels.

For stacked bar charts, the label ’bar’ is considered the rectangle represented by one color on each

group. For instance, Figure 4.3 highlights in yellow the ’bar’ labels, one for each group color. The reason

for not recognizing the entire bar is because then we would have to check manually where the colors

change within each bar.

32

Figure 4.3: Labeled stacked bar chart example.

4.4 Post-Processing

There are situations in which the Faster R-CNN can not solve the entire problem alone. Sometimes a

bar has a zero value and it is not represented for the object detection network to detect but there is still

the bar label underneath. Hence, some Faster R-CNN post-processing methods are applied in order to

correctly find bars in those situations.

4.4.1 Simple bar charts

For simple bar charts, the bars detected by the Faster R-CNN with a confidence higher than 70% are

added to the bars’ list and the others are stored if needed later. Between experiments, the value 70%

proved to be the right threshold between a correctly found bar and a misdetected one.

First, the mean width of the bars is computed. One of the conditions that is examined is if each

label has a corresponding bar. If a bar is not found but there is a label below the expected spot, we can

assume a bar is missing. The first approach is to search for a bar, located on top of the label, among

the recognized bars with confidence score lower than 70%. If it is found, it is added to the correctly

recognized bars.

The bars and their corresponding labels are ordered by their horizontal positions. After, the distance

between consecutive bars is analyzed. If there is a distance higher than the minimum distance between

consecutive bars plus half the bar width, we assume a bar is missing in that spot. If there is a bar label

in that spot, without a corresponding bar, then a bar was not recognized by the Faster R-CNN and is

added to that place with only 2 pixels height. However, this method does not solve the case where a bar

is missing in the first or last spot of the chart, so if there is a label with no bar in the beginning or in the

end, and at the same distance as the others, it is similarly added a bar in that spot.

Other verifications are made for simple bar charts, related to check if a label was misdetected for

another, for instance, if a short x-axis label is detected at the same height as the bar labels, it was

misdetected for a bar label. Another verification that is made is if there is a detected number outside

33

the expected x coordinate, since charts with scientific notation were not considered in this project. The

numerical values can still be extracted without the multiplication for the scientific notation value.

4.4.2 Grouped bar charts

For grouped bar charts, the bars detected by the Faster R-CNN are considered if the confidence of the

detection is higher than 70%. For this chart type, the first step is to divide the bars in groups. This is

performed by ordering the bars by their x coordinate, calculating the distance between consecutive bars

and joining the closer ones into a group. Since this is a simple aggregation method, an inconsistency

check is performed. It is considered an inconsistency if the number of bars in a group is lower than the

number of color legends detected or if the number of bars is different between groups.

If an inconsistency is found, a different approach is taken by checking the distance between each

bar and the bar labels. There is only one bar label per group and it is the closest to each group’s bar. If

there are missing bars in a group, the distance between the group bars is checked and the places with

missing bars get, as before, a bar added to that spot. After, if there are still missing bars in the group,

it is because they are the first or last bars, and the same approach is used as with simple bar charts.

Other verifications are made, as before, related to check if a label was misdetected for another.

4.4.3 Stacked bar charts

The stacked bar charts have a different approach to check for missing bars. Colors are stacked on top

of each other and we may not know the missing color’s location.

The first step, similar to grouped bar charts, is to divide the bars into groups. For this chart format,

the process of separating into groups is simpler, since same group bars are all stacked in the same x

cardinal position. Then, if the number of bars differ between groups or it differs from the number of color

legends, we can assume that there are missing bar colors. In order to find which colors are missing in a

group and extract them in the same order as they are represented in the chart, we need to understand

the color disposal. A procedure based on directed acyclic graphs was used to accomplish this. It works

by going through every bar of the chart and checking the colors upwards. Every time a color is found

next to each other, a directed edge between those colors is added to the graph. Figure 4.4 (b) shows

the resulting directed color graph corresponding to the stacked bar chart in Figure 4.4 (a).

When the graph is completed, we apply a topological sort algorithm in order to find the color disposal.

For Figure 4.4 it would be [B,R,Y,G,O].

In order to perform the calculations that check if the color is the same or not, the RGB value of each

color is used. However, there may be slight differences between the same color in different positions

of the image, so a method to calculate the distance between two colors was developed. The method

examines if, for each value (R,G,B), the values differs less than 10% between the two colors. If they do

not, it is considered a different color. Then, the method returns true or false according to whether the

colors can be considered the same or not.

34

0

2

4

6

8

10

1 2 3 4

O

G

Y

R

B

(a) Stacked Bar Chart. (b) Colors’ directed graph.

Figure 4.4: Example of a stacked bar chart (a) and the corresponding colors’ directed acyclic graph (b).

4.5 Obtain the real chart values

The first BARXTRACTOR’s approach to acquire the real values of a bar chart was inspired by the previous

UNCHARTIT approach. It consisted in asking the user to provide the lowest and highest values depicted

on the vertical axis, which correspond to the minimum and maximum values of the chart. However, our

goal included the automation of the system, which means the tool has to work without user interaction.

Applying OCR to the vertical axis numbers is a solution for this problem. OCR could also be applied in

other chart elements to provide extra information to the user, such as the bar labels and titles. With the

purpose of automating the system, OCR is applied on BARXTRACTOR both to find the numerical values

of the vertical axis and to find the text labels.

4.5.1 Optical Character Recognition

The chosen tool used to output the text, given a cropped image, was EASYOCR from PYTORCH. Every

detected element in the original image, that needs to go though the OCR process, is cropped into a new

image containing only that element. Before executing the OCR, the image is cropped by the detected

element’s bounding box plus an extra number of pixels. These extra pixels are added to ensure the

element’s area is fully contained inside the cropped image, otherwise it can affect the OCR process.

Another transformation applied that has shown to improve the results is to add padding to the cropped

image. Because the OCR tool is not designed to handle a very zoomed-in image of an element, this

transformation is useful. The padding acts as a ”zoom out” in relation to the image’s center. The figure

is then saved, and the EASYOCR tool is applied in order to output the characters found.

To be clear, the EASYOCR tool supports the recognition of the text location, which was tested on

bar charts. When compared to the developed Faster R-CNN model, EASYOCR was less accurate on

recognizing the chart image text. As a result, the text is cropped into a new image before being fed to

the OCR.

35

0

50

100

150

200

250

300

A B C D

Figure 4.5: Bar chart used as an example to explain the vertical axis numbers extraction.

The extracted numerical values are the most important information that will lead us to the real chart

values. For instance, in Figure 4.5 the numerical labels are: ”0”, ”50”, ”100”, ”150”, ”200”, ”250” and

”300”. Sometimes a ”0” is recognized as an ”O” and a ”0,” as a ”Q”. Hence, an extra step is needed after

the OCR is applied for numerical labels in order to minimize some inaccuracies detected in the results.

These specific errors were corrected simply by replacing these characters with the corresponding num-

bers. Another common error is when the OCR outputs, for instance, ”060” instead of ”0.60”. When this

happens, a ”.” is added after the first zero.

4.5.2 Outliers’ detection

By detecting the bounding box of each element, through the Faster R-CNN model, we get the y-

coordinates in pixels of each numerical label. Before proceeding to the actual calculation of each bar

value, we need to perform an outlier detection on the numerical values extracted. Assume we have the

following labels extracted from Figure 4.5 and their correspondent coordinates:

labels = [0, 50, 100, 15, 200, 25, 300]

coordinates = [100, 200, 300, 400, 500, 600, 700]

The labels ”15” and ”25” were returned by the OCR with a missing ”0” and should not be considered

in the following calculations. For this reason Random sample consensus (RANSAC) method [14] is

applied to detect these outliers. RANSAC returns a list of the inliers and outliers based on the labels

and coordinates of each problem, as shown in Figure 4.6. For the example above this would return the

following inliers.

X = [0, 50, 100, 200, 300] (labels)

y = [100, 200, 300, 500, 700] (coordinates)

On SCATTERACT [7] the RANSAC regression solution was proven to work well on outlier detection

comparing with other robust solutions. It also worked well with BARXTRACTOR, thus it was integrated

into the system. After the outliers’ detection, only the inliers are considered for the following calculations.

Each bar’s height in pixels has now been determined. In order to get the real value of each bar, a

ratio of pixels per data is calculated as following.

36

Figure 4.6: Outlier detection with Random sample consensus (RANSAC).

(a) Simple Bar Chart image.

Year Average price

2015 1.355335237

2016 1.318704555

2017 1.488537717

2018 1.325364679

(b) Bar chart corresponding csv output.

Figure 4.7: Example of a simple bar chart and BARXTRACTOR’s csv output.

pixel data ratio =

∑
i−1

abs(X[i + 1]−X[i])

abs(y[i + 1]− y[i])

len(X)− 1
(4.1)

In Equation 4.1, X represents the numerical label values and y the corresponding y coordinates.

Computing the pixel per data ratio for the previous example would get a ratio of 0.5.

The height in pixels of each bar is then multiplied by the pixel per data ratio to obtain the real value

of each bar. The height in pixels can be obtained by subtracting the known ymax by the ymin in pixels of

the bounding box.

4.6 Output of the system

BARXTRACTOR’s last step is to aggregate the extracted information into a csv file. The file is used to

37

(a) Stacked bar Chart image

Gender color0 color1 color2 color3 color4 color5

Male 5.885535619 16.18522295 27.95629419 33.10613786 60.3267401 105.9396412

Female 7.356919524 7.356919524 41.19874934 37.52028957 71.36211939 94.16856991

(b) Stacked bar chart csv output

Figure 4.8: Example of a stacked bar chart and BARXTRACTOR’s csv output.

store the extracted bar values and label information. For simple bar charts, the csv output file is quite

simple. It consists of two columns which represent for each bar: the bar label and the corresponding bar

value. Figure 4.7 presents a simple bar chart example (a) and its corresponding output csv (b).

For grouped and stacked bar charts the csv representation is slightly different since there is more

than one bar to represent per group. Figure 4.8 displays an example of the input and the corresponding

output of a stacked bar chart image. In the file, the lines represent each group while the columns

correspond to each of the color legends.

38

Chapter 5

Results and Discussion

In order to evaluate the developed method, several images were tested and two tools were used to

compare the results obtained by the Faster R-CNN method. One is the previous UNCHARTIT approach,

the EfficientNet-B7 adaptation, and the other is WEBPLOTDIGITIZER, used in the UNCHARTIT article [36]

to compare with its results.

To analyze the following simple bar chart results there are some aspects we should keep in mind.

BARXTRACTOR, the Faster R-CNN approach, does not require user interaction, it is fully automatic. Its

dataset, described in detail in Chapter 4, is composed of almost 1500 matplotlib generated images and

a file containing each elements’ label and bounding box. The previous UNCHARTIT approach consisted

in training the EfficientNet-B7 network with 90000 latex bar charts. The training dataset has each image

and the correspondent value of each bar. This approach requires the user to insert the minimum and

maximum value of the bar chart image. The WEBPLOTDIGITIZER tool requires the user to manually

calibrate the y-axis by clicking on two points of the axis and inserting its correspondent values. After

this, it requests the user to select the bar color and an acceptable distance from that color. Two more

values need to be inserted: the width of the bars in pixels (∆x) and the height of the highest bar in pixels

(∆val).

5.1 Numerical extraction evaluation

In order to evaluate the effectiveness of the numerical extraction of a bar chart, the number of detected

bars and the height of each bar are the two main points that have to be considered. We consider the

number of detected bars to be correct if the output has the same shape as the data. To evaluate the

extracted height of the bars, for each chart the mean absolute error (MAE) is calculated. The MAE

(Equation 5.1) indicates the error between the real (x) and the observed values (y), being n the number

of values.

mae = (
1

n
)

n∑
i=1

|yi − xi| (5.1)

39

Latex (50) Matlab (50) Excel (50)

WebPlotDigitizer 48 45 46

EfficientNet-B7 46 28 26

Faster R-CNN 48 49 48

Table 5.1: Number of charts where the number of bars was correctly predicted among the 50 simple bar
chart images.

The error calculation was implemented using a method that receives the real and the predicted data,

which is contained in the output csv of BARXTRACTOR. In order to output an error between 0 and 1, the

data is normalized.

The bar chart images used in the numerical extraction evaluation were generated using three different

tools: latex, matlab and excel. The data used to generate the images is real data extracted from Kaggle1.

For simple bar charts these are the same 50 instances that were used to evaluate and compare the

numerical extractor approach in the UNCHARTIT paper. For grouped and stacked bar charts 40 instances

of real data were extracted from Kaggle and different aggregations were applied in order to generate

groups. In total two images were generated per instance resulting on 80 charts per tool to evaluate the

grouped charts and 80 more per tool to evaluate the stacked bar charts.

5.1.1 Simple bar charts

In the UNCHARTIT tool article, 50 instances were extracted from Kaggle in order to evaluate the tool.

These instances were transformed into latex charts in order to analyze if the program could correctly re-

turn the charts’ number of bars. Then, for the charts where the number of bars were correctly estimated,

the MAE is computed. The ones with scientific notation were not considered in this calculation since this

was not explored.

In order to extend this study and have a more diverse evaluation, the same 50 instances were used

to generate matlab and excel charts with the same data but different visual representations.

Number of bars detection

Table 5.1 presents the results obtained on the 50 images related to the number of charts where the

correct number of bars was detected. The EfficientNet-B7, as expected, performs better on latex images

and similarly worse for matlab and excel images. This is because the training dataset is composed of

only latex images, which are visually very close to each other, unlike the charts generated by the other

tools.

The WEBPLOTDIGITIZER tool performs better on latex images which vary less visually. For instance,

the colors are predefined to be the same and the distance between bars is also fixed. On matlab and

excel it performs slightly worse since the images are more diverse. For instance, if a chart has different

colored bars, the WEBPLOTDIGITIZER tool can not recognize them since it asks the user to select only

1https://www.kaggle.com/

40

Latex Matlab Excel

WebPlotDigitizer 0.002201 0.006543 0.026541

EfficientNet-B7 0.037356 0.220274 0.212933

Faster R-CNN (Without OCR) 0.019915 0.005507 0.0187

Faster R-CNN (With OCR) 0.010964 0.00542 0.011812

Table 5.2: MAE of the bar values on the simple bar chart images with correctly predicted number of bars,
excluding charts with scientific notation.

one color, which the tool assumes it is the same for every bar. Another situation WEBPLOTDIGITIZER

fails to recognize the bars is when a bar is very small, overlapping with the horizontal axis. BARX-

TRACTOR solves this problem by also detecting the bar labels and checking for each label if there is a

corresponding bar.

The Faster R-CNN solution performs equally good on the data generated by the three tools, but

better on matlab, since the training dataset was generated through matplotlib.pyplot module. The

one chart that all tools fail to recognize has the first bar really small, overlapping with the axis, and

without a bar label, which is a difficult case to solve. In general the Faster R-CNN performs better on

detecting the correct number of bars between the data generated on the three tools.

Mean absolute error

In terms of mean absolute error four situations were considered as we can observe on Table 5.2. These

are the WEBPLOTDIGITIZER tool, the EfficientNet-B7 approach, and the Faster R-CNN both without and

with OCR. The Faster R-CNN without OCR was tested before the tool was completely finished and uses

the input of the user to indicate the minimum and maximum value of the y axis, meaning, it uses the same

input as EfficientNet-B7 approach. In the Faster R-CNN with OCR tests, the tool was already automatic

using OCR to extract the various numbers of the y-axis and does not require any user interaction. The

MAE of each tool is related to the images in which the number of bars was correctly detected.

EfficientNet-B7, as expected, has a lower error for latex images, since it was trained on them, and

performs similarly worst on matlab and excel images which are, as said before, visually more complex.

WEBPLOTDIGITIZER performs better on latex images, then on matlab and lastly on excel. This

is explained by the fact that they are in this order more visually complex while WEBPLOTDIGITIZER

performs really well on simple images but does not support some features. For instance, a common

problem that may cause a higher error is when the chart title or axis have a similar color as the bars.

Since this tool works on recognizing the bars by their color, and if the title has a similar color to the bars,

it will recognize the bar height higher than it was supposed (in the title).

On the first tests to check the accuracy of the new implementation, the OCR was not yet developed,

so a test without OCR was performed. The tests without OCR were performed using the highest and

lowest detected ’number’ labels found, and were given as input the minimum and maximum values in

the chart to calculate the pixel per data ratio. The Faster R-CNN with OCR performed better overall

because it is more accurate to check all the numerical values and their locations than only the detected

41

top-1 top-3 top-5 top-10

WebPlotDigitizer 90.2% 92.7% 92.7% 97.6%

EfficientNet-B7 65.9% 70.7% 73.2% 80.5%

Faster R-CNN

(with OCR)
78.0% 82.9% 85.4% 87.8%

Table 5.3: UNCHARTIT results on the latex bar charts.

top-1 top-3 top-5 top-10

WebPlotDigitizer 77.5% 85.0% 87.5% 90.0%

EfficientNet-B7 36.0% 36.0% 40.0% 48.0%

Faster R-CNN

(with OCR)
79.5% 86.4% 88.6% 90.9%

Table 5.4: UNCHARTIT results on the matlab bar charts.

highest and lowest label, which might not be the correct ones. As expected it has the lowest error on

matlab images since the training dataset was developed on matplotlib.pyplot module. It performs

equally good on latex and excel despite not having had contact with these images during the training.

However it does not have the lowest MAE on latex, WEBPLOTDIGITIZER performs better on simple

cases. From the results obtained on Faster R-CNN, it can be observed that the detected rectangle is

not always as tight to the bar as it could be, this could be solved by adding latex and excel images to the

dataset although it could be complex to get the pixel location of each bar on these tools.

UnchartIt results

To further evaluate the performance of these numerical extraction methods, the UNCHARTIT tool was

used to compare the performance on finding the correct query for each problem. These results were

obtained using the extracted numerical values from the images where the number of bars was correctly

identified. The extracted numerical values were provided to the UNCHARTIT together with the original

table of data. Using a timeout of three minutes, Table 5.3, Table 5.4 and Table 5.5 show the success rate

on finding the correct query on the top-1, top-3, top-5 and top-10 candidates for the three tools.

For latex images, Table 5.3 shows that the WEBPLOTDIGITIZER tool has a better performance, which

is expected since it has the lowest MAE for latex images. For matlab images, Table 5.4 shows that, the

Faster R-CNN performs best on UNCHARTIT followed by WEBPLOTDIGITIZER as expected by the MAE

results. The excel images results on UNCHARTIT are on Table 5.5 and are also related to the MAE, since

the Faster R-CNN has a lower error, it helps UNCHARTIT perform better on finding the correct query.

As expected, the success rate of synthesizing the correct query in UNCHARTIT is correlated with

finding a good approximation of the chart values.

42

top-1 top-3 top-5 top-10

WebPlotDigitizer 75.0% 81.8% 81.8% 88.8%

EfficientNet-B7 24.0% 40.0% 40.0% 44.0%

Faster R-CNN

(with OCR)
80.4% 84.8% 89.1% 91.3%

Table 5.5: UNCHARTIT results on the excel bar charts.

5.1.2 Grouped and Stacked bar charts

To evaluate the grouped and stacked bar charts 40 instances were extracted from Kaggle and grouped

in specific ways. For instance, there is one table with the obesity index (1-5) in a school and we grouped

it by genders as in Figure 4.8. With these 40 instances two visually different plots were generated per

instance, varying several parameters such as the colors and the spacing between bars. Generating a

total of 160 plots to evaluate the grouped bar charts and another 160 to evaluate the stacked charts with

the same data, 80 were generated on matlab and 80 were generated on excel.

Grouped bar charts

The results of this evaluation on grouped bar charts shown that in 95% (76/80) of the matlab charts

the number of bars and groups were correctly identified with a mean absolute error of 0.053231 and a

standard deviation of 0.115919. On excel images 91.3% (73/80) were correctly identified with a mean

absolute error of 0.006493 and a standard deviation of 0.006037. Although matlab has a higher MAE it

gets correct on more difficult images and the error is more spread as we can observe by the standard

deviation. The network did not have contact with excel images during the training phase unlike with

matlab images, thus getting correct more complicated cases.

Stacked bar charts

Using the same data, 80 stacked bar charts were generated in matlab and 80 on excel. The number

of images with correctly guessed number of bars is 98.8% (79/80) and 92.5% (74/80) respectively for

matlab and excel. For matlab images, the MAE corresponds to 0.036683 with a standard deviation of

0.077973. For excel images the MAE corresponds to 0.014248 with a standard deviation of 0.029962.

The same situation happens here on matlab, as it gets more correct complex images, the MAE is slightly

higher but the standard deviation is also higher. As for grouped bar charts this is also due to the fact

that the training was performed on matplotlib generated images. On average the MAE is low for both

tools.

43

latex matlab excel

Faster R-CNN 0.586957 0.402062 0.62500

Table 5.6: Bar labels medium number of differences

latex matlab excel

100% correct labels (no character differences) 70.6522% 79.3814% 65.7143%

Labels <=1 character difference 72.8261% 80.756% 77.1429%

Labels <=2 character differences 98.913% 99.6564% 97.8571%

Labels >2 character differences 1.087% 0.3436% 2.1429%

Table 5.7: Bar labels success rate (number of totally successful reads)

5.2 Textual extraction

In order to evaluate the precision of the the textual labels extraction, more precisely on the bar labels, the

same 50 instances generated on latex, matlab and excel were used. We evaluate both the success rate

on extracting the label fully correct and the precision of the bar labels in these extraction, by checking

the number of differences found between the real bar label characters and the extracted characters.

Medium number of differences

The metric considered for this evaluation is the medium number of differences, being, the number of

differences needed to transform the characters recognized in the actual characters of the label.

A difference is considered when there is the need to add a character (1) and to remove a character

(1). So when there is the situation of replacing a character, that counts as 2 differences.

The results on Table 5.6 show that each label need a medium number of 0.59 character changes for

latex labels, 0.4 character changes for matlab labels and 0.63 for excel labels. Excel needs slightly more

changes because it uses different fonts for each theme, and some might be more complex. Matlab has

a simple font in all charts and needs slightly less character changes. Overall these results are promising

since the medium number of character changes per label is less than 1.

Success rate

The success rate in this context is considered the number of totally successful reads, meaning, the labels

which characters were 100% correctly recognized. Table 5.7 shows those values and we can conclude

that for at least 98% of all labels and tools the number of differences is less or equal to 2, which means

a character replacement.

The results have shown that only two changes to the textual label are enough. It could be useful

to use these labels in the UNCHARTIT synthesis tool by using an approximate string matching with a

maximum of two operations to correspond the extracted labels from the chart to the column names

of the original table. To implement this, every column name of the original table has to be compared

44

(a) Simple bar chart mislabed as
’grouped’.

(b) Grouped bar chart mislabed as ’simple’. (c) Stacked bar chart mislabed as ’grouped’.

Figure 5.1: Mislabeled charts on the classification process.

with the extracted bar label and be considered a match if the number of differences is lower than two

operations.

5.3 Classifier

In order to evaluate the classifier in an unbiased form, a random 10% of each of the three dataset classes

was separated from the training set into a different folder for evaluation. These images were not seen

by the classifier during the training phase. The evaluation images contain some of the images used in

the training and evaluation of the numerical extraction module and some real images from web. A total

of 1130 images were used to perform this evaluation. The results show that 93.5% of the simple bar

charts were correctly labeled, 92.0% of the grouped bar charts were correctly labeled and 92.4% were

correctly labeled as stacked.

In order to further understand the classifier results, the images that are incorrectly labeled by the

classifier were analyzed. The simple bar charts have two common situations where they are mislabeled:

when the bars are too close to each other and when there is more than one bar color they may be

classified as a grouped bar chart. Figure 5.1 (a) shows an example of a mislabed simple bar chart

classified as ’grouped’ because the bars are too close to each other. The same problem occurs with

stacked bar charts which may also be incorrectly labeled as ’grouped’ when its bars have little distance

between each other as in Figure 5.1 (c). Grouped bar charts might also be classified as ’simple’ when

one of the bars is small, as in Figure 5.1 (b). Simple and stacked bar charts may also be confused when

the colors are similar.

We could try to solve the problems mentioned above with a bigger and more diverse dataset, and

by applying a post processing technique that solves some of these issues. For instance, differentiating

between simple and stacked bar charts could be solved by checking if there is only one color in each

bar. The miss identification between grouped and simple could be solved by checking if each bar has a

label or more than one bar per label as we already check with the Faster R-CNN.

45

Tool

N
um

be
r o

f c
or

re
ct

 in
st

an
ce

s
(to

ta
l o

f 5
0)

0

10

20

30

40

50

WebPlotDigitizer EfficientNet-B7 BarXtractor

latex charts matlab charts excel charts

Number of charts where the number of bars was correctly predicted

Figure 5.2: Number of charts where the number of bars was correctly predicted.

Tool

m
ea

n
ab

so
lu

te
 e

rr
or

 (M
A

E
)

0.00

0.05

0.10

0.15

0.20

0.25

WebPlotDigitizer EfficientNet-B7 BarXtractor (without
OCR)

BarXtractor (with
OCR)

latex charts matlab charts excel charts

Mean Absolute Error on the numerical extraction

Figure 5.3: MAE between the simple bar charts where the number of bars was correctly predicted.

5.4 Results’ summary

This section contains a concise summary of the results obtained. First, 50 simple bar charts were

generated on three different tools (latex, matlab and excel) using instances of real data. Figure 5.2

presents BARXTRACTOR’s results on detecting the correct number of bars in a chart and compares it

with the EfficientNet-B7’s and with the WEBPLOTDIGITIZER’s results. BARXTRACTOR outperforms the

other tools on detecting the correct number of bars within the charts generated on latex, matlab and

excel. It is important to note that BARXTRACTOR is fully automated, whereas the other two tools require

input from the user.

After, in order to evaluate the precision of the numerical extraction on each bar, the MAE of each

chart was computed. Figure 5.3 plots the results. BARXTRACTOR has the lowest MAE for matlab

and excel images and WEBPLOTDIGITIZER has the lowest error for latex images, although not far from

BARXTRACTOR. The EfficientNet approach performs significantly worse on matlab and excel generated

charts since it was only trained with latex generated images. BARXTRACTOR performed the best on

matlab generated images, which was expected since it was trained solely on matlab images. However,

46

In
st

an
ce

s
so

lv
ed

 (%
)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on latex bar charts

(a) Results on latex.

In
st

an
ce

s
so

lv
ed

 (%
)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on matlab bar charts

(b) Results on matlab.

In
st

an
ce

s
so

lv
ed

 (%
)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on excel bar charts

(c) Results on excel.

Figure 5.4: UNCHARTIT results on the number of queries solved both for latex (a), matlab (b) and excel
(c) bar charts.

it is able to generalize these results to images generated on latex and excel.

The obtained extraction results were submitted to UNCHARTIT and it was concluded that there is

a correlation between a low MAE on the chart extraction values and the success on synthesizing the

correct query. Figure 5.4 presents the results on finding the correct query on the top-1, top-3, top-5 and

top-10 candidate queries within 3 minutes.

The UNCHARTIT tool does not support multi-column output tables, since its internal metrics would

need to be adapted. However, the MAE analysis for grouped and stacked bar charts demonstrated to

be similar to the MAE for simple bar charts. The WEBPLOTDIGITIZER tool and the previous UNCHARTIT

approach are not able to extract data from grouped nor stacked bar charts.

The OCR evaluation proved that a maximum of two character differences (one character replace-

ment) between the ground truth label and the detected label are enough to obtain the correct label

characters. The mean number of differences needed to correct each label is 0.538.

Last but not least, the classifier results have shown in average an accuracy of 93% detecting the

correct type of bar chart, between simple, grouped and stacked.

In summary, BARXTRACTOR is: 1) fully automatic; 2) able to detect and support several bar chart

types; 3) has better or similar performance than previous tools that need input from the user; 4) the

incorporation of BARXTRACTOR in UNCHARTIT allows to synthesize more SQL queries due to a low

MAE on the data extracted from charts.

47

48

Chapter 6

Conclusions

This dissertation presents the BARXTRACTOR tool, which extracts the numerical and textual information

from simple, grouped and stacked bar charts. The tool can be summarized in the following steps.

1. The user inputs the chart image. It can be either a simple, grouped or stacked bar chart;

2. The image is automatically classified into one of the three chart types;

3. The corresponding Faster R-CNN model is employed on the chart image for object detection. It

recognizes bars, labels, and titles, for example.

4. Post processing techniques are applied to resolve common problems in the extraction. For in-

stance, since BARXTRACTOR detects both the labels and the bars, it can detect missing bars by

analyzing whether there is a label without a corresponding bar;

5. Each bar’s numerical information is automatically computed using the y-axis extracted values,

through OCR;

6. The results are exported to a table containing each bar’s numerical values and the corresponding

textual labels.

One of the main BARXTRACTOR’s contributions is that the extraction process is fully automatic. Pre-

vious tools always needed input from the user. For instance, in the query synthesis tool UNCHARTIT,

the user had to input the maximum and minimum value displayed in the bar chart’s vertical axis. In

BARXTRACTOR, the Faster R-CNN detects the vertical axis’ numerical labels automatically and extracts

them using OCR.

Another contribution is that BARXTRACTOR can detect missing bars, or bars with a value of zero,

since it also extracts the bar labels. In addition, our tool obtains the bar labels and axis labels, which can

be useful for the user, and for the UNCHARTIT program synthesis stage.

The results obtained by BARXTRACTOR are promising when compared to the previous UNCHARTIT

approach and to the WEBPLOTDIGITIZER tool. BARXTRACTOR proved to be more flexible in terms of

extracting values from chart types generated by different tools. It can achieve low errors when extracting

from latex simple bar charts. However, even without requiring human interaction, its results stand out

49

on bar charts generated through matlab and excel tools. Unlike the other two tools, BARXTRACTOR is

additionally able to extract values from grouped and stacked bar charts, which have similar extraction

errors to the simple bar charts’ results.

6.1 Future Work

There are numerous ideas that should be further explored in the future. Related to the UNCHARTIT tool,

with BARXTRACTOR one could minimize the number of generated candidates queries by the synthesizer,

or help in the candidate disambiguation, by using the textual labels extracted. For instance, the bar labels

and axis labels can correspond to a column or line in the original data table.

UNCHARTIT should also be generalized in order to be able to synthesize extracted data from other

table shapes. For instance, BARXTRACTOR extracts data from grouped and stacked bar charts which

generate a table with more than one column. However, at the moment, UNCHARTIT is only able to

synthesize tables with one column of data. If this is generalized to other table shapes, UNCHARTIT will

be able to receive data from lots of other chart types.

Related to BARXTRACTOR, one relevant idea would be to add chart images from the real wold to the

Faster R-CNN training dataset. Although these images are easy to obtain, it is very time consuming to

manually annotate the bounding box and labels of every element detected in the chart.

By using similar approaches, BARXTRACTOR can also be adapted to other chart types. For pie

charts, detecting a bounding box would not be precise on detecting each slice. Possible solutions are

using Mask R-CNN [20] to find the mask of each slice. Or detecting the line limit of each slice, the

line that connects to the center of the pie, using key point detection [45], Line-CNN [30] or LS-Net [35].

BARXTRACTOR’s approach to detect the vertical axis’ numerical values and convert the pixels into real

data, can be useful for all the chart types containing an axis.

50

Bibliography

[1] WebPlotDigitizer Version 4.4. https://automeris.io/WebPlotDigitizer, 2020. Accessed:

September 30, 2021.

[2] R. Al-Zaidy and C. Giles. Automatic extraction of data from bar charts. pages 1–4, 10 2015. doi:

10.1145/2815833.2816956.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014.

[4] A. Balaji, T. Ramanathan, and V. Sonathi. Chart-text: A fully automated chart image descriptor.

arXiv:1812.10636, 2018.

[5] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[6] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.

[7] M. Cliche, D. Rosenberg, D. Madeka, and C. Yee. Scatteract: Automated extraction of data from

scatter plots. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 135–150. Springer, 2017.

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[9] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional net-

works. In Advances in neural information processing systems, pages 379–387, 2016.

[10] P. De. Automatic data extraction from 2d and 3d pie chart images. In 2018 IEEE 8th International

Advance Computing Conference (IACC), pages 20–25, 2018.

[11] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and curves in pictures.

Communications of the ACM, 15(1):11–15, 1972.

[12] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri. Component-based synthesis of table

consolidation and transformation tasks from examples. ACM SIGPLAN Notices, 52(6):422–436,

2017.

[13] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program synthesis using conflict-driven learning. ACM

SIGPLAN Notices, 53(4):420–435, 2018.

51

https: //automeris.io/WebPlotDigitizer

[14] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Communications of the ACM, 24(6):

381–395, 1981.

[15] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools,

and techniques to build intelligent systems. O’Reilly Media, 2019.

[16] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,

pages 1440–1448, 2015.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detec-

tion and semantic segmentation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 580–587, 2014.

[18] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cam-

bridge, 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[21] B. Horn, B. Klaus, and P. Horn. Robot vision. MIT Electrical Engineering and Computer Science.

MIT Press, 1986. ISBN 0262081598,9780262081597.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017.

[23] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song,

S. Guadarrama, and K. Murphy. Speed/accuracy trade-offs for modern convolutional object de-

tectors. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

3296–3297, 2017. doi: 10.1109/CVPR.2017.351.

[24] W. Huang, C. L. Tan, and W. K. Leow. Model-based chart image recognition. In International

workshop on graphics recognition, pages 87–99. Springer, 2003.

[25] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish. Foofah: Transforming data by example. In

Proceedings of the 2017 ACM International Conference on Management of Data, pages 683–698,

2017.

[26] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo. Chartsense: Interactive data

extraction from chart images. ACM, May 2017.

52

[27] D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava. Fastqre: Fast query reverse engineering.

In Proceedings of the 2018 International Conference on Management of Data, pages 337–350,

2018.

[28] V. Karthikeyani and S. Nagarajan. Machine learning classification algorithms to recognize chart

types in portable document format (pdf) files. International Journal of Computer Applications, 39

(2):1–5, 2012.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[30] X. Li, J. Li, X. Hu, and J. Yang. Line-cnn: End-to-end traffic line detection with line proposal unit.

IEEE Transactions on Intelligent Transportation Systems, 21(1):248–258, 2019.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot

multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.

[32] X. Liu, B. Tang, Z. Wang, X. Xu, S. Pu, D. Tao, and M. Song. Chart classification by combining

deep convolutional networks and deep belief networks. In 2015 13th International Conference on

Document Analysis and Recognition (ICDAR), pages 801–805, 2015. doi: 10.1109/ICDAR.2015.

7333872.

[33] X. Liu, D. Klabjan, and P. Bless. Data extraction from charts via single deep neural network. ArXiv,

abs/1906.11906, 2019.

[34] A. Mishchenko and N. Vassilieva. Chart image understanding and numerical data extraction. In

2011 Sixth International Conference on Digital Information Management, pages 115–120, 2011.

[35] V. N. Nguyen, R. Jenssen, and D. Roverso. Ls-net: Fast single-shot line-segment detector. arXiv

preprint arXiv:1912.09532, 2019.

[36] D. Ramos, J. Pereira, I. Lynce, V. Manquinho, and R. Martins. UNCHARTIT: an interactive frame-

work for program recovery from charts. In 35th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2020, pages 175–186. IEEE, 2020.

[37] W. Rawat and Z. Wang. Deep convolutional neural networks for image classification: A compre-

hensive review. Neural computation, 29(9):2352–2449, 2017.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object

detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 779–788, 2016.

[39] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

53

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[42] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap. A

simple neural network module for relational reasoning. In Advances in neural information process-

ing systems, pages 4967–4976, 2017.

[43] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer. Revision: Automated classifi-

cation, analysis and redesign of chart images. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology (UIST ’11), pages 393–402. ACM, 2011.

[44] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network for image-based sequence

recognition and its application to scene text recognition. IEEE transactions on pattern analysis and

machine intelligence, 39(11):2298–2304, 2016.

[45] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using

multiview bootstrapping. In Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 1145–1153, 2017.

[46] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014.

[47] R. Smith. An overview of the tesseract ocr engine. In Ninth international conference on document

analysis and recognition (ICDAR 2007), volume 2, pages 629–633. IEEE, 2007.

[48] R. Stewart, M. Andriluka, and A. Y. Ng. End-to-end people detection in crowded scenes. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages 2325–2333,

2016.

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1–9, 2015.

[50] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[51] N. Vassilieva and Y. Fomina. Text detection in chart images. Pattern recognition and image analysis,

23(1):139–144, 2013.

[52] C. Wang, A. Cheung, and R. Bodik. Synthesizing highly expressive sql queries from input-output

examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 452–466, 2017.

[53] S. Zhang and Y. Sun. Automatically synthesizing sql queries from input-output examples. In 2013

28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 224–

234. IEEE, 2013.

54

[54] F. Zhou, Y. Zhao, W. Chen, Y. Tan, Y. Xu, Y. Chen, C. Liu, and Y. Zhao. Reverse-engineering bar

charts using neural networks. Journal of Visualization, 2020.

55

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Document Structure

	2 Preliminaries
	2.1 Chart types
	2.2 Connected Component Analysis
	2.3 Convolutional Neural Networks
	2.3.1 Convolutional Layers
	2.3.2 Pooling Layers
	2.3.3 Fully Connected Layers
	2.3.4 Regularization
	2.3.5 ResNet
	2.3.6 Region Based CNNs

	3 Related Work
	3.1 Chart images' identification
	3.2 Chart type classification
	3.3 Data extraction
	3.4 Chart text extraction

	4 Automatic Bar Chart Extraction
	4.1 Architecture
	4.2 Chart image Classifier
	4.2.1 Model and training
	4.2.2 Classifier's dataset

	4.3 Faster R-CNN
	4.3.1 Models and training
	4.3.2 Faster R-CNN datasets
	4.3.3 Simple bar charts dataset
	4.3.4 Grouped and Stacked bar charts datasets

	4.4 Post-Processing
	4.4.1 Simple bar charts
	4.4.2 Grouped bar charts
	4.4.3 Stacked bar charts

	4.5 Obtain the real chart values
	4.5.1 Optical Character Recognition
	4.5.2 Outliers' detection

	4.6 Output of the system

	5 Results and Discussion
	5.1 Numerical extraction evaluation
	5.1.1 Simple bar charts
	5.1.2 Grouped and Stacked bar charts

	5.2 Textual extraction
	5.3 Classifier
	5.4 Results' summary

	6 Conclusions
	6.1 Future Work

	Bibliography

