
Automatic Chart Interpretation
Catarina Pires

catarinajrpires@tecnico.ulisboa.pt
Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract—Nowadays, charts are a key form of representing
data, used in all sorts of documents. In many cases, the data
underlying the chart images is also crucial; however, it is not
always available. An accurate method to perform chart data
extraction would benefit several areas: it can be used to improve
web search results for charts or help visually impaired users
understand charts in documents. An additional application is the
synthesis of programs that uses graphic representation of data.
The tool that motivated this research work is UNCHARTIT, a
program synthesizer to recover data transformations from chart
images given an input table and a chart.

This document analyses the tools already developed with the
aim of extracting data from charts and, based on the most
promising methods explored, proposes a new tool, BARXTRAC-
TOR. Our tool extracts both numerical and textual data from
images of simple, grouped and stacked bar charts. BARXTRAC-
TOR does not require human interaction, using Convolutional
neural networks (CNNs) for chart type classification and Faster
R-CNNs for object detection within the chart image, such as
bars and numbers. For textual extraction an optical character
recognition (OCR) engine is applied. Moreover, BARXTRACTOR
was integrated into the UNCHARTIT tool in order to improve its
accuracy and to eliminate the need of user interaction.

Experimental results for BARXTRACTOR show that it is able
to successfully classify simple, grouped and stacked bar charts.
Moreover, results also show that BARXTRACTOR outperforms
state of the art tools that rely on user input to correctly
extract data from the chart image. Additionally, the integration
of BARXTRACTOR in the UNCHARTIT tool allows to improve
its accuracy in finding the correct program for several table
transformations. Finally, BARXTRACTOR is also able to extract
textual data from the charts. The textual data can be used to
improve the interpretation of the extracted numerical data.

Index Terms—Bar chart images, Data extraction, Object
detection, Convolutional Neural Networks, Optical character
recognition.

I. INTRODUCTION

Charts are widely used to visually represent various types
of data: they can be found in reports, journal and research
articles, presentations, among many other documents. This
visual representation of data can compact and organize loads
of information into a simple and accessible image. However,
the numerical and textual data underlying a chart image are
not always accessible and might be challenging to obtain.
The chart’s data extraction is an important and useful topic
that has already been explored in several research works [1]–
[10], including different methodologies or subjects of study.
For instance, some focus on a chart type [1], [3], [4], [8],
[10], others on textual extraction [11], [12]. Each one of the
explored methods have their pros and cons and have been
developed in order to be applied in different contexts. Machine

learning algorithms, specially Convolutional Neural Networks
(CNNs) [13], have provided good results when dealing with
problems related to image processing. We consider that this
concept should be further explored for chart textual and
numerical data extraction from chart images.

A. Motivation and Objectives

Data analysis processes have evolved over the last decade,
resulting in an increasing need to employ data analysts, some
of them without the ideal programming skills. For this reason,
some tools for automating programming tasks emerged [14]–
[19]. These tools work with examples where the user provides
a series of input-output examples and the tool recovers the
program that matches the input to the output, without requiring
the user to program. However, until very recently, there were
no tools to recover a program where the user is able to insert
a visual element as the output goal.

The UNCHARTIT1 tool [8] was proposed with the goal of
recovering the program underlying a chart image. Consider an
example where a user has (a) a table containing all customer
complaints from 2011 to 2016, and (b) a bar chart with the
number of complaints grouped annually. Suppose that a data
analyst with limited programming skills needs to reproduce
an updated chart with the annual consumer complaints, but he
does not have access to the program underlying the generation
of the chart. UNCHARTIT should be able to recover the
program and data transformations applied to transform the
table (a) into the bar chart (b), given only the table and the
chart as input. With the program recovered by UNCHARTIT,
the data analyst could easily produce an updated chart.

The program to be synthesized should include the chart
generation, including the necessary data transformations, and
it can be recovered given: (1) an input table, with the data
used to create the chart, and (2) a desired output chart image.
Since the desired chart is given through an image format,
there is the need to extract the chart’s numerical data into a
tabular representation. Given the input table and the extracted
table from the chart image, UNCHARTIT generates program
candidates that are evaluated by a Program decider module.
These candidates are ranked by the most probable correct
query and the user is given the opportunity to answer some
simple questions in order to disambiguate the top-n candidates.

UNCHARTIT proposes two ways of extracting data from bar
charts. The first is using WEBPLOTDIGITIZER [20], a tool that
requires user interaction and calibration. The other is a CNN

1http://sat.inesc-id.pt/unchartit/home/

1

(a) Simple Bar Chart (in-
put).

(b) Object detection.

Team Score

France 16.15

Portugal 13.03

Croatia 3.12

Sweden 3.12

(c) Csv file (output).

Fig. 1. In BARXTRACTOR, the input is a bar chart. In this example, a simple
bar chart (a). Then, the object detection step is displayed (b) and lastly the
output is represented in a csv file (c).

model that requires the user to provide two y-axis values, the
minimum and maximum values of the axis.

Our proposed approach emerged by the need to get highly
confident results in the chart image extraction step, in order to
obtain more accurate results in UNCHARTIT. Our main goal is
to develop a data extraction tool that does not require human
interaction and that also includes the extraction of textual data
(e.g. axis labels and titles) that might help in the numerical
extraction process and in the candidate generation step from
UNCHARTIT.

B. Contributions

In this document, BARXTRACTOR is proposed as a tool
for extracting values from three different types of bar charts:
simple, grouped, and stacked bar charts. The user simply needs
to enter a chart image and the extraction process does not
require any user interaction. It extracts both the numerical and
textual values into a table that is saved as a csv file.

BARXTRACTOR first uses a CNN to classify the bar chart
type into either ’simple, ’grouped’ or ’stacked’. Then, it is
composed of three Faster R-CNNs models, one for each
chart type, which detects the relevant chart elements, such
as bars. For each element a bounding box is detected and
the correspondent label is assigned. The labels detected are
extracted using optical character recognition and the numerical
labels are used to automatically extract the value of each bar.
The output is a csv file containing each bar value and the
corresponding textual bar label.

BARXTRACTOR’s most relevant steps are summarized in
Figure 1. A bar chart is inserted into the system (a) and
classified as ’simple’. The object detection phase detects the
relevant objects and classifies them (b). And lastly, the output
of the system is a csv file (c) with the extracted values of each
bar and their corresponding labels.

On simple bar charts, the results obtained using BARX-
TRACTOR outperformed those obtained using the previ-
ous UNCHARTIT method and the WEBPLOTDIGITIZER
tool. BARXTRACTOR additionally supports the extraction of
grouped and stacked bar charts, obtaining similar results to
the simple bar charts. BARXTRACTOR also extracts the textual
labels automatically.

C. Document Structure

This document is organized in five sections. The introduc-
tion aims to present the problem, the motivation for the project

and a brief overview on the proposed approach. Section II
includes the preliminaries and an overview on the state of the
art techniques to extract numerical and textual information
from chart images. The architecture and implementation of
BARXTRACTOR are described in section III, followed by
section IV which presents and discusses the experimental
results. Finally, section V concludes the document.

II. BACKGROUND

A. Preliminaries

In this subsection we assume the reader is familiar with
Neural Networks [13], [21] and Convolutional Neural Net-
works (CNNs) [13], [22], [23].

1) ResNet: The residual neural network (ResNet) [24] is a
CNN architecture, which was selected to perform several tasks
throughout this project. It was chosen for BARXTRACTOR
since it won the 2015 ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [25] classification task. ResNet was
designed to address the issue of adding more layers causing the
network’s performance to decrease [24]. It introduces residual
blocks which contain a skip connection between the input and
the output of the block. ResNet has numerous variants obtained
by changing the number of layers. In BARXTRACTOR the
ResNet-50 was chosen for classification tasks since it is
more accurate than ResNet-34 [24] on ImageNet and it is
unnecessary to use the networks with 101 or 152 layers, which
would be slower to train.

2) Faster R-CNNs: To address object detection, given an
input image, the goal is to output the various detected objects’
bounding box and classification. Simple CNN architectures
have a fixed output layer which is ineffective for these type of
problems. Region based CNNs are object detection networks
that, given an image, return for each detected element: a
bounding box and a classification. Faster R-CNNs [26] are
used in this project for object detection tasks. There are other
object detection systems, however Faster R-CNN achieves a
better accuracy for small elements [27] compared to other
systems such as YOLO [28], SSD [29] and R-FCN [30].

The Faster R-CNN architecture is composed of a CNN
model, to extract the image features and a Region Proposal
Network (RPN), that proposes bounding boxes that may con-
tain relevant elements. Then, it uses a Region of Interest (RoI)
pooling layer to obtain a RoI feature vector. Using this vector
the network outputs, for each RoI, the softmax probabilities
for the object classification, and the bounding box offsets.

B. Related Work

CNNs are commonly used in chart classification [2], [6],
[7], [31] and, although it has been little explored, it can be a
good basis for chart images data extraction [7], [10].

The first approaches to tackle chart data extraction worked
by requiring user interaction [6], [9]. Others, worked automat-
ically [4], without deep learning, but using fixed rules, which
are less generalized and more prone to errors. More recent
tools use object detection networks to detect automatically
elements in charts [3], [7], for instance Scatteract [3] detects

2

the points location from scatter plots automatically. Similarly,
using deep learning there is a tool [10] that uses an en-
coder–decoder framework that integrates CNNs and recurrent
neural networks (RNNs) to extract numerical information.

For textual data detection some tools require the user to
select the textual elements [9], others can be automatic by
using fixed rules, such as pixels’ analysis [1], [11], [12].
Recent tools can detect textual elements using object detection
[2], [3], [7], [10], including the Faster R-CNN approach [2].
To extract the text, most tools apply an OCR engine [1]–[3],
[9]–[11]. Finally, in order to obtain the numerical values of
a chart usually the textual information of the vertical axis is
extracted to obtain a ratio that represents the number of pixels
utilized in the image to compose a data unit.

Recently, the UNCHARTIT tool [8], introduced before, also
explored chart numerical data extraction. Since the desired
chart is given through an image format, there is the need
to extract the chart’s numerical data into a table. The article
focuses on bar charts and proposes two ways of performing
the extraction. The first is through WEBPLOTDIGITIZER [20]
version 4.2, a semi-automatic tool that is able to extract numer-
ical data from simple 2D bar charts. However, the tool requires
user calibration and does not extract bar labels. The other
proposed extraction method uses CNNs, more specifically the
EfficientNet-B7 [32] with an alternative output layer. The first
n nodes of the output layer contain the probability that the
chart has i ∈ {1, 2, ..., n} bars, and the next n nodes represent
a relative height from 0 to 1, defining how full each bar is.
Then, using the maximum and lowest value of the bar chart
(which are values provided by the user) the real numerical
value of each bar is obtained using linear interpolation. In this
approach the labels’ extraction was also not explored.

III. AUTOMATIC BAR CHART EXTRACTION

The software presented in this document was named BARX-
TRACTOR and its goal is to extract the visual information
represented on a bar chart image into a data table.

A. Architecture

To get a better understanding of the overall system we
should take a look at Figure 2. The input of BARXTRACTOR is
a bar chart image. That image is fed to a classifier which will
label it in either a simple, grouped or stacked bar chart. After
being successfully classified, the image goes through one of
the three Faster R-CNN models and outputs several bounding
boxes with a corresponding label. For instance, it finds several
bounding boxes that translate to the ’bar’ label.

Then, a couple of post-processing techniques are added after
the elements’ detections in order to tackle common issues,
such as, understand and correct if there are missing bars.

The labels that correspond to a textual or numerical value
are subjected to an OCR procedure to obtain its correspondent
information. The detections that are believed to represent a
”number” in the vertical axis, go through an outlier detection
(RANSAC). Those numbers and their correspondent coor-
dinates in the image are used to calculate a ratio between

pixels and data which is referred to as pixel per data ratio.
To obtain the real value of each bar, simple calculations are
performed using the ratio to transform the height in pixels of
each bar in the real height in the units of the chart.

The title, labels and legends however are not used in the
calculations, but are part of the chart’s csv output file, which
aggregates all the extracted information.

Each of these steps will be detailed in the next subsections.

B. Chart image Classifier

The chart image classifier is the first step of the BARX-
TRACTOR system. It was integrated in BARXTRACTOR since
there are three disparate object detection models for the three
bar chart types. It is necessary to identify which of the three
object detection networks is going to be employed in the data
extraction process. Given a chart image, the classifier returns
a prediction of the chart type, which can be either ’simple’,
’stacked’ or ’grouped’ bar chart.

1) Model and training: To implement an image classifier,
a model pre-trained on ImageNet dataset was chosen, more
specifically, the ResNet-50 [24]. Before the training, all the
images are resized to the same dimensions and transformed
into a tensor. The dataset is divided into 80% for training
and 20% for validation. During the training phase, the pre-
trained layers are not updated unlike the fully connected layer
which needs to be trained for our bar chart images. The
chosen optimizer was Adam [33] and the loss function was the
negative log likelihood loss2, which is useful for classification
problems. In order to determine the parameters that would
lead to the best classification results, the model was trained
with different parameters, learning rate and number of epochs.
By analyzing the training and test loss values, the best results
were observed with a learning rate of 0.002 and 300 epochs of
training. After the model was trained, if given a chart image
it will return a prediction for one of the three classes.

2) Classifier’s dataset: The dataset used to train the clas-
sifier is a compilation of images that were used in the Faster
R-CNN training and evaluation process (dataset explained in
the next subsection), in addiction to 125 more images for each
chart type. These 375 images were collected from web search
engines to try and generalize the classifier to real charts used in
different contexts and tools. These images were obtained using
search queries such as ”bar charts” in web search engines.

Then, a random 10 percent of each class was removed from
the training dataset so that it could be used to evaluate the
classifier after the training phase. Neither the training nor the
testing phases make use of this fraction of images. After this
refinement, the classifier’s training dataset is composed of a
total of 5122 images.

C. Faster R-CNN

The Faster R-CNN, in the context of this work, is used to
predict the bounding box and class of each element of interest
in a given bar chart image.

2https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

3

Fig. 2. BARXTRACTOR’s architecture.

Faster R-CNN
(grouped) OCR

Detect outliers

chart_data.csv
Bar Chart

image

nu
m

be
rs

title, labels and legends
Classifier

pixel_per_data ratio
Post-Processing

Faster R-CNN
(stacked)

Faster R-CNN
(simple)

1) Models and training: A different model was trained
for each of the three classes: simple, grouped and stacked
bar charts. After the classification step, the classifiers’ result
defines which model will be used to extract the bar chart
information. The detection step could have been performed
using only one general model although it would not be so
precise for each chart type.

The chosen model was the Faster R-CNN, which uses
the ResNet-50 as the model’s backbone CNN. The model is
pre-trained on the diverse COCO dataset3. The decision of
finetuning from a pre-trained model was made since training
a CNN algorithm from scratch requires much more time and
data. Since the classes we want to train are relatively distinct
from one another, and typically found in the same spots, a
pre-trained model satisfies our needs and converges faster to
the solution.

The first step is to configure the dataset and the model’s at-
tributes. First, the images are transformed into pytorch tensors.
The dataset is split into 85% for training and 15% for testing.
Then, the parameters are defined, the chosen optimization
algorithm was the stochastic gradient descent (SGD) with
a learning rate of 0.0005. A learning rate scheduler is also
defined, with parameters that determine how the learning rate
value decays. The models for simple, grouped and stacked bar
charts were trained 60, 65 and 60 epochs respectively. The
number of epochs for each model was determined based on
the outcomes of each epoch, namely the current AP values.
The models do not need a huge amount of training since they
are pre-trained.

When training, the model provides the user some important
information to analyze, such as the average precision and
average recall for different IoU values. This helps comprehend
the model’s current stage on learning to recognize the desired
elements of an image. Unlike many object detection problems,
for BARXTRACTOR it is crucial that the bounding boxes are
tight to the exact space of the bars and numbers for the
computations to be accurate, which implies we must prioritize
a high IoU.

After the training process the Faster R-CNN model is saved
and given an input image, it outputs a bounding box, a label
and a score, related to the confidence in the prediction.

3https://cocodataset.org/

Fig. 3. Labels contained in an image from the grouped bar charts dataset.

b)

a)

c)

d)

e)

f)

2) Faster R-CNN datasets: Three datasets were created, for
training the simple, grouped and stacked bar charts models.
The datasets are composed by several images and a correspon-
dent annotations.csv file containing several bounding boxes
with a correspondent label. The bounding box is represented
through four values: xmin, ymin, xmax, ymax. The images
are generated using matplotlib and the coordinates of each
region of interest are stored along with the labels on the
annotations file. The procedure used to generate the bar
chart images with each object’s corresponding coordinates was
initially adapted4 from Fangfang Zhou et al’s work [10]. The
procedure was adjusted to include the random generation of
grouped and stacked bar charts, and it was also modified to
include additional parameter variation for the chart images.

Each dataset entry is composed by an image and several
bounding boxes with its corresponding labels. Figure 3 shows
an example of the bounding boxes required for the information
contained in a grouped bar chart image. The annotations.csv
file is composed of eight columns, being: filename, width,
height, class, xmin, ymin, xmax and ymax.

There are six labels in all of these three datasets, which are:

• bar (the bar rectangle) (Fig. 3 a))
• text bar (the labels below each bar) (Fig. 3 b))

4https://github.com/csuvis/BarchartReverseEngineering/blob/master/
generate random bar chart.py

4

• text num (the vertical numerical values) (Fig. 3 c))
• text label (the axis label x and y) (Fig. 3 d))
• text title (the title of the chart) (Fig. 3 e))
• text legend (the textual legend of each color (Fig. 3 f))

Some labels are not mandatory in a bar chart image, for
instance, in a simple bar chart it is uncommon to find charts
with a color legend since there is usually only one bar color.

In all datasets several data parameters were changed in
order to generate a diverse dataset. All include changes in
the number of bars, number of groups, the spacing between
bars or groups, the charts theme colors and style. Also the
textual parameters are generated randomly and vary in size
and length: the titles, axis labels and bar labels. The figure
quality and size, in height and width, is also varied. The file
format is also randomly assigned between .jpg and .png.

3) Simple bar charts dataset: The simple bar charts dataset
is composed of 1445 images. The initial number of images was
1000 but the first results showed that some image parameters
were missing, for instance, initially there was no ’legend’
label and when the image had a label present, the Faster R-
CNN recognized it as an extra bar. Another problem was that
only the small titles were recognized. This proved that the
dataset had to be more diverse so new images with certain
characteristics were added: images with more bars, with lower
distance between bars, larger titles and the color legend label.

4) Grouped and Stacked bar charts datasets: Both the
grouped bar charts and stacked bar charts’ dataset are com-
posed of 1300 images similarly with diverse parameters. As
before, the initial number of images was 1000 and the remain-
ing 300 were added based on what was revealed to be missing
on the dataset. Besides the simple bar charts’ variations, for
these we must also consider changing the number of groups
and bars per group. The spacing between bars of the same
group and between groups. The colors of the bars within a
group and its correspondent labels.

For stacked bar charts, the label ’bar’ is considered the
rectangle represented by one color on each group. Meaning,
each color in a group of stacked colors is considered a ’bar’
when composing the dataset. The reason for not recognizing
the entire bar is because then we would have to check
manually where the colors change within each bar.

D. Post-Processing

There are situations in which the Faster R-CNN can not
solve the entire problem alone. Sometimes a bar has a zero
value and it is not represented for the object detection network
to detect but there is still the bar label underneath. Hence, some
Faster R-CNN post-processing methods are applied in order
to correctly find bars in those situations.

1) Simple bar charts: For simple bar charts, the bars
detected by the Faster R-CNN with a confidence higher than
70% are added to the bars’ list and the others are stored if
needed later. Between experiments, the value 70% proved to
be the right threshold between a correctly found bar and a
misdetected one.

First, the mean width of the bars is computed. One of the
conditions that is examined is if each label has a corresponding
bar. If a bar is not found but there is a label below the expected
spot, we can assume a bar is missing. The first approach is
to search for a bar, located on top of the label, among the
recognized bars with confidence score lower than 70%. If it
is found, it is added to the correctly recognized bars.

The bars and their corresponding labels are ordered by their
horizontal positions. After, the distance between consecutive
bars is analyzed. If there is a distance higher than the minimum
distance between consecutive bars plus half the bar width, we
assume a bar is missing in that spot. If there is a bar label
in that spot, without a corresponding bar, then a bar was not
recognized by the Faster R-CNN and is added to that place
with only 2 pixels height. However, this method does not solve
the case where a bar is missing in the first or last spot of the
chart, so if there is a label with no bar in the beginning or in
the end, and at the same distance as the others, it is similarly
added a bar in that spot.

Other verifications are made for simple bar charts, related
to check if a label was misdetected for another, for instance,
if a short x-axis label is detected at the same height as the bar
labels, it was misdetected for a bar label. Another verification
that is made is if there is a detected number outside the
expected x coordinate, since charts with scientific notation
were not considered in this project. The numerical values can
still be extracted without the multiplication for the scientific
notation value.

2) Grouped bar charts: For grouped bar charts, the bars
detected by the Faster R-CNN are considered if the confidence
of the detection is higher than 70%. For this chart type, the
first step is to divide the bars in groups. This is performed
by ordering the bars by their x coordinate, calculating the
distance between consecutive bars and joining the closer ones
into a group. Since this is a simple aggregation method, an
inconsistency check is performed that verifies if the number
of bars in a group is lower than the number of color legends
detected or if the number of bars is different between groups.

If an inconsistency is found, a different approach is taken
by checking the distance between each bar and the bar labels.
There is only one bar label per group and it is the closest
to each group’s bar. If there are missing bars in a group, the
distance between the group bars is checked and the places
with missing bars get, as before, a bar added to that spot.
After, if there are still missing bars in the group, it is because
they are the first or last bars, and the same approach is used as
with simple bar charts. Other verifications are made, as before,
related to check if a label was misdetected for another.

3) Stacked bar charts: The stacked bar charts have a differ-
ent approach to check for missing bars. Colors are stacked on
top of each other and we may not know the missing color’s
location. The first step, similar to grouped bar charts, is to
divide the bars into groups. For this chart format, the process
of separating into groups is simpler, since same group bars are
all stacked in the same x cardinal position. Then, if the number
of bars differ between groups or it differs from the number of

5

0

2

4

6

8

10

1 2 3 4

O

G

Y

R

B

(a) Stacked Bar Chart. (b) Colors’ directed
graph.

Fig. 4. Example of a stacked bar chart (a) and the corresponding colors’
directed acyclic graph (b).

color legends, we can assume that there are missing bar colors.
In order to find which colors are missing in a group and extract
them in the same order as they are represented in the chart,
we need to understand the color disposal. A procedure based
on directed acyclic graphs was used to accomplish this. It
works by going through every bar of the chart and checking
the colors upwards. Every time a color is found next to each
other, a directed edge between those colors is added to the
graph. Figure 4 (b) shows the resulting directed color graph
corresponding to the stacked bar chart in Figure 4 (a).

When the graph is completed, we apply a topological sort
algorithm in order to find the color disposal. For Figure 4 it
would be [B,R,Y,G,O].

E. Obtain the real chart values

The first BARXTRACTOR’s method to acquire the real
values of a bar chart was inspired by the previous UNCHARTIT
approach. It consisted in asking the user to provide the
lowest and highest values depicted on the vertical axis, which
correspond to the minimum and maximum values of the chart.
However, our goal included the automation of the system,
which means the tool has to work without user interaction.
With the purpose of automating the system, OCR is applied
on BARXTRACTOR both to find the numerical values of the
vertical axis and to find the textual labels.

1) Optical Character Recognition: The chosen tool used
to output the text, given a cropped image, was EASYOCR
from PYTORCH. Every detected element in the original image,
that needs to go though the OCR process, is cropped into a
new image containing only that element. Before executing the
OCR, the image is cropped by the detected element’s bounding
box plus an extra number of pixels. These extra pixels are
added to ensure the element’s area is fully contained inside
the cropped image, otherwise it can affect the OCR process.
Another transformation applied that has shown to improve the
results is to add padding to the cropped image. Because the
OCR tool is not designed to handle a very zoomed-in image
of an element, this transformation is useful. The padding acts
as a ”zoom out” in relation to the image’s center. The figure
is then saved, and the EASYOCR tool is applied in order to
output the characters found.

To be clear, the EASYOCR tool supports the recognition
of the text location, which was tested on bar charts. When
compared to the developed Faster R-CNN model, EASYOCR
was less accurate on recognizing the chart image text. As a
result, the text is cropped into a new image before being fed
to the OCR.

The extracted numerical values are the most important
information that will lead us to the real chart values. For
instance, in Figure 4(a) the numerical labels are: ”0”, ”2”,
”4”, ”6”, ”8” and ”10”. Sometimes a ”0” is recognized as an
”O” and a ”0,” as a ”Q”. Hence, after the OCR, an extra
step is applied for numerical labels in order to minimize
some inaccuracies detected in the results. These specific errors
were corrected simply by replacing these characters with the
corresponding numbers. Another common error is when the
OCR outputs, for instance, ”060” instead of ”0.60”. When
this happens, a ”.” is added after the first zero.

2) Outliers’ detection: By detecting the bounding box of
each element, through the Faster R-CNN model, we get the
y-coordinates in pixels of each numerical label. Before pro-
ceeding to the actual calculation of each bar value, we need to
perform an outlier detection on the numerical values extracted.
Assume we have the following numerical labels extracted from
a chart image and their correspondent coordinates:

labels = [0, 50, 100, 15, 200, 25, 300]
coordinates = [100, 200, 300, 400, 500, 600, 700]

The labels ”15” and ”25” were returned by the OCR with
a missing ”0” and should not be considered in the follow-
ing calculations. For this reason Random sample consensus
(RANSAC) method [34] is applied to detect these outliers.
RANSAC returns a list of the inliers and outliers based on the
labels and coordinates of this problem. For the example above
this would return the following inliers.

X = [0, 50, 100, 200, 300](labels)
y = [100, 200, 300, 500, 700](coordinates)

On SCATTERACT [3] the RANSAC regression solution was
proven to work well on outlier detection comparing with other
robust solutions. It also worked well with BARXTRACTOR,
thus it was integrated into the system. After the outliers’
detection, only the inliers are considered for the calculations.

Each bar’s height in pixels has now been determined. In
order to get the real value of each bar, a ratio of pixels per
data is calculated as following.

pixel data ratio =

∑
i−1

abs(X[i + 1]−X[i])

abs(y[i + 1]− y[i])

len(X)− 1
(1)

In Equation 1, X represents the numerical label values and
y the corresponding y coordinates.

Computing the pixel per data ratio for the previous ex-
ample would get a ratio of 0.5.

The height in pixels of each bar is then multiplied by the
pixel per data ratio to obtain the real value of each bar. The
height in pixels can be obtained by subtracting the known
ymax by the ymin in pixels of the bounding box.

6

(a) Simple Bar Chart image.

Year Average price

2015 1.355335237

2016 1.318704555

2017 1.488537717

2018 1.325364679

(b) Bar chart corresponding csv out-
put.

Fig. 5. Example of a simple bar chart and BARXTRACTOR’s csv output.

(a) Stacked bar Chart image

Gender color0 color1 color2 color3 color4 color5

Male 5.885535619 16.18522295 27.95629419 33.10613786 60.3267401 105.9396412

Female 7.356919524 7.356919524 41.19874934 37.52028957 71.36211939 94.16856991

(b) Stacked bar chart csv output

Fig. 6. Example of a stacked bar chart and the systems’ csv output.

F. Output of the system

BARXTRACTOR’s last step is to aggregate the extracted
information into a csv file. The file is used to store the
extracted bar values and label information. For simple bar
charts, the csv output file is quite simple. It consists of two
columns which represent for each bar: the bar label and the
corresponding bar value. Figure 5 presents a simple bar chart
example (a) and its corresponding output csv (b).

For grouped and stacked bar charts the csv representation is
slightly different since there is more than one bar to represent
per group. Figure 6 displays an example of the input and the
corresponding output of a stacked bar chart image. In the file,
the lines represent each group while the columns correspond
to each of the color legends.

IV. RESULTS

In order to evaluate the developed method, several images
were tested and two tools were used to compare the results
obtained by the Faster R-CNN method. One is the previous
UNCHARTIT approach, the EfficientNet-B7 adaptation, and the
other is WEBPLOTDIGITIZER, used in the UNCHARTIT article
[8] to compare with its results.

To analyze the following simple bar chart results there are
some aspects we should keep in mind. BARXTRACTOR, the
Faster R-CNN approach, does not require user interaction, it
is fully automatic. Its dataset, described in detail in Section

III, is composed of almost 1500 matplotlib generated images
and a file containing each elements’ label and bounding
box. The previous UNCHARTIT approach consisted in training
the EfficientNet-B7 network with 90000 latex bar charts.
The training dataset has each image and the correspondent
value of each bar. This approach requires the user to insert
the minimum and maximum value of the bar chart image.
The WEBPLOTDIGITIZER tool requires the user to manually
calibrate the y-axis by clicking on two points of the axis and
inserting its correspondent values. After this, it requests the
user to select the bars’ color, the width of the bars in pixels
(∆x) and the height of the highest bar in pixels (∆val).

A. Numerical extraction evaluation

In order to evaluate the effectiveness of the numerical
extraction of a bar chart, the number of detected bars and
the height of each bar are the two main points that have to
be considered. We consider the number of detected bars to
be correct if the output has the same shape as the data. To
evaluate the extracted height of the bars, for each chart the
mean absolute error (MAE) is calculated. The MAE (Equation
2) indicates the error between the real (x) and the observed
values (y), being n the number of values.

mae = (
1

n
)

n∑
i=1

|yi − xi| (2)

The MAE is calculated using the output csv of each tool.
In order to output an error between 0 and 1, the data is
normalized.

The bar chart images used in the numerical extraction
evaluation were generated using three different tools: latex,
matlab and excel. The data used to generate the images is
real data extracted from Kaggle5. For simple bar charts these
are the same 50 instances that were used to evaluate and
compare the numerical extractor approach in the UNCHARTIT
paper. For grouped and stacked bar charts 40 instances of real
data were extracted from Kaggle and different aggregations
were applied in order to generate groups. In total two images
were generated per instance resulting on 80 charts per tool to
evaluate the grouped charts and 80 more per tool to evaluate
the stacked bar charts.

1) Simple bar charts: In the UNCHARTIT tool article, 50
instances were extracted from Kaggle in order to evaluate
the tool. These instances were transformed into latex charts
in order to analyze if the program could correctly return the
charts’ number of bars. Then, for the charts where the number
of bars were correctly estimated, the MAE is computed.
The ones with scientific notation were not considered in this
calculation since this was not explored. In order to extend
this study and have a more diverse evaluation, the same 50
instances were used to generate matlab and excel charts with
the same data but different visual representations.

Table I presents the results obtained on the 50 images related
to the number of charts where the correct number of bars

5https://www.kaggle.com/

7

Latex (50) Matlab (50) Excel (50)

WebPlotDigitizer 48 45 46

EfficientNet-B7 46 28 26

Faster R-CNN 48 49 48
TABLE I

NUMBER OF CHARTS WHERE THE NUMBER OF BARS WAS CORRECTLY
PREDICTED AMONG THE 50 SIMPLE BAR CHART IMAGES.

Latex Matlab Excel

WebPlotDigitizer 0.002201 0.006543 0.026541

EfficientNet-B7 0.037356 0.220274 0.212933

Faster R-CNN (Without OCR) 0.019915 0.005507 0.0187

Faster R-CNN (With OCR) 0.010964 0.00542 0.011812

TABLE II
MAE OF THE BAR VALUES ON THE SIMPLE BAR CHART IMAGES WITH

CORRECTLY PREDICTED NUMBER OF BARS.

was detected. The EfficientNet-B7, as expected, performs
better on latex images and similarly worse for matlab and
excel images. This is because the training dataset is composed
of only latex images and the tool is not able to generalize.

The WEBPLOTDIGITIZER tool performs better on latex
images which vary less visually. For instance, the colors are
predefined to be the same and the distance between bars is
also fixed. On matlab and excel it performs slightly worse
since the images are more diverse. For instance, if a chart has
different colored bars, the WEBPLOTDIGITIZER tool can not
recognize them since it asks the user to select only one color,
which the tool assumes it is the same for every bar. Another
situation WEBPLOTDIGITIZER fails to recognize the bars is
when a bar is very small, overlapping with the horizontal axis.
BARXTRACTOR solves this problem by also detecting the bar
labels and checking for each label if there is a corresponding
bar.

The Faster R-CNN solution performs equally good on the
data generated by the three tools, but better on matlab, since
the training dataset was generated through matplotlib.pyplot
module. The one chart that all tools fail to recognize has the
first bar really small, overlapping with the axis, and without a
bar label, which is a difficult case to solve. In general BARX-
TRACTOR performs better on detecting the correct number of
bars between the data generated on the three tools.

In terms of mean absolute error four situations were
considered as we can observe on Table II. These are the
WEBPLOTDIGITIZER tool, the EfficientNet-B7 approach, and
the Faster R-CNN both without and with OCR. The Faster R-
CNN without OCR was tested before the tool was completely
finished and uses the input of the user to indicate the minimum
and maximum value of the y axis, meaning, it uses the same
input as EfficientNet-B7 approach. In the Faster R-CNN with
OCR tests, the tool was already automatic using OCR to
extract the various numbers of the y-axis and does not require
any user interaction. The MAE of each tool is related to the
images in which the number of bars was correctly detected.

EfficientNet-B7, as expected, has a lower error for latex
images, since it was trained on them, and performs similarly
worst on matlab and excel images which are, as said before,

visually more complex.
WEBPLOTDIGITIZER performs better on latex images, then

on matlab and lastly on excel. This is explained by the
fact that they are in this order more visually complex while
WEBPLOTDIGITIZER performs really well on simple images
but does not support some features. For instance, a common
problem that may cause a higher error is when the chart title
or axis have a similar color as the bars. Since this tool works
on recognizing the bars by their color, and if the title has a
similar color to the bars, it will recognize the bar height higher
than it was supposed (in the title).

On the first tests to check the accuracy of the new im-
plementation, the OCR was not yet developed. The tests
without OCR were performed using the highest and lowest
detected ’number’ labels found, and were given as input the
minimum and maximum values in the chart to calculate the
pixel per data ratio. The Faster R-CNN with OCR per-
formed better overall because it is more accurate to check all
the numerical values and their locations than only the detected
highest and lowest label, which might not be the correct ones.
As expected it has the lowest error on matlab images because
of the dataset. It performs equally good on latex and excel
despite not having had contact with these images during the
training. However it does not have the lowest MAE on latex,
WEBPLOTDIGITIZER performs better on simple cases. From
the results obtained on Faster R-CNN, it can be observed that
the detected rectangle is not always as tight to the bar as it
could be, this could be solved by adding latex and excel images
to the dataset although it could be complex to get the pixel
location of each bar on these tools. In general, besides being
the only fully automatic tool, BARXTRACTOR performs well
on the chart images generated by all different tools.

To further evaluate the performance of these numerical ex-
traction methods, the UNCHARTIT tool was used to compare
the performance on finding the correct query for each problem.
These results were obtained using the extracted numerical
values from the images where the number of bars was correctly
identified. The extracted numerical values were provided to the
UNCHARTIT together with the original table of data. Using a
timeout of three minutes, Figure 7 show the success rate on
finding the correct query on the top-1, top-3, top-5 and top-10
candidates.

For latex images, it is possible to observe that the WEB-
PLOTDIGITIZER tool has a better performance, which is
expected since it has the lowest MAE for latex images. For
matlab images, the Faster R-CNN approach performs best on
UNCHARTIT followed by WEBPLOTDIGITIZER as expected
by the MAE results. The excel images results on UNCHARTIT
are also related to the MAE, since the Faster R-CNN has a
lower error, it helps UNCHARTIT perform better on finding
the correct query.

As expected, the success rate of synthesizing the correct
query in UNCHARTIT is correlated with finding a good ap-
proximation of the chart values.

2) Grouped and Stacked bar charts: To evaluate the
grouped and stacked bar charts 40 instances were extracted

8

In
st

an
ce

s
so

lv
ed

 (%
)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on latex bar charts

(a) Results on latex.
In

st
an

ce
s

so
lv

ed
 (%

)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on matlab bar charts

(b) Results on matlab.

In
st

an
ce

s
so

lv
ed

 (%
)

0%

25%

50%

75%

100%

top-1 top-3 top-5 top-10

WebPlotDigitizer EfficientNet-B7
BarXtractor

UnchartIt results on excel bar charts

(c) Results on excel.

Fig. 7. UNCHARTIT results on the number of queries solved both for latex (a), matlab (b) and excel (c) bar charts.

from Kaggle and grouped in specific ways. For instance,
Figure 6 is a result of grouping the obesity index (1-5) in
a school and by genders. With these 40 instances two visually
different plots were generated per instance, varying parameters
such as the colors and the spacing between bars. Generating
a total of 160 plots to evaluate the grouped bar charts and
another 160 to evaluate the stacked charts with the same data,
80 were generated on matlab and 80 were generated on excel.

The results of this evaluation on grouped bar charts shown
that in 95% (76/80) of the matlab charts the number of bars
and groups were correctly identified with a mean absolute
error of 0.053231 and a standard deviation of 0.115919. On
excel images 91.3% (73/80) were correctly identified with a
mean absolute error of 0.006493 and a standard deviation of
0.006037. Although matlab has a higher MAE it gets correct
on more difficult images and the error is more spread as we can
observe by the standard deviation. The network did not have
contact with excel images during the training phase unlike with
matlab images, thus getting correct more complicated cases.

Using the same data, 80 stacked bar charts were generated
in matlab and 80 on excel. The number of images with
correctly guessed number of bars is 98.8% (79/80) and 92.5%
(74/80) respectively for matlab and excel. For matlab images,
the MAE corresponds to 0.036683 with a standard deviation of
0.077973. For excel images the MAE corresponds to 0.014248
with a standard deviation of 0.029962. The same situation
happens here on matlab, as it gets more correct complex
images, the MAE is slightly higher but the standard deviation
is also higher. As for grouped bar charts this is also due to the
fact that the training was performed on matplotlib generated
images. On average the MAE is low for both tools.

The UNCHARTIT tool does not support multi-column output
tables, since its internal metrics would need to be adapted.
However, the MAE analysis for grouped and stacked bar charts
demonstrated to be similar to the MAE for simple bar charts.
The WEBPLOTDIGITIZER tool and the previous UNCHARTIT
approach are not able to extract data from grouped nor stacked
bar charts.

latex matlab excel

100% correct labels (no character differences) 70.6522% 79.3814% 65.7143%

Labels <=1 character difference 72.8261% 80.756% 77.1429%

Labels <=2 character differences 98.913% 99.6564% 97.8571%

Labels >2 character differences 1.087% 0.3436% 2.1429%

TABLE III
BAR LABELS SUCCESS RATE (NUMBER OF TOTALLY SUCCESSFUL READS)

B. OCR

In order to evaluate the precision of the the textual labels
extraction, more precisely on the bar labels, the same 50
instances on latex, matlab and excel were used. We evaluate
both the success rate on extracting the label fully correct and
the precision of the bar labels in these extraction, by checking
the number of differences found between the real bar label
characters and the extracted characters.

The metric considered for this evaluation is the medium
number of differences, being, the number of differences
needed to transform the characters recognized in the actual
characters of the label. A difference is considered when there
is the need to add a character (1) and to remove a character
(1). So when there is the situation of replacing a character,
that counts as 2 differences.

The results proved that each label need a medium number
of 0.59 character changes for latex, 0.40 character changes for
matlab and 0.63 for excel. Excel needs slightly more changes
because it uses different fonts for each theme, and some might
be more complex. Matlab has a simple font in all charts and
needs slightly less character changes. Overall these results are
promising since the medium number of character changes per
label is less than 1.

The success rate in this context is considered the number of
totally successful reads, meaning, the labels which characters
were 100% correctly recognized. By analyzing Table III we
can conclude that for at least 98% of all labels and tools the
number of differences is less or equal to 2, which means a
character replacement.

The results have shown that only two changes to the textual
label are enough. It could be useful to use these labels in the

9

UNCHARTIT synthesis tool by using an approximate string
matching with a maximum of two operations to correspond
the extracted labels from the chart to the column names of
the original table. To implement this, every column name of
the original table has to be compared with the extracted bar
label and be considered a match if the number of differences
is lower than two operations.

C. Classifier

In order to evaluate the classifier in an unbiased form, a
random 10% of each of the three dataset classes was separated
from the training set into a different folder for evaluation.
These images were not seen by the classifier during the
training phase. The evaluation images contain the charts used
in the training and evaluation of the numerical extraction
module and some real images from web. A total of 1130
images were used to perform this evaluation. The results show
that 93.5% of the simple bar charts, 92.0% of the grouped bar
charts and 92.4% of the stacked charts were correctly labeled.

The simple bar charts have two common situations where
they are mislabeled: when the bars are too close to each
other and when there is more than one bar color they may
be classified as a grouped bar chart. The same problem occurs
with stacked bar charts which may also be incorrectly labeled
as ’grouped’ when its bars have little distance between each
other. Grouped bar charts might also be classified as ’simple’
when there are two colors and one color’s bars are always
small. Simple and stacked bar charts may also be confused
when the colors are similar.

We could try to solve the problems mentioned above with
a bigger and more diverse dataset, and by applying a post
processing technique that solves some of these issues. For
instance, differentiating between simple and stacked bar charts
could be solved by checking if there is only one color in each
bar. The miss identification between grouped and simple could
be solved by checking if each bar has a label or more than
one bar per label as we already check with the Faster R-CNN.

D. Results’ summary

In summary, BARXTRACTOR is: 1) fully automatic; 2) able
to detect and support several bar chart types; 3) has better
or similar performance than previous tools that need input
from the user; 4) the incorporation of BARXTRACTOR in
UNCHARTIT allows to synthesize more SQL queries due to a
low MAE on the data extracted from charts.

V. CONCLUSIONS

This document presents the BARXTRACTOR tool, which
extracts the numerical and textual information from simple,
grouped and stacked bar charts. The tool can be summarized in
the following steps: 1) The user inputs the chart image. It can
be either a simple, grouped or stacked bar chart; 2) The image
is automatically classified into one of the three chart types; 3)
The corresponding Faster R-CNN model is employed on the
chart image for object detection. 4) Post processing techniques
are applied to resolve common problems in the extraction.

For instance, BARXTRACTOR can detect missing bars by
analyzing whether there is a label without a corresponding bar;
5) Each bar’s numerical information is automatically computed
using the y-axis extracted values, through OCR; 6) The results
are exported to a table containing each bar’s numerical values
and the corresponding textual labels.

One of the main BARXTRACTOR’s contributions is that the
extraction process is fully automatic. Previous tools always
needed input from the user. In BARXTRACTOR, the Faster R-
CNN detects the vertical axis’ numerical labels automatically
and extracts them using OCR.

Another contribution is that BARXTRACTOR can detect
missing bars, or bars with a value of zero, since it also extracts
the bar labels. In addition, our tool obtains the bar labels
and axis labels, which can be useful for the user, and for the
UNCHARTIT program synthesis stage.

The results obtained by BARXTRACTOR are promising
when compared to the previous UNCHARTIT approach and
to the WEBPLOTDIGITIZER tool. BARXTRACTOR proved to
be more flexible in terms of extracting values from chart
types generated by different tools. It can achieve low errors
when extracting from latex simple bar charts. However, even
without requiring human interaction, its results stand out on
bar charts generated through matlab and excel tools. Unlike
the other two tools, BARXTRACTOR is additionally able to
extract values from grouped and stacked bar charts, which
have similar extraction errors to the simple bar charts’ results.

A. Future Work

There are numerous ideas that should be further explored in
the future. Related to the UNCHARTIT tool, with BARXTRAC-
TOR one could minimize the number of generated candidates
queries by the synthesizer, or help in the candidate disam-
biguation, by using the textual labels extracted.

UNCHARTIT should also be generalized in order to be
able to synthesize extracted data from other table shapes.
For instance, BARXTRACTOR extracts data from grouped and
stacked bar charts which generate a table with more than one
column. However, at the moment, UNCHARTIT is only able to
synthesize tables with one column of data. If this is generalized
to other table shapes, UNCHARTIT will be able to receive data
from lots of other chart types.

Related to BARXTRACTOR, one relevant idea would be to
add chart images from the real wold to the Faster R-CNN
training dataset. Although these images are easy to obtain, it
is very time consuming to manually annotate the bounding
box and labels of every element detected in the chart.

By using similar approaches, BARXTRACTOR can also be
adapted to other chart types. For pie charts, detecting a bound-
ing box would not be precise on detecting each slice. Possible
solutions are using Mask R-CNN [35] to find the mask of each
slice. Or detecting the line limit of each slice [36]–[38], the
line that connects to the center of the pie. BARXTRACTOR’s
approach to detect the vertical axis’ numerical values and
convert the pixels into real data, can be useful for all the chart
types containing an axis.

10

ACKNOWLEDGMENT

This work was partially supported by Portuguese national
funds through FCT, Fundação para a Ciência e a Tecnologia,
under projects UIDB/50021/2020, DSAIPA/AI/0044/2018,
and project ANI 045917 funded by FEDER and FCT.

REFERENCES

[1] Rabah Al-Zaidy and C. Giles. Automatic extraction of data from bar
charts. pages 1–4, 10 2015.

[2] Abhijit Balaji, Thuvaarakkesh Ramanathan, and Venkateshwarlu
Sonathi. Chart-text: A fully automated chart image descriptor.
arXiv:1812.10636, 2018.

[3] Mathieu Cliche, David Rosenberg, Dhruv Madeka, and Connie Yee.
Scatteract: Automated extraction of data from scatter plots. In Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 135–150. Springer, 2017.

[4] Paramita De. Automatic data extraction from 2d and 3d pie chart images.
In 2018 IEEE 8th International Advance Computing Conference (IACC),
pages 20–25, 2018.

[5] Weihua Huang, Chew Lim Tan, and Wee Kheng Leow. Model-
based chart image recognition. In International workshop on graphics
recognition, pages 87–99. Springer, 2003.

[6] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in Hwang, Bong-
shin Lee, Bohyoung Kim, and Jinwook Seo. Chartsense: Interactive data
extraction from chart images. ACM, May 2017.

[7] Xiaoyi Liu, D. Klabjan, and P. Bless. Data extraction from charts via
single deep neural network. ArXiv, abs/1906.11906, 2019.

[8] Daniel Ramos, Jorge Pereira, Inês Lynce, Vasco Manquinho, and Ruben
Martins. UNCHARTIT: an interactive framework for program recovery
from charts. In 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, pages 175–186. IEEE, 2020.

[9] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh
Agrawala, and Jeffrey Heer. Revision: Automated classification, analysis
and redesign of chart images. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (UIST ’11),
pages 393–402. ACM, 2011.

[10] Fangfang Zhou, Yong Zhao, Wenjiang Chen, Yijing Tan, Yaqi Xu,
Yi Chen, Chao Liu, and Ying Zhao. Reverse-engineering bar charts
using neural networks. Journal of Visualization, 2020.

[11] A. Mishchenko and N. Vassilieva. Chart image understanding and
numerical data extraction. In 2011 Sixth International Conference on
Digital Information Management, pages 115–120, 2011.

[12] N Vassilieva and Y Fomina. Text detection in chart images. Pattern
recognition and image analysis, 23(1):139–144, 2013.

[13] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[14] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. Component-based synthesis of table consolidation and trans-
formation tasks from examples. ACM SIGPLAN Notices, 52(6):422–436,
2017.

[15] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program
synthesis using conflict-driven learning. ACM SIGPLAN Notices,
53(4):420–435, 2018.

[16] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Ja-
gadish. Foofah: Transforming data by example. In Proceedings of the
2017 ACM International Conference on Management of Data, pages
683–698, 2017.

[17] Dmitri V Kalashnikov, Laks VS Lakshmanan, and Divesh Srivastava.
Fastqre: Fast query reverse engineering. In Proceedings of the 2018
International Conference on Management of Data, pages 337–350, 2018.

[18] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing
highly expressive sql queries from input-output examples. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 452–466, 2017.

[19] Sai Zhang and Yuyin Sun. Automatically synthesizing sql queries
from input-output examples. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 224–234.
IEEE, 2013.

[20] WebPlotDigitizer Version 4.4. https://automeris.io/WebPlotDigitizer,
2020. Accessed: September 30, 2021.

[21] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, tools, and techniques to build intelligent
systems. O’Reilly Media, 2019.

[22] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks
for image classification: A comprehensive review. Neural computation,
29(9):2352–2449, 2017.

[23] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252,
2015.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[27] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop
Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song,
Sergio Guadarrama, and Kevin Murphy. Speed/accuracy trade-offs for
modern convolutional object detectors. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3296–3297,
2017.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37.
Springer, 2016.

[30] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances in neural
information processing systems, pages 379–387, 2016.

[31] X. Liu, B. Tang, Z. Wang, X. Xu, S. Pu, D. Tao, and M. Song. Chart
classification by combining deep convolutional networks and deep belief
networks. In 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pages 801–805, 2015.

[32] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[34] Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[35] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[36] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand
keypoint detection in single images using multiview bootstrapping. In
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1145–1153, 2017.

[37] Xiang Li, Jun Li, Xiaolin Hu, and Jian Yang. Line-cnn: End-to-end
traffic line detection with line proposal unit. IEEE Transactions on
Intelligent Transportation Systems, 21(1):248–258, 2019.

[38] Van Nhan Nguyen, Robert Jenssen, and Davide Roverso. Ls-net: Fast
single-shot line-segment detector. arXiv preprint arXiv:1912.09532,
2019.

11

