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Abstract

The development of authentication methods is an increasingly important topic, which is also the focus of

a wide discussion in the public sphere. Optical PUFs are a type of cryptographic device that leverages

the inherent randomness of certain objects (tokens) for authentication purposes, by probing them with

a coherent light, generating unique speckle patterns. However, a problem arises due to intra-variability,

where speckle patterns obtained from the same token can vary depending on the acquisition environ-

ment and system alignment. This work shows how a Physically Unclonable Function (PUF) system

utilizing tracing paper tokens can be employed for authentication purposes, despite the intra-variability

between acquired speckle pattern images. Two datasets were acquired with the purpose of simulating

intra-variability (turning the system ON and OFF and changing the camera positioning). Non-reflective

black tape around the region of interest was also used to automate the cropping process. In the pre-

processing stage, warping was performed, as well as pixel intensity normalization, followed by Gabor

Filtering. Two feature extraction methods were tested for hash generation using: (i) Discrete Cosine

Transform and (ii) Principal Component Analysis. Two classification approaches were tested: (i) a

Hamming Distance based classification and (ii) machine learning classifiers. For a data independent

method, the Discrete Cosine Transform (DCT) combined with Hamming Distance (HD)-based classifica-

tion achieved the best results. For a data dependent method, the Principal Component Analysis (PCA)

with machine learning classifiers performed the best overall. Gabor filtering provided an authentication

performance boost, but the kernels used may need to be calibrated between datasets.
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Resumo

O desenvolvimento de métodos de autenticação é um tema cada vez mais importante e também o

foco de ampla discussão no domı́nio público. As funções fisicamente não clonáveis (PUF) ópticas são

um tipo de dispositivo criptográfico que dá uso à aleatoriedade inerente de certos objectos (tokens)

que quando irradiados com luz coerente, produzem padrões de speckle únicos, podendo ser utiliza-

dos para fins de autenticação. Contudo, padrões de speckle obtidos pelo mesmo token podem variar

(intra-variabilidade) dependendo das condições de aquisição, impedindo a sua autenticação. Este tra-

balho demonstra como uma PUF que utiliza tokens de papel vegetal pode ser utilizada para fins de

autenticação, apesar da intra-variabilidade entre padrões de speckle adquiridos. Dois conjuntos de

dados foram adquiridos com a finalidade de simular intra-variabilidade (ligar e desligar o sistema e al-

terar o posicionamento da câmara). Para recorte automático da região de interesse das imagens foi

utilizada fita preta não refletiva. Na fase de pré-processamento foi também efetuado warping, bem

como normalização da intensidade dos pixels, seguida de filtragem de Gabor. Foram testados dois

métodos de extração de caracterı́sticas para gerar chaves: (i) Transformada Discreta de Cosseno (DCT)

e (ii) Análise de Componentes Principais (PCA). Utilizaram-se duas abordagens de classificação: (i)

baseada em distância de Hamming e (ii) classificadores de aprendizagem automática. Para uma abor-

dagem de dados independentes, a DCT combinada com uma classificação baseada em distância de

Hamming permitiu obter os melhores resultados. Para uma abordagem de dados dependentes, revelou

melhor desempenho a PCA combinada com classificadores de aprendizagem automática.
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Transformada Discreta de Fourier; Análise de Componentes Principais; Aprendizagem Automática;

Autenticação; Funções Fisicamente Não Clonáveis; Intra-Variabilidade; Transformada de Gabor;
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1.1 Motivation

The development of authentication methods is an increasingly important topic, which is also the focus

of a wide discussion in the public sphere. From maintaining security in communications to preventing

counterfeiting of documents, authentication has a necessary role in our society and everyday life. In-

ternational counterfeiting has negatively impacted a growing number of industries. The expansion of

counterfeiting into diverse areas means that damages from counterfeiting are measured not only in loss

of profit, but also in loss of jobs and even lives. Physically Unclonable Functions (PUFs) [7] present an

attractive solution to these exceedingly important problems. PUFs are physical devices characterized

by having uniquely random and practically impossible to reproduce structures, which can therefore be

used for authentication purposes.

1.2 Core Concepts

1.2.1 What are Optical PUFs?

(PUFs) are a type of cryptographic device that leverages the inherent randomness of certain objects as

an authentication token, which can be used as a fundamental layer in the design of security systems.

PUFs are characterized by challenge-response pairs, in which a certain input to the system generates

an uniquely related output. This behaviour can be interpreted as a one-way function, which is why these

devices are referred to as PUFs. The usage of physically unclonable functions has several advantages

[8]:

• The power consumption of these devices is usually lower and the hardware is easier and cheaper

to fabricate, when compared to other cryptographic digital systems. In fact, because the secret is

obtained from an intrinsic physical property of the device/material used, no power is required for

storing the characteristics from which the key will be derived.

• If a third party were to access the secret, that would have to be done while the system supplying

the PUF would be active.

• Keys generated from PUFs are much harder to replicate, given that the key itself is associated to

a physical property of the system, which is truly random.

PUFs exploit the inherent randomness introduced during the manufacturing of an object to produce

a unique ’fingerprint’. They are the physical equivalent of one-way mathematical transformations that,

upon external excitation, can generate irreversible responses. PUFs can be categorized in two classes

[8]: i) Weak PUFs; and ii) Strong PUFS. They differ in the amount of challenge/response pairs each
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one supports. Challenge/response pairs refer to the input/output relations each PUF has. In other

words, for each input or challenge given to the PUF, a certain output or response occurs. Weak PUFs

have few challenge/response pairs (in most cases only one) and are mostly used for secret key storage.

Strong PUFs have enough challenge/response pairs that within a limited time frame one can not feasibly

determine them all. This type of PUF is mostly used for authentication purposes.

There are many types of PUFs that exploit the randomness and features of different objects. This

thesis will focus on Optical PUFs. These consist of an inhomogeneous material that contains inherent

imperfections and random structures that, when challenged with a coherent light source, creates an

unique speckle image response. This speckle pattern, obtained from the scattering of light through

the object, can be used for authentication purposes. Image based PUFs are especially useful for anti-

counterfeiting purposes. Not only can an object be used to generate a cryptographic key, but this key

can also be used to authenticate the object itself.

Image-based PUFs are implementations of strong PUFs, so they are attractive for authentication

purposes. The majority of Optical PUFs consist of three primary components: i) a light source; ii) a

token produced with a physical scattering medium (an optical diffuser); and iii) an imaging device.

The light source illuminates the physical scattering medium that sits stationary along the light source

path. This creates a speckle pattern that is focused by a lens and projected in a target. This pattern is

then captured by the imaging device.

1.2.2 What is Perceptual Hashing?

Images taken from PUF tokens need to be aligned and normalised to be perceptually analysed and

matched for authentication purposes. Perceptual image hashing is required for this process, notably

as a tool to help overcome possible noise and distortions between token images. Perceptual hashing

consists of hash functions that produce similar hash values for similar input images. This can be used

for authentication purposes, like the authentication of optical PUF tokens. Perceptual hashing is the tool

that allows the translation of the unique ”fingerprint” obtained from a PUF token.

Perceptual hashing, in general, consists of three separate stages [9]: (i) pre-processing; (ii) percep-

tual feature extraction; and (iii) post-processing. The pre-processing and post-processing stages have

the purpose of getting a more robust hash, but are not mandatory.

Pre-processing typically includes filtering operations, with the purpose of removing unwanted vari-

ability, such as low-pass filtering, Gaussian blurring and order statistic filtering.

Perceptual feature extraction aims to achieve a robust operation, ensuring the image hashing algo-

rithm’s invariance to tampering and content-preserving attacks, as well as the ability to provide similar

hash values for similar input images, despite the distortions that may affect them [10]. Robustness

largely depends on the features extracted from the image, making the feature extraction stage crucial in
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the success of the image hashing process.

Post-processing can consist of operations such as quantization or compactation of features.

1.3 Problem Formulation

A common sheet of paper, for instance used as the support of an important document, can be used as an

optical diffuser, or token, since the microscopic structures of the paper diffuse light in random directions.

This token can be used to generate an unique speckle pattern when challenged with a coherent light.

This would be an example of a PUF system used for authentication purposes, where the sheet of paper

acts as the authentication token. As illustrated in Figure 1.1, the document can be authenticated by

generating a hash key from the perceptual analysis of the speckle image, obtained by the PUF system,

and matching it to the hash key value stored in a database.

Figure 1.1: Example of using PUFs for document authentication.

However, a problem arises due to the variability in challenge/response pairs. In fact, a same chal-

lenge can generate different responses depending on the time instant the image was recorded at.

The same light probing the document paper token, previously described, can generate slightly differ-

ent speckle patterns.

1.4 Objectives

The main objective of this thesis is to deal with the variations between different acquisitions from the

same token by developing a perceptual hash algorithm that is robust against intra-variability.

The goal is to test multiple perceptual hashing methods to understand what would holistically work

best in a PUF authentication system implementation. In a first step, the speckle pattern images obtained

will be processed, namely, cropped, scaled and corrected in illumination variations. This will yield images
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with standard geometry that can be compared to a reference. After this, perceptual hash algorithms can

be applied to the normalised images, to produce responses that are not affected by intra-variability. So,

in a given PUF, different acquisitions of the same challenge taken at different temporal instants will yield

the same responses. This will allow accurate authentication of PUF tokens.

The main methods for feature extraction utilized are the Discrete Cosine Transform (DCT) and Prin-

cipal Component Analysis (PCA). Several other techniques are also explored and utilized for the pre-

processing of speckle pattern images, like Oriented FAST and rotated BRIEF (ORB) and the Gabor

Transform.

The physical PUF system utilized was developed in [11], having been employed to acquire the

datasets used in this work.

1.5 Contributions

This dissertation shows how a PUF system utilizing tracing paper tokens can be employed for authenti-

cation purposes, despite the intra-variability between acquired speckle pattern images. The main con-

tributions of this present work are the following:

• An objective comparison between the application of the DCT and PCA for feature extraction in

speckle pattern images obtained from tracing paper tokens.

• An objective comparison between the usage of a normalized hamming distance based classifica-

tion or machine learning classifiers for the classification of speckle pattern images obtained from

tracing paper tokens.

• Fully implemented perceptual hashing based authentication algorithms, both data dependent and

independent, with proven efficacy in authenticating the considered PUF system, utilizing tracing

paper tokens.

• An automatic cropping and warping scheme that can be used to possibly use a smartphone as the

imaging device of this specific PUF system. This scheme consists on the usage of non-reflective

black tape to isolate the region of interest in the target of the PUF system, as well as the usage of

image processing tools, namely, thresholding, finding contours based on pixel intensity and ORB.

1.6 Dissertation Outline

This dissertation will is composed of six chapters, whose summarized contents are the following:
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• Introduction: In this chapter, the motivation for this dissertation is presented. Some core concepts

of this thesis are explained namely Optical PUFs and perceptual hashing. The base problem this

work aims to solve is also described.

• Review of Authentication Techniques using Optical Physical Unclonable Functions: In this

chapter, an overview of the concepts introduced in the previous chapter is presented. The state of

the art for optical PUF devices and perceptual hashing is presented. A review introducing image

and data processing methods, such as the DCT and PCA, as well as classification methods, is

also included.

• The PUF System Used: In this chapter, the physical PUF system used is described. The charac-

teristics of the acquired datasets are also explained.

• Proposed Approach for Authenticating a PUF: In this chapter, the proposed approach for au-

thenticating the PUF tokens, despite intra-variability, is explained. An introduction outlining the

desired features in this type of algorithms is also included. A brief discussion of the benefits of

each proposed approach concludes the chapter.

• Experimental Results: In this chapter, the experimental results obtained from the proposed al-

gorithms are presented and discussed. The parameter tuning done for each algorithm is also

described.

• Conclusion and Future Work: This chapter presents the conclusions of this work, as well as

possible approaches for future work.
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2.1 Overview of Optical PUFs

Even thought the concept of a PUF has been known for some time, it has gained traction mostly in

the last decade. Several implementations of PUF designs that have been documented and used with

success. As summarised in [1], the ”optical PUF’s physical mechanism relies on the random interference

pattern (speckle) created when a laser beam propagates through an inhomogeous material”.

Once a speckle pattern is captured by the imaging device, we would like to use it for image au-

thentication purposes. However, this acquisition process is expected to be affected by intra-variabily, as

when making different acquisitions in very similar conditions, the resulting pattern is expected to show

slight changes. Perceptual hashing can be employed to overcome this intra-variability between speckle

patterns of the same challenge, which would otherwise prevent it from being used for authentication

purposes. Features that are invariant to distortions and noise need to be extracted from the image,

through perceptual hashing. The hash value is then generated from these features, allowing the system

to overcome the expected intra-variability.

Optical PUF’s were first proposed by Pappu et al. [7]. In their implementation the light source can

move in a 3D space pointing to a stationary scattering medium. The challenge is the position of the

laser beam and the response is the speckle pattern recorded. The scattering medium considered was

composed of a large number of randomly positioned silica spheres embedded in hardened epoxy. Since

then, many iterations of this fundamental concept have been proposed.

A cost effective and relevant example of a PUF implementation is the called PaperSpeckle [12],

which consists of a portable paper fingerprinting system that can identify and authenticate paper. The

main use for this is to prevent document forgery and counterfeiting, which is a very relevant problem

around the world. In PaperSpeckle the paper works as the scattering medium, having random and

hard to replicate structures that create unique speckle images. PaperSpeckle showed that it is possible

to extract repeatable speckle patterns from microscopic regions of paper, with just paper, pen and a

microscope. These speckle patterns can then be turned into unique fingerprints associated with the

document. This is a robust PUF implementation.

Robustness is a characteristic of PUFs that is defined as the probability to reconstruct the output of a

PUF system that has been produced in setup mode [13]. In other words, a robust system is one that can

reproduce the same response to a certain challenge multiple times, overcoming any intra-variability that

may alter results. This is because the operations of the system must be time-invariant. PaperSpeckle

developed a fingerprinting algorithm that makes their system robust across adverse environmental con-

ditions. It consists of two operations, namely computing Gabor transforms combined with Singular Value

Decomposition (SVD) of a large matrix, which will be discussed later on.

Another relevant example is the implementation proposed by Mesaritakis et al. [1], where an optical

waveguide is used. This waveguide is a Polymer Optical Fiber (POF) that has inherent random physical
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Figure 2.1: Schematic of a standard optical PUF based on an optical diffuser. Taken from: [1]

features at the extremity of the fiber line (it’s facet). These defects may come from scratches, noise-

driven mechanical friction and irregularities from manufacturing. Given this, the facet can be used as an

ordinary optical diffuser. The light source is placed at the input of the line. The angle of the laser and the

wavelength of the light are the challenges. A schematic of this system is shown in Figure 2.1. It is noted

that the POF may also have irregularities, like scratches and manufacturing defects, along its sides.

This may alter the response in ways that are unaccounted for, which is why the length of the optical fiber

should be kept to a minimum. The ending facet has the same characteristics as the input one, working

as a second optical diffuser. The imaging device is set at this facet of the POF. Both of the facets

unique physical characteristics function as an authentication token in this implementation. In order to

combat intra-variability and generate time-invariant responses, as well as remove noise originated from

unwanted defects inherent to the system, the raw output captured by the imaging device of the PUF

is processed through fuzzy extractor techniques as well as hashing procedures, like the Gabor binary

method or the random binary method. These image processing methods are discussed later on.

Arppe-Tabbara et al. [2] also proposed and validated a versatile authentication system based on

optical PUFs. It’s main application lies in preventing counterfeiting of products, but can be applied

elsewhere. The system is based around tagging products with PUFs that can later be authenticated as

official. When the product is made, the manufacturer inserts into it a tamperproof tag, which consists

of a unique scattering of particles. The end-user can always validate whether the product is genuine

by authenticating it using the tag. Arppe-Tabbara et al. show that tags can be created from an array of

different carrier materials, such as epoxy and Polyvinyl Acetate (PVA), different inks and regular printing

technologies. The PUF’s imaging device is a smartphone fitted with a macro lens, which increases the

versatility of the system. An image of TiO2 in PVA is incorporated into a QR code, printed in office
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Figure 2.2: Operations performed when creating a digital identity for each PUF and its storage in a registry. Taken
from: [2]

quality paper and laminated, for validation purposes. The image, in this implementation, is taken with a

smartphone camera that is reasonably recent, and converted into an 8 bit grayscale PNG file. The image

is then cropped, rotated, scaled and corrected for aberrations. This results in an image with a standard

geometry that can be matched to the reference tag. This morphology transformation is possible due to

the application of a non-degenerate affine transformation from the four corners of any quadrilateral to any

other quadrilateral. By identifying the four corners of the QR code in the image taken, this transformation

can be computed. This is a robust process as corner identification is reliable and works well in good

lighting conditions. In the end, the inverse of the affine transformation is applied to the image which

makes it match the reference in terms of scale and morphology. Non-linear filters are also applied to

the image with the purpose of increasing the contrast and removing some noise. Matching isn’t done

by comparing both images pixel-by-pixel. Instead, key features are compared between the acquired

image and the reference, which increases robustness to noise and slight mismatches in morphology.

Low-dimensional feature representation falls short in representing the qualities of the tags, which makes

them difficult to counterfeit. Using the method described, with images of size 200 x 200 pixels, ensures

that each PUF’s acquired image can be recognised as unique. False positives where observed with

resolutions lower than 100 x 100 pixels, whereas higher resolutions resulted in larger files and slower

matching.

A schematic representation of the operations performed for creating a digital entry for each PUF is

shown in Figure 2.2. In a first step the PUF incorporated into the printed QR code is selected, aligned and

color-corrected. It is then digitised and stored in a registry. This system is relevant given that the PUF’s

imaging device is a smartphone with which a person takes the image. This introduces human error,

considerable variations in lighting conditions and angle of image capture, which in turn increases intra-

variability. However, several morphology transformations and feature matching were used to combat

that.
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2.2 Overview of Perceptual Hashing Methods

There are several methods of perceptual hashing that have been proposed over the last decades, each

with different approaches, and exploring distinct concepts. A recent publication by Du et al. [10] de-

scribes the results of a survey where they compare and categorise existing perceptual hashing methods.

They propose that perceptual hashing can be grouped into five main categories:

• Invariant feature transform methods - Methods in this category explore a representation of the

input image in a transformed domain. They generally have the advantage of being robust against

certain types of distortion and noise attacks. Wavelet and Quaternion based hash functions fall

under this category;

• Local feature methods - Methods in this category leverage local features that are invariant under

content preserving attacks. Feature-point based hash functions fall under this category, including

examples such as SIFT, Speeded up Robust Features (SURF) and ORB;

• Dimension reduction methods - Methods in this category make use of dimension reduction

techniques. SVD based hash functions fall under this category;

• Statistic feature methods - Methods in this category take advantage of image statistics for the

calculation of the hash value. Ring partition and invariant vector distance (RPIVD) and histogram

based hash functions fall under this category;

• Learning methods - Methods in this category take advantage of efficient learning algorithms that

can be implemented to generate hash values based on parameters learned from the training of

data;

Categorising perceptual hashing methods in this way makes sense since it encompasses most of the

existing methods. A simplified diagram of this categorisation is proposed in Figure 2.3. A few examples

of algorithms belonging to each category are presented below for illustration purposes.

Invariant feature transform methods make use of frequency coefficients in a transform domain.

The input image is transformed into the frequency domain so that it’s features depend on the image’s

frequency coefficients. These can be used to extract robust features from the image, making this type

of methods more robust to certain attacks and distortions. Fourier transform, Discrete Cosine transform

and Wavelet transform are a few of the transformations that can be considered. Different types of

transforms have different types of properties that the hashing approaches can exploit. Most of the

invariant feature transform based methods are robust against one or a few types of attacks. There is

not, as of yet, an universally robust method that can be applied to every scenario [10].
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Figure 2.3: Schematic of perceptual hashing methods.

Lei et al. proposed a perceptual hashing algorithm based on the Radon transform [14]. After the

transform was performed on the image the moment features in the projection space were calculated. To

resist rotation, the discrete Fourier transform was also applied on the moment features. The image hash

bits are finally obtained from the quantized magnitude of the significant coefficients from the discrete

Fourier transform. This algorithm was mainly focused on robustness. Another image hashing algorithm

that makes use of the Radon transform was proposed by Nguyen et al. [15]. Due to this transform’s

inherent invariance, the algorithm was robust against noise addition, JPEG compression, filtering and

geometrical distortions. A mechanism to make the hashing process dependent on a cryptographic key

was also implemented.

An example of a Quaternion-based image hashing algorithm is proposed by Yan et al., allowing a

better identification of localised attacks [16]. It used the Quaternion Fourier-Mellin transform to obtain

a geometric hash and the Quaternion Fourier transform to obtain a image feature hash. To improve

the robustness against localised tampering, an adaptive algorithm was also proposed to improve the

detection accuracy. A Quaternion is an hyper-complex number with four parts (three imaginary and one

real part), which can be used to represent color images. The Quaternion Fourier-Mellin is useful for

eliminating the influence of geometric distortions. Moreover, the Quaternion Fourier transform is used

to calculate coefficients, a selection of which being selected as the image feature hash used to detect

tampering.

Local feature methods are centred around the identification of corners, edges, salient regions and

so on. These are known as local feature patterns, which should be generally invariant and robust, since

image hashes should be the same between equal images even when one is tampered with. These types
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of methods are widely used for robust matching and object detection.

Feature point detection is important when it comes to robust feature extraction. Scale-invariant Fea-

ture Transform (SIFT) is a feature detection algorithm commonly used to extract key points from images

and provide a feature description of the image [17]. It operates in monochrome images to mitigate the

impact of varying lighting conditions. In order to perform reliable recognition of images, these points

are usually in high-contrast zones of the image, for example object edges, which are less affected by

different lighting, scaling or the addition of noise in the image. These features shouldn’t change their

relative distance to one another at different image acquisition moments, as that would mean that the ob-

ject, which they describe, had changed. SIFT key points are extracted from a series of differently scaled

and smoothed versions of the input image, to which the difference of Gaussian’s function (DoG) is ap-

plied. The maxima and minima of these results are the SIFT key points, which are obtained by applying

a high-pass filter on the extrema. Points of low contrast are discarded. To ensure a more stable and

robust matching, gradient, orientation and positions of each feature are determined [3]. A summarised

illustration of the SIFT algorithm operation is presented in Figure 2.4.

Figure 2.4: Illustration of the SIFT algorithm operation. Taken from: [3]

An example of an image hashing approach in this category, using SIFT, is proposed by Lv et al.,

consisting of a hashing approach using robust local feature points [18]. They incorporated the Harris

criterion with SIFT to detect the most stable and robust feature points, which are less likely to change
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with image processing attacks. To make this approach more robust, shape context was introduced into

the hash generation, creating a representation of the structure of the image, with the geometric distribu-

tion of the detected feature points being embedded into the hash. The proposed shape-context-based

hashes could also be used and implemented to detect localised content tampering. This was tested

with a database with over 107 000 images that were tampered with a wide range of distortions and

content-preserving attacks, showing the approach is robust, having an increase in performance under

geometric attacks such as rotation and brightness changes and comparable identification outcomes un-

der more classical distortions like blurring, noise addition and compression when compared to previously

proposed approaches.

Speeded up Robust Features (SURF) was proposed by Bay et al. as an approximation of SIFT

with the intention of outperforming it in terms of computational speed [19]. SURF also relies on Gaus-

sian scale space analysis of images. It uses a Hessian matrix-based measure for the detector and a

distribution-based descriptor. Features extracted by SURF are invariant to scale and rotation but have

limited affine invariance. One main advantage of SURF over SIFT is the lower computational cost.

Oriented FAST and Rotated BRIEF (ORB) was proposed by Rublee et al., using a modified Features

from Accelerated Segment Test (FAST) detection as well as direction-normalised Binary Robust Inde-

pendent Elementary Features (BRIEF) based descriptors, which are rotation invariant and resistant to

noise [4]. FAST finds corner keypoints using an augmented pyramid scheme for scale and a Harris

corner score to filter out poor quality points. A modified version of BRIEF descriptor was employed

to handle rotation attacks. ORB features are therefore invariant to rotation, scale and to limited affine

changes. An example of a typical matching result obtained by using ORB is shown in Figure 2.5.

Figure 2.5: Typical matching result by using ORB where the green lines are valid matched points and red circles
indicate unmatched ones. Taken from [4]

Local feature methods are generally robust, especially against geometric transforms like rotation
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attacks. This is an intrinsic advantage of local features based algorithms. However, there are a also few

limitations. One is that, given the variety in number of local feature points from image to image, the hash

size will vary and depend on the image size and texture. Another limitation, and perhaps more relevant

in the scope of this work, is that images with the same feature points may not have the same content.

This raises concerns about the perceptual hash algorithm’s security.

Dimension reduction methods capture the essential features that are invariant under many image

processing attacks. This type of methods are especially robust against geometric attacks, like rotations.

There are several dimension reduction techniques like Singular Value Decomposition (SVD), Locally

Linear Embedding (LLE), or Non-negative Matrix Factorisation (NMF), among others.

SVD is important because when applied to an image, the selected components capture the essence

of the geometric information and the semi-global features of the image. This was observed by Kozat et

al., whose experiments showed that these components of the SVD are mostly invariant under content-

preserving attacks [20]. SVD is widely applied in many perceptual hashing algorithms.

Ghouti et al. proposed a hashing algorithm aimed at coloured images, which is something that is

widely ignored in perceptual hashing as most algorithms are designed for gray-level images [21]. They

used Quaternion Singular Value Decomposition (Q-SVD), where quaternions represent extensions of

the 2D complex domain space to the 3D and 4D spaces. They concluded that Q-SVD provided the

best low-rank approximation of color images. This can be used to generate robust hash codes, that

consist of Q-SVD singular vectors, in an efficient manner. The proposed algorithm yielded the lowest

misclassification rate when compared to other SVD-based hashing algorithms. It also had better security

and robustness against standard attacks.

Statistics feature methods take advantage of the assumption that the relative relationship between

pixels remains the same after the image is tampered with some distortion attack. In these methods, the

hash value is generated from estimated statistical properties of the image, including histogram, mean,

variance, or moments of image blocks, amongst others.

Huang et al. proposed a hashing method targeting a good balance between robustness and dis-

crimination [22]. The proposed hashing method uses two types of complementary features: (i) global

statistical texture features; and ii) local invariant frequency features, using the DCT. Texture is a char-

acteristic inherent to all image surfaces, related for instance with the image gray-level statistics, or its

spatial distribution and structure, and the Gray Level Co-occurrence Matrix (GLCM) is used to describe

the texture of the image. GLCM calculates how many times pairs of pixels with specific values and spatial

relationship appear in the image, resulting in a co-occurrence matrix. From this matrix a set of statistical

features can be extracted, such as energy, contrast, correlation and homogeneity. Local feature based

methods are generally limited because of their locality aspect. This paper effectively combined these

coefficient features via DCT with global image texture, achieving a better balance between robustness
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and discrimination.

Statistic features methods, using statistical characteristics of the image, are generally robust against

distortions like noise and blurring. This means that they are largely invariant to tampering with content

preserving attacks to the image. However, this comes at the cost of distinctiveness, a very important

concern for the uniqueness of image hashes, which is relevant in the scope of PUF implementation.

Learning methods utilise training with data to provide a better binary representation of the image. It

is important to note that, although promising and avidly studied at the moment, there are still few studies

that have focused on applying these perceptual hashing methods to image authentication, which is

something that is important in the scope of the present work. Nevertheless, these types of algorithms

can produce high quality hashing, possibly with higher complexity, thus taking more processing time,

than data independent methods.

An analysis of how perceptual hashing is used in the actual implementation of optical PUFs is im-

portant. Different implementations work with different types of speckle patterns and need to overcome

different problems in order to make the system robust against varied operational settings. Speckle

patterns with no apparent or salient features are more challenging to implement, especially when the

system is meant to be used for authentication purposes. Good authentication results must be achieved

with good discrimination. Studies where the speckle pattern of the optical PUF was obtained from blank

paper or an optical fiber are the most relevant and therefore must be reviewed.

A general overview of an optical waveguide based PUF proposed by Mesaritakis et al. [1] was dis-

cussed earlier. The speckle pattern is created by the fiber’s facets which exhibit random defects. In order

to correct detrimental experimental noise and generate time invariant binary strings, the raw output of the

PUF is first processed through fuzzy extractor techniques. These techniques use fuzzy set theory [23] to

achieve more accurate filtering of the image. Fuzzy sets can be used for intensity transformations, like

contrast enhancement, which in turn makes features more apparent. When compared to, for example,

histogram equalisation, there is a considerable improvement in tonality, having a higher level of detail.

Fuzzy sets can also be used for spatial filtering, which can be utilised for boundary extraction between

regions in an image. This is useful for processing speckle patterns obtained from an optical waveguide,

for example, where the pattern is only a small portion of the image and the rest should not be consid-

ered for the generation of the hash value. These fuzzy extractor techniques are combined with hashing

approaches, like the random binary method or the Gabor binary method. In short, for the random binary

method, random pixels are chosen and sampled from the previously processed image. These are mul-

tiplied with a matrix containing entries randomly chosen from a normal distribution and then quantized

using the mean intensity of the image. If instead Gabor hashing is used, Gabor coefficients are chosen,

instead of pixels from the raw image, and post processing that involves Gabor filters is applied. These

metodologies are integrated in a general security framework.
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Gabor based hashing offers high robustness and discrimination, so it is attractive for feature extrac-

tion. It makes use of the Gabor transform and can effectively distinguish different patterns, so it has

been successfully applied in various applications [24], such as texture analysis, which is important in

this context, as we will see in the next section.

2.3 Gabor Transform for Speckle Pattern Analysis

Speckle patterns, in general, have very few predominant features. To improve their perceptual analysis,

the Gabor transform can be useful. Theoretically, Gabor filtering is closely related to the primary visual

cortex [25], in terms of perceiving texture and detecting edges. This makes it interesting for computer

vision purposes. It has been used in various applications like image coding, enhancement and compres-

sion. In the realm of optical PUFs, the Gabor transform is often used in speckle pattern authentication

systems.

A Gabor filter is a linear filter. In the spatial domain, it is derived from the modulation between a

Gaussian kernel and a sinusoidal plane wave. Because of this, the parameters of a 2-D Gabor function

include wavelength λ, orientation θ, phase offset φ, standard deviation of the Gaussian envelope σ as

well as aspect ratio γ < 1, and bandwidth b . The gabor kernel can be defined as:

g(x, y;λ, θ, φ, γ) = exp

(
− x′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
(2.1)

where

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ.

Due to the inherent orientation of a Gabor kernel, certain features of the unfiltered image that are

aligned with that orientation will become more prevalent in the filtered image. This means that different

orientations will be useful for different image types or purposes. The same goes for kernels with different

λ or kernels applied at specific locations. This allows Gabor filters to select specific features from images.

Different combinations of these parameters must be tested to understand which kernel, or kernels, better

accentuate and discriminate the intended features of the images. Usually, for these reasons, a Gabor

kernel bank is utilized. A Gabor kernel bank consists of multiple Gabor kernels with various distinct

λ and θ. In section we will see how different orientations and frequencies of Gabor kernels affect the

speckle patterns of the PUF system.

It is important to note that Gabor filtering is not intrinsically a feature extraction method, even though

it can be. It is mainly utilized as a pre-processing tool to accent features and improve discrimination and

robustness when combined with other methods, like the ones discussed earlier.
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In the first optical PUF implementation, proposed by Pappu et al. [7], Gabor filtering is utilized for

the generation of hash values. In short, speckle patterns are down-sampled by applying Gabor filters,

thresholding at zero and scaled down. This method can be represented as a multi-resolution pyramid,

in which a level of the pyramid refers to one iteration of filtering and sub-sampling of the image. At

each level of the pyramid, four Gabor kernels are utilized independently in four copies of the image.

The orientations of these four filters are θ = 0, 45, 90 and 135. However, it is important to note that,

in this implementation, only the two diagonal orientations are used. This is mainly due to the fact that

the values of the Gabor transform along the diagonals are much less sensitive to small changes in the

horizontal or vertical positioning of the token. After Gabor filtering, the filtered images are scaled down

by a factor of their measurements divided by the number of the level they are on.

Let’s assume, as an example, that at level 4 the four images have been sub-sampled to 30x40 pixels.

Because only the two diagonal orientations are used, the two images can be treated as a long string of

2400 bits. A subset of bits can be chosen as the fingerprint of the PUF token. Note that the images are

binary due to thresholding at zero. The hamming distances at level 4 proved to be small when comparing

hashes from the same token and large when comparing hashes from different tokens.

The work carried out by Pappu et al. not only introduced optical PUFs, but established the Gabor

transform as a capable tool for the analysis of these types of images. In the implementation of Paper-

Speckle [12], which was presented in section ??, the Gabor transform is also used. This implementation

consists of a PUF where the scattering medium is paper, which is highly related to the present work.

Here, the same hashing method as [7] is used. It is important to note that in both papers [12] , [7] only

the imaginary part of the Gabor wavelet is used to extract bits. By doing this, any illumination defects,

contrast variations or poor focus that are present in the speckle image are eliminated. This improves the

robustness of the system. After images are sub-sampled, the resulting bit sequence is converted into a

binary matrix, on which SVD is performed. The resulting singular values are used as the fingerprint of

the speckle pattern.

One potential caveat of conventional Gabor filtering is that the filter’s response to the input image is

sensitive to its orientation. This can be beneficial in some applications, but not in others. PUF systems

that utilize optical waveguides as scattering medium are more prone to rotation distortions, reducing

the effectiveness of Gabor filtering. However, the Gabor filter can be designed to be independent to

orientation, like the one proposed by Li et al. [24]. The inherent orientation of Gabor kernels can also

be utilized to add another layer of security to hashing algorithms, like in [26]. By dividing an image in

blocks, each one can be filtered independently, with various kernels of distinct orientations. A tent map

is utilized to generate different directions that can be replicated by saving the initial tent map values as

a helper secret key. Each block is filtered with a different, apparently random, direction, making the final

hash more secure.
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2.4 DCT Based Hashing Solutions

The Discrete Cosine Transform [27] is widely used in image processing. It has notable applications in

image compression, in methods like JPEG and HEIF, and perceptual hashing. Its image processing

applications rely on the premise that pixels in an image exhibit a certain level of correlation with their

neighbouring pixels.

Similarly to the Discrete Fourier Transform, the DCT expresses a signal in terms of a sum of cosine

functions with different frequencies and amplitudes. These frequency coefficients in the transformed

domain can translate image features that are robust against distortions and attacks. It uses only the

real part of the Fourier Transform, so it is computationally less taxing when compared to the Discrete

Fourier Transform and even the Fast Fourier Transform. Different variations of the DCT exist, but the

most common one is the type-II DCT.

The DCT is usually defined as

X[n] =

√
2

N
×
N−1∑
m=0

x[m]× cos(
(2m+ 1) ∗ nπ

2N
) (2.2)

, (n = 0, ..., N − 1).

Which can also be expressed as

X[n] =

N−1∑
m=0

c[n,m]× x[m] (2.3)

, (m,n = 0, ..., N − 1)

where c[n,m] is the DCT matrix and n and m are the row and column numbers, respectively. The

DCT matrix can be computed in advance, so equation 2.4 is useful for when the DCT is implemented in

code.

To use the DCT on two-dimensional signals, i.e. images, it needs to be extended to a two-dimensional

space. Because the DCT is a separable linear transformation, the 2-D DCT is a direct extension of the

one-dimensional case. It is equivalent to a 1-D DCT applied along a single dimension and another 1-D

DCT in the other dimension.

In the DCT matrix, the frequency of both vertical and horizontal components of the coefficients in-

crease with the line and column indexes. The first entry in the matrix is referred to as the DC coefficient.

Because most of the image information tends to be concentrated in a few low-frequency components

of the DCT, the low-frequency coefficients are generally robust against noise and variability. Thus, in

both image compression and image hashing, this property is used to represent the most perceptually

significant features.
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2.5 PCA Based Hashing Solutions

High dimensionality is a reoccurring challenge in several fields, including image matching and authenti-

cation. Images typically contain a large number of measurements (in the form of pixels) [6]. This makes

the task of finding matches in image datasets very time intensive and computationally taxing. However,

as it was shown earlier with the application of the DCT, images can be compressed. A lot of their relevant

information can be represented in a much lower-dimensional sub-space.

Principal Component Analyses (PCA) is a dimensionality reduction technique that is based around

the SVD. It is of great significance in the realm of probability and statistics, but also very commonly used

for data analysis and machine learning applications. It was first introduced over a hundred years ago,

so it is a very well established technique with a lot of theory behind it.

To introduce PCA theory, the SVD needs to be discussed. Singular Value Decomposition (SVD) al-

lows for the determination of a low-dimensional approximation of the high-dimensional data, with regard

to dominant patterns. The SVD provides a hierarchical representation of the data, analysing dominant

correlations, in terms of a new coordinate system.

In the perceptual hashing context, it is the optimal low-rank approximation of a matrix X that consists

of several concatenated columns. Each column consists of an image that is reshaped as a vector, where

each element corresponds to a pixel. This matrix can be decomposed in the following way:

X = UΣV T =

 | | |
u1 u2 ... un
| | |



σ1

σ2
...

σm


 | | |
v1 v2 ... vm
| | |

T (2.4)

Where U and V are unitary, or orthogonal, matrices and Σ is a diagonal matrix. Each matrix can

be interpreted in a physical way with regard to our perceptual hashing application. Let’s consider the

example of face recognition, where the N columns of X consist of reshaped pictures of faces:

• Each column of the matrix U is denoted as an ”eigenface”. The eigenfaces in U are hierarchically

arranged by the order of their ability to describe the variance between the pictures of faces that

make up the X matrix. The columns in U are all orthogonal and have unit length, so they provide

a basis for the N-dimensional vector space in which the columns of X can be represented.

• The values in the matrix Σ are the singular values, which are all non-negative. Singular values can

be viewed as scaling factors. They are also hierarchically arranged, where the first value of the

matrix is the largest.

• Each column of the transpose of the V matrix can be interpreted as the composition of the different

vectors of U that, when scaled by the singular value, make up a face, or column, in the X matrix.
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Images can be compressed, or have relevant features extracted from them, by selecting only a

portion of the first, most important vectors and highest valued singular values from matrices U , Σ and

V .

The PCA leverages the fact that dominant features in high-dimensional data, like images, can be well

described by a smaller set of values, that result from the SVD. PCA adds to the SVD by pre-processing

the data by mean subtraction and setting the variance to unity first. In this way, the PCA can be viewed as

the SVD on mean-subtracted data. Principal components (PC) make up the resulting coordinate system.

These PCs are orthogonal to each other but have maximal correlation with the actual measurements

that compose the initial data.

Let’s take a look at the computation of the generalized PCA. First, we compute the mean of all m

columns of matrix X:

ψ =
1

m

m∑
i=1

xi (2.5)

We then subtract the mean from each row, xi, in matrix X, which results in the mean-subtracted data

B:

bi = xi − ψ (2.6)

B =
[
b1 b2 ... bm

]
(2.7)

We can now apply SVD. The co-variance matrix of the rows of B results from

C =
1

n− 1
B ∗B (2.8)

The principal components can be obtained by computing the eigen-decomposition of C:

CV = V D (2.9)

where V is the matrix that contains the eigenvectors and D is a diagonal matrix that contains the

singular values. The principal components are the eigenvectors corresponding to a certain eigenvalue.

Considering the example of face recognition again, the PCA is applied to a dataset of pictures of

faces to extract the most dominant correlations between these images. From this decomposition, we are

left with a new coordinate system that is defined from a set of eigenfaces. New images, that we want to

recognize as faces in our dataset, can be represented in these coordinates by taking the scalar product

with each of the principal components. Images of the same person tend to cluster in the eigenface

space, allowing for their classification in this facial recognition system, as we will see in section 2.6. This
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also means that any generated hash value from images of the same person will be similar, allowing for

the successful application of classification algorithms.

2.6 Classification Algorithms

In the context of PUF authentication, hash generation is only a means to an end, which is classifica-

tion. After an hash is generated from a particular image, it needs to be classified. To accomplish this,

classifying algorithms are employed.

A normalized hamming distance (HD) classification approach is widely used in this space, with a

few notable mentions being [1], [7], [28]. The normalized hamming distance can be interpreted as the

number of different bits between two binary hashes of the same size. Because it is normalized, when

its value is zero, it means that both hashes are the same. On the contrary, if the hamming distance is

1, both hashes are 100% different. Utilizing a hamming distance threshold for classification means that,

in short, if the hamming distance between two hashes is below a certain threshold, they are considered

to be from the same image. A benefit of this classification approach is that it allows for the use of error

correction codes, which could be employed to improve the authentication performance of the entire PUF

system. It is also data independent, meaning it does not need a training set to be able to classify new

occurrences in a testing dataset.

Classification is also the driving force of machine learning. In the topics of authentication systems,

such as face recognition applications, machine learning plays an important role, and is served as the

fundamental technique in many existing literatures. Machine learning utilizes previously obtained data,

which is denominated as the training set, to make accurate predictions in new data, which is denom-

inated as the test set [5]. Machine learning classifiers aim to find a decision threshold, in the same

way as in a hamming distance classifier. When data that needs to be classified is multi-dimensional,

machine learning classifiers pose as a solution. And example of multi-dimensional data classification is

the eigenface example. Each principal component is a dimension of the data. A classification threshold

needs to be discerned for each principal component that is analysed. In figure 2.6, an example of a

decision threshold for a specific principal component of a dataset is presented. This decision threshold

is calculated with the purpose of separating as best as possible the differently labeled data.

In short, machine learning, for classification purposes, has two main categories: Unsupervised learn-

ing and supervised learning. Unsupervised learning uses an unlabeled dataset (i.e. the feature vectors

from the dataset don’t contain a label, like a specific PUF token) to train a certain model and then clas-

sifies new data based on it. PCA is an unsupervised learning technique, on which a vector space is

built so that new data can be projected upon it. This projected data tends to cluster when it is similar,
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Figure 2.6: An example of a decision threshold adapted to a specific dataset. Taken from [5]

therefore allowing it’s classification. The results from unsupervised learning could be further used for

supervised learning. Supervised learning utilizes labeled datasets to train a model and make predictions

on it.

In [5], categories of supervised learning are considered:

• Linear model: the model is specified as a linear combination of features.

• Parametric model: once the parameters of the model are learnt from the the training set, the

training set could be discarded and only the parameters saved.

• Non-Parametric model: the model assumes that similar feature vectors have similar labels. The

model finds similar feature instances in the training set, using a suitable measure, and determines

the final output label.

• Non-metric model: the model functions on feature vectors with elements of non-comparable data.

Comparable data would be, for example, 2 is closer to 1 than to 8. Non-metric models utilize data

without any natural similarity metric.

On Table 2.1, an overview of some important machine learning classifiers is presented. All four

algorithms employ different classification mechanisms.

Support vector machines (SVM) is one of the most successful classification algorithms developed to

date, being widely used and often providing results that are better than competing methods [6]. SVM

tries to make a decision boundary so that the separation between two classes the widest it can be. To

accomplish this, the distance between the decision threshold and the closest points from each class

(support vectors) are calculated. The hyperplane for which the margin is maximized is returned as

the optimal hyperplane. A linear classification problem is characterized by being solved with a simple
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Table 2.1: Overview and categorization of some widely used machine learning classifiers.

Method Category
Support vec-
tor machine
(Support Vector
Machines (SVM))

Linear Model

K-nearest neigh-
bors

Non-parametric
model

Decision tree Non-metric model
Random forest Mixed method

straight line that can classify all data considered. An example of this type of problem is shown in fig. 2.7,

where two generated hyperplanes are presented. A non-linear classification problem can not be solved

with a straight line. In SVM, in non-linear problems, the data is mapped into a higher dimensional space.

Afterwards, an optimal hyperplane is computed in this non-linear space.

Figure 2.7: An example of two hyperplanes maximally separating two classes. Taken from [6]

K-nearest neighbors is likely the simplest supervised learning algorithm to understand. Given a new

unlabeled data point xa, simply find the k nearest neighbouring points. The label of xa is determined by

the majority of the labels of the k nearest neighbours.

The decision tree is a hierarchical construct that looks for optimal ways to split the data in order to

provide a robust classification and regression. These decision trees generally lack robustness to different

samples of the data. Thus, random forest works by constructing various decision trees at training time.

New data is then classified by the class given as output by the majority of the trees.
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3.1 Introduction

This chapter covers, in a first section, the physical implementation of the PUF system that is used to

acquire the speckle pattern images utilized. This system was built in [11]. The system allows for the

usage of different types of tokens (different objects made of different materials). In this thesis, tokens

made of non-woven polyester paper are used.

In the following section, the process and characteristics of each obtained dataset are discussed.

In order to study how the impact of intra-variability can be reduced, we need to induce it purposefully.

Intra-variability is introduced in the system by switching it OFF and ON between different acquisitions

and changing the camera’s position in the system.

3.2 The PUF System

The physical experimental system used to obtain speckle pattern images is described in figure 3.1.

This system was developed in [11]. Because the focus of this work is on computer vision and hash

generation, this subsection will not be as detailed.

Figure 3.1: Illustration of the physical PUF system used to generate and acquire speckle pattern images.

The light source of this optical PUF system is a coherent He-Ne Laser (ref. HNLS008R by Thorlabs).

The beam passes through the PUF, which consists of a non-woven polyester paper fabric that is char-

acterized by being water resistant, capable of withstanding high mechanical strain and with a density of

250 g/cm2. This type of tracing paper was chosen because it is a translucent object, meaning that the

light emitted by the laser will be transmitted and result in a clear speckle pattern. The paper is placed in

a sample holder which consists of a compact structure covered with black tape to prevent any external

26



interference from light sources other than the laser. The light that passes through the PUF is directed

into a beam expander, that serves the purpose of increasing its diameter. The beam expander used

is the GBE20-A - 20X Achromatic Galilean Beam Expander (by Thorlabs). The speckle pattern is then

projected onto a sheet of paper with a black rectangle printed on it, acting as a target. The purpose of

this black rectangle is to have have a focus area of the speckle pattern which will later be perceptually

analysed. If the entire obtained image were to be analysed, some control over certain conditions of the

system would be lost (like camera focus a lighting conditions).

To acquire the images, the Camera Module V2 connected to a Raspberry PI is used. However, the

authentication algorithms developed should be robust enough to allow the use of other cameras, such

as a smartphone camera.

3.3 Image Acquisition

To test the authentication algorithms implemented, a dataset that purposefully introduces intra-variability

between acquisitions is necessary. The intra-variability that results from normal usage of the system is

the most relevant from an applicability of the algorithm’s point of view. The main objective is to make the

entire system (hardware + software) the most robust it can be in its normal usage. This means focusing

on the elements of the environment that vary the most between usages of the system.

To understand what varies the most between acquisitions taken at different times, it is important to

define how the system is operated. Initially, the laser is switched off. After a PUF token is inserted

the camera should be positioned in as close of a position as possible as previous acquisitions of the

same token. The paper token, which is placed under the sample holder, should also be positioned with

maximal aligning to prevent fluctuations in the speckle pattern.

The three main sources of intra-variability in the system identified were:

• Switching ON and OFF the entire system, creating a change in the phase of the optical signal.

• Changes in the orientation of the camera between 5º and 15º degrees in relation to the target.

• Changes in alignment of the PUF token in the mask.

However, in [11] it is stressed that token alignment is a key factor in the implementation of optical PUF

devices. In fact, even a small difference in the positioning of the PUF token in the mask can generate

an entirely different speckle pattern. This is because the structures of the paper function as a chaotic

system. This means that any variability introduced in this way will most likely render the acquisition

unusable, as authentication of the token will not be possible. Because of this, only the two first sources

of intra-variability were employed in the acquisition of the dataset.
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Two different datasets were obtained. In the first obtained dataset, four different tokens were utilized.

For each PUF token, certain rules were followed during the acquisition process:

• Switching OFF and ON the system between all acquisitions.

• Obtaining 50 acquisitions with a static camera.

• Obtaining 50 acquisitions while varying the camera orientation between 5º and 15º degrees in

relation to the target.

The difference between camera positioning/orientation is exemplified in image 3.2.

Figure 3.2: Exemplification of the variance introduced by changing the positioning/orientation of the camera; (a)
Camera; (b) Target; (c) PUF Token; (e) Beam Expander;

This translates into a dataset with 400 images. A sample speckle pattern image of this dataset A is

shown in figure 3.3

After testing was done with the described dataset A, some limitations needed to be addressed.

Particularly, an effort was made to aid the cropping of the black rectangle. To do this, a new dataset B
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Figure 3.3: Sample image belonging to the first dataset A.

Table 3.1: Overview of the obtained datasets.

Dataset PUF Token Conditions Notes

A

1AA Standard camera orientation

Standard target1AB Different camera orientations
1BA Standard camera orientation
1BB Different camera orientations

B

2AA Standard camera orientation Target with black tape
to reflect only the
contents of the

rectangle

2AB Different camera orientations
2BA Standard camera orientation
2BB Different camera orientations

was obtained. A black non-reflective tape was used on the outside of the black rectangle. This means

that the camera only captures the content on its inside. The same acquisition rules employed in the first

dataset were also used. This translates into a dataset with 400 images. A sample speckle pattern image

of this dataset is shown in figure 3.4.

With both datasets combined, 800 speckle pattern images are available to test the implemented au-

thentication algorithms that are described over the next chapter. An overview of the described datasets

is presented in table 3.1
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Figure 3.4: Sample image belonging to the second dataset, where black tape is utilized to aid in the cropping of the
speckle patterns.
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4.1 Introduction

This chapter covers the different implementations that were developed and analysed for generating

hashes and authenticating the PUF tokens. First, in this introductory section, the considered use cases

for the authentication with the PUF system are discussed. Potential application environments need

to be discussed so that any developed solution is tailored to them. The proposed approaches are

also discussed, along with some important characteristics that they should have in order to perform

adequately in a PUF context.

The remainder of this chapter is structured in the logical order of a perceptual hashing based au-

thentication algorithm, which has 5 main stages, as it is shown in section 4.1.2:

• Image Acquisition

• Pre-Processing

• Feature Extraction

• Quantization

• Classification

After this, a section detailing the pipelines of the different proposed approaches is presented.

From the methods covered in Chapter 2, a few were selected in each stage. In the pre-processing

phase, multiple methods were tested, namely ORB and the Hough transform. The Gabor transform is

also employed. For feature extraction, a decision was made to implement and compare the DCT and

PCA. As for classification of the resulting hashs, multiple machine learning classifiers are also utilized.

4.1.1 Desired Features in an Authentication Algorithm for PUFs

The main application scenario considered, aside from cryptographic key generation, is utilizing the PUF

system to authenticate important objects/documents.

There are certain requirements that should be met when developing a perceptual hashing algorithm

with the intent of authenticating speckle pattern images from a PUF system. These characteristics

largely vary depending on the use scenario the PUF system is going to be used, and on the PUF

system itself. For example, a system where the camera is static and there is no illumination variability

does not require the same features in a hashing algorithm as a system where the camera is not static

and illumination defects may occur. A scenario where the time it takes to authenticate a PUF token is

not one of the main concerns will also require different qualities in the hashing algorithm implemented.

Taking into consideration the PUF system used, there are two main application scenarios to be

considered:
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• A system with an integrated camera and computer, where registration and authentication time are

not the main concern. The main objective is to provide very accurate authentication results. This

could happen in the context of, for example, authenticating important documents or utilizing a PUF

to gain entry into a highly secure system.

• A system where the camera and computer are not inherently part of it. In this scenario, computa-

tional time of the implemented algorithm is considerably more important. This could happen in the

context of, for example, acquiring a speckle pattern image, with a smartphone, to authenticate a

piece of equipment that is tagged with a PUF.

In general, and considering the PUF system used in this thesis where the camera is not static and

the speckle pattern is projected in a target, the desired qualities in a hashing algorithm [7] should be:

• The algorithm must be computationally efficient. Depending on the use case, part of the algorithm

will run multiple times during registration, so it should be fast. Efficiency is an essential charac-

teristic that should have a large weight in deciding which hashing approaches fit best each use

case.

• The algorithm must offer sufficient distinguishability in order to allow the authentication of the

tokens. Ideally, some distance metric should be maximized when comparing two speckle patterns

from different PUF tokens and zero when comparing two speckle patterns derived from the same

PUF token.

• The algorithm should be susceptible to mathematical analysis, allowing the exploration and

characterization of its properties and performance through analytic expressions.

• The algorithm needs to be insensitive to global changes in ambient light level. In other words,

the algorithm shouldn’t have a dc response. Because the camera isn’t in a controlled environment,

there is no guarantee that the average intensity of the pixels in the acquired images will remain

constant over time.

• The algorithm should be insensitive to small changes in speckle patterns that lead to token

misregistration or misauthentication. Speckle patterns are highly sensitive to changes in position-

ing of the PUF token due to light being reflected towards a vast number of random directions inside

the structures of the optical diffuser. If the token moves, these directions change along with pattern

itself. The algorithm should accommodate, to a certain degree, these small changes in the speckle

patterns.

• The algorithm must be flexible enough to accommodate any changes in the positioning and

scale of the speckle pattern. Because the camera is not fixed, the speckle pattern can suffer
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warping and changes in positioning when acquiring an image, which should be accounted for

during the perceptual hashing phase of the system.

4.1.2 Proposed Approach

Each proposed approach can be divided into 5 distinct modules, which are represented in figure 4.1.

Figure 4.1: Diagram and description of each module in a perceptual hashing based authentication algorithm.

It is important to note that an authentication system has two distinct operational settings: a registra-

tion phase and an authentication phase. The registration phase encapsulates the procedure of regis-

tering a new item (a new PUF token) in the system. In this case, it consists of perceptually analysing

a speckle pattern image and generating an hash value. This value is then stored. The authentication

phase consists of the same process of analysing a new speckle pattern image and generating an hash

value for it. However, once this is done, the hash value is compared to all other previously registered

hashes and consequently classified as a certain PUF token. This process is presented in figure 4.2. In

short, the registration phase does not utilize the classification module.

For this study, it is intended to understand which methods of authentication best suit each use case

of the system. Particularly, comparing a DCT based approach (an invariant feature transform based

method, which is data independent) to a PCA based approach (a dimension reduction based method,

and thus a method that is dependent on the data used for training the system). These feature extraction
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Figure 4.2: (a) Registration phase of token A. A speckle pattern image of token A is acquired and an hash is gen-
erated and stored in a database; (b) Authentication phase of token A. A speckle pattern image of token
A is acquired, an hash is generated and compared to all other hashes in the database. Because it has
been previously registered, the authentication is correct; (c) Authentication phase for an unregistered
token. A speckle pattern image of token B is acquired, an hash is generated and compared to all other
hashes in the database. Because this token has not yet been registered, the authentication process
fails;
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techniques were chosen for comparison because one is data independent (DCT) and the other is data

dependent (PCA). In other words, the PCA depends on data that is used for training the system, while the

DCT does not require training. In this way, two very distinct approaches are tested. Each of these feature

extraction methods is then paired and tested alongside different classifying strategies: a simple hamming

distance threshold classification or a machine learning classifier (like Support Vector Machines). This

modular process of testing how the different feature extraction and classification methods work together,

in this context, gives us four distinct approaches, which are represented in Table 4.1.

Table 4.1: Authentication approaches implemented and tested.

Approach Feature Extraction Method Classification Method
Approach 1 DCT Hamming Distance Classification
Approach 2 DCT Machine Learning Classifier
Approach 3 PCA Hamming Distance Classification
Approach 4 PCA Machine Learning Classifier

In the following sections we will take a look at the pipeline of each of these approaches. In both

the DCT and PCA based approaches, a pre-processing stage is utilized to test filtering techniques to

improve robustness and discrimination of the system. Gabor filters and mean filters were tested and

compared.

4.2 Pre-Processing

The pre-processing module is always present in the proposed solutions, as it contributes decisively to

improve their robustness. This module has four steps:

• Conversion to grayscale.

• Perspective warping and cropping of the speckle pattern images.

• Image standardization, which includes image resizing and normalizing the intensity of all pixels.

• Gabor filtering.

In a first step, the raw input image is first converted to grayscale. The essential semantic information

resides in the luminance component, so the others can be discarded. Discarding color information also

makes the hashing process faster and allow the matching between identical speckle patterns that may

have slightly altered color spaces [29]. After this, the images are warped and cropped. This process is

described in detail in Section 4.2.1.

The image is then resized to 64x64 pixels, which is important for subsequent image matching opera-

tions. Resulting speckle pattern hashes will now match similar ones regardless their original dimensions
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and aspect ration. The smaller the images are resized to, the faster the algorithms will compute the hash

values. However, this comes at the cost of discrimination. Different image sizes were tested. The match-

ing capability of the algorithm and the time it took to hash all the images of different sizes is presented

in Section 5.2.2.

After this, the intensity of each pixel of the image is normalized following a correction ratio. This

makes each image have all pixels in a range of intensities from 0 to 255. Because there are variations

in illumination settings in the environment, as well as in the camera itself, it is important to equalize all

speckle pattern images to improve the robustness of the system.

Finally, Gabor filtering is applied. The filtering process is described in detail in Section 4.2.2. The

pre-processing stage is presented in Figure 4.3 as a block diagram.

Figure 4.3: Pre-processing diagram all implementations.

4.2.1 Warping and Cropping Speckle Pattern Images

The captured images contain some background, besides the speckle image. And, although a squared

region of interest is considered for authentication comparison, the variable positioning of the camera may

lead to distortions in the acquired images. Therefore, cropping and warping of the obtained images, to

select only the region of interest and in the desired rectangular format, are the first operation to be

performed towards improving the system’s authentication performance.

The process of cropping and warping the images can be structured into the following main steps:

• Detecting the black rectangle (possibly utilizing the Hough Transform, ORB, or the pixel intensity

values)

• Cropping the contents, to only keep the contents inside the black rectangle
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• Warping (using a set of points between the distorted and a default images, for finding the appro-

priate transformation parameters)

For applications like this, where we want to discriminate a geometric shape in our image, the Hough

transform would be a relevant option to test. Any longer line that would exist in the speckle pattern, like

the side of a rectangle, would be differentiated. However, a problem arises when we start to analyse the

speckle pattern images. Because there is a large number of very similar points, and the speckle pattern

slightly distorts the sides of the rectangle, the results are not satisfactory. In figure 4.4 an example

usage of Canny Edge Detection combined with the Hough Transform [30] in a speckle pattern image is

presented. The lines discriminated by the Hough transform appear in red. It is clear that there aren’t any

significant larger lines detected.

Figure 4.4: Hough transform combined with Canny edge detection.

For the first dataset, where black non-reflective tape is not used, cropping is done manually by selec-

tion of the area between the pixel coordinates that more or less coincide with the black rectangle. This

lack of discrimination of the black rectangle became a problem. In fact, the manual cropping process

takes a considerable ammount of time, making it impractical in the scope of an authentication algorithm.

However, dataset B was obtained with these problems in mind. With the non-reflective black tape around

the rectangle, it can easily be discriminated from the rest of the image, allowing for an automatic crop-
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ping process. To accomplish this, the image is converted to binary using a thresholding operation. This

improves the accuracy of contour discrimination. Contours can be described simply as a curve joining

all the continuous points, along a boundary, having the same intensity. Afterwards, a straight bounding

rectangle that encompasses the largest contour can be computed (this is done with OpenCV’s bound-

ingRect() function). The results are presented in figure 4.5. The images can then be cropped to the

coordinates of this rectangle.

Figure 4.5: Bounding rectangle (in white) computed that encompasses the entire region of interest of the speckle
pattern image.

In terms of warping, different approaches can be taken.

Feature point detection algorithms like ORB [4] or SIFT [17] are candidates to be tested. ORB was

implemented and tested. ORB features are invariant to rotation, scale and to limited affine changes,

making it an appropriate tool to use in this scenario. Because there are a lot of very similar points in

speckle patterns, the descriptor pairs may not be correct. A large subset of these key point pairs, with a

line connecting them is shown in Figure 4.6. It is clear that the majority of these matches is wrong, given

that the lines are not horizontal.
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Figure 4.6: Matched key points by ORB between images with different camera positions.

To find the correspondences that allow calculating the warping parameters between the distorted

image and the desired rectangle, we can use the key points obtained by ORB. However, as we have

seen, not all points will lead to a correctly warped image, as there are many incorrectly calculated

matches.

We assume that there is a subset of all found matches that will lead to a satisfactory warped image.

By ordering all matches in terms of their hamming distance, in an ascending order, the best ones can

be selected using a ratio. This ratio can be, for example, 20% of the top matches. Because we assume

that there is a subset of the best matches that will lead to satisfactory results, this ratio can be iterated

until we find it. This method utilizes the DCT to obtain a hash value for both images and compare their

hamming distances. We iterate through the different ratio values, warp the distorted image, apply the

DCT and calculate the hash values. There is a ratio value that will minimize the hamming distance

between these hashes. When this happens, we assume that the image was correctly warped.

In RBrder to remove the need to iterate through all possible ratio values, when the hamming distance

between the hash values is below a certain threshold we assume that the distorted image was correctly

warped. The proposed warping system architecture is presented in Figure 4.7. One way to improve the

performance of this algorithm is to keep only the ORB key points that are closest to the corners of the

image.

It is important to note that this warping algorithm is, in a way, an authentication method as well. The

algorithm could be applied to each token that is registered and stored in our system. Here we would

have to store each speckle pattern image. In each algorithm run (for each unauthenticated image -

registered image pair), the lowest hamming distance is kept. The image is then authenticated as the
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Figure 4.7: Diagram of the warping algorithm implemented, utilizing ORB and DCT.

token that provided the lowest hamming distance, if that hamming distance is below a certain threshold

(this prevents an image of a token that isn’t yet registered in the system to be wrongfully authenticated).

This warping algorithm could be combined with the approaches that will be presented over the following

sections to improve robustness and authentication performance.

4.2.2 Gabor Filtering

There are multiple image processing schemes devised around the application of Gabor kernels for tex-

ture and pattern analysis. Filtering can improve the robustness of the final algorithm by minimizing the

impact of small distortions and variability in speckle pattern images. Kernels with different frequencies

were tested. These results are presented in section 5.2.2.B. The final implementation utilizes a single

Gabor kernel with a 45º degree diagonal orientation. As it was shown in [7], diagonally orientated Gabor

kernels emphasize diagonal features in the speckle pattern, reducing the effect of unwanted horizontal

or vertical movement in the token image. A comparison of a diagonal kernel with an horizontal kernel

is shown in figure 4.8. The same kernels were applied on two images of the same token: one with the

camera in a standard position and another with the camera in a non-standard position.

One of the ways intra-variability is introduced in the system is by altering the position of the camera,

which mainly warps and moves the speckle pattern along an horizontal axis. This step should improve

the performance of the algorithms.
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Figure 4.8: Comparison of Gabor kernels with a diagonal orientation and an horizontal orientation. A larger varia-
tion can be seen between images filtered with an horizontal kernel: a) 45º Gabor Kernel with standard
camera position; b) 45º Gabor Kernel with different camera position; c) 180º Gabor Kernel with standard
camera position; d) 180ª Gabor Kernel with different camera position;

4.3 Feature Extraction and Hash Generation

4.3.1 DCT for Feature Extraction

In this section we will take a look at the pipelines of the different implemented algorithms that use the

DCT for feature extraction.

The DCT is applied, resulting in the DCT coefficients matrix. To obtain a one-dimensional array, a

zig-zag type scan is utilized, as the DCT tends to compact most of the energy in the first coefficients

of the matrix, as it is possible to see in figure 4.9. As it has been previously described, the upper left

corner tends to concentrate the majority of the low-frequency components of the image, as well as the

DC component in the first entry.
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Figure 4.9: Example of a DCT matrix obtained from a 64x64 resized speckle pattern. Most of the energy tends to
be compacted in the first coefficients of the matrix, i.e. the upper left corner.

The DC coefficient is discarded as it does not translate any discriminating information from the im-

ages. This results in a vector of coefficients, which will be the hash value of the image. Because the

initial coefficients hold the majority of the image’s energy, the final hash does not need to contain all

coefficients given by the DCT. More coefficients in the final hash will translate more of the image’s data.

However, the hashes will take up more space in memory and hash matching algorithms, i.e. the classi-

fiers will take longer to compute the results. From the research done in [11], for this type of PUF token,

a 64 bit hash provides sufficient discrimination between different paper tokens. Hash sizes of 64 bits are

also common in cryptographic studies [31], [32]. Because of this, the DCT based algorithms generate

hashes with 64 bits.

Finally, the resulting array is quantized into the final hash, so that the sequence can be normalized

into a binary form. The conditions for the quantization are

hi =

{
0, if Ci < m

1, if Ci ≥ m
(4.1)

where hi is the hash value, Ci is the coefficient of the array and m is the mean of all the coefficients.

So any coefficients that are above the median value are declared to 1, and any below as 0. Quantization

is necessary for hamming distance calculation. There are several quantization schemes, some more

complex than others. The applied mean based quantization is taken from [29], which showed good

results in conjunction with the DCT.
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4.3.2 PCA for Feature Extraction

As it was said in previous sections, Principal Component Analysis is a data dependent method of feature

extraction. This means that it needs a training set to extract predominant patterns from. After the token

images are pre-processed, they are reshaped into a vector with one dimension. This vector is then

appended to a larger matrix tha1t contains all other vectors from reshaped images of tokens already

registered in the system. This matrix serves as a vector space for other token images to be projected

upon [33], returning weighted coefficients, that allow for their classification.

The resulting hash is then quantized in the same way as in the DCT based approaches.

4.4 Classification

There are two different means of classification utilized in this dissertation. One is a normalized hamming

distance threshold based classification and the other consists of machine learning classifiers.

Because a normalized hamming distance threshold based classification algorithm is data indepen-

dent, it is interesting to compare to other data dependent methods, like supervised learning techniques.

The hamming distance obtained from two images of the same PUF token is denominated intra-HD, while

the one obtained from two images of different PUF tokens is denominated inter-HD. In these types of

classification problems, the HDs are represented in a histogram and can be described by a Gaussian

probability density function. The mean (µ) and variance (σ2) values of this Gaussian distribution function

can be utilized to evaluate the robustness of the system. More distant mean values of the intra-HDs and

inter-HDs translate in a better classification capacity. Lower variance also makes a correct classification

more likely.

Utilizing a hamming distance threshold for classification means that, in short, if the hamming distance

between two hashes is below a certain threshold, they are considered to be from the same PUF token.

This threshold can be calculated with the mean values of the intra and inter Hamming distances, as well

as their variances [34]:
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(µaσ

2
b − µbσ2

a)±
√
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b )(µ2
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2
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pa and pb are the error probabilities associated with the intra-HD and the inter-HD distributions. In

this problem, these values are assumed to be 0.5, as there is 50% probability of considering a hamming

distance to be intra or inter. The error probability associated with this threshold can also be calculated:

PoE(λ) =
pa√
2πσ2
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From Equation (4.3) the False Positive Rate, which is the sum of the probabilities of misclassifying a

different token, and the False Negative Rate, which is the sum of the probabilities of misclassifying an

incorrect token, can be obtained.

Because of intra-variability, there will almost always be a certain degree of difference between all

hashes. With this approach, after a feature vector is generated from a feature extraction method, there is

a need for it to be binary, to then calculate the hamming distances between hashes. Like it was described

in the previous section, hash vectors are quantized into binary form after the DCT or PCA is applied.

On the other hand, when using machine learning classifiers, there is no need for the quantization of the

generated hashes.

Four different machine learning classifiers were selected to holistically understand what works best.

Each of these supervised learning techniques can be organized in different categories [5]. These ma-

chine learning classifiers and their organization are presented in table 4.2.

Table 4.2: Overview and categorization of the machine learning classifiers tested in the implemented algorithms.

Method Category
Support vector ma-
chine (SVM)

Linear Model

K-nearest neigh-
bors

Non-parametric
model

Decision tree Non-metric model
Random forest Mixed method

Each of these methods treat the input dataset in distinct ways, possibly posing different benefits and

downsides.

4.5 Pipelines of the Proposed Approaches

4.5.1 DCT Based Approaches

It is important to detail how the previously described steps fit in an application with a registration and

an authentication phase. Here approach 1 (DCT based hashing + hamming distance classification) and

approach 2 (DCT based hashing + machine learning classifier), presented in Table 4.1, are considered.

The pipeline for approach 1 is presented in images 4.10 and 4.11. In the registration phase, a token

image is taken and a hash is generated, which is then stored in a database.

In the authentication phase the process is similar. A new token image is taken and a hash is gen-

erated with the same parameters used in the registration phase. This hash is then compared to every

other hash in the database via hamming distance. If the hamming distance of two certain hash values
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Figure 4.10: Registration Phase - Approach 1: Pipeline for the registration of new tokens with a hamming distance
based classification.

is bellow a certain threshold, the token is authenticated. This works on the basis that hash values from

different tokens have a lot more differences in their binary string when compared to hash values from

the same token.

Figure 4.11: Authentication Phase - Approach 1: Pipeline for the authentication of tokens against registered tokens
in a database with a hamming distance based classification.

The pipeline for approach 2 is presented in images 4.12 and 4.13. Note that here, when a certain

token is registered, multiple speckle pattern images must be provided. This is because a classifier needs

to be trained to later properly authenticate any other hash value it receives in the authentication phase.

The more token images supplied in this phase, the better the authentication performance will be (up to

a certain degree, or else overfitting might become an issue). Because a machine learning classifier is

used, there is no need for the quantization of the hash values, which allows for the preservation of some

information that would be lost through binarization.
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Figure 4.12: Registration Phase - Approach 2: Pipeline for the registration of new tokens utilizing the DCT and a
Classifier.

The authentication phase of approach 2 is similar to approach 1 except the generated hash value is

not quantized and it is classified through a machine learning classifier. Several of these classifiers were

tested and the results obtained are presented in section ??.

Figure 4.13: Authentication Phase - Approach 2: Pipeline for the authentication of tokens against other registered
tokens in a database utilizing the DCT and a Classifier.

4.5.2 PCA Based Approaches

In this section the pipelines of the different implemented algorithms that use the PCA for feature extrac-

tion are presented.

First approach number three from Table 4.1, where a hamming distance based classification is em-

ployed, should be discussed. PCA requires multiple training images to create a vector space on which

new unauthenticated images will be projected upon [33]. Because of this, the pipeline for the algorithm

using a hamming distance threshold based classification becomes slightly more complicated. Not only
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is there a need for multiple speckle pattern images to register a certain PUF token, but another prototype

image of the same speckle pattern is required to generate a hash value. This prototype image will be

projected on to the created vector space, and the weights of the principal components will be quantized

into a binary hash. The quantization scheme used, as it was previously mentioned, is the same as in

the DCT based implementations. The registration phase is presented in figure 4.14.

Figure 4.14: Registration Phase - Approach 3: Registration phase for the PCA based implementation using a hash
hamming distance threshold as classification. Multiple token images are used to create a matrix on
which PCA is applied and a final token image is used to generate an actual hash value for the PUF
token.

In the authentication phase, it is necessary to pull data from databases on two distinct instances, as

illustrated in figure 4.15. Firstly, after pre-processing, the PCA transformed image matrix is necessary for

feature extraction. In short, an hash value is generated in the same way as in the registration phase for

the prototype image. Mean based quantization is also done. Once the hash value of the unauthenticated

token image is calculated, it is then compared, via hamming distance, to every other hash that is already

registered in the system. If a certain hamming distance between two hashes is below a certain threshold,

they are considered to be from the same PUF token.

Next, approach number four, where classifiers are used to authenticate token images, is considered.

The same concept remains, where multiple speckle pattern images are necessary to register a new

token in the system. Once these images have been pre-processed and reshaped as vectors, they are

appended to a larger matrix that contains all images already registered in the system. The PCA is then

computed on this matrix and the initial pre-processed images are projected on the generated space, in

order to extract predominant features in them. The resulting hashes are then stored in a database and
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Figure 4.15: Authentication Phase - Approach 3: Authentication phase for the PCA based implementation using a
hash hamming distance threshold as classification. Data needs to be pulled from databases in two
separate instances during the authentication process.

used to train a classifier. Note that, a machine learning classifier is used in this implementation, there is

no need for binarizing the resulting hashes, which in this context will prove to show significantly better

results. The registration phase is shown in figure 4.16.

Figure 4.16: Registration Phase - Approach 4: Registration phase for the PCA based implementation using a clas-
sifier. Multiple token images are used to create a matrix on which PCA is applied and the generated
hashes are used to train a classifier.

In the authentication phase, the features from the pre-processed token images are extracted using

the PCA matrix created and continuously updated during registration phases. The generated hash is

then given has input to the previously trained classifier and, if the token has already been registered in
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the system, the authentication is successful. A diagram containing this process is shown in figure 4.17.

Figure 4.17: Authentication Phase - Approach 4: Authentication phase for the PCA based implementation using a
classifier.

4.6 Discussion of the Proposed Approaches

It is clear that there are inherent differences between the proposed authentication methods. These

differences can be selective in the sense that a method would work in a certain application scenario, but

not in another. An objective analysis of the advantages and drawbacks of all implemented approaches

is important to aid their selection for specific purposes. The main application scenario, aside from

cryptographic key generation, is utilizing the PUF system to authenticate important objects/documents.

However, in what circumstances and environment this authentication process occurs is what makes

some methods better than others. Not only in terms of speed and performance, but also in terms of

inherent concepts of the implementations. For example, some approaches have features that could be

problematic in a security perspective, i.e. storing the full speckle pattern image in a database.

4.6.1 Advantages and Drawbacks: Gabor filtering

Gabor filtering is an important step in these implementations to improve their robustness and discrimi-

nation, allowing for a better authentication performance. It is also utilized in all proposed approaches.

Gabor kernels can emphasize features that are more robust through different acquisitions of the same
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token. These are, in this specific type of token (paper tokens), diagonal features of the speckle pattern.

However, as we have seen in chapter 2, it also has it´s drawbacks. Gabor Kernels have an inherent

orientation, making the filtering process sensitive to rotation attacks. One main drawback derived from

this fact is that, in certain types of PUFs, unwanted rotation of the token is a common problem. In

paper based PUFs though, rotation of the token is less likely when compared to, for example, optical

waveguide based PUFs. If the algorithms implemented in this Thesis were to be applied in these types

of PUFs, the rotation sensitivity of Gabor filters would be an important topic to study. There have been

various proposed implementations of rotation invariant Gabor filters, like [24], [35] or [36], which could

be combined with the proposed approaches of this present work.

4.6.2 Advantages and Drawbacks: DCT versus PCA Based Approaches for the

PUF Scenario

The clear main advantage of the DCT based approaches is that there is no need to store the actual

speckle pattern images. This means that there is only one database to store the already computed

hash values, which obviously take up significantly less space than entire speckle pattern images. This

is because the DCT is data-independent, and does not need a dataset to be defined against. The

PCA needs to be defined with respect to a certain dataset, which would need to be stored in another

database. When a new token image is registered, its speckle pattern images are stored in this database

and the PCA is computed again. This makes the PCA based approaches require significantly more

memory than the DCT based ones. It is important to note, however, that we only need to keep adding

new speckle pattern images to the matrix, on which PCA is computed on, until we have an eigenspace

large enough to faithfully describe any new speckle pattern that is not yet registered in the system.
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5.1 Introduction

After implementing the previously described algorithms, it is essential to analyse how they perform with

both obtained datasets. This chapter covers the results obtained for each of the implemented methods

with different classification approaches.

First, a brief overview of the experimental setup is presented. In this section, the metrics utilized

to evaluate the results are discussed, as well as the parameter tuning that was performed to tailor the

developed algorithms to the obtained datasets. The computational resources utilized are also presented.

Afterwards, the obtained results are presented and discussed. A brief discussion of possible appli-

cations of each method, in the light of the obtained results, is also done.

5.2 Experimental Setup

In this section, the experimental setup for the testing of the implemented algorithms is presented. In

regards to data used for testing, as it was previously described in Section 3.3, two datasets (dataset A

and dataset B) were considered. Each dataset utilizes 4 different PUF tokens and contains 400 images

(100 for each token under different conditions).

It is important to note that all methods (except the PCA and machine learning classifiers) utilized in

these algorithms are from the OpenCV Python package. The PCA implementation and machine learning

classifiers utilized belong to Scikit Learns’s Python package

5.2.1 Evaluation Metrics

First, it is important to define the evaluation metrics utilized in this chapter. In general, the classification

measures obtained in these types of problems are defined in a confusion matrix [37]. An example of a

confusion matrix for a binary classification problem is shown in table 5.1.

Table 5.1: Confusion matrix for a binary classification problem.

Predicted Class
True Class Positive Negative
Positive TP FN
Negative FP TN

Where the concepts true positive (TP), false negative (FN), false positive (FP) and true negative (TN)

can be explained as:

• True positive means it was correctly predicted as positive.

• False negative means it was incorrectly predicted as negative.
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• False positive means it was incorrectly predicted as positive.

• True negative means it was correctly predicted as negative.

The accuracy rate (Acc), which can be derived from the confusion matrix, is a widely used and

practical evaluation metric. It evaluates the performance of the classifier by means of its percentage of

correct predictions. The Acc is computed as in Equation (5.1).

Acc =
TN + TP

FN + FP + TN + TP
(5.1)

The error rate (Ecc) is another useful metric, which translates the percentage of incorrect predictions

done by the classifier. Both the Acc and Ecc are general measurements that can be extended to multi-

class classification problems. The Ecc is computed as in Equation (5.2).

Ecc =
FN + FP

FN + FP + TN + TP
= 1−Acc (5.2)

To evaluate the performance of each proposed approach, the Acc and Ecc are utilized.

5.2.2 Parameter Tuning

Several different tools are used in the implementations of the proposed solutions. Each of these methods

and processes have parameters that need to be tailored to their application environment. In this section,

the choices for what parameters to use for each process will be discussed.

5.2.2.A Speckle Pattern Image Resizing

First, the size to which images should be resized to should be discussed. This choice, specifically for

authentication purposes, can be troublesome in certain applications. On one hand, keeping large images

can provide better discrimination and robustness. However, it comes at the cost of drastically increasing

computational times. On the other hand, reducing image sizes can negatively impact authentication

results, but authentication and registration times are much lower. In the end, an adjustment should be

done taking into consideration the application scenario, with the intent of minimizing the computational

effort while achieving the desired levels of discrimination and robustness of the algorithm.

In this analysis, image sizes will be chosen with the aim of keeping processing times low, while

achieving satisfactory authentication results. Based on some past research [29], from which the DCT

based proposed approaches are based on, resizing images to 32x32 pixels seems to work well. When it

comes to the PCA based approaches, it has been shown by Yuen et al. [38] and also in [39] that a face

image with a resolution of 16×16 is enough for authentication using PCA. Because of this, we consider

the DCT based approaches as the bottleneck in image size selection. With this in consideration, for the
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tests to decide what image size to use, the DCT is utilized. Image sizes from 16x16 to 512x512 are

examined. The process consists of the following steps:

1. Resize all images to a specific size from the following set: [16x16, 32x32, 64x64, 128x128,

256x256, 512x512]

2. Use approach 1, described in Section 4.3, without the Gabor filtering module, to calculate a hash

value in a subset of the dataset. To reduce the computational burden, only 5 images of each token

are used for this purpose. The reason Gabor filtering is not used at this stage is because the filters

need to be tailored to each image size, and therefore image size selection should be done before

analysing which Gabor kernels work best.

3. Compare the hamming distance of each image with every other image in the subset of the dataset.

4. Store the mean of the hamming distance values for each image against images of the same token

and the mean of the hamming distance values for each image against images different tokens.

5. Store the time taken to complete this process.

6. Repeat the process with different image sizes.

The most suitable image size is then selected with the purpose of maximizing the difference between

the mean inter-hamming distance (between images of different tokens) and the mean intra-hamming

distance (between images of the same token), as well as the computational time taken. This is plotted,

for each image size, in Figure 5.1.

In this figure, each dot is the average result for a specific image size. On the y axis we have the

difference between the mean inter hamming distance and the mean intra hamming distance. On the x

axis the time it took to process the entire subset of the dataset is displayed. It is clear that resizing images

to 16x16 or 32x32 provides the worst performance in terms of authentication capability and resizing to

512x512 takes considerably longer to process. The optimal image size will be the one closest to the

”elbow” of the blue line, i.e. 64x64. Resizing images to 64x64 provides nearly as much authentication

capability as bigger image sizes and is just a little slower than smaller image sizes.

It is important to decide on the image size to be used for all the proposed algorithms, in order to

select the optimal setting of the Gabor filters, as the results obtained with a specific Gabor kernel are

dependent on image size.
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Figure 5.1: Impact of resizing the speckle pattern images to different sizes in terms of computational time taken
and hamming distance difference between the same tokens and different tokens.

5.2.2.B Gabor Kernel Parameters

Once the image size is selected, the Gabor kernel utilized should be discussed. When generating

Gabor kernels, three parameters have a larger impact, in the resulting filtered image, when compared

to the others. These are the wavelength (or frequency), orientation and the scale of the kernel [40].

A limited number of Gabor kernels in a subset of the full parameter space is considered to reduce the

computational cost of this analysis. For instance, the orientation of the Gabor kernel will be kept at
π
4 relative to the x axis. As explained in the previous chapter, this orientation reduces the impact of

unwanted vertical and horizontal changes in camera positioning. The size of the kernel will also be

set at 3x3, as it is one of the most common choices [41]. This reduces computational time, which is

especially important when training machine learning classifiers and calculating the PCA. This means

that the only variable left to be selected is the frequency of the kernel.

Gabor kernels, as described in Section 2.3, have a real and imaginary part. In [7] it was shown

how the imaginary part of Gabor kernels are less affected by changes on the ambient light level of the

speckle image. Because there are bound to be small fluctuations due to either changes in the lighting

of the environment or the power of the laser itself, it is useful to just consider the imaginary part when

filtering the speckle pattern images.

The process to select which Gabor filter best applies to dataset A is the following:

1. Select a specific frequency and generate a Gabor kernel accordingly.
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2. Apply the generated Gabor kernel to a subset of the entire dataset (to reduce computational bur-

den, only 5 images of each token are used) and utilize approach 1 from section 4.3 to calculate a

hash value.

3. Compare the hamming distance of each image with every other image in the subset of the dataset.

4. Store the mean of the inter hamming distance values and the mean of the intra hamming distance

values.

5. Repeat the process with a different frequency.

The Gabor filter which best applies to this specific type of speckle pattern image will be the one

that maximizes the difference between the mean inter-hamming distance and the mean intra-hamming

distance. It is important to note that all images were previously resized to 64x64 pixels. These results

are shown in Figure 5.2.

Figure 5.2: Impact of Gabor filter frequency in authentication performance, comparing the mean hamming distance
difference. It is possible to see the benefit of considering only the imaginary part of the Gabor kernels.

From Figure 5.2, the benefit of utilizing only the imaginary response from Gabor filtering is per-

ceivable. Namely, selecting a spatial frequency of the harmonic function from 0.04 to 0.06 (specified in

pixels) achieves the largest increase in discrimination of the speckle patterns. Because of this, the Gabor
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kernel selected for use in the pre-processing stage of the algorithms has the parameters summarized in

Table 5.2.

Table 5.2: Main characteristics of the Gabor kernel used in the pre-processing stage of the implemented algorithms.

Gabor Kernel
Characteristic Value
Size 3x3
Orientation π

4

Frequency 0.04

5.3 Performance Results with Hamming Distance Based Classifi-

cation

In this section, the authentication results obtained with each proposed approach and a hamming dis-

tance based classification are presented and discussed.

5.3.1 Testing with Dataset A

This section reports the tests conducted using both the DCT and the PCA based algorithms in combi-

nation with a normalized hamming distance based classification. Systems performing well in terms of

discrimination and authentication should achieve low intra-HDs and high inter-HDs.

5.3.1.A DCT based algorithm

The DCT based algorithm is tested both with and without the Gabor filter. To help visualize the difference

between computed hashes from the same token and from different tokens, the hamming distance val-

ues can be associated with a certain color. Results obtained from the DCT based approach with Gabor

filtering are presented in Figure 5.3. There are 100 photos for each PUF token (50 with standard cam-

era positioning and 50 with varied camera positioning). The green blocks are intra-HD (from the same

tokens) and the rest is inter-HDs (from different tokens). However, there are some yellow/red lines going

through some green blocks. This can be due to a larger variability in the image acquisition environment

that altered the obtained speckle pattern, resulting in a less than ideal hash value. These substandard

hashes reduce the authentication performance. Nevertheless, despite these yellow/red lines, from Fig-

ure 5.3 it is possible to understand that the algorithm is performing adequately, having mostly green

intra-HDs and yellow/red inter-HDs
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Figure 5.3: Map of the normalized hamming distances, obtained with the DCT based algorithm on dataset A. Higher
hamming distances are associated with a progressively redder colour. Lower hamming distances are
associated with a green colour.

Table 5.3: Metrics obtained from the hamming distance histograms of the DCT based approach on dataset A.

Algorithm µinter−HD − µintra−HD µintra−HD µinter−HD σintra−HD σinter−HD
With Gabor Filtering 0.317 0.153 0.523 0.064 0.085

Without Gabor Filtering 0.285 0.138 0.455 0.066 0.081

The hamming distances obtained by comparing the hashes generated with the dataset can also be

plotted using an histogram. The resulting metrics are utilized for performance evaluation, as previously

described. To better evaluate the impact of Gabor filtering, the algorithms were tested both with and

without it (the pre-processing pipeline was kept the same, except for Gabor filtering removal). It is also

important to note that the algorithms generate 64 bit hashes, as previously mentioned in section 4.3.1,

and that only the imaginary part resulting from Gabor filtering is kept. The obtained histograms are

presented in Figure 5.4. The adapted normal distribution curves are also plotted. The optimal decision

threshold, which was discussed in Section 4.4, was also computed and plotted as a vertical dotted line

in the histograms.

It is important to analyse the specific metrics of each normal distribution to accurately evaluate the

performance of each algorithm. These values are presented in Table 5.3.

Lower variance (σ) values are beneficial, as well as a higher difference between the mean of the

inter-HDs and intra-HDs (µinter−HD and µintra−HD). Both algorithms performed adequately, achieving
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(a)

(b)

Figure 5.4: (a) Histogram obtained with the DCT based algorithm and Gabor filtering on dataset A; (b) Histogram
obtained with the DCT based algorithm without Gabor filtering on dataset A;
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Table 5.4: Metrics obtained from the hamming distance histograms of the PCA based approach on dataset A.

Algorithm µinter−HD − µintra−HD µintra−HD µinter−HD σintra−HD σinter−HD
With Gabor Filtering 0.324 0.156 0.480 0.059 0.071

Without Gabor Filtering 0.182 0.345 0.527 0.177 0.138

a clear distinction between PUFs obtained from different tokens and overcoming the inevitable intra-

variability that is always introduced in acquistions.

In this setting, both algorithms correctly classified all speckle pattern images. From the obtained

results, however, it is possible to see that Gabor filtering provided a slight edge in performance. Although

the variance values are similar, the difference between mean values is higher with the algorithm that

employed Gabor filtering.

5.3.1.B PCA based algorithm

The PCA based algorithm was also tested with dataset A under the same settings as the DCT based

algorithms. The resulting histograms are presented in Figure 5.5.

These results are obtained by utilizing a 64 bit hash (utilizing 64 principal components), which is

the same hash length as for the DCT based algorithms. This allows for a more accurate comparison

between the two methods. For the generation of the PCA matrix, on which new images are projected

upon, 20 images from each token are utilized (10 images with standard camera orientation and 10

images with varied camera orientations). The remainder of the dataset is then utilized for testing. It

is important to note that, with the algorithm that utilizes Gabor filtering, 10 of these 20 images are the

resulting real part and the other 10 are the resulting imaginary part derived from the Gabor kernel. When

new images are projected on the PCA matrix, only the imaginary part of the Gabor filtering is utilized.

This combination provided superior classification performance. This is likely due to an increase of the

eigenspace generated, allowing more faithful descriptions of new speckle pattern images.

From Figure 5.5, it is possible to see that Gabor filtering had a larger impact in the classification

capacity of the algorithm. In Table 5.4, the specific metrics of the histograms are presented.

The PCA based algorithm that did not utilize Gabor filtering performed significantly worse, having an

Acc score of 76,5% (the other algorithms showed a clear distinction between intra-HDs and inter-HDs,

which translates into an Acc of 100%). It is important to point out that the quantization method utilized

likely results in a large amount of data loss, as each hash coefficient is binarized only with relation to the

mean of the entire hash.
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(a)

(b)

Figure 5.5: (a) Histogram obtained with the PCA based algorithm and Gabor filtering on dataset A; (b) Histogram
obtained with the PCA based algorithm without Gabor filtering on dataset A;

63



5.3.2 Testing with Dataset B

The same testing process performed on dataset A was followed for the tests with dataset B. The changes

performed during the acquisition process of dataset B were done with the intention of aiding the automa-

tion of cropping the raw speckle patterns images. The output of the pre-processing stage of the algo-

rithms should be similar. Dataset B should allow the proposed algorithms to achieve a slight increase in

robustness, as the automatic image cropping procedure is expected to avoid some imprecision that may

result when doing manual cropping.

5.3.2.A DCT based algorithm

The obtained results when applying the DCT based algorithm are presented in Figure 5.6, and the

metrics associated with the plotted histograms are presented in Table 5.5.

Table 5.5: Metrics obtained from the hamming distance histograms of the DCT based approach on dataset B.

Algorithm µinter−HD − µintra−HD µintra−HD µinter−HD σintra−HD σinter−HD
With Gabor Filtering 0.340 0.152 0.492 0.056 0.052

Without Gabor Filtering 0.372 0.093 0.465 0.042 0.041

While in the previous dataset Gabor filtering showed an improvement in classification performance,

in this dataset the same is not observed. Although both algorithms performed at 100% Acc, Gabor

filtering resulted in a slight decrease the metrics presented in Table 5.5. This emphasizes the fact that,

although beneficial, Gabor filtering is largely sensitive to the image acquisition environment. Since the

Gabor kernel was tuned with dataset A, its performance might improve if tuned again for the conditions

of dataset B. However, since the achieved accuracy was still 100%, it was considered that the previous

setup can be used for both datasets.

5.3.2.B PCA based algorithm

The PCA based algorithm was also tested with dataset B under the same settings as the DCT based

algorithms. The obtained results, in the form of histograms, are presented in Figure 5.7.

The metrics associated with the plotted histograms are presented in table 5.6.

Table 5.6: Metrics obtained from the hamming distance histograms of the PCA based approach on dataset B.

Algorithm µinter−HD − µintra−HD µintra−HD µinter−HD σintra−HD σinter−HD
With Gabor Filtering 0.161 0.375 0.536 0.103 0.080

Without Gabor Filtering 0.191 0.347 0.538 0.157 0.143

From the results we can conclude the PCA based algorithm does not provide satisfactory results in

this scenario. Also, when using Gabor filtering a decrease in performance in dataset B when compared
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(a)

(b)

Figure 5.6: (a) Histogram obtained with the DCT based algorithm and Gabor filtering on dataset B; (b) Histogram
obtained with the DCT based algorithm without Gabor filtering on dataset B;

65



(a)

(b)

Figure 5.7: (a) Histogram obtained with the PCA based algorithm and Gabor filtering on dataset B; (b) Histogram
obtained with the PCA based algorithm without Gabor filtering on dataset B;
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with dataset A was observed. The PCA based algorithm with Gabor filtering obtained an 86,3% Acc

score, while the algorithm without Gabor filtering obtained a 69,9% 86,3% Acc score, showing that

in terms of classification performance Gabor filtering still showed an improvement. This improvement

should likely increase if the Gabor kernel were tuned to this specific dataset.

5.4 Performance Results with Machine Learning Classifiers

In this section, the authentication results obtained with each proposed approach and machine learning

based classification are evaluated. The metrics discussed in the previous section are also utilized here

for evaluation.

In the evaluation stage of the supervised machine learning methods, overfitting is an important con-

cern to take into consideration [42]. A model that overfits the training data will fail to accurately fit the

observed data on the test dataset. Since overfitting typically occurs when the amount of training data is

limited, a common solution to this problem is called cross-validation [43]. In short, it consists of randomly

partitioning the dataset into N mutually exclusive subsets, all of approximately equal size. One partition

is kept for testing, while all the others are used to train the classifier. This process is iterated N times.

Cross-validation is employed in this dissertation to prevent overfitting the data.

All four machine learning classifiers considered in section 4.4, as well as the cross-validation func-

tions, are implemented using the Scikit Learn Python package (sklearn). To test the developed algo-

rithms, the datasets are split into 10 subsets, with two of these subsets being the test set. This means

that the classifiers are trained with 80% of the dataset and tested with the remaining 20% of data,

translating into a 5-fold cross validation scheme.

5.4.1 Testing with Dataset A

This section reports the tests conducted using both the DCT and the PCA based algorithms in combina-

tion with machine learning classifiers. Systems performing well in terms of discrimination and authenti-

cation should achieve high accuracy rates in the classification of tokens.

5.4.1.A DCT based algorithm

The DCT based algorithm was tested both with and without Gabor filtering, to assess its impact in the

overall performance of the system. To objectively study the performance of each machine learning

classifier with the proposed algorithm, the previously described Acc and Err metrics are utilized.

The results obtained with the DCT based algorithm and the different classifiers are shown in Ta-

ble 5.7.
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Table 5.7: Authentication results with dataset A and the DCT based approach.

DCT Based Approach
with Gabor Filtering without Gabor Filtering

Classifier
Accuracy
Rate (Acc)

Standard
Deviation

Err Acc Standard
Deviation

Err

SVM (Linear
Kernel)

0.98 0.01 0.02 0.39 0.03 0.61

SVM (Poly-
nomial Ker-
nel)

0.86 0.06 0.14 0.28 0.04 0.72

Decision
Tree

0.96 0.03 0.04 0.49 0.03 0.51

k-Nearest
Neighbour

0.96 0.02 0.04 0.43 0.05 0.57

Random
Forest

0.98 0.02 0.02 0.49 0.04 0.51

From the displayed results, it is possible to conclude that the proposed algorithm including Gabor

filtering, with any of the tested machine learning classifiers, achieves satisfactory classification/authenti-

cation performance.

Both SVM (with a linear kernel) and Random Forest classifiers achieved the highest accuracy, being

correct in 98% of the classifications. SVM with a polynomial kernel performed the worst. This might

seem counter intuitive, as a polynomial kernel seems instinctively be better than a linear kernel, but the

explanation is probably that overfitting is occurring because the kernel has a higher complexity. In that

case the classifier excessively adapts the decision boundary to the training data and later struggles to

correctly classify new data.

It is important to note, however, that these results are obtained with a somewhat restricted dataset

of only 4 different tokens with 400 images. Were these algorithms tested with a larger dataset, the

performance would likely decrease.

When Gabor filtering is removed, there is a significant decrease in the authentication performance.

Under these conditions, no combination of algorithm + machine learning classifier achieves an accuracy

higher than 50%. This reinforces the efficacy of using the selected Gabor kernel in the optical PUF

scenario.

5.4.1.B PCA based algorithm

The PCA based algorithm was also tested on dataset A with and without Gabor filtering (the pre-

processing pipeline was kept the same, except for the Gabor filter). The results are presented in Ta-

ble 5.8.

It is possible to conclude that the PCA based approach, combined with any of the machine learning
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Table 5.8: Authentication results with dataset A and the PCA based approach.

PCA Based Approach
With Gabor Filtering Without Gabor Filtering

Classifier Acc Standard
Deviation Error

Rate (Ecc)

Acc Standard
Deviation

Ecc

SVM (Linear
Kernel)

0.99 0.01 0.01 1.00 0.00 0.00

SVM (Poly-
nomial Ker-
nel)

0.90 0.03 0.10 0.75 0.11 0.25

Decision
Tree

0.97 0.02 0.03 0.99 0.01 0.01

k-Nearest
Neighbour

0.96 0.03 0.04 0.98 0.01 0.02

Random
Forest

0.95 0.02 0.05 0.98 0.02 0.02

classifiers achieves a very good authentication performance. It is important to reiterate that these results

might decrease if the dataset was larger, including more PUF tokens. Notably, the accuracy results

obtained for the SVM with a linear kernel and without Gabor filtering would likely not be 100%.

In this result set, the difference between an algorithm with Gabor filtering and another without it is

not as apparent. For four of the classifiers (all except the SVM with a polinomial kernel) the accuracy

results seem to have slightly decreased when including Gabor filtering. This could be explained by

the fact that these results are all very high, and in many of the cases the slight decrease with Gabor

filtering is not meaningful. In fact, if the results obtained by employing the SVM with a polynomial kernel

are analysed, a big increase in performance is seen by utilizing Gabor filtering. Here, the SVM with

polynomial kernel is probably overfitting the training data, as previously observed for the results with the

DCT based approach.

5.4.2 Testing with Dataset B

The same testing process done in dataset A, described in the previous subsection, was replicated in

dataset B. The performance obtained with this dataset shouldn’t be significantly different from the one

obtained with dataset A.

5.4.2.A DCT based algorithm

The results obtained for the DCT based approach combined with machine learning classifiers are pre-

sented in Table 5.9.

The displayed results support the efficacy of this algorithm when applied to the considered PUF
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Table 5.9: Authentication results with dataset B and the DCT based approach.

DCT Based Approach
With Gabor Filtering Without Gabor Filtering

Classifier Acc Standard
Deviation

Ecc Acc Standard
Deviation

Ecc

SVM (Linear
Kernel)

0.99 0.01 0.01 0.89 0.03 0.11

SVM (Poly-
nomial Ker-
nel)

0.68 0.03 0.32 0.51 0.04 0.49

Decision
Tree

0.95 0.02 0.05 0.90 0.03 0.10

k-Nearest
Neighbour

0.97 0.02 0.03 0.89 0.05 0.11

Random
Forest

0.97 0.02 0.03 0.88 0.02 0.12

(a) (b) (c) (d)

Figure 5.8: (a) Dataset B - Image (taken with standard camera position/orientation) after automatic cropping. Di-
mensions of the circled feature are approximately 150x245 pixels; (b) Dataset B - Image (taken with
different camera position/orientation) after automatic cropping and warping. There is a slight variation
in alignment and size of features. Dimensions of the circled feature are approximately 150x240 pixels;
(c) Dataset A - Image (taken with standard camera position/orientation) after manual cropping. Dimen-
sions of the circled feature are approximately 185x220 pixels; (d) Dataset A - Image (taken with different
camera position/orientation) after manual cropping and automatic warping. There is a larger variation
in alignment and size of features. Dimensions of the circled feature are approximately 155x200 pixels;

system, as they are satisfactory for most of the combinations considered.

Comparing to dataset A, there is a decrease in the difference of performance between the algorithms

that employ Gabor filtering and the ones that don’t. In fact, all the accuracy results obtained from

algorithms without Gabor filtering increased with dataset B in comparison to dataset A. This could be

due to the fact that the cropping and warping process was optimized. The speckle patterns are better

aligned with each other and that could lead to superior comparison results. This slight improvement in

alignment can be seen in the details presented in Figure 5.8.

In this scenario, however, not all accuracy results improved. In fact, the SVM with a polynomial kernel

and Gabor filtering performed worse with dataset B than with dataset A. Here, the fact that overfitting

is likely happening should be reiterated. With much less variability in the training data, the decision
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boundary is likely excessively adapted to the training data. When new images from the test set are

classified, any small variation will likely lead to an incorrect classification, reducing the accuracy results.

5.4.2.B PCA based algorithm

The PCA based algorithm was also tested on dataset B, with and without Gabor filtering, in the same

way as in dataset A . The results are displayed in Table 5.10.

Table 5.10: Authentication results with dataset B and the PCA based approach.

PCA Based Approach
With Gabor Filtering Without Gabor Filtering

Classifier Acc Standard
Deviation

Ecc Acc Standard
Deviation

Ecc

SVM (Linear
Kernel)

0.99 0.01 0.01 1.00 0.03 0.00

SVM (Poly-
nomial Ker-
nel)

0.85 0.03 0.15 0.74 0.06 0.49

Decision
Tree

0.98 0.01 0.02 0.99 0.02 0.10

k-Nearest
Neighbour

0.97 0.02 0.03 0.99 0.05 0.01

Random
Forest

0.94 0.02 0.04 0.97 0.02 0.12

In dataset B, the PCA based algorithm performs equally well. All accuracy results are similarly high.

There is a slight decrease in performance with the SVM when utilizing a polynomial kernel. This is likely

due to overfitting being exacerbated, as discussed earlier. Again, these accuracy results would likely

decrease if the dataset contained images from more tokens.

5.5 Discussion of the Results

In Section 4.1.1, the possible application scenarios for this authentication system were discussed. The

scenarios are again included here for convenience of the reader:

• Scenario A: A system with an integrated camera and computer, where registration and authenti-

cation time are not the main concern. The main objective is to provide very accurate authentication

results. This could happen in the context of, for example, authenticating important documents or

utilizing a PUF to gain entry into a highly secure system.

• Scenario B: A system where the camera and computer are not inherently part of it. In this sce-

nario, computational time of the implemented algorithm and ease of registration of new tokens are
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considerably more important. This could happen in the context of, for example, acquiring a speckle

pattern image, with a smartphone, to authenticate a piece of equipment that is tagged with a PUF.

Taking into consideration the obtained results for each approach, it can be argued that some of

the algorithms work best in certain application scenarios, while others work best in other application

scenarios.

The DCT based approach showed good authentication performance when paired with a normal-

ized hamming distance based classification. A clear distinction between intra-HDs and inter-HDs was

achieved. Because this approach is entirely data independent, only one speckle pattern image from a

certain token is necessary to register it in the system. This makes it more versatile in terms of possible

application environments. Regarding the considered application scenarios, scenario B or other similar

scenarios would benefit more from this approach.

The PCA based algorithm paired with a normalized hamming distance based classification showed

worse authentication performance. However, when combined with machine learning classifiers, the

PCA based approach showed remarkably good performance. The previously considered DCT based

approach is data independent, and conversely this approach is data dependent. This means that it

requires a certain amount of speckle pattern images to register a new token in the system. In fact,

during testing, 80% of the datasets was used for training of the algorithm. This means 80 images per

token for training (or registering a token), leaving the 20 remaining images for testing. Another point that

should be discussed is that every time a new token is registered in the system, a new PCA matrix and

a new classifier model need to be computed. Ideally, this is only necessary until a descriptive enough

eigenspace from the PCA matrix is obtained, i.e.,when the information gathered from the registered

tokens becomes sufficient to represent also previously unseen tokens. However, this can be a compu-

tationally intensive task, representing a drawback if having to be repeated every time a new token is

registered in the system.

From these characteristics, which include higher authentication performance but an increased need

for computational resources and data, it can be concluded that the PCA with machine learning classifiers

approach would be best suited for scenario A, where registration and authentication time are not the

main concern and the main objective is to provide very accurate authentication results.
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6.1 Conclusions

In this work, it was demonstrated that a PUF system, utilizing low cost tracing paper tokens, can be

utilized for authentication purposes, despite intra-variability between acquired speckle pattern images.

Obtained speckle patterns from the same token can vary depending on acquisition environment and

system alignment. Multiple algorithms were tested, following a modular approach, to assess what works

best for this specific PUF system and it’s application scenarios. This implementation consisted in: (i)

Image acquisition; (ii) Pre-processing for normalization and filtering; (iii) Feature extraction and hash

computation; (iv) Classification.

Image acquisition was done with the physical PUF system constructed by [11]. Two datasets were

obtained. Both datasets were obtained with the purpose of simulating the intra-variability that would

be expected from a regular use of the system. This included turning the system On and Off between

acquisitions, creating a change in the phase of the optical signal, and varying the orientation and posi-

tioning of the camera in relation to the target. A second dataset was necessary due to limitations, with

the first dataset, in automatic cropping of the region of interest of the speckle pattern images due to

lack of sufficient discrimination information. By utilizing non-reflective black tape around the region of

interest, it becomes much more discernible, allowing for automatic cropping. This is very important in

the scope of a fully functioning authentication system, especially with possible application scenarios like

smartphone-based authentication.

Pre-processing included cropping, warping, resizing and normalizing the pixel intensities. Cropping

needed to be automatic, otherwise it would be a considerable bottleneck of the system. Warping was

done via ORB, which showed a satisfactory performance. Different image sizes were tested. All images

were resized to 64x64 as that size led to the best trade-off between authentication performance and

computational time. The normalization of pixel intensities was necessary to correct any intra-variability

in terms of illumination settings. Filtering was also done by utilizing Gabor kernels. Gabor filtering is fairly

common in the context of Optical PUFs, and showed an improvement in authentication performance in

some of the algorithms. The Gabor kernels utilized had a 45º orientation and only the imaginary part

was considered. This improved the overall robustness of some of the algorithms by reducing the impact

of image misalignment and illumination defects. The frequency of the Gabor kernel utilized was only

calibrated to the first obtained dataset. This resulted in a loss of performance boost when the algorithms

were tested with dataset B. This reinforces the idea that Gabor filtering is selective and that it should be

tailored to the specific environment where the algorithm is run to maximize performance.

Feature extraction considered two distinct methods: the type-II DCT and PCA. These methods utilize

very different mechanisms. A notable difference between them is that the DCT is data independent and

PCA is data dependent. Depending on the type of classification, a quantization scheme was employed.

This binarization of the resulting hashes showed good results when applied to the DCT. However, when
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utilized with PCA it led to data loss, which resulted in a decrease in authentication performance.

Classification was done either with a normalized hamming distance based classification or with ma-

chine learning classifiers. Here, again, one method is data independent while the other is data depen-

dent. All classification methods considered showed good performance in authentication.

For an entirely data independent approach, the DCT with an hamming distance based classification

showed the best results. It is to note that if the PCA based algorithm employed a more adequate

quantization scheme, perhaps the results obtained would be matched. This data independent approach

has the main benefit of not needing a large amount of data to register a certain token in the system. The

PCA with machine learning classifiers showed the best authentication performance out of all the tested

algorithms. This is a data dependent approach. The only downside to this approach is that multiple

images of a certain PUF token are required to register it in the system and that each time a new token

is registered, the PCA matrix needs to be re-generated.

6.2 Future Work

During this work, only the DCT and PCA were employed for feature extraction. It is recognized that

many more algorithms are capable of performing image-based hash extraction. It would be beneficial to

implement and test other algorithms to improve the robustness of the PUF system and more accurately

assess what works best.

Although an hamming distance based classification approach was considered, Error Correction Code

algorithms were not employed. They are widely used for this type of problems, as well as in the crypto-

graphic and communication areas in general, to enhance the performance of authentication algorithms

by decreasing the error obtained from intra-variability. This would make them a compelling tool to test

an implement along side the algorithms proposed in this dissertation.
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