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Abstract—Despite the advances of the state-of-the-art on 
electronic design automation tools, nowadays, most of the 
automatic circuit sizing processes require a high amount of time 
to conclude, due to the increasing complexity of radio-frequency 
(RF) blocks, integration technologies and stringent 
specifications under several different process, voltage, and 
temperature (PVT) corner conditions. This work explores an 
innovative approach to automatic circuit sizing of RF integrated 
circuit (IC) blocks using deep learning techniques and, more 
specifically, artificial neural networks (ANNs), to complement 
and improve an optimization-based sizing loop. In order to find 
all the relevant performance figures of a certain circuit sizing 
solution, the optimization loop simulates and evaluates the 
desired circuit topology under different process fabrication 
dispersions, as well as voltage and temperature variations, 
which are also known as PVT corner analysis. The ANN 
architecture proposed in this work is a regression-only model. 
The goal of this model is to estimate all the relevant circuit 
performances in PVT corners using, as input features, the 
circuit’s sizing, and the accurate performance figures in typical 
conditions, and thus, speeding-up the optimization process by 
bypassing the time-consuming circuit simulation. This model 
will complement and speed-up the optimization loop of the 
AIDA tool. The proposed PVT estimator was integrated on the 
AIDA tool and tested on three different circuit sizing 
optimizations: a class C/D voltage-controlled oscillator (VCO) 
for 3.5-to-4.8 GHz and 2.3-to-2.5 GHz ranges, and an ultralow 
power class B/C VCO. The results obtained show that the PVT 
estimator was able to reduce the workload of the circuit 
simulator up to 78.5%, while achieving a total optimization 
speed-up factor of 2.92. 

Keywords—Artificial Neural Networks, Automatic Sizing 
Optimization, Circuit Sizing, Deep Learning, Electronic Design 
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I. INTRODUCTION 
Over the last few years, the electronics industry has 

experienced a massive increase in the demand for smaller and 
more complex integrated systems, mainly due to the rise of 
portable devices. Now more than ever, developers are faced 
with the challenge of creating more powerful systems while 
ensuring smaller size and low power consumption. 
Technologies such as the internet of things (IoT) or 5th 
generation broadband (5G), will join millions of devices and 
sensors together, enabling great advances in education, 
healthcare, transportation, agriculture, amongst many other 
areas. All these applications continuously gather an increasing 
amount of data, posing unprecedented challenges to each 
element of the networks. Due to this, today’s market demands 
high communication rates, large bandwidths, and ultralow-
power consumptions, in which radio frequency (RF) 
integrated circuits (ICs) play a critical role. Most of these 
systems implement a combination of both analog/RF and 

digital circuits in the same chip, i.e., a Mixed-Signal (MS) 
Systems-on-Chip (SoC). 

In addition, for IoT and 5G, the design of RF and mm-
Wave ICs in deep nanometric technologies is becoming 
extremely difficult because of their high complexity, 
demanding performances, and their need to be designed and 
manufactured at minimal costs under strict time-to-market 
constraints. 

To aid designers overcome the many difficulties 
encountered in manual sizing of analog/RF IC blocks, several 
optimization-based sizing approaches emerged. These 
electronic design automation (EDA) tools use several 
algorithms that explore the design space effectively, rather 
than iterating over designer-defined analytical equations. 
They can be used along with performance models that can 
capture several circuit characteristics of RF circuits. However, 
despite its increased computational effort, utilizing foundry-
provided device models and a circuit simulator as an 
evaluation engine resulted in the most accurate and generally 
adopted approach. Most of the commercially available 
solutions that use the simulation-based architecture, e.g., 
Cadence’s Virtuoso GXL [1] or MunEDA’s DNO/GNO [2], 
still take a restrictive single-objective approach being used to 
semi-automate the manual sizing design process. 
Consequently, simulation-based techniques are a continuous 
subject of research of the community to face the most recent 
design challenges. 

However, there are some problems that must be 
mandatorily addressed. The optimization-based sizing loop 
requires a considerable time to complete. For example, in [3], 
the optimization-based sizing loop of a class C/D voltage-
controlled oscillator (VCO), performed with a population of 
512 elements and 200 generations, took 50 hours to complete, 
and in [4], with a population of 256 elements and just 100 
generations the optimization-based sizing loop of a class B/C 
VCO, took 367 hours to complete. These optimizations were 
carried in a machine with an Intel-Xeon E5-2630-v3@2.40 
GHz with 64 GB of RAM using 8 cores for parallel evaluation. 
For a developer that needs to meet the stringent time-to-
market constraints, such optimizations’ durations may not be 
viable, and thus, a speed-up is necessary. 

In an optimization loop, the candidate sizing solution’s 
relevant performances are found by simulating and evaluating 
the circuit under process fabrication dispersion and voltage 
and temperature variations, also known as PVT corner 
analysis, which take most of the computational effort. 
Therefore, this work proposes: 

• Accelerating the analog/RF IC optimization-based 
sizing loop of the AIDA tool [5] using artificial 
neural networks (ANNs) to complement the 



simulation process, and therefore reducing the 
simulator workload; 

• The model aims at estimating circuit performance in 
the PVT corners using the circuit’s sizing and 
performance on typical conditions as input features; 

• The model used for a particular circuit topology can 
be reused for optimizations with completely different 
targets of the same circuit topology (plug-and-play 
functionalities); 

• The structure of the model used for a particular VCO 
circuit topology can be reused for different VCO 
circuit topologies (plug-and-train functionalities). 

To test these objectives, the PVT estimator was integrated 
on the AIDA tool and tested on three different circuit sizing 
optimizations: a class C/D VCO for 3.5-to-4.8 GHz and 2.3-
to-2.5 GHz ranges, and finally, an ultralow power class B/C 
VCO. 

This document is organized as follows. In Section II, the 
related work regarding acceleration of IC sizing optimizations 
using ANNs is presented.  In Section III, the PVT Estimator 
is described along with its development. In Section IV, the 
experimental results are shown and discussed. Finally in 
Section V, the conclusions of the work are presented. 

II. RELATED WORK 
Today, ANNs are quite popular in the ML world due to the 

increased amount of data and computing power available. 
These two factors prevented researchers from using them 
altogether in academic settings. Now with faster computer-
processing, ANNs can be found in image processing, speech 
recognition and other areas where large amounts of data are 
available. 

ANNs can build effective end-to-end ML systems and can 
be used in EDA for modeling [6], synthesis [7], layout 
generation [8] or even fault testing [9]. 

In [10], a neural network-based methodology is used to 
estimate the performance parameters of CMOS Operational 
Amplifiers (Amp-Op) topologies. Training data of the model 
was directly generated through SPICE simulations to provide 
accurate and reliable data to the system. The execution time 
using ANN models was about 10 sec for each configuration, 
totaling 80 sec for all configurations, which represents a 
speed-up factor of 2000.  

In [11], an ANN with two hidden layers is used to replace 
a SPICE simulator. A rough POF can be found in a reasonable 
time with multi-objective optimization (MOO), but a high-
quality one requires a lot of simulator iterations which results 
in long synthesis times. After a MOO phase to obtain a low-
quality pareto optimal fronts (POF), the process switches to a 
faster single-objective optimization (SOO) to complete the 
POF making it smoother and more continuous. At this phase 
the SPICE simulator was also replaced by an ANN which 
reduced the synthesis time even further. The training data for 
the ANN was the data obtained in the MOO phase. 

In [12], a similar method is used to accelerate a simulation-
based circuit synthesizer through the use of ANNs to 
determine circuit performances instead of a SPICE simulator. 
Instead of training the ANN with simulation data beforehand 
and simply replacing the simulator with the trained ANN, the 
simulation-based synthesizer is left unchanged for some 

generations of the optimization loop and only after the ANN 
replaces the SPICE simulator. Unlike other conventional 
algorithms, all the data generated in the first phase is used as 
training data for the ANN instead of being discarded. The 
main innovation of this approach is that there is no separate 
data acquisition step to train the ANNs used therefore makes 
it possible be used for every new topology without loss of 
generality for all analog circuits. 

In [13] ANNs are used to improve the sample efficiency 
for several large circuits regarding their post-layout 
performance parameters. ANNs are used as an oracle, where, 
given two different circuit sizing solutions, the ANN will 
predict which design performs better for each individual 
parameter, requiring a sub-ANN for each parameter. This 
discriminator achieves at least two orders of magnitude in 
sample efficiency which represents a big reduction in number 
of simulations required. 

All these approaches to reduce the execution time of 
optimization-based sizing use ANNs to replace or 
complement the circuit simulator. The execution time is 
greatly reduced by avoiding time-consuming circuit 
simulations, however, to recover the accuracy lost, in [10][14] 
at later stages of the optimization the circuit simulator is 
reestablished. Furthermore, the ANN models are trained over 
the entire design space, which spends valuable resources 
modelling and evaluating large regions of unusable design 
combinations. In [15] the ANNs were also trained to replace 
the simulator, but the previous issue is somewhat addressed 
by applying data mining techniques to build a model that 
capture only significant regions of the performance space 
visited during automatic synthesis. 

A brief overview of the works previously discussed is 
presented in Table I. 

In this work, the popular and powerful usage of an ANN 
to enhance the optimization-based sizing by complementing 
the circuit simulator will be applied. This method will be used 
in circuit topologies more complex than the ones previously 
discussed in the literature, and, despite the marginal loss of 
accuracy when compared with the circuit simulator, the speed-
up gained using this approach will surely boost the 
optimization performance. 

TABLE I. SPEEDING-UP SIMULATION-BASED SIZING WITH ANNS 
OVERVIEW 

Reference 
Speed-up 

factor  
(up to) 

Maximum 
Error  

Number 
of 

Layers 
Method 

G. Wolfe, 2003 [10] ≈2000 60% 3 
Complement/

Replace 
simulator 

T. O. Çakıcı, 2020 
[11] 29.7 1.55% 3 Replace 

simulator 
G. İslamoğlu, 2019 

[12] 2.8 0.77% 4 & 5 Semi-replace 
simulator 

K. Hakhamaneshi, 
2019 [13] n/r n/r 4 Replace 

simulator 
G. Alpaydin, 2003 

[14] n/r n/r 3 Complement 
simulator 

Hongzhou Liu, 
2002 [15] n/r ≈10000% 3 Replace 

simulator 
n/r – not reported 
 
 



III. PVT ESTIMATOR

  Considering the main objectives of this work and the 
related work presented and discussed, it is proposed the 
elaboration of a PVT corner performance estimator using 
deep ANNs, complementing the circuit simulator to be used 
during sizing optimization. The ANNs will receive as input 
the performance figures respective to the typical conditions, 
i.e., TT conditions, obtained via accurate circuit simulation
and the candidate circuit sizing solutions, and will predict the 
performances for the remaining PVT corners. In the 
optimization-loop of the simulation-based sizing, the PVT 
estimator will be located after the circuit simulator, as 
depicted in Fig. 1. 

A. Case Study
The development of the proposed tool will take part in the

sizing of a complex dual-mode class C/D VCO presented in 
[3], which is presented in Fig. 2. In that work, instead of 
achieving the desired performance parameters with sequential 
SOOs, a single many-objective sizing optimization, described 
as “everything at once” optimization, is proposed to achieve 
the best performance boundaries while finding the optimal 
tradeoffs. The circuit simulator performed a multi-corner 
analysis and the optimization followed a worst-case corner 
criteria on top of a worst-case tuning range optimization, 
taking into account two different tuning modes, 𝑏𝑏0000 and 
𝑏𝑏1111. The results pushed the circuit to its performance limits, 
reducing to almost half of the power consumption of the 
original design and showed its potential for ultralow-power 
with more than 93% reduction. 

In the optimizations carried, there were 28 optimization 
variables that affect the sizing of 43 devices. The full list can 
be found in Table II. 

TABLE II. OPTIMIZATION VARIABLES 

Variable Units Min. Grid Max. 
ind_radius µm 15 5 90 
ind_nturns - 1 1 6 
ind_spacing µm 2 1 4 
ind_width µm 3 1 30 
mccl, m1l nm 60 20 240 

mccw, m1w µm 0.6 0.2 6 
mccnf, m1nf - 1 1 32 

mccm - 1 1 100 
moscapw µm 0.4 0.2 3.2 
moscapl µm 0.2 0.2 3.2 

mimvw, mimvl, mim1w µm 2 0.2 20 
r1l, r2l, r3l, r4l µm 1 0.2 10 

r1m, r2m, r3m, r4m - 1 1 20 
nfn1, nfn2, nfp1, nfp2 - 1 1 100 

A total of 18 performances were considered and three 
optimizations were performed with populations of 512 
elements optimized for 1000 generations. Of all the sizing 
solutions, the POFs of the three optimizations provided, in 
total, 769 optimal sizing solutions. Each optimization took 
approximately 100 hours to complete in an Intel-Xeon CPU 
E5-2630-v3@2.40 GHz with 64 GB of RAM workstation 
using eight cores for parallel evaluation, resulting in 300 hours 
total, i.e., more than 12 days. Once again, the main goal of the 
proposed PVT Estimator in this work will be to reduce this 
execution time to an acceptable range. 

B. Dataset
The source of the dataset will be simulated performances

and associated sizing parameters generated by an 
optimization-based sizing of the circuit in Section III.A. In 
total, 9 different testbench variations will be considered (TT, 
FF, FS, SF, SS, 300mV, 400mV, m40dC and 85dC) that 
produce 10 different performance figures each, and, due to the 
worst-case tuning range optimization (two tuning modes are 
evaluated, 𝑏𝑏0000and 𝑏𝑏1111), each sizing must be simulated 18 
times, providing a total of 180 simulated performance figures. 
The full list of testbench variations can be seen in Table III 
and the list of performances in Table IV. The principal 
objective of this optimization is to minimize both power and 
phase noise at 10 MHz in both tuning modes while imposing 
value constraints on 7 measured performances, in both tuning 
modes as well. These optimization constraints and objectives 
are shown in Table V. 

TABLE III. LIST OF TESTBENCH VARIATIONS: TT AND PVT CORNERS 

Name Process Voltage Temperature 
TT TT 0.35 V 25ºC 
FF FF 0.35 V 25ºC 
FS FS 0.35 V 25ºC 
SF SF 0.35 V 25ºC 
SS SS 0.35 V 25ºC 

300mV TT 0.3 V 25ºC 
400mV TT 0.4 V 25ºC 
m40dC TT 0.35 V -40ºC 
85dC TT 0.35 V 85ºC 

The dataset will have a total number of 48 features, where 
28 of them are the optimization variables plus 20 performance 
figures of the simulation in TT conditions in two different 

Fig. 1. Location of the PVT estimator in the AIDA optimization loop 

Fig. 2. Dual-mode class-C/D VCO schematic. Reprinted from [3]. 



modes, i.e., 𝑏𝑏0000 and 𝑏𝑏1111, and a total of 160 labels, i.e., the 
performance figures of the remaining corner variations in two 
different tuning modes. 

TABLE IV. PERFORMANCES CONSIDERED FOR TT AND PVT CORNERS 

Measure Units Description 
fosc GHz Oscillation frequency 

PN@10kHz dBc/Hz Phase noise at 10KHz 
PN@100kHz dBc/Hz Phase noise at 100KHz 
PN@1MHz dBc/Hz Phase noise at 1MHz 

PN@10MHz dBc/Hz Phase noise at 10MHz 
power mW Power consumption 

FOM@10kHz dBc/Hz Figure-of-merit at 10KHz 
FOM@100kHz dBc/Hz Figure-of-merit at 100KHz 
FOM@1MHz dBc/Hz Figure-of-merit at 1MHz 
FOM@10MHz dBc/Hz Figure-of-merit at 10MHz 

TABLE V. OPTIMIZATION CONSTRAINTS AND OBJECTIVES 

Tuning 
mode Measure Units Optimization 

Constraint 
Optimization 

Objective 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

fosc GHz ≥ 4.8  
PN@10kHz dBc/Hz ≤ -49  
PN@100kHz dBc/Hz ≤ -76  
PN@1MHz dBc/Hz ≤ -98  
PN@10MHz dBc/Hz ≤ -119 minimize 

power mW n/d minimize 
FOM@10MHz dBc/Hz ≥ 180  

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

fosc GHz ≤ 3.9  
PN@10kHz dBc/Hz ≤ -55  
PN@100kHz dBc/Hz ≤ -82  
PN@1MHz dBc/Hz ≤ -103  
PN@10MHz dBc/Hz ≤ -124 minimize 

power mW n/d minimize 
FOM@10MHz dBc/Hz ≥ 180  

 

C. ANNs Structure 
The structure of the ANNs used will be fully connected. 

Each ANN will estimate the performance figures of a specific 
corner for a specific tuning mode, so the output layer will have 
10 neurons. Each ANN will receive as inputs, the sizing of the 
circuit, which consists of 28 optimization variables, and 10 
performance figures of the simulation in TT conditions for its 
corresponding tuning mode, which means that the input layer 
will have a total 38 neurons. The number of hidden layers and 
number of nodes per hidden layer will be determined in the 
tuning phase. The structure of the ANN implemented for 
corner FF and tuning mode 𝑏𝑏0000 is shown in Fig. 3.  

D. Tuning Phase 
Throughout this part of the work the language used to 

program the ANN was Python, using both Tensorflow [16] 
and Keras [17] as ML libraries. 

The starting point of the ANN architecture is the one 
described in Section III.C, where the output layer contains 10 
nodes, one for each performance parameter of a certain 
combination of tuning mode and PVT corner variation. The 
optimization was performed for 9 testbench variations which  
8 represent the PVT corners, and 2 tuning modes, and thus, in 
total, 16 different ANNs will be required.  

The dataset contains 92115 data entries composed by, as 
described in Section III.B, 48 features where 28 represent the 
optimization variables and the other 20 represent the TT 
performance figures, 10 for each tuning mode. As for labels, 
the dataset contains 160 performance figures of the remaining 
PVT corner variations in two different tuning modes. 

For each different ANN, it is only needed the performance 
figures of one combination of corner variations and tuning 
mode, so firstly the dataset had to be divided in 16 different 
datasets where each dataset represents a different corner 
combination. To increase model accuracy, only the TT 
performance figures that represent the same tuning mode as 
the labels are kept, so the final dataset structure only contains 
38 features and 10 labels. 

Some data entries have null values on the features and/or 
labels, representing sizing solutions that the simulator 
couldn’t produce a meaningful performance figure. These 
entries had to be removed from each dataset to provide the best 
possible data to the ANNs along with duplicated rows. 

Finally, the outliers present in each dataset must be 
removed. To do this, for each performance figure, the 1% 
lowest and highest values were cut from the dataset, alongside 
their entire row of data. The final sizes of the dataset for each 
PTV corner ANN can be found in Table VI. 

TABLE VI. DIMENSIONS OF DATASETS FOR THE TRAINING OF THE 
DIFFERENT ANNS 

Corner 
Tuning mode 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 % total 𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 % total 

FF 81377 88.34 79300 86.09 

FS 81842 88.85 81200 88.15 

SF 82247 89.29 76794 83.37 

SS 73456 79.74 48742 52.91 

300mV 77608 84.25 69017 74.92 

400mV 81865 88.87 81342 88.30 

m40dC 81182 88.13 77103 83.70 

85dC 80707 87.62 82028 89.05 

 

Finally, all the 16 datasets were randomized, and split into 
two datasets:  

• Training dataset: 90% of the original dataset; 

• Test dataset: Remaining 10% of the original 
dataset. 

 
Fig. 3. ANN structure for corner FF and tuning mode 𝑏𝑏0000 



The training dataset will be used to train the ANNs while 
the test dataset will be used to test the models. As for the 
tuning of the ANN architecture phase, the tuning parameters 
phase was only performed in the ANN regarding the corner 
FF with tuning mode 𝑏𝑏0000. 

With the dataset ready, the ANN’s tuning parameter phase 
starts. As evaluation methods for the ANN’s training, three 
following metrics were used. Mean Squared Error (MSE), 
defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (1) 

Mean Absolute Error (MAE), defined by: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 �|𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (2) 

And finally, Mean Absolute Percentage Error (MAPE), 
defined by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛

 ��
𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (3) 

Due to the nature of the values that are trying to be 
predicted with this ANN, the error between predicted value 
and actual value must be small. Because of this, an error value 
lower than 1% (for the case of the MAPE) was chosen as a 
reasonable target to achieve for the accuracy of the ANN. 

Despite having three different metrics as evaluation 
methods, the loss function of the ANN throughout the tuning 
phase was the MSE because this is one of the most popular 
loss functions in regression problems like the one addressed 
in this work. A similar approach was used to choose the 
optimizer, with Adam being pointed as one of the most 
popular methods. 

Regarding the batch size of the training phase, 128 was 
chosen as an appropriate value considering the size of the 
training dataset used.  

As for data normalization, normalization for a range of 1 
to 2 was used. This range was chosen, over the typical 0 to 1, 
due to its influence in MAPE values, making them explode in 
value due to values close to 0 in the denominator of the MAPE 
formula in (3). 

The first hyperparameters to be tuned were: number of 
layers, number of neurons per layer, and learning rate. To 
determine the adequate number of layers for the model, two 
studies were made, the first one using 2 hidden layers for the 
model, and the second 3 hidden layers.  

The parameter values considered for the 2 hidden layers 
study were: 200, 320, 440 and 560 for the size of hidden layer 
1; 200, 300, 400 and 500 for the size of hidden layer 2; and 
0.00005, 0.0001, 0.0005 and 0.001 for the learning rate. The 
different combinations of these three parameters were studied 
and the lowest values were obtained for: 440 neurons in 
hidden layer 1, 400 neurons in hidden layer 2 and 0.0001 for 
the learning rate. 

In the 3 hidden layers study, the learning rate was set to 
0.0001 considering it was the best value of the previous study. 
The parameter values considered were: 200, 320 and 440 for 
the size of hidden layer 1; 200, 300 and 400 for the size of 

hidden layer 2; and 200, 300 and 400 for the size of hidden 
layer 3. The best error results with 3 hidden layers were 18% 
to 30% higher than the best results with 2 hidden layers. 
Considering this fact there was no need to increase the number 
of hidden layers of the ANN, so no further study was required. 
The best parameter values of the 2 hidden layer study will be 
used in the final model. 

The next parameter to be tuned was the activation function 
of the neurons located in the hidden layers. Four different 
activation functions were considered: sigmoid function, ReLU 
function [18], leaky ReLU function [19] and ELU function 
[20]. The activation function that generates the lowest error in 
almost all metrics was the ReLU function, so this function will 
be used in the final model. 

The last parameter to be tuned was the dropout rate and the 
different values considered were: 0%, 5%, 10%, 20% and 
30%. Dropout rates of 5%, 10% and 20% showed the best and 
relatively similar metric values between them while the values 
for dropout rate of 0% and 30% show a decrease in accuracy 
of the ANN. The worst results came from having no dropout 
rate at all which reveals the necessity of this regularization 
technique. A dropout rate of 20% was chosen for the final 
model, given that the ANN presents the best results with this 
value. 

E. Final Model 
All the parameters of the ANN are now tuned to achieve 

the best performance possible and a brief summary of the final 
model is shown in Table VII along with the metrics of the 
training phase at each epoch in Fig. 4 and Fig. 5. 

TABLE VII. SUMMARY OF ANN 

Parameter Value 

Input layer size 38 
Hidden layer 1 size 440 
Hidden layer 2 size 400 
Output layer size 10 

Loss function Mean Squared Error 
Optimizer Adam 
Batch size 128 

Hidden layers activation function ReLU 
Learning rate 0.0001 
Dropout rate 20% 

Training epochs 300 
Validation split 20% 

   

 
 
 
 

Fig. 4.    MSE loss function (left) and MAE loss function (right) 



 
 
 
 
 
 
 
 

 
The final values of the 3 metrics for all 16 ANNs are 

shown in Table VIII. As can be seen by the MAPE values of 
both training and test loss, the final model in all ANNs is 
presenting better performance than the initial goal of 1% error. 

TABLE VIII. FINAL MODEL METRIC VALUES 

Tuning 
mode Corner 

Training loss Test loss 

MSE 
(x10-4) 

MAE 
(x10-3) MAPE MSE 

(x10-4) 
MAE 
(x10-3) MAPE 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

FF 0.5346 3.5950 0.2344 1.5345 4.4429 0.2919 
FS 0.5046 3.7093 0.2438 1.5623 4.3444 0.2873 
SF 0.7096 3.7298 0.2441 1.2777 4.2840 0.2810 
SS 0.9830 4.3566 0.2833 1.6931 4.9340 0.3236 

300mV 0.7763 5.3615 0.3524 1.5838 5.9087 0.3919 
400mV 0.6531 4.5662 0.3061 1.0625 4.9738 0.3339 
m40dC 0.6195 4.0734 0.2665 1.1569 4.3965 0.2890 
85dC 0.6881 4.4254 0.2965 1.1435 4.8061 0.3237 

𝒃𝒃𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

FF 1.2872 5.4180 0.3638 2.3003 5.9296 0.3987 
FS 0.7244 4.0943 0.2727 1.7098 4.7493 0.3163 
SF 0.8058 4.3929 0.2858 1.7478 5.0881 0.3324 
SS 1.1053 7.8992 0.5777 2.8484 11.5884 0.8384 

300mV 1.8979 7.0264 0.4585 3.4236 8.1042 0.5304 
400mV 1.7348 7.4566 0.4828 3.1930 8.4154 0.5486 
m40dC 5.9536 9.3559 0.6163 8.4010 10.8045 0.7134 
85dC 1.0614 4.5612 0.3037 1.7748 5.1120 0.3418 

F. Controlled PVT Estimator 
With the ANNs for each corner and tuning mode tuned and 

ready to be used, the next step of this work is to integrate the 
PVT estimator into the AIDA loop. The location of the PVT 
estimator is presented again in Fig. 6. 

In the first step of the optimization loop several circuit 
sizing solutions are proposed by the optimization engine 
(number of solutions depends on the population defined). In 
the original AIDA loop, the simulator evaluates each of these 
solutions for all TT conditions and PVT corners, and outputs 
all the evaluated performances. The optimization engine 
receives these evaluations and ranks the solutions (population) 
according to their compliance with the objectives and 
constraints set for the current optimization problem. 

In the modified AIDA loop, the simulator will only need 
to evaluate the solutions for TT conditions. Each of the ANNs 
will receive, as input, the sizing solution and, according to its 
tuning mode, the performance figures respective to the TT 
conditions (previously evaluated by the simulator). With the 
inputs defined, each ANN will output the performance figures 
corresponding to a specific corner and tuning mode, so the 
performance figures for all PVT  corners can be sent to the 
optimization engine for further ranking. These performance 

figures are a mix of simulated performance figures (TT 
corners) and predicted performance figures (remaining PVT 
corners). 

When complementing the simulator with a fast estimation 
model, the optimization process may be erroneously guided to 
unrealistic design space regions, and, therefore, the tradeoff of 
when to predict or simulate candidate sizing solutions is 
delicate. Therefore, some control has to be introduced in the 
loop to guide the optimization to feasible solution regions. In 
order to achieve this, a simple error controller for each ANN 
used in the modified loop was implemented. A brief flowchart 
of one generation of the modified loop with the new controller 
is shown in Fig. 7. 

At each generation, before both candidate sizing solutions 
and TT performance figures are sent to the ANNs, first they 
pass through a controller that will choose which ANNs will 
operate at the current generation, i.e., which PVT 
corner/tuning mode combination will be simulated or 
predicted. 

First, the controller sends 20% of the candidate sizing 
solutions to be simulated and predicted at the same time. For 
PVT corner/tuning mode combination, with the output of the 
simulator, the controller checks if there are more feasible 
solutions than unfeasible solutions. If there are more 
unfeasible solutions than feasible solutions or the same 
number, the PVT corner/tuning mode combination will be 
simulated (instead of predicted) in that generation for the 
remaining candidate solutions. This acts as the primary filter 
to prevent the optimization of entering unfeasible regions. 

If there are more feasible solutions than unfeasible it 
passes to the next step. Here the controller uses the output of 
the feasible solutions from the simulator, i.e., simulated 
performances (from the previous step) and compares them to 
the corresponding predicted performances. The error between 
each performance is calculated and the average error of all 
points is obtained. If the error (MAPE) is higher than 5% the 
combination will be simulated in that generation for the rest 
of the candidate solutions. If is equal or lower than 5% the 
corresponding ANN will predict the PVT corner/tuning mode 
combination in that generation for the rest of the candidate 
solutions. 

 

Fig. 6.    Location of the PVT estimator in the AIDA optimization loop 

Fig. 5.    MAPE loss function 



IV. RESULTS 

A. Class-C/D VCO from 3.9-to-4.8 GHz 
An optimization problem with the objectives and 

constraints of Table V was set using the simulation-based 
sizing tool from [5] enhanced with the controlled PVT 
Estimator (CPVTE). As in the original optimization, the 
random population was set to 256 elements and the number of 
generations to 330. The speed-up obtained with the CPVTE is 
computed using the percentage of usage of each ANN 
throughout the optimization. Fig. 8 shows that 78.5% of the 
PVT performances were predicted instead of simulated. The 
PVT corners that were mostly simulated correspond to those 
less represented in the dataset (Table VI), e.g., SS and 300mV 
in b1111. By the end of this process, the POF has 20 solutions, 
as shown in Fig. 9. To attest their feasibility, these were fully 
simulated, resulting in one feasible solution and two additional 
solutions with only 1 out of 160 specifications violated, 
showing that the CPVTE could direct the sizing loop to 
feasible performance regions. 

Additionally, 20 generations were performed without the 
CPVTE, ensuring that all solutions have simulator-grade 
accuracy, producing a final POF of 30 solutions. These fronts 
are superimposed in Fig. 9, alongside the optimization of 
Section 

 III.B. While the optimization with CPVTE did not reach 
the same power values as traditional simulation-based, it 
dominates in terms of PN, with almost 2-dBc/Hz 
improvement. By the end of the 350th generation, the total 
speed-up factor obtained using the CPVTE is 2.92×, more 
than 16 days of computational effort, while still achieving 
highly competitive sizing solutions. 

B. Plug-and-play from 2.3-to-2.5 GHz 
 To test its plug-and-play functionalities, the CPVTE 

previously trained for the dataset of Section III.B is now 
applied in an optimization with a distant set of targets. The 
specifications of Table V were changed to fosc[b1111] ≥ 2.5 
GHz, and fosc[b0000] ≤ 2.3 GHz, and the PNs and FOMs in 
all carriers were tightened by 5-dBc/Hz. The population size 
was kept to 256, the number of generations to 180 with 
CPVTE plus 20 without it. The speed-up obtained with the 
CPVTE is shown in Fig. 10, where 74.5% of the PVT 
performances were predicted. It is essential to highlight that 
the ANNs were trained in a dataset mainly composed of sizing 
solutions oscillating between 3.9-to-4.8-GHz. Still, the two 
control phases decide to bypass approximately every 3 in 4 
simulations. By the end of this process, the POF has 5 
solutions, as shown in Fig. 11. After complete simulation, two 
of those solutions are borderline feasibility, with only 2 out of 
160 specifications marginally violated, proving that the 
optimization was guided to a good performance space. 

After the last 20 generations without CPVTE, the 
optimization found 5 feasible solutions, shown in Fig. 11. To 
benchmark these results, a traditional simulation-based 
optimization was carried for the same population size and 
number generations, taking approximately 350 hours, and 
producing 13 sizing solutions, which are superimposed in Fig. 
11. As in the previous experiment, the optimization with 
CPVTE explored design space regions that led to improved 
PNs. This fact is reinforced when analyzing the solutions at 
the 120th, 160th and 180th generations that already show a 
trend towards the PN spectrum of the tradeoff. The total 
speed-up factor obtained using the CPVTE is 2.48×, almost 9 
days of computational effort, with no ANN tuning or training 
required. 

 
Fig. 8.    Evaluations simulated vs estimated on the 3.9-to-4.8GHz 
optimization 

Fig. 9.    Evolution of the POFs on the 3.9-to-4.8GHz optimization. 
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Fig. 10.    Evaluations simulated vs estimated on the 2.3-to-2.5GHz 
optimization. 

 
Fig. 11.    Evolution of the POFs on the 2.3-to-2.5GHz optimization. 

 
C. Plug-and-train Ultralow-Power Class B/C VCO 

To test its plug-and-train functionalities, the CPVTE 
ANNs structure previously tuned for the dataset of Section 
III.B is now reused in the CPVTE ANNs’ training phase for 
an optimization of a different VCO circuit topology, i.e., an 
ultralow-power Class B/C VCO. An optimization problem 
with the objectives and constraints detailed in [4] was set 
using the simulation-based sizing tool from [5] enhanced with 
the CPVTE. The population size was set to 256 and the 
number of generations to 80 with CPVTE plus 20 without it. 
The speed-up obtained with the CPVTE is shown in Fig. 12, 
where 74.1% of the PVT performances were predicted. By the 
end of this process, the POF has 16 solutions, as shown in Fig. 
13. After complete simulation, five of those solutions are close 
to feasibility, with only 6 out of 160 specifications marginally 
violated, proving that the optimization was guided to a good 
performance space. 

After the last 20 generations without CPVTE, the 
optimization found 12 feasible solutions, shown in Fig. 13. To 
benchmark these results, a traditional simulation-based 
optimization was carried for the same population size and 
number generations, taking approximately 636 hours and 
producing 14 sizing solutions, which are superimposed in Fig. 
13. As in the previous experiments, the optimization with 
CPVTE explored design space regions that led to improved 
PNs, however, in this one, the optimization was capable of 
finding more competitive solutions in terms of power also. 
This fact is reinforced when analyzing the solutions at the 60th 
and 80th generations that already show better results than the 
original optimization. The total speed-up factor obtained using 
the CPVTE is 2.11×, almost 14 days of computational effort, 
with no ANN tuning required. 

 

V. CONCLUSIONS 
In this work, it is presented an approach towards the 

acceleration of analog/RF IC optimization-based sizing loop 
with the help of a PVT corner performance estimator, using 
multiple ANNs, to complement the simulation process, 
therefore reducing the simulator workload. 

For the development of the PVT estimator, an 
optimization-based sizing of a Class C/D VCO for 3.9-to-4.8 
GHz was used as case study, gathering the necessary data to 
train the ANNs and to ascertain if the results of the 
estimations, before integration in the optimization loop, were 
adequate. All ANNs showed that the estimation error results 
were adequate so the integration process and discussing of 
final results were performed. 

Three different circuit optimizations were used to test the 
PVT estimator. The first one was the same optimization 
based-sizing of a class C/D VCO for 3.9-to-4.8 GHz used for 
the development of the PVT estimator. The PVT estimator 
reduced 78.5% of the simulator workload, lowering the total 
optimization run time by 16 and a half days (original run took 
25 and a half days to complete). The final solution results 
showed similar performances to the original optimization, and 
therefore, proving that the PVT estimator is capable of finding 
adequate PVT corner performances. The second optimization 
was an optimization-based sizing of the same circuit topology 
as the previous one, although, the range in which the VCO 
operates was changed to 2.3-to-2.5 GHz and the optimization 
constraints were tightened. The PVT estimator reduced 74.5% 
of the simulator workload, lowering the total optimization run 
time by 8 and a half days (original run took 14 and a half days 
to complete). Feasible solutions were found at the end of the 
optimization using the PVT estimator, proving its capability 
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Fig. 12.    Evaluations simulated vs estimated on the class B/C VCO 
optimization. 

Fig. 13.    Evolution of the POFs on the class B/C VCO optimization. 



of being reused for optimizations with completely different 
targets of the same circuit topology its ANNs were trained to, 
therefore demonstrating its plug-and-play functionalities. The 
third and final experiment was an optimization-based sizing 
of a different VCO circuit topology, i.e., an ultralow power 
class B/C VCO. The same structure of the ANNs used in the 
two previous tests, was reused to train the ANNs in this 
optimization. The PVT estimator reduced 74.1% of the 
simulator workload, lowering the total optimization run time 
by 14 and a half days (original run took 26 and a half days to 
complete). Feasible solutions with better performances than 
the original optimization, were found at the end of the 
optimization using the PVT estimator, proving the capability 
of its ANNs reusage for a different VCO circuit topology, 
therefore demonstrating its plug-and-train functionalities. 
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