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Abstract

In an effort to increase the overall road safety and reduce car accidents caused by hu-
man error, the automotive industry has been investing in the development of autonomous
vehicles. These need to accomplish all the tasks a human would while driving a com-
mon vehicle, which includes being able to perceive and comprehend the environment
around the vehicle, in real-time and using a combination of high-tech distance sensors
and cameras. Following the trends of the automotive industry, Formula Student, one
of the Europe’s most established educational engineering competition, introduced the
Driverless category, which challenges students to build a high-performance autonomous
race car. In such competitions, the tracks through which the autonomous car should
navigate are unknown and delimited by different colored cones.

This thesis presents a perception pipeline for a Formula Student car that exploits
the best features of each available perception sensor in order to identify the cones and,
using custom Convolutional Neural Networks, classify their color. Furthermore, due to
the simplicity of the classifiers used and in order to mitigate possible misclassifications,
a Nearest Neighbor based cone tracking algorithm that takes into account the color of
previous observations, was developed. To test the pipeline’s performance, an ablation
study was conducted on the methods used to identify the cones and, both the classifiers
and the tracking module, were evaluated individually. Results showed that the proposed
perception pipeline is able to accurately detect and classify the cones in real-time, even
when running the pipeline on CPU, something that proved not to be possible using
heavy deep learning object detectors.

Keywords: cone detection, sensor fusion, classification, perception, convolutional
neural networks, tracking, autonomous driving, Formula Student.
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Resumo

Numa tentativa de aumentar a segurança rodoviária e reduzir os acidentes causados
por erro humano, a indústria automóvel tem vindo a investir no desenvolvimento de
veículos autónomos. Estes necessitam de realizar todas as tarefas que um ser humano
realizaria ao conduzir um veículo comum, o que engloba ser capaz de observar e com-
preender o ambiente à volta do veículo, em tempo real e utilizando uma combinação
de sensores de alta tecnologia, de forma a planear uma trajectória em conformidade.
Seguindo a tendência da indústria automóvel, a Formula Student, uma das mais esta-
belecidas competições educativas de engenharia da Europa, introduziu a categoria de
Driverless, que desafia os estudantes a construir um carro de corrida autónomo de alto
desempenho. Nestas competições, as pistas pelas quais o carro autónomo deve navegar
são desconhecidas e delimitadas por cones de diferentes cores.

Nesta tese é apresentada uma pipeline de percepção para um carro de Formula Stu-
dent que explora as melhores características de cada sensor de forma a identificar os
cones e, utilizando redes neuronais convolucionais personalizadas, classificar a sua cor.
Para além disso, devido à simplicidade dos classificadores utilizados e de modo a mitigar
possíveis classificações erradas, desenvolveu-se um algoritmo de rastreamento de cones
baseado no algoritmo Nearest Neighbor que tem em conta a cor das observações ante-
riores. Para testar o desempenho da pipeline, realizou-se um estudo de ablação sobre
os métodos utilizados para identificar os cones e avaliaram-se, indivualmente, ambos
os classificadores e o módulo de rastreamento. Os resultados obtidos mostram que a
pipeline de percepção proposta é capaz de detectar e classificar os cones com exatidão e
em tempo real, mesmo correndo a pipeline apenas em CPU, algo que se mostrou não é
possível utilizando detectores de objectos de deep learning pesados computacionalmente.

Palavras-chave: detecção de cones, fusão sensorial, classificação, percepção, redes
neuronais convolucionais, rastreamento, condução autónoma, Formula Student.
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Chapter 1

Introduction

The automotive industry is noticeably moving more and more towards a world where
human driver interaction is not required, i.e., towards the world of autonomous vehicles.
Although road fatalities keep decreasing [40], there are still more than 40 000 deaths on
European roads each year. Vehicle manufacturers are introducing at a rapid pace new
in-vehicle safety and Advanced Driving Assistance Systems that can intervene before an
accident happens. This is a much-needed development, as more than 90% of all accidents
are caused by human error [39]. Risky and dangerous driver behaviors such as impaired
driving, drugged driving, speeding and distraction can be reduced by reaching to higher
levels of autonomy. In addition, it may help increase, or restore, the independence of
the elderly and people with mobility and visual impairments.

The increased safety in addition to an improved comfort promised by autonomous
vehicles leads the automotive industry to use a big portion of their investments for the
development of autonomous driving. When taking the human out of the equation, the
vehicle must be able to respond to unknown situations in order to ensure a reliable
system. Therefore, it needs to accomplish all the tasks a human would while driving
a common vehicle. This includes perceiving the environment, estimating its position,
predicting what other road users will do, planning a trajectory accordingly and giving
the correct acceleration and steering input to follow that trajectory. The investments
made by the industry led us to the current state-of-the-art in autonomous driving, with
several companies already having their autonomous vehicle prototypes being tested on
real-life scenarios without any human interference.

A key part when dealing with any kind of autonomous driving problem is being able

1



1.1. FORMULA STUDENT COMPETITION

to perceive and comprehend the environment around the vehicle, in real-time and using
a combination of high-tech distance sensors and cameras, combined with state-of-the-
art perception algorithms. This is still a very challenging task in autonomous vehicles
due to the extremely low acceptable error rate, as it is a crucial task to ensure the safe
and reliable operation of the vehicle by being the source of information used by the
path-planning and decision-making algorithms that dictate what the vehicle should do
or where it should go.

A crucial aspect for an autonomous vehicle to reach its full autonomous capabilities
is the ability to operate the vehicle close to its limits of handling, e.g., by performing
emergency/avoidance maneuvers or by driving on bad road conditions such as those of
a very slippery surface road. When it comes to new technologies in the automotive
industry, racing has often played a key role in fuelling innovation and pushing cars
to the limit of what is possible. Autonomous racing has proven to be an essential
platform to develop, test and validate new technologies under challenging conditions. It
provides a unique opportunity to test autonomous driving software such as redundant
perception pipelines, failure detection algorithms and control in challenging conditions
and on closed tracks, which mitigates the risks of human injury. Competitions, by
themselves, allow researchers and developers to test the applicability of different solutions
and their robustness. Racing competitions, in particular, present additional challenges
related to computational speeds, power consumption, and sensing.

1.1 Formula Student Competition

Formula Student1 is the Europe’s most established educational automotive engineer-
ing competition that challenges university students from worldwide top universities to
design, manufacture, build and test electric and combustion race cars following a strict
set of rules [13] that prioritize safety. These students are then challenged to race their
cars and compete against other teams in international competitions. However, the com-
petition is not won solely by the team with the fastest car, but rather by the team
with the best overall package of construction, performance and financial and sales plan-
ning. Backed by the automotive industry and by high-profile engineers, Formula Student
Germany (FSG), one of the most reputable competition organizers, introduced, in a con-

1https://www.formulastudent.de. Accessible on July 30, 2021.
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CHAPTER 1. INTRODUCTION

stant effort to follow the trends of the automotive industry world, a new competition
class, the Formula Student Driverless (FSD) class. This is a new competition class that
challenges students to build a high-performance autonomous race car. In this class, the
autonomous student-developed prototypes must be able to compete in different events
fully autonomously without any human interaction and without prior knowledge of the
track’s layout. FSD is remarkably unique by allowing the students to design their cars
across the entire stack, i.e., from the car’s chassis and electronics layout to high-level
perception and motion planning algorithms using state-of-the-art sensors and computing
hardware.

The Formula Student competitions take place in famous racetracks around the world
and follow a strict set of regulations established by the Formula Society of Automotive
Engineers2 (FSAE) that must be met by every participating prototype. The competi-
tions can be divided into two sets of events: static events and dynamic events. The
static events evaluate the technical aspects of the design, conception and sustainability
of the prototype, and include an Engineering Design event, Cost and Manufacturing and
a Business Plan Presentation that evaluates the team’s ability to develop and deliver a
comprehensive business model which demonstrates that their product – a prototype race
car – could become a rewarding business opportunity that creates a monetary profit. On
the other hand, in the dynamic events, the students are able to show the actual racing
capabilities of their developed prototype. However, even before the race cars can go
on track, a technical inspection puts the students to the test by evaluating their pro-
totype and by making sure that the mechanical, electrical, and autonomous aspects of
their prototype are in accordance with the rules, especially those related to safety. The
dynamic events comprise a total of 5 events, represented in Fig. 1.1. These events are:

• Skid Pad (Fig. 1.1(a)): the car must complete, as fast as possible, two full laps
on a track that is delimited by two pairs of concentric circles in an eight pattern
figure. Here, mostly the lateral accelerations of the car are tested;

• Acceleration (Fig. 1.1(b)): the car must accelerate as fast as possible on a
track that consists of a straight line with a length of 75 meters. Here, mostly the
longitudinal acceleration is tested;

2https://www.fsaeonline.com/. Accessible on July 30, 2021.
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1.1. FORMULA STUDENT COMPETITION

(a) Skidpad Event. (b) Acceleration Event.

(c) Autocross Event. (d) Trackdrive and Efficiency Event.

Figure 1.1: Formula Student Dynamic Events for the Driverless Class vehicles. Figures
taken from [14].

• Autocross (Fig. 1.1(c)): the car must complete one full lap on an unknown
closed-loop track with a length of 200 to 500 meters. The track is composed of
several corners and straights, which tests the handling capabilities of the car;

• Trackdrive and Efficiency (Fig. 1.1(d)): the car must be able to complete
ten consecutive laps around the same track used in the autocross event. Here, the
consistency and robustness of the prototype are tested. Besides that, the energy
efficiency of the car is also evaluated by measuring the energy spent during the
trackdrive event.

As shown in Figure 1.1, for the FSD class the track boundaries are delimited by blue

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Specifications of the cones used in Formula Student Driverless competitions.
Figure taken from [14].

cones on the left and yellow cones on the right, small orange cones delimit stopping
zones and big orange cones mark timekeeping zones. The shape, dimensions and color
pattern of these cones must always be the same, as shown in Fig. 1.2, and are regulated
by the FSG rules [13]. Since the layout of the track is unknown, in order to safely
navigate through the unknown environment, the perception pipeline implemented in the
prototype must be able to identify the cones’ position and color using the data retrieved
from the available perception sensors. Having detected the cones that delimit the track,
it is then necessary to compute a valid path between the track boundaries, something
that is done by the path planning pipeline. Finally, in order to navigate through the
track using the computed path one needs to determine a speed target and a steering
input, which is performed by the control pipeline. During the dynamic events the only
way of communicating with the vehicle is via the Remote Emergency System (RES),
which allows to send a starting signal, the "Go Signal", and to stop the vehicle in case
of emergency, activating the Emergency Brake System (EBS).

1.2 Motivation

Formula Student Técnico3 (FST) is the team that represents Portugal and Instituto
Superior Técnico (IST) in the international Formula Student competitions that it attends
every year. FST has been developing prototypes for this competition since 2001, with
ten prototypes developed so far and proven results in the most prestigious competitions

3https://fstlisboa.com. Accessible on July 30, 2021.
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of Europe. In 2019 the team, with more than 60 members from different engineering
courses, decided to, in addition to building a new fully electrical prototype, embrace
a new challenge: empower the previous electric prototype (FST09e) with autonomous
driving capabilities and compete in the FSD class in the summer of 2020. Initially com-
posed of only eight students, the autonomous systems team successfully developed, in
less than one year, a complete autonomous pipeline [15], comprising perception, estima-
tion and control pipelines.

Unfortunately, due to the COVID-19 pandemic, the formula student competitions
that FST was going to compete in, were canceled. Because of this, an opportunity for
extensively testing the developed algorithms emerged. As this was the team’s first year
to develop an autonomous car, it would be expected to encounter problems during this
testing phase, which turned out to be the case. Even though the different pipelines
were extensively tested in simulation and using synthetic data, one pipeline that was
notoriously hard to test on simulation was the perception pipeline. Due to this, several
problems related to the perception pipeline and its computational expensiveness arose
during the testing phase. In order for the car to be competitive, it needs to be able
to navigate through the track (delimited by yellow and blue cones) at a very fast pace,
which means that an accurate, robust and fast perception pipeline that takes advantage
of all the available sensors must be developed.

1.3 Contributions and Outline of the Thesis

In this thesis, I propose a new perception pipeline, for an autonomous Formula
Student car, that exploits the best features of each available perception sensor to generate
cone proposals and, using custom CNNs, classify the image patches created by projecting
the cone proposals into the camera image. Furthermore, and due to the simplicity of
the CNNs used, a Nearest Neighbor based tracking algorithm is used in order to mitigate
misclassifications by taking into account previous observations. The proposed perception
pipeline is characterized by its high accuracy and low execution time, which allows it to
be run on CPU only, increasing the efficiency score in the Formula Student competitions
by taking the high power consumption GPU out of the processing unit.

In Chapter 2 a review is conducted on the methods used on the perception pipelines
implemented by other Formula Student teams. In Chapter 3, it is presented an overview

6



CHAPTER 1. INTRODUCTION

of the Formula Student prototype used alongside the system integration and specifica-
tions of the perception sensors added and all the modifications done to the prototype
in order to transform it into an autonomous prototype. Chapter 4 sequentially details
the proposed perception pipeline, from the identification and generation of the cone
proposals, in Sec. 4.1, to the estimation of the correspondent color, in Sec. 4.2, and the
developed tracking algorithm, detailed in Sec. 4.3. Chapter 5 presents the experimental
results obtained using real data and the results obtained from an ablation study con-
ducted on the methods used to generate cone proposals. Finally, Chapter 6 presents the
conclusions on the proposed perception pipeline as well as suggestions for future work.

7
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Chapter 2

Related Work

In this chapter, a literature review is performed on the existing methods used in the
perception pipelines implemented by Formula Student Driverless (FSD) teams. Unfor-
tunately, since the Formula Student Driverless competition is still a recent competition,
with only three competitions held so far, there is not much literature available regarding
the methods used in the implementations of the teams. However, most of the available
literature belongs to top-tier teams, whose implementations were considered to be, at
the time, the state-of-the-art. Depending on the sensors available to the teams, dif-
ferent approaches can be considered: those that solely rely on either cameras (one or
more), described in Sec. 2.1, or LiDARs, described in Sec. 2.2 and those that fuse the
information of both sensors, described in Sec. 2.3.

2.1 Camera Only Approaches

The methods used in the implementations that solely rely on cameras are highly
dependent on the number and type of cameras used (monocular vs. stereo), as depth
estimation on stereo cameras can be easily obtained. Regardless of the type of camera
used, these implementations start by detecting the cones and estimating their correspon-
dent color, either by using deep learning and state-of-the-art object detectors or using
more classical computer vision techniques. Regarding the deep learning techniques,
some teams [18, 24] chose to use well-known object detectors such as YOLOv2 [31],
YOLOv3 [32] and their correspondent lightweight versions, YOLOv2-tiny [29] and YOLOv3-
tiny [1], respectively, while others [37] opted to use custom object detectors, based on

9



2.1. CAMERA ONLY APPROACHES

the YOLOv3 architecture, to detect the cones, and a custom 7-layer CNN to estimate
their correspondent color. By training these real-time and powerful object detectors to
detect cones from four different classes (blue, yellow, orange and big orange), the teams
are able to accurately get bounding boxes around the detected cones, along with the
confidence scores for each detection.

In order to estimate the 3D position of the detected cones, there is a consensus
(among the formula student teams) that, for monocular setups, using a keypoint regres-
sion alongside the Perspective-n-Point (PnP) [12] algorithm is the best approach. The
known cone’s shape and size are exploited to perform a keypoint regression and find
specific feature points, on each of the detected bounding boxes, that match their 3D
correspondences, whose locations can be measured from a reference frame. A computer
vision approach [24] was initially explored in order to extract these keypoints. First, the
RGB bounding box of the detected cones is converted to the LAB color space and the
"b" channel, which represents the color axis from blue to yellow, is extracted. Then, an
Otsu threshold [27] is used to obtain a binary image where, performing contour fitting,
three vertices from the top region of the cone can be identified. These three vertices
are then extended, using the known dimensions of the cone, to obtain further four more
keypoints. This approach has however shown not to be robust in edge cases, which led
the teams to use deep learning methods. Here, custom CNNs [9, 37] with a ResNet-based
architecture [20] were developed to detect "corner-like" features on the input image –
the bounding boxes of the previously detected cones. The detected keypoints are used
as 2D points on the image to make correspondences with the respective points on the
3D model of a cone. Using the correspondences and the camera intrinsics, PnP is used
to estimate the 3D position of every detected cone. As for stereo camera setups, the 3D
position of the detected cones can be estimated using stereo matching algorithms that
compute the points’ depth by getting the disparity map between the two images.

Regarding the more classical computer vision techniques, two methods were tested
by Zeilinger et al. [44] in order to detect the cones using a stereo camera. The first one
performs a block-matching algorithm [3] on a depth image, which allows to extract and
remove 3D planes. Since the track floor is geometrically known, it can be pre-segmented,
making cone proposals appear as isolated objects in the image. These proposals are then
further evaluated using classical image processing steps on the estimated location in the
image plane, similar to the approach taken in [43]. However, in addition to its high

10
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computational cost, it was found to be hard to adapt the block-matching algorithm to
use the known structure of the environment. The second method is able to detect cones
in both images separately by using an algorithm that computes the disparity, i.e., the
distance between two corresponding points in the left and right images of the stereo
camera, the z-depth, and, consequently, the 3D position of the cone. In both methods,
the color of the cones is heuristically estimated by evaluating the RGB pixel values of the
cone’s centroid, which should be within a white or a black stripe, and moving downwards
until another color (blue, yellow, or orange) is found, identifying the color of the cone.

2.2 LiDAR Only Approaches

From the review conducted on the available literature regarding the perception
pipeline implementations that solely rely on the LiDAR, one can conclude that all the
implementations [2, 4, 18] have in common their two first 3D LiDAR processing steps.
Firstly, the ground plane is removed using an adaptive ground removal algorithm [21]
that adapts to changes in the inclination of the ground using a regression-based ap-
proach. This algorithm divides the LiDAR’s FoV into angular segments and it splits
each segment into radial bins from which a line is then regressed using the lowermost
points of all the bins in a segment. Finally, all the points that are within a threshold
distance to this line are classified as ground points and are removed. The second Li-
DAR processing step shared by these implementations is the step of clustering the point
cloud. Here, the Euclidean Clustering method is used to group the point cloud into
clusters by performing clustering extraction in a Euclidean sense, i.e., by computing
the Euclidean distance between each of the 3D points of the point cloud and evaluate
whether that point corresponds to the cluster or not. Having the cones clustered out,
Agarwal et al. [2] and Gosala et al. [18] apply some heuristic-based filters to estimate the
likelihood of the clusters being cones, before going for the cones’ color estimation step.
First, the dimensions of a bounding box created around the cluster and the elements of
the covariance matrix are used to filter candidates. Then, using the dimensions of the
cones and the vertical and horizontal angular resolutions of the LiDAR, a rule-based
filter is used to check whether the number of points in that cluster is in accordance
with the expected number of points in a cone at that distance. Only the clusters that
successfully go through these filters are considered to be cones and are forwarded to the
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color estimation step.
To estimate the color of the validated cones, all the teams chose to use different

deep learning methods. As shown in Fig. 1.2, the cones used in Formula Student can
be distinguishable not only by their color pattern but also by their intensity pattern.
Yellow cones have a yellow-black-yellow pattern whereas blue cones have a blue-white-
blue pattern, which results in differing LiDAR intensity patterns. Gosala et al. [18]
exploits the differing LiDAR intensity patterns of the cones to develop a custom CNN
whose input image corresponds to an image created by mapping the 3D bounding boxes
of the validated clusters and whose pixel values store the intensities of points in the point
cloud. Similarly, Agarwal et al. [2] use binary classification techniques by developing a
shallow 1D CNN that exploits the mean intensity and number of points per ring in
the validated clusters. The output of both CNNs is the color of the cone. Following a
different route, and inspired by the different colors of cones that distinguish the left and
right boundary of the track, Chen et al. [4] chose to use a custom CNN to distinguish
the geometric distribution of cones and, consequently, find the color of the validated
clusters.

2.3 LiDAR and Camera Approaches

A review was also conducted on implementations that follow an approach of fusing
the information between the LiDAR and the camera. Here, the perception pipeline
previously implemented by the Formula Student Técnico (FST) will also be reviewed.
These implementations [41, 15] start by identifying the cones using methods similar to
those described in Sec. 2.2, i.e., methods that only rely on the LiDAR. First, the raw
point cloud is filtered using either a box region to remove points that are outside it or
a pass-through filter that performs a simple filtering along any specified axis, removing
points that lay outside the defined range for each axis. Then, the ground points are
removed from the point cloud using Random Sample Consensus (RANSAC) [8] with the
assumption that the ground plane is flat. Finally, Euclidean clustering is used to cluster
the point cloud into groups and to compute their correspondent centroids, which are
then projected onto the image plane.

Tian et al., in [41], create a Region of Interest (ROI) around the projected centroids
and, from these ROI boxes, gradient features are extracted using Histogram of Oriented
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Gradients (HOG) [7]. Furthermore, using the extracted HOG features, a Support Vector
Machine (SVM) [6] classifier is trained to distinguish cones from other clustered objects.
The RGB color space of the ROI patches is then converted to the HSV color space and
the color of the cones is estimated by extracting the main color present on the ROI.

In [15], the FST team proposes using YOLOv3-tiny [1], a lightweight version of the
2D real-time object detector YOLOv3, to classify and identify the location of the cones
on the camera image. Then, for each projected centroid of the cones, it is evaluated
if it falls inside any of the bounding boxes that surround the detected objects. Those
who do, receive the color associated with the class of the correspondent bounding box.
Although this approach combines the best features of each sensor by using the position
estimated by the LiDAR and the color estimated using the camera, it is a very calibration
dependent approach, in the sense that a single projected point is used to evaluate if it
matches any bounding box and, since the further the detected cones are, the smaller the
bounding boxes will be, this matching task becomes more demanding and less forgiving
for further away cones. Moreover, this approach involves using the full image to detect
the cones, something that is very computationally expensive, even running, on GPU, a
lightweight version of a real-time object detector, like YOLOv3-tiny.

The perception pipeline proposed in this work fits inside this last approach cate-
gory, in the sense that it fuses the information between the two sensors to identify the
cones and classify their color. However, the proposed perception pipeline differs by
not using heavy object detectors to detect the different colored cones in the full cam-
era image. Instead, the cones are detected using the LiDAR information and are then
projected onto the camera image plane, where 2D bounding boxes are created around
the cones. These 2D bounding boxes are cropped from the original image and, using
custom lightweight CNNs, the resultant image patches are classified, something that is
significantly less computationally expensive.
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Chapter 3

Vehicle Setup

The base vehicle chosen to be transformed to compete in the Formula Student Driver-
less FSD class was the last prototype developed by the Formula Student Técnico (FST)
team, the FST09e. This was the ninth prototype developed by the team and it is
currently the most successful and reliable prototype developed and built by the team,
achieving, in 2019, 9th place out of 39 teams that attended what is the most presti-
gious and challenging Formula Student competition in the world, the Formula Student
Germany (FSG), held at the famous Hockenheimring.

Figure 3.1: FST09e, the ninth prototype developed by FST, at Formula Student Ger-
many 2019.

This prototype incorporates a full carbon fiber monocoque, a complete aerodynamic
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package, and an 8 kW/600 V high voltage battery that supplies the four (one in each
wheel) permanent magnet synchronous electric motors, producing a total peak power of
120 kW and capable of accelerating from 0-100 km/h in around 2.5 seconds.

In order to meet the set of challenges imposed by the FSD competition, the prototype
was equipped with a set of sensors that replaces the driver’s ability to perceive the
environment. The first sensor added to the car was a Light Detection and Ranging
(LiDAR) sensor, which allows to accurately get the distance to obstacles by targeting
them with a laser beam and measuring the time for the reflected light to return to
the receiver. More specifically, the LiDAR used is a Velodyne VLP-16, which is a 16
channel LiDAR that has a 100-meter range and a 360 degrees horizontal Field of View
(FoV) with a 30-degree vertical FoV angle. The LiDAR was positioned on top of the
front wing of the car as it corresponds to the position that maximizes the number of
point returns per cone, allowing to detect further away cones. In the context of Formula
Student, the vertical resolution of the LiDAR represents the most important specification
since it is what limits the number of point returns per cone, which directly relates to
the distance at which cones can be perceived. A representation of the LiDAR FoV, as
well as its positioning on the car, can be seen in Fig. 3.2.

The second perception sensor added to the prototype was a CMOS camera responsi-
ble for collecting rich and colorful information of the environment in the form of an RGB
image, complementing the sparse information, in the form of a point cloud, retrieved by
the LiDAR. The chosen camera was a Lucid Triton TRI032S, which is a 3.2 megapixels
camera that, coupled with a 6 mm f/1.8 Kowa lens, offers a useful 65 degrees of FoV with
a 2048 × 1536 resolution and a frame rate of 30 FPS. The camera is positioned on the
main hoop of the car, close to where the eyes of the pilot would be, as this positioning
allows to reduce the occlusion among cones and to still be able to perceive cones that
are placed one behind the other (in line of sight). The positioning of the camera as well
as a representation of its FoV can also be seen in Fig. 3.2.

To simulate the stimulus that a pilot feels while driving and to estimate the car’s
position and orientation, the prototype was also fitted with an Attitude and Heading
Reference System (AHRS), which estimates the accelerations and velocities of the vehicle
by fusing the information from an Inertial Measurement Unit (IMU) and from a Global
Positioning System (GPS). The information retrieved by all of these sensors is then
processed by the autonomous system algorithms using a powerful onboard computer
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(a) Side view.

(b) Top View.

Figure 3.2: Representation of the positioning and Field of View (FoV) of the LiDAR
and Camera.

equipped with an Intel Core i7-8700T central processing unit (CPU) and an NVIDIA
GeForce GTX 1060 Ti graphical processing unit (GPU).

To replace the driver’s hands, a DC motor, coupled with a gearbox, was attached to
the steering column using a pulley system that allows turning the steering wheel accord-
ing to the steering angle requested by the controller pipeline. Furthermore, as safety is
a primary concern when dealing with any kind of racing vehicle, especially autonomous
ones, the prototype was also fitted with a Remote Emergency System (RES), responsi-
ble for sending the "Go Signal" and, in case of emergency, for stopping the vehicle by
deploying the Emergency Brake System (EBS), which should be able to stop the vehicle
with an average deceleration greater than 8 m/s2.
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Chapter 4

Proposed Perception Pipeline

This chapter describes the proposed perception pipeline and how it helps solve
the problems identified while using the perception pipeline previously implemented by
the FST team. In Sec. 4.1 it is described the process of identifying the cones that delimit
the Formula Student tracks using only the Light Detection And Ranging (LiDAR) sen-
sor. Then, in Sec. 4.2, it is detailed how the classification of the cone’s color is performed
and how the sensors can be fused to help the classification task. Finally, in Sec. 4.3,
it is described the implementation of a tracking algorithm that allows to mitigate mis-
classifications by taking into account previous observations. A complete overview of the
proposed perception pipeline is shown in Fig. 4.1.

The proposed pipeline was implemented using ROS [30], which handles the com-
munication and synchronization between modules, who were developed in C++ for its
enhanced computational efficiency. Furthermore, PyTorch [28] was used to develop and
train the implemented Convolutional Neural Networks (CNNs) given the ease with which
it allows different neural network models to be developed and tested.

4.1 Cones Detection

This section describes the process of identifying and generating cone proposals, and
their corresponding position, using only the point cloud generated by the Light Detection
And Ranging (LiDAR) sensor. The generated cone proposals will later be used in the
classification step described in Sec. 4.2, where it will be assessed which proposals actually
represent cones and with what color. These cone proposals are generated through a
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Figure 4.1: Overview of the proposed perception pipeline.

multi-step point cloud processing that includes a pass-through filter to trim the LiDAR
Field of View (FoV), a ground removal algorithm to remove points that belong to the
ground, a clustering algorithm to extract and group the point cloud into clusters, a
cone reconstruction algorithm to retrieve points incorrectly removed during the ground
removal process and a final cone validation step to remove any remaining outliers.

4.1.1 Pass-through Filter

As described in Chapter 3, the LiDAR used in FST 10d, the FST autonomous
prototype, has a range of around 100 meters and a horizontal FoV of 360 degrees with
a 30-degree vertical FoV angle. Due to these LiDAR specifications, most of the points
of the generated point cloud lay outside the Region Of Interest (ROI), the region where
the cones that delimit the track are placed, which is mostly in front of the car, up to a
longitudinal distance of 25 m and up to a lateral distance of 10 m. On top of that, due
to the LiDAR being positioned in the front wing of the car, as shown in Fig. 3.2, almost
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(a) Raw point cloud (b) Pass-through filtered point cloud

Figure 4.2: Raw point cloud returned by the LiDAR, represented in (a), and the resultant
point cloud after the pass-through filtration, represented in (b).

half of the LiDAR FoV is obstructed by the car itself, which causes it to contain a lot
of noisy points and making it unusable.

In order to remove these points from the point cloud and avoid using them on future
point cloud processing steps, which would increase their total execution time, a pass-
through filter, from the Point Cloud Library (PCL) [34], is applied to the raw point cloud
generated by the LiDAR. This pass-through filter performs a simple filtering along any
specified axis, removing points that lay outside the defined range for each axis. Thus,
applying this pass-through filter on all three axes allows not only to remove all the points
that are behind the LiDAR, and therefore outside the ROI, but also points that are much
higher than the height of a cone used in Formula Student competitions and points that
are much farther, widthwise, than the width of a Formula Student track. A comparison
between the raw point cloud and the resultant point cloud after the application of the
pass-through filter is shown in Fig. 4.2, where it can be seen that most of the points
that are outside the ROI, like those generated from the LiDAR beams hitting the walls
and those that are behind the LiDAR, are removed after this LiDAR processing step.

4.1.2 Ground Removal

Although most of the points that lay outside the ROI were removed from the point
cloud in the previous LiDAR processing step, there are still several points in the ROI
that were generated by the reflection of the LiDAR laser beams on the ground, as it can
be noted in Figures 4.2(b) and 4.3(a). These points can be considered noisy data as they
mostly belong to the ground plane and do not represent cones. Following the same prin-
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(a) Point cloud before ground removal (b) Point cloud after ground removal

Figure 4.3: Point cloud after the pass-through filtration, before the ground removal,
represented in (a), and the resultant point cloud after the ground removal step us-
ing RANSAC with a plane model, represented in (b).

ciple of removing these points to avoid using them in subsequent LiDAR processing steps,
an implementation of the iterative Random Sample Consensus (RANSAC) [12] method,
from the sample consensus module of the PCL library, was used. This implementation
allows choosing a mathematical model, from fifteen available, to be used as the mathe-
matical model whose parameters will be estimated by the RANSAC method. RANSAC
is a resampling technique that generates candidate solutions by using the minimum num-
ber of observations (data points) required to estimate the underlying model parameters.
An overview of the RANSAC algorithm is given in Alg. 1.

Algorithm 1 RANSAC algorithm (Derpanis et al. [8])
1: Select randomly the minimum number of points required to determine the model

parameters.
2: Solve for the parameters of the model.
3: Determine how many points from the set of all points fit with a predefined tolerance
ε.

4: If the fraction of the number of inliers over the total number points in the set exceeds
a predefined threshold τ , re-estimate the model parameters using all the identified
inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of N times).

In this case, the points to be removed belong mostly to the ground which, in the
Formula Student context, can be approximated to a plane. Thus, the iterative RANSAC
method was implemented using the PCL sample consensus plane model, which defines
a plane model for 3D plane segmentation. This allows identifying the ground plane
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and removing it from the point cloud. The comparison between the before and after
the ground removal using RANSAC is shown in Fig. 4.3, where it can be seen that all
the LiDAR points belonging to the ground plane are removed, resulting in a point cloud
where most of the points belong to cones, as shown in Fig. 4.3(b).

4.1.3 Euclidean Clustering

After the previous two LiDAR processing steps, one gets a point cloud similar to
the one shown in Fig. 4.3(b), which corresponds to an unorganized point cloud where
all of the 3D points are contained in the ROI, the majority of them belonging to cones.
However, despite knowing that most of these 3D points belong to cones, one does not
know to which cone each of these points belongs, i.e., at this point, there can be either
as many cones as the number of 3D points in the point cloud or a single cone to which
every 3D point belongs.

To address this problem, the Euclidean Distance Clustering method [35], from PCL,
is used, which performs cluster extraction in a Euclidean sense, i.e., it computes the
Euclidean distance between each one of the 3D points of the point cloud and it groups
them into clusters based on predefined parameters such as the minimum and the max-
imum number of points that a cluster can contain in order to be considered valid, the
maximum distance between two points so that they can be considered part of the same
cluster, and the spatial tolerance for new cluster candidates. These parameters can
be tuned taking into consideration the dimensions of a cone used in Formula Student
competitions and the expected distance between cones, which is also regulated by the
competitions’ rules [13].

The result of the Euclidean clustering is shown in Fig. 4.4, represented by the 3D
centroid of each cluster, which is computed after the Euclidean clustering step is done.
Notice that the farthest points may not be considered to be clusters as the number of
points is less than the minimum number of points that a cluster needs to contain in
order to be considered valid.
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Figure 4.4: Result of the Euclidean clustering method applied to the filtered point cloud
shown in Fig. 4.3(b). Each purple sphere represents the 3D centroid of its corresponding
cluster, identifying the different clusters.

4.1.4 Cone Reconstruction

During the ground removal process, described in Sec. 4.1.2, it was noticed that the
bottom-most layer of points hitting a cone was often being removed because it was
being associated with the ground plane, as shown in Fig. 4.5. Given the small number

(a) Point cloud before ground removal (b) Point cloud after ground removal

Figure 4.5: Point cloud before the ground removal step, represented in (a), and the
resultant point cloud after the ground removal step, represented in (b), which shows the
removal of the last layer of points that was hitting the cone.
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of LiDAR layers hitting cones resulting from the not so fine LiDAR vertical resolution,
which is an hardware drawback, these layers can act as invaluable information, especially
in the cone classification step presented in Sec. 4.2.2. Thus, an extra step in the LiDAR
processing is done in order to retrieve these so valuable layers of 3D points.

To retrieve these points, a cylindrical area, with similar dimensions to those of a
Formula Student cone, is created around each cluster using its corresponding centroid,
as shown in Fig. 4.6(a). The cylindrical areas, which are an approximation to the
geometrical shape of a cone, are then used to assess if any of the 3D points from the
removed ground point cloud is contained inside it. This is done by evaluating if

(~q − ~p1) · (~p2 − ~p1) ≥ 0 and (4.1)

(~q − ~p2) · (~p2 − ~p1) ≤ 0, (4.2)

which verifies if a 3D point, ~q, lies between the planes ~p1 and ~p2 of the two circular facets
of the cylinder, and by making sure that

‖ (~q − ~p1)× (~p2 − ~p1) ‖
‖~p2 − ~p1‖

≤ r, (4.3)

which confirms that the 3D point ~q lies inside the curved surface of the cylinder with
radius r.

The points from the removed ground point cloud that are contained inside the created
cylindrical area are then added back to the filtered point cloud and associated with its
corresponding cluster. A representation of the cylindrical area used to retrieve the
bottom layer of the cone’s cluster and a comparison between the before and after the
cone reconstruction step can be seen in Fig. 4.6.
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(a) Cylinder created around each cluster’s centroid. (b) Cluster’s point cloud before and after the cone
reconstruction step.

Figure 4.6: In (a) it is represented the cylindrical area, created around each cluster’s
centroid, used to retrieve points that belong to the cone’s cluster but that were removed
in the ground removal step. The result of the cone reconstruction process is represented
in (b), where it is shown the retrieval of the bottom-most layer of points.

4.1.5 Cone Validation

Even though in Formula Student competitions the tracks are in a substantially con-
trolled environment when compared to urban traffic, there can be obstacles or objects
nearby that are not cones and therefore not part of the track. Despite not being part
of the track, these obstacles can be present in the LiDAR FoV and in the desired ROI,
which may cause them to be considered as clusters while not being cones. To avoid
using these outlier clusters in the classification task, one last LiDAR processing step is
done. In this step, and similarly to what was done in Sec. 4.1.4, a cylindrical area with
similar dimensions to those of a Formula Student cone, is fitted around each of the cone
proposal’s centroid and, using (4.1), (4.2) and (4.3), it is assessed if all the points of the
proposal’s cluster are contained inside the respective cylinder. At this point, only the
clusters whose all points fall inside the correspondent cylindrical area are considered and
used to generate cone proposals to later be classified and assigned a color. The result of
this last LiDAR processing step is shown in Fig. 4.7, where it can be seen that several
clusters that were being considered to be cones, were removed after the cone validation
step, leaving for the classification step only clusters that represent cones.
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(a) Identified clusters before cone validation step. (b) Validated clusters after cone validation step.

Figure 4.7: In (a) it’s represented the identified clusters before the cone validation step
and the cylinder used to validate them, and, in (b), it is represented the validated clusters
after this validation process.

4.2 Cones Classification

The clusters validated in the last step of the LiDAR, which may not all be cones,
are considered to be cone proposals. These cone proposals need to be classified in order
to validate if they are actually cones and with which color. Since these cone proposals,
generated through the LiDAR processing described in Sec. 4.1, may be outside the Field
of View (FoV) of the camera, which commonly happens in tight corners or when the cone
proposals are very close to the car, two different Convolutional Neural Networks (CNN)
are used to classify the proposals: one that resorts to the camera image to classify the
image patches of the proposals that fall inside the camera’s FoV, as it will be described
in Sec. 4.2.3, and one that resorts to the point cloud intensity to generate grayscale
images of the cone proposals that are outside the camera’s FoV, as it will be further
explained in Sec. 4.2.2. In Sec. 4.2.1 it is described how the cone proposals generated
by the LiDAR processing described in Sec. 4.1, can be fused with the camera image to
ease the cone’s classification process by choosing which CNN should be used to classify
each cone proposal.
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4.2.1 Sensor Fusion

The choice of the CNN to be used in the classification task is based on whether
the camera is able to see the cone proposal or not, which means that it is necessary
to determine which cone proposals are inside the camera’s FoV and which are outside.
To determine this, one starts by fitting a 3D bounding box, with similar dimensions to
those of a cone used in Formula Student competitions, around each 3D cone proposal’s
centroid, as shown in Fig. 4.8. Considering that on an image it is possible to define a
bounding box using only its top-left and bottom-right points, only the two correspondent
3D points, represented by the red spheres in Fig. 4.8, need to be projected onto the
camera’s image plane.

Figure 4.8: Representation of the 3D bounding boxes created around each 3D cone
proposal’s cluster and the corresponding top left and bottom right 3D points, represented
by the red points, that will be projected onto the image plane in order to create a 2D
bounding box on the image.

To compute these two points for each 3D centroid P = (X, Y, Z) ∈ R3, two new
points, P1 and P2, are created. These points are created by keeping the centroid’s X
coordinate, which represents the centroid’s depth of the cone proposal, and by taking
into account the cone’s dimensions, as follows:

P1 = (X, Y + w/2, Z + h/2), (4.4)

P2 = (X, Y − w/2, Z − h/2), (4.5)

where w and h represent the width and height of a cone, respectively. Here, the first
point, P1, given by (4.4), represents the top-left point of the bounding box while the
second point, P2, given by (4.5), represents the bottom-right point of the bounding box.
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The aforementioned bounding box points, in the three-dimensional space R3, can be
mapped to points in pixel coordinates on the image plane, in the two-dimensional space
R2, using the 3× 4 perspective projection matrix P , as follows:

uv
1

 ∼ K
[
R|T

] 
X
Y
Z
1

 = P


X
Y
Z
1

 , (4.6)

with P = K
[
R|T

]
, where K represents the camera’s intrinsic matrix and

[
R|T

]
rep-

resents the extrinsic matrix. Notice that both the 3D points
[
X Y Z 1

]T and the
2D points

[
u v 1

]T are represented in homogeneous coordinates, hence the additional
last component, which represents a scale factor and that, by convention, is set to 1. The
camera’s intrinsic matrix K transforms 3D camera coordinates into 2D homogeneous
image coordinates using a perspective projection modeled by the ideal pinhole camera
model [38], represented in Fig. 4.9, and is parameterized by Hartley et al. [19] as

K =

fx 0 cx
0 fy cy
0 0 1

 , (4.7)

where fx and fy represent the camera’s focal length, i.e., the distance between the
camera’s pinhole and the image plane, and cx and cy represent the principal point offset,
which is the location of the principal point relative to the image plane origin.

The process of finding these four intrinsic parameters, which are specific to the camera
model that is being used, is called camera calibration, and it can be done using available
camera calibration methods from OpenCV [42], which, by defining real-world coordinates
of 3D points using a chessboard pattern of known dimensions, as shown in Fig. 4.10,
and find the pixel coordinates (u, v) for each 3D point using multiple images taken from
different perspectives.

The extrinsic matrix
[
R|T

]
, given by

[
R|T

]
=

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 , (4.8)

which is a 3× 4 matrix that takes the form of a rigid transformation by concatenating a
3 × 3 rotation matrix R, whose columns represent the directions of the LiDAR axes in
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Figure 4.9: Representation of the pinhole camera model: ideal projection of a 3D object
on a 2D image. Figure taken from [26].

camera coordinates, and the 3×1 translation column-vector T , which can be interpreted
as the position of the LiDAR origin in camera coordinates. The extrinsic matrix describes
how the LiDAR is transformed relative to the camera, i.e., it allows to map points from
the 3D LiDAR coordinate system to the 3D camera coordinate system.

The process of finding the extrinsic matrix that correctly maps 3D points from
the LiDAR coordinate system to the 3D camera coordinate system can be referred
to as LiDAR-Camera calibration. Although this calibration can be done using meth-
ods that rely on 2D-3D point correspondences, such as those proposed in [17] and [36],
the calibration method proposed in [10], which uses 3D-3D point correspondences, has
proven to deliver better results and be more consistent. This method involves using
augmented-reality tags, namely ArUco markers [16], and the LiDAR point cloud to find
the extrinsic calibration parameters by finding two sets of 3D points, one in the camera
frame and another in the LiDAR frame, and solving for the

[
R|T

]
matrix using the

Iterative Closest Point (ICP) [45] algorithm to minimize the error between the 3D-3D
correspondences.

Using Eq. (4.6) to project onto the image plane the two points from each of the
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Figure 4.10: Representation of the camera’s intrinsic calibration process, where a chess-
board is used to detect patterns on the image and, consequently, find the pixel coordi-
nates (u,v) for each 3D point in the different images taken.

3D planes fitted around each cone proposal’s 3D centroid, it is possible to create 2D
bounding boxes around the cone proposals in the image plane, as shown in Fig. 4.11(a).
By simply checking if the entire 2D bounding boxes fit inside the camera image, it can be
concluded which cone proposals fall inside the camera’s FoV and which don’t. For those
who do, the corresponding bounding box is cropped from the original camera image,
resulting in an image patch similar to the shown in Fig. 4.11(b), which corresponds
to the input image of the CNN further described in the camera classification section,
Sec. 4.2.3. On the other hand, the cone proposals that are outside the camera’s FoV
will go through a preparation process that converts their 3D point cloud clusters into
grayscale images so that these cone proposals can be classified using only information
given by the LiDAR, as further described in Sec. 4.2.2.
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(a) 2D bounding boxes created around cone proposals. (b) Cropped bounding box.

Figure 4.11: In (a) it is represented the 2D bounding boxes created using the 3D-2D
projection of the top-left and bottom-right points of the 2D bounding boxes as well
as the projection of the cone proposal’s centroid and cluster, represented by the green
circle and the black points, respectively. In (b) it is represented an example of a cropped
bounding box that will later be classified using the camera CNN.

4.2.2 Cone’s Color Classification with LiDAR

As mentioned in Sec. 4.2, the cone proposals generated by the LiDAR processing
described in Sec. 4.1, may not all fall inside the camera’s FoV. Therefore, it is crucial to
be able to classify these cone proposals using only the LiDAR information. An example
of a situation that shows the importance of detecting and classifying both cones that are
inside the image and cones that are outside it, is represented in Fig. 4.12. In such tight
corners, only the cones placed on the outer side of the turn fall inside the camera’s FoV
due to the camera being rigidly mounted to the car and pointing forward, as represented
in Fig. 3.2. This means that the cones placed on the inner side of the curve will not be
able to be classified using the camera image. In such situations, and due to the nature of
the path planner algorithm developed by the FST Lisboa team, the resulting trajectory
may not be representative of a good trajectory for the car to follow. The developed path
planner uses Support Vector Machine [6] (SVM) – a supervised machine learning model
that uses classification algorithms for two-group classification problems – to compute
the centerline between the two classes of cones (blue and yellow) that delimit the track
sides. It is therefore essential that these two classes of cones are available to the path
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(a) 2D bounding boxes created around cone proposals. (b) Point cloud with the validated cone proposals.

Figure 4.12: Cone proposals seen by the camera, represented in (a) by the bounding
boxes on the image, and the respective point cloud with all the validated cone proposals,
represented in (b).

planner algorithm so that a valid hyperplane (which is used as the centerline) between
both classes can be computed by the SVM algorithm. In Fig. 4.12(b) it is possible to see
multiple validated cone proposals, represented by the green spheres in the point cloud,
that are not in the camera’s FoV and therefore can not be classified using the camera’s
image. In this particular case, most of those cone proposals correspond to yellow cones
that delimit the right side of the track.

According to the rules imposed by the Formula Student competitions [13] and as
shown in Fig. 1.2, the different cones used in Formula Student Driverless must have
always the same dimensions, shape and color pattern. This means that a yellow cone will
always be distinguishable by its yellow-black-yellow pattern and a blue cone by its blue-
white-blue pattern. Since the intensity of the LiDAR points correspond to the returned
strength of the laser pulse that generated the point, which is directly influenced by the
object’s reflectivity, each cone can also be distinguished in the point cloud according
to its intensity pattern, as shown in Fig. 4.13. Therefore, since black reflects less than
yellow and white reflects more than blue, a yellow cone can be described, from top to
bottom and in terms of intensity, as having a high-low-high pattern, while a blue cone
can be described as having a low-high-low pattern. Notice that the orange cones are
not considered here due to their intensity pattern being similar to the intensity pattern
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Figure 4.13: Point cloud and intensity gradients of the yellow and blue cones used in
the formula student competitions. An high-low-high and low-high-low pattern, for the
yellow and blue cones, respectively, can be identified by reading the intensity values
along the vertical axis. Image taken from [24].

of the blue cones. The orange cones can be distinguished by their orange-white-orange
pattern which, in the point cloud, is also translated to a low-high-low intensity pattern.
Furthermore, these cones are traditionally placed on straights and therefore can be seen
by the camera.

This intensity gradient pattern is then exploited to estimate the cone proposals’ color
using a CNN with a similar architecture to the one proposed by Kabzan et al. [24]. The
input of this CNN corresponds to a 32×32 grayscale image with the intensity points of the
cone proposal and the output corresponds to the probability of the proposal being blue,
yellow and unknown. As shown in Fig. 4.14, this CNN can be divided into two stages: the
feature extraction stage and the classification stage. The backbone of the CNN, which
performs the feature extraction, consists of four convolutional layers with a max-pooling
layer between them, which not only reduces the number of parameters in the model by
downsampling the feature map but it also makes feature detection more robust to object
orientation and scale changes. In order to introduce non-linearity into the model, the
Rectified Linear Unit (ReLU) activation function is used after each convolutional layer
and after each of the five fully connected layers that compose the classifier. The output
of the network is normalized to a probability distribution over the three classes using
Softmax, which is defined as:

Softmax (~xi) =
exi∑K
j=1 e

xj

, (4.9)

where ~xi represents the input vector (the output of the last fully connected layer), the up-
per term of the fraction represents the exponentiation part of the function, that converts
each element of the input vector into a positive value, and the bottom term represents
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Figure 4.14: Illustration of the CNN architecture used for estimating the cone’s color
using only the LiDAR information. The CNN is composed of four convolutional layers,
on the feature extraction stage, and five fully connected layers, on the classification
stage. Its input is a 32 × 32 grayscale image with intensity points of the cones and it
outputs the probability of the cone proposal belonging to each of the three classes (blue,
yellow and unknown).

the normalization term, which ensures that all the output values of the function sum to
1 and that each one is in the range [0, 1] for the K number of classes (three in this case).

Furthermore, the aforementioned CNN uses the cross-entropy loss function given by

L(ŷ, y) = −
K∑
k

y(k) log ŷ(k), (4.10)

which increases as the predicted probability diverges from the actual label, k, penalizing
and adjusting the model weights based on how far the predicted probability is from the
actual expected value. It is also less computationally expensive when computing the
network’s gradients, which, consequently, converges faster to the optimal value. More-
over, while training the model, Dropout [22] - a regularization technique that randomly
“deactivates” neurons in the neural network - and batch-normalization [23] - a technique
that normalizes the distributions of the hidden layer’s inputs - are used to prevent com-
plex co-adaptations between neurons, control overfitting and improve the generalization
of the network.
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(a) Blue cone. (b) Yellow cone. (c) Unknown.

Figure 4.15: Representation of the input image of the CNN with the point intensities of
the cone proposals mapped into a 32×32 image. In (a) it is represented a blue cone with
its low-high-low intensity pattern, in (b) a yellow cone with its high-low-high intensity
pattern and in (c) an unknown, which corresponds to a noisy cone proposal.

The input image is created by mapping every point of the cone proposal’s cluster
to a 32 × 32 image whose pixel values store the intensity of the LiDAR beam in that
point. To correctly map these points into a 32× 32 matrix, which represents the 32× 32

image that the network takes as input, a linear interpolation is performed, leaving a
boundary of 3 points around the cone. In order to enhance the difference between the
intensity values of the multiple layers, i.e., enhance the intensity pattern of the cones,
the pixel values are scaled using a linear scale factor, benefiting high-intensity values
and penalizing low ones, which results in images similar to the ones shown in Fig. 4.15.

This network has been trained with a custom dataset of over 19 000 images with the
mapped intensity values of blue and yellow driverless Formula Student cones and noisy
identified clusters to represent the unknown class. The dataset is composed of images
generated using the raw LiDAR data gathered from previous runs using the same LiDAR
and it is continuously growing as more raw data is acquired.

An example of the output of the LiDAR CNN that shows the importance of using
such CNN is shown in Fig. 4.16. In Fig. 4.16 (a) it is possible to observe three cones, two
yellow and one blue, that are not visible in the correspondent camera image, represented
in Fig. 4.16 (b), but whose color was estimated using the LiDAR CNN. This example
shows the importance of using this CNN, as it allows to classify the color of the cones
that delimit the inner side of the curve when the cones are not visible in the camera
image.
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(a) Point cloud with the LiDAR CNN output. (b) Correspondent camera image.

Figure 4.16: Example of the output of the LiDAR CNN. In (a) it is represented the point
cloud with the generated cone proposals evaluated by the CNN and their correspondent
predicted color. In (b) it is shown the correspondent camera image, where the evaluated
cone proposals are not visible, highlighting the importance of the LiDAR CNN.

4.2.3 Cone’s Color Classification with Camera

The classification of the remaining cone proposals, whose projected 2D bounding
boxes fit inside the camera image, is performed using a CNN with an architecture similar
to the one described in Sec. 4.2.2. However, this CNN takes as input a 32×32 RGB image
that corresponds to the image patch of the projected bounding box that surrounds the
cone proposal, as shown in Fig. 4.11(b). Furthermore, and as illustrated in Fig. 4.17, the
architecture of the network described in this section has one less convolutional layer in
the feature extraction stage, a change that allowed to achieve better computational times
while maintaining an acceptable accuracy and reliability, as demonstrated in Chapter 5.

This CNN consists of three convolutional layers that perform feature extraction and,
similarly to the CNN described in Sec. 4.2.2, after each convolutional layer a max-pooling
layer is used to downsample the feature maps after using Rectified Linear Unit (ReLU)
as the activation function to introduce non-linearity to the model. As for the classifier,
it consists of five fully connected layers, where to the output of each one is also applied
the ReLU activation function. The output of the network is normalized to a probability
distribution over the five classes using Softmax (defined in (4.9)). Additionally, while
training the model, dropout and batch normalization are also used to randomly “deac-
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Figure 4.17: Illustration of the CNN architecture used for estimating the color of the
cones using the camera image. The CNN is composed of three convolutional layers, on
the feature extraction stage, and five fully connected layers, on the classification stage.
It receives, as input, a 32 × 32 RGB image with the cropped bounding box containing
the cone proposal and it outputs the probability of that cone proposal belonging to each
of the five classes (blue, yellow, orange, big orange and unknown).

tivate” some neurons in the neural network and to normalize the distributions of the
hidden layer’s inputs, preventing complex co-adaptations between neurons, controlling
overfitting and improving the generalization of the network.

This network has been trained with a custom dataset of over 100 000 images of the
four classes of Formula Student Driverless cones and background images to represent the
unknown class. The dataset was originally only composed of images from FSOCO [11] –
a collaboration between Formula Student teams that aims to accelerate the development
of camera-based solutions in the context of Formula Student Driverless – but has since
been enlarged with more images gathered from runs on different testing sites and with
different weather/light conditions.

An example of the output of this CNN is shown in Fig. 4.18. In Fig. 4.18 (a) it is
possible to observe the point cloud with the clusters of the generated cone proposals
and the correspondent color classified by the CNN and, in Fig. 4.18 (b), it is shown

38



CHAPTER 4. PROPOSED PERCEPTION PIPELINE

(a) Point cloud with the Camera CNN output. (b) Correspondent camera image with the camera
CNN output.

Figure 4.18: Example of the output of the camera CNN represented in: (a) the point
cloud with the generated cone proposals and their correspondent predicted color and in
(b) the camera image with the generated bounding boxes around the cone proposals and
their correspondent predicted color.

the correspondent camera image with the generated bounding boxes, also with the cor-
respondent predicted color, used to create the image patches that are classified by the
camera CNN.

4.3 Tracking

Given the simplicity of the CNNs described in Sec. 4.2.2 and in Sec. 4.2.3, which allow
to classify and associate a color to the cone proposals generated through the LiDAR
processing described in Sec. 4.1, a Nearest Neighbor [5] based tracking algorithm was
developed in order to mitigate possible misclassifications returned by either CNNs. By
taking into account previous observations, it is possible to keep track of the colors
associated with each cone proposal and thus decide the cone’s color based on the number
of times each color was associated with the proposal. The general overview of this
tracking algorithm is shown in Fig. 4.19.

This tracking algorithm starts by fusing the information returned by both neural
networks, the cone detections with an associated position and color. Once all the cone
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Figure 4.19: General overview of the implemented Nearest Neighbor based tracking
algorithm. New cone detections are associated with previously tracked cones if they are
contained in the search radius. Unmatched IDs are registered and new IDs are created
for the non-associated cone detections.

detections are fused, a different ID is assigned to each of them and, simultaneously, the
cone’s color is registered. Having assigned the first IDs, the Nearest Neighbor based
tracking algorithm is used to associate the next set of cone detections to the already
existing and tracked cone detections. So, for each previously tracked cone detection, it
is searched for the closest cone detection, within the new set of cone detections, and the
tracked cone’s position is updated and the color is registered, both using the information
of the closest cone detection. It should be noticed that, to avoid miss associating new
cone detections to a tracked cone that, although is the closest one, it is too far away,
a searching radius is used taking into account the minimum distance between cones
defined by the Formula Student competitions rules. The cone detections that were not
associated with any previously tracked cone are considered to be new cones and an ID
is assigned to them, allowing them to be used as tracked cones in the next iteration.
On the other hand, the previously tracked cones that were not associated with any new
cone detection are registered as being missed and are not considered as cone detections
in the current iteration, although remaining to the next iteration as tracked cones. By
keeping note of the number of times a tracked cone was missed it is possible to remove
not only outliers that in the meantime stopped being identified but also cones that have
already left the LiDAR FoV, e.g., cones that have already been passed by the car and
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are now behind it. An overview of the implemented tracking algorithm is detailed in
Alg. 2.

Algorithm 2 Tracking algorithm
1: Join the classified cone detections of both Convolutional Neural Networks.
2: if tracked cones array is empty then
3: for each new cone detection do
4: Assign it an ID.
5: Add it to the tracked cones array.
6: Register the associated color.
7: end for
8: else
9: for each cone in tracked cones array do
10: Create a Region Of Interest (ROI) around the previously tracked cone.
11: Search for the closest new cone detection.
12: Evaluate if the closest new cone detection is inside the ROI.
13: if closest new cone detection inside ROI then
14: Update the tracked cone position using the position of the closest new cone

detection.
15: Register the color associated with the closest new cone detection.
16: Decide the color of tracked cone by searching for the most seen color.
17: Remove the new cone detection from the new cone detections array.
18: else
19: Register that the tracked cone was missed.
20: if cone missed too many times then
21: Remove it from the tracked cones array.
22: end if
23: end if
24: end for
25: for new cone detection in the remaining cone detections array do
26: Assign it a new ID.
27: Add it to the tracked cones array.
28: Register the associated color.
29: end for
30: end if

Furthermore, the cone’s color is decided by searching for the color that was most
associated with that cone ID. Taking the example shown in Fig. 4.20, the cone tracked
with the ID 56, was classified eight times as being blue, but the last color classification
came up as yellow cone. However, the cone still went through as being a blue cone
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because it has already been previously classified as being blue many more times. The
same logic applies to when the cone was classified as unknown. This example shows the
importance of this tracking algorithm. If it was not for this tracking algorithm, the cone
detections would be instantaneous, i.e., the most recent cone color, which was yellow,
was going to effectively be the chosen color, propagating this misclassification to the
subsequent path planning algorithms.

Figure 4.20: Example that shows the importance of the tracking module. Even though
the blue cone tracked with ID 56 was classified as being yellow, it still went through as
being blue because it had already been previously classified eight times as being blue.

The implemented tracking has proven to be a powerful filter, as it helps to smooth out
cone color estimation and make the pipeline more robust to misclassifications, something
that significantly helps the path planning algorithms in a previously unknown track.
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Chapter 5

Experimental Results

In this chapter, the overall results of the proposed perception pipeline will be eval-
uated in terms of performance and computation cost. First, in Sec. 5.1, the metrics
used to evaluate the performance of the classifiers used to classify the cone proposals’
color will be detailed. The overall results of the Convolutional Neural Network (CNN)
that solely relies on the information from LiDAR are presented in Sec. 5.2. Similarly, in
Sec. 5.3, it is presented the overall results of the CNN that relies on the created image
patches with the cone proposals. Then, in Sec. 5.4, an ablation study on the LiDAR
processing methods is conducted in order to justify the design choices made on the Li-
DAR pipeline. Finally, in Sec. 5.5, it is performed a comparison of the overall perception
pipeline results with and without the tracking module.

5.1 Metrics

In order to evaluate the performance of the trained models, several performance
metrics should be used, as a model can provide satisfying results when using a certain
metric but give poor results when using others. Most of the metrics used to evaluate the
performance of a model can be derived from the confusion matrix of a model, which is a
square matrix whose dimensions depend on the number of classes and that describes the
complete performance of a model. As shown in Fig. 5.1, which represents a confusion
matrix for a binary classification problem, each quadrant of the matrix represents a
category. True Positives (TP) represent the number of samples from the positive class
that were correctly predicted as positive. Similarly, True Negatives (TN) represent the
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number of samples from the negative class that were correctly predicted as negative.
False Positives (FP) represent the number of samples from the negative class that were
incorrectly predicted as being positive. False Negatives (FN) represent the number of
samples from the positive class that were incorrectly predicted as being negative. It
should be noticed that, for a multi-class problem, the same logic can be applied for each
class individually. From these four categories multiple metrics can be defined.

Figure 5.1: Example of a confusion matrix for a binary classification problem.

The first metric, and the most commonly used to evaluate the model’s performance,
is the accuracy metric. The accuracy metric is given by

Accuracy =
TP + TN

TP + TN + FP + FN
, (5.1)

and it gives the overall accuracy of the model by performing the ratio between the
number of correct predictions and the total number of samples, i.e., it tells how much
of the samples were correctly classified. Although the accuracy is the most intuitive
performance measure, it only works well if each class is equally represented.

The precision metric, given by

Precision =
TP

TP + FP
, (5.2)

represents the ratio of correctly predicted positive samples to the total predicted pos-
itive samples. High precision can be obtained when there is a low false positive rate.
Therefore, precision is a good performance metric to use when there is high costs for
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false positives. On the other hand, if there is high costs associated with false negatives,
the recall metric should be used. Recall is given by

Recall =
TP

TP + FN
, (5.3)

and it gives a measure of how accurately the model is able to identify the relevant data
by telling the fraction of all positive samples that were correctly predicted as positive.
For problems where both precision and recall are equally important, the F1 Score metric
should be used. F1 Score metric, given by

F1_Score = 2× Precision× Recall
Precision + Recall

, (5.4)

tells how precise and robust the model is by combining, through an harmonic mean, the
precision and recall metrics into a single metric.

5.2 LiDAR Classification

The CNN used to classify the generated cone proposals that do not fall inside the
camera’s FoV, whose architecture is represented in Fig. 4.14, was trained using a custom
dataset of over 19 0000 images equally distributed for the three classes, as shown in
Table 5.1. This dataset was split into training dataset and test dataset using the 80/20
"rule", i.e., 80% of the dataset is used for training and the remaining 20% is used for
testing. The model was trained on an NVIDIA GeForce GTX 1070 for 100 epochs with
a batch size of 128 and using the Adam optimizer [25] with a learning rate starting on
0.0001. Resorting to a learning rate scheduler, the learning rate is dynamically reduced
by a factor of 0.1 whenever the validation loss stops decreasing for more than 10 epochs,
which indicates that the learning has stagnated.

Table 5.1: Class distribution of the training dataset used for training the LiDAR CNN.

Class Class Distribution (%) Number of Images
Blue Cone 33.59 5 145
Yellow Cone 34.76 5 323
Unknown 31.65 4 847
Total 100 15 315
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To validate the importance of the using the LiDAR CNN, a study was conducted on
the number of cones that it helps classifying. For this, the full perception pipeline was
run over raw data gathered from a lap performed around a Formula Student Driverless
track with and without using the LiDAR CNN. The results of this study, represented
in Table 5.2, show that using the LiDAR CNN allows identifying 16 more cones in a
track with a total of 93 cones, which represents an increase of 17.2% in the number of
identified cones. Notice that the number of identified yellow cones is greater than the
number of blue cones because, as shown in Fig. 5.2, the track is mostly composed of
right-hand turns, which means that the yellow cones will be the less seen by the camera.
From Fig. 5.2 it is possible to conclude that the LiDAR CNN is essential to identify the
cones placed in the inner side of the curves, where mostly cones from the opposite class
can be seen by the camera.

Table 5.2: Comparison between the number of cones identified using and without using
the LiDAR CNN.

Total Number of Cones
Method Class On Track Identified Identified by LiDAR CNN

With
LiDAR CNN

Blue Cone 48 48 2
Yellow Cone 45 45 14

Total 93 93 16

Without
LiDAR CNN

Blue Cone 48 46 -
Yellow Cone 45 31 -

Total 93 77 -

In order to validate the importance of the cone reconstruction step detailed in
Sec. 4.1.4, which retrieves cone points that were incorrectly removed in the ground
removal step, detailed in Sec. 4.1.2, a comparison between the LiDAR CNN results with
and without performing this reconstruction step was conducted. To perform this com-
parison, a new test dataset was created with the same cone images used in the splitted
test dataset but without performing cone reconstruction. Fig. 5.3 shows two examples
of cone images used in the created test dataset and the two correspondent cone images
present in the splitted test dataset. The results obtained from the trained model on
both test datasets are detailed in Table 5.3 and in the confusion matrices represented in
Fig. 5.4.
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(a) Cones detected using the LiDAR CNN. (b) Cones detected without using the LiDAR CNN.

Figure 5.2: Comparison between the number of cones detected using and without using
the LiDAR CNN.

(a) (b) (c) (d)

Figure 5.3: Example of cone images used in the test datasets used to compare the Li-
DAR CNN results with and without performing cone reconstruction. Figures (a) and (b)
show the same blue cone before and after the cone reconstruction step, respectively, while
Figures (c) and (d) show a yellow cone before and after cone reconstruction.

Observing Table 5.3 and Fig. 5.4, one can conclude that the overall results obtained
when cone reconstruction is not performed is around 10% worse across all performance
metrics. As shown in Fig. 5.3, the input images of the LiDAR CNN when no reconstruc-
tion is performed, lack the bottom-most layer of points. This is especially noticeable for
further away cones which, due to the not so fine vertical resolution of the LiDAR, lack on
the number of beams that hit them. For these cones, the missing layer of points breaks
the intensity pattern used as the base for this CNN, turning the intensity pattern of the
cones into low-high and high-low intensity patterns, respectively for a blue cone and a
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Table 5.3: Results of the trained LiDAR CNN model on the test dataset.

Method Class Precision (%) ↑ Recall (%) ↑ F1 (%) ↑ Accuracy (%) ↑

With Cone
Reconstruction

Blue Cone 93.34 85.98 89.51
87.77Yellow Cone 94.38 84.02 88.90

Unknown 76.51 94.93 84.73

Without Cone
Reconstruction

Blue Cone 90.08 73.03 80.66
77.17Yellow Cone 89.14 69.01 77.79

Unknown 60.87 92.99 73.58

(a) Confusion Matrix with Cone Reconstruction (b) Confusion Matrix without Cone Reconstruction

Figure 5.4: Resultant confusion matrices from the LiDAR CNN on the test dataset, with
and without the cone reconstruction step from the LiDAR processing.

yellow cone. These intensity patterns are much less distinguishable, which justifies the
increase of false positives for the unknown class, evidenced by its 15% lower precision.
This means that if the cone reconstruction step is not performed, the will be more blue
and yellow cones incorrectly classified as belonging to the unknown class. Notice that
for this classification task, a false positive in the blue and yellow classes is far worse than
a false positive in the unknown class because classifying a blue cone as a yellow, and
vice-versa, can drastically influence the path planner module that follows. However, the
increase in the false positives for the unknown class means that blue and yellow cones
will be identified much fewer times by being associated to the unknown class, which in
the situations that this CNN is required, may be critical.
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5.3 Camera Classification

The CNN used to classify the remaining generated cone proposals, those that fall
inside the camera’s FoV, and whose architecture is represented in Fig. 4.17, was trained
using a custom dataset of over 100 0000 images. This dataset was originally only com-
posed of images from FSOCO [11] – a collaboration between formula student teams that
aims to accelerate the development of camera-based solutions in the context of Formula
Student Driverless - but has since been enlarged with more images gathered from runs
on different testing sites, with different weather/light conditions and with different cam-
eras. This dataset was also split into training dataset and test dataset using the 80/20
"rule", which means that 80% of the dataset is used for training and the remaining 20%
is used for testing. The model was trained on an NVIDIA GeForce GTX 1070 for 250
epochs with a batch size of 64 and using the Stochastic Gradient Descent (SGD) opti-
mizer [33] with a learning rate starting on 0.00001. Similarly to the train performed on
the LiDAR CNN model, a learning rate scheduler was used to dynamically reduce the
learning rate by a factor of 0.1 whenever the validation loss stops decreasing for more
than 10 epochs. The class distribution of the training dataset is detailed in Table 5.4,
where it is possible to observe that the orange and big orange cone classes are around
10% less represented than the remaining classes. This is due to the dataset having been
created using data from Formula Student Driverless tracks, which, in general, have far
fewer orange and big orange cones, as they are only used on stopping zones and on the
starting line.

Table 5.4: Class distribution of the training dataset used for training the camera CNN.

Class Class Distribution (%) Number of Images
Blue Cone 24.65 25 452
Yellow Cone 25.76 26 598
Orange Cone 15.21 15 694

Big Orange Cone 13.89 14 341
Unknown 20.49 21 154
Total 100 103 239

As mentioned in Sec. 4.2.3, the architecture of the feature extractor of this CNN
was reduced from four convolutional layers to only three. This design choice was based
on a study conducted on the camera CNN performance in terms of classification and
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computation costs. The results obtained from this study are represented in Table 5.5,
Table 5.6 and Fig. 5.5.

Table 5.5: Average inference time of the camera CNN on GPU and CPU for both
architectures.

Average Inference Time (ms) ↓
Architecture GPU CPU

4 Convolutional Layers 1.9 4.5
3 Convolutional Layers 1.6 2.3

Table 5.6: Results of the trained camera CNN model on the test dataset.

Architecture Class Precision (%) ↑ Recall (%) ↑ F1 Score (%) ↑ Accuracy (%) ↑

4 Convolutional
Layers

Blue Cone 96.32 96.00 96.16

93.58
Yellow Cone 97.25 94.99 96.11
Orange Cone 89.48 90.01 89.74

Big Orange Cone 91.00 87.00 88.96
Unknown 90.69 95.99 93.26

3 Convolutional
Layers

Blue Cone 94.84 94.00 94.42

90.40
Yellow Cone 95.37 91.99 93.65
Orange Cone 83.23 86.00 84.59

Big Orange Cone 86.53 82.00 84.20
Unknown 87.26 93.84 90.43

Regarding the inference times of the CNN, represented in Table 5.5, it is possible
to conclude that the architecture that resorts only to 3 convolutional layers is faster on
both GPU and CPU. Although the decrease in inference time is less noticeable when
the model is run on GPU, decreasing only 0.3 ms, on CPU the inference time decreases
by almost 50%, from 4.5 ms to 2.3 ms.

From Table 5.6 and from the confusion matrices represented in Fig. 5.5, it can be
observed that both models achieve over 90% on almost all performance metrics for almost
all classes. It is also possible to observe that the expected loss of performance between
the two models is not very accentuated, decreasing only around 3% on all performance
metrics, except for the Orange and Big Orange Cone classes, when the model with three
convolutional layers is used. The bigger performance decrease in these two classes can
be justified by the fact that these two cones are only distinguishable by the extra white
stripe on the big orange cones and, since a deeper CNN is able to extract deeper features,
the model with four convolutional layers can extract deeper features and thus correctly
classify these classes more often. Furthermore, the lower performance on the orange and
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big orange cones in both models can also be explained by the class distribution of the
training dataset, as these cones are around 10% less represented. This small decrease
in the classification performance of the camera CNN allied to the possibility of being
able to run the CNN on CPU, justifies the choice of decreasing the feature extractor
architecture of the camera CNN.

(a) Confusion Matrix with a 4 Convolutional Layers
Architecture.

(b) Confusion Matrix with a 3 Convolutional Layers
Architecture.

Figure 5.5: Resultant confusion matrices from the camera CNN on the test dataset.
In (a) it is represented the confusion matrix for the model with a 4 convolutional layers
architecture and, in (b), the confusion matrix for the model with a 3 convolutional layers
architecture.

5.4 LiDAR Processing Ablation Study

To justify the need of all the LiDAR processing steps described in Sec. 4.1, an ablation
study was conducted on the implemented methods presented in the LiDAR pipeline. The
results from this ablation study are depicted in Tables 5.7 and 5.8.

Initially, the pass-through filter used to trim the LiDAR FoV was removed, signifi-
cantly increasing the number of cone proposals identified and, consequently, the number
of cone proposals sent to both classification CNNs. Removing the pass-through filter,
which, per iteration, only takes an average of 1.65 ms to trim the LiDAR FoV, causes
an increase in the euclidean clustering average execution time, increasing it by over 6
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ms. Since the euclidean clustering method is responsible for grouping the point cloud
into clusters, the greater is the LiDAR FoV, the greater will be the number of points in
the point cloud, which explains this increase in the execution time of the algorithm and
in the number of cone proposals identified. Furthermore, these increases in the number
of points in the point cloud and in the number of cone proposals identified, cause the
subsequent LiDAR processing and classification steps to also significantly increase their
execution times per iteration, as there are more information to be processed and more
cone proposals to be classified. Consequently, the average execution time per iteration
of the full perception pipeline increases by over 2300%, from which can be concluded
that the pass-through filter is essential in the proposed LiDAR pipeline.

Table 5.7: Number of cone proposals and correspondent distribution per iteration for
each CNN after removing certain LiDAR processing steps.

Method Cones on Track Number of
Cone Proposals

Avg. Number of Cone Proposals
per Iteration

LiDAR CNN Camera CNN
Full LiDAR Pipeline 147 168 2.25 5.24

Without Pass-through Filter 147 4 937 44.05 176.19
Without Ground Removal
and Cone Reconstruction 147 109 1.46 3.39

Without Cone Validation 147 214 2.86 6.68

The second method removed from the LiDAR processing was the ground removal
and, consequently, the cone reconstruction, as it is no longer necessary. Removing the
ground removal step from the LiDAR pipeline decreases the number of identified cone
proposals and, consequently, the number of classifications performed by both classifi-
cation CNNs. Although these decreases cause a reduction on the execution time per
iteration of the classification task, which is explained by the reduced number of cone
proposals to be evaluated, this reduction in the number of cones means that less cones
are being identified. Since the ground is not being removed, the euclidean clustering
algorithm tends to associate the ground points to cones that are closer to them, which
can cause the group of points to exceed the defined maximum number of points that a
cone can have and therefore not being considered as clusters. Furthermore, by removing
the ground removal step, the number of points in the point cloud significantly increases,
even more than when the pass-through filter is removed. As previously explained, this
causes a significant increase in the average execution time per iteration of the euclidean
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Table 5.8: Analysis of the average execution time per iteration after removing certain
LiDAR processing steps.

Average Execution Time per Iteration (ms)

Method Method Euclidean
Clustering

Full LiDAR
Pipeline

LiDAR CNN Camera CNN Total Execution
Time (ms)

GPU CPU GPU CPU GPU CPU
Full LiDAR
Pipeline 4.13 0.33 4.13 3.6 5.18 8.38 12.05 16.11 21.36

Without
Pass-through Filter 1.65 6.55 37.23 70.48 101.32 281.9 405.24 389.61 543.79

Without
Ground Removal

and
Cone Reconstruction

2.16 35.71 37.30 2.34 3.36 5.42 7.80 45.06 48.46

Without
Cone Validation 0.02 0.33 4.14 4.58 6.58 10.69 15.36 19.41 26.08

clustering algorithm (over 35 ms) and, consequently in total execution time of the full
perception pipeline. Therefore, since removing this step decreases the number of cones
identified while increasing the total execution time, it is essential to maintain it on
the LiDAR processing.

Finally, it was assessed if it was worth performing the cone validation step that
allows to remove most of the outliers from the cone proposals identified. Removing this
method, slightly increases the number of cone proposals identified and, consequently,
the number of classifications performed by the classification CNNs. As this method is
performed over the already clustered cone proposals, the average execution time per
iteration of the euclidean clustering remains unchanged. This extra step only takes an
average of 0.02 ms and it is the only extra delay added to the LiDAR pipeline, i.e., it
does not cause any further delay on the LiDAR pipeline. However, with this small delay
comes a decrease of over 3 ms on the total execution time of the perception pipeline, as
the number of classifications performed by both the LiDAR CNN and the camera CNN
are reduced.

5.5 Tracking

In order to test the influence of the developed tracking algorithm, the proposed
perception pipeline was run over raw and unseen data from an acceleration track in a
controlled environment, where it is known that, for the first 75 m, cones at the left side of
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Figure 5.6: Confusion matrix from raw data of an acceleration track.

the car correspond to blue cones and cones at the right side correspond to yellow cones.
It is also known that at the beginning there are four big orange cones, that marks the
starting line, and at end there are several orange cones that mark the stopping zone. The
confusion matrix represented in Fig. 5.6 shows the number of correctly and incorrectly
classified coned for each class. Notice that, since this test was done under a controlled
environment in a large open space, there is no samples from the Unknown class. The
number of color corrections made by the tracking algorithm is depicted in Table 5.9,
from where it is possible to conclude that 92% of the cones whose color was incorrectly
classified, got its color corrected by the tracking algorithm. Most of the remaining
misclassifications belong to cases where the cone was associated with the Unknown class
several times at the beginning, which can happen for further cones if the camera-LiDAR
calibration is not perfect. For these cones, only when the respective color surpasses the
unknown classifications, the color is corrected.
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Table 5.9: Number of misclassifications per class and number of color corrections.

Class Number of
Misclassifications

Number of Color
Corrections

Blue 92 84
Yellow 114 106
Orange 70 65

Big Orange 39 36
Total 315 291
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Chapter 6

Conclusion

The main goal of this thesis was to develop a full perception pipeline to be imple-
mented in the Formula Student Técnico (FST) autonomous prototype. This pipeline
must perform in real-time given not only the constraints that define the Formula Student
tracks but also the low availability of perception sensors. Since the layout of the tracks
is unknown, the perception pipeline must be able to accurately detect all the different
colored cones in order to safely navigate through the track at the fastest pace possible.

The perception pipeline proposed in this thesis exploits the best features from the
two available perception sensors (a camera and a LiDAR) by combining the cone’s posi-
tion estimated by the LiDAR pipeline, which processes the raw LiDAR data to generate
cone proposals, with the cone’s color likelihood estimated by either the camera CNN, a
custom CNN that classifies the image patches of the correspondent generated cone pro-
posals, or the LiDAR CNN, a custom CNN that classifies the color of the cone proposals’
cluster resorting to the intensity pattern that distinguishes the different cones. Further-
more, given the simplicity of the custom CNNs used, a Nearest Neighbor based tracking
algorithm was developed to correct the estimated cone’s color taking into account the
estimated color of previous observations.

The results show that the proposed perception pipeline is able to accurately detect
and classify the cones even when running the pipeline on CPU, something that can bring
benefits on the Efficiency event of the Formula Student Competitions. Furthermore, they
also show the importance of the developed LiDAR CNN in order classify the detected
cones that do not appear in the camera image, which most of times correspond to the
cones places in the inner side of the curves. Moreover the developed tracking algorithm
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has shown to help correcting the color of misclassificated cones, avoiding the propagation
of those misclassification to the path planning algorithms that follow.

Further work can extend the taken approach to detect and classify other objects in
other environments by relaxing the assumptions made for the Formula Student context.
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