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Abstract—Autonomous vehicles need to accomplish all the
tasks a human would while driving a common vehicle, which
includes being able to perceive and comprehend the environment
around the vehicle, in real-time and using a combination of
high-tech distance sensors and cameras. Following the trends
of the automotive industry world, Formula Student, one of the
Europe’s most established educational engineering competition,
introduced the Driverless class, which challenges students to build
a high-performance autonomous race car. In such competitions,
the tracks through which the autonomous car should navigate are
unknown and delimited by different colored cones. This thesis
presents a perception pipeline for a Formula Student car that
exploits the best features of each perception sensor to identify the
cones and, using custom Convolutional Neural Networks, classify
their color. Furthermore, due to the simplicity of the classifiers
used and in order to mitigate possible misclassifications, it was
developed a tracking algorithm that chooses the cone’s color
by taking into account the color of previous observations. An
ablation study was conducted on the methods used to identify
the cones and, both the classifiers and the tracking module,
were evaluated individually. Results showed that the proposed
perception pipeline is able to accurately detect and classify the
cones in real-time, even when running the pipeline on CPU,
something that proved not to be possible using other deep
learning object detectors.

Index Terms—Cone detection, sensor fusion, classification,
perception, convolutional neural networks, tracking, autonomous
driving, Formula Student.

I. INTRODUCTION

The increased safety in addition to an improved comfort
promised by autonomous vehicles leads the automotive indus-
try to use a big portion of their investments for the develop-
ment of autonomous driving. When taking the human out of
the equation, the vehicle must be able to respond to unknown
situations in order to ensure a reliable system. Therefore, it
needs to accomplish all the tasks a human would while driving
a common vehicle. This includes perceiving the environment,
estimating its position, predicting what other road users will
do, planning a trajectory accordingly and giving the correct
acceleration and steering input to follow that trajectory. The
investments made by the industry led us to the current state-of-
the-art in autonomous driving, with several companies already
having their autonomous vehicle prototypes being tested on
real-life scenarios without any human interference.

A key part when dealing with any kind of autonomous
driving problem is being able to perceive and comprehend
the environment around the vehicle, in real-time and using
a combination of high-tech distance sensors and cameras,
combined with state-of-the-art perception algorithms. This is
still a very challenging task in autonomous vehicles due to
the extremely low acceptable error rate, as it is a crucial task

to ensure the safe and reliable operation of the vehicle by
being the source of information used by the path-planning
and decision-making algorithms that dictate what the vehicle
should do or where it should go.

A crucial aspect for an autonomous vehicle to reach its full
autonomous capabilities is the ability to operate the vehicle
close to its limits of handling. When it comes to new technolo-
gies in the automotive industry, racing has often played a key
role in fuelling innovation and pushing cars to the limit of what
is possible. Autonomous racing has proven to be an essential
platform to develop, test and validate new technologies under
challenging conditions. It provides a unique opportunity to
test autonomous driving software such as redundant percep-
tion pipelines, failure detection algorithms and control in
challenging conditions. Competitions, by themselves, allow
researchers and developers to test the applicability of different
solutions and their robustness. Racing competitions, in par-
ticular, present additional challenges related to computational
speeds, power consumption, and sensing.

A. Formula Student Competition

Formula Student1 is the Europe’s most established edu-
cational automotive engineering competition that challenges
university students from worldwide top universities to design,
manufacture, build and test electric and combustion race cars
following a strict set of rules [12] that prioritize safety. These
students are then challenged to race their cars and compete
against other teams in international competitions. Backed
by the automotive industry and by high-profile engineers,
Formula Student Germany (FSG), one of the most reputable
competition organizers, introduced, in a constant effort to
follow the trends of the automotive industry world, a new
competition class, the Formula Student Driverless (FSD) class.
This is a new competition class that challenges students to
build an high-performance autonomous race car. In this class,
the autonomous student-developed prototypes must be able to
compete in different events fully autonomously without any
human interaction and without prior knowledge of the track’s
layout.

In the FSD class, the track boundaries are delimited by
blue cones on the left and yellow cones on the right, small
orange cones delimit stopping zones and big orange cones
mark timekeeping zones. The shape, dimensions and color
pattern of these cones is regulated by the FSG rules [12].
Since the layout of the track is unknown, in order to safely
navigate through the unknown environment the perception
pipeline implemented in the prototype must be able to identify

1https://www.formulastudent.de. Accessible on July 30, 2021.
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the cones’ position and color using the data retrieved from the
available perception sensors. Having detected the cones that
delimit the track, it is then necessary to compute a valid path
between the track boundaries, something that is done by the
path planning pipeline. Finally, in order to navigate through
the track using the computed path one needs to determine a
speed target and a steering input, which is performed by the
control pipeline.

B. Motivation

Formula Student Técnico2 (FST) is the team that represents
Portugal and Instituto Superior Técnico (IST) in international
Formula Student competitions. FST has been developing pro-
totypes for this competition since 2001, with ten prototypes
developed so far and proven results in the most prestigious
competitions of Europe. In 2019 the team, with more than
60 members from different engineering courses, decided to
embrace a new challenge: empower the previous electric
prototype (FST09e) with autonomous driving capabilities and
compete in the FSD class in the summer of 2020. Initially
composed of only eight students, the autonomous systems
team successfully developed, in less than one year, a complete
autonomous pipeline [13], comprising perception, estimation
and control pipelines.

Unfortunately, due to the COVID-19 pandemic, the formula
student competitions that FST was going to compete in, were
canceled. Because of this, an opportunity for extensively test-
ing the developed algorithms emerged. As this was the team’s
first year to develop an autonomous car, it would be expected
to encounter problems during this testing phase, which turned
out to be the case. Even though the different pipelines were
extensively tested in simulation and using synthetic data, one
pipeline that was notoriously hard to test on simulation was the
perception pipeline. Due to this, several problems related to the
perception pipeline and its computational expensiveness arose
during the testing phase. In order for the car to be competitive,
it needs to be able to navigate through the track at a very fast
pace, which means that an accurate, robust and fast perception
pipeline that takes advantage of all the available sensors must
be developed.

II. RELATED WORK

In this chapter, a literature review is performed on the
existing methods used in the perception pipelines implemented
by Formula Student Driverless (FSD) teams. Depending on
the sensors available, different approaches can be considered:
those that solely rely on either cameras (one or more), de-
scribed in Sec. II-A, or LiDARs, described in Sec. II-B and
those that fuse the information of both sensors, described in
Sec. II-C.

A. Camera Only Approaches

These methods are highly dependent on the number and type
of cameras used (monocular vs. stereo), as depth estimation
on stereo cameras can be easily obtained. Regardless of the

2https://fstlisboa.com. Accessible on July 30, 2021.

type of camera used, these implementations start by detecting
the cones and estimating their correspondent color, either by
using deep learning and state-of-the-art object detectors or
using more classical computer vision techniques. Regarding
the deep learning techniques, some teams [14], [19] chose
to use well-known object detectors such as YOLOv2 [23],
YOLOv3 [24] and their correspondent lightweight versions,
YOLOv2-tiny [22] and YOLOv3-tiny [1], respectively, while
others [28] opted to use custom object detectors, based on the
YOLOv3 architecture, to detect the cones, and a custom 7-
layer CNN to estimate their correspondent color. By training
these real-time and powerful object detectors to detect cones
from four different classes (blue, yellow, orange and big
orange), the teams are able to accurately get bounding boxes
around the detected cones, along with the confidence scores
for each detection.

In order to estimate the 3D position of the detected cones,
there is a consensus that, for monocular setups, using a key-
point regression alongside the Perspective-n-Point (PnP) [11]
algorithm is the best approach. The known cone’s shape and
size are exploited to perform a keypoint regression and find
specific feature points, on each of the detected bounding boxes,
that match their 3D correspondences, whose locations can
be measured from a reference frame. A classical computer
vision approach [19] was initially explored in order to extract
these keypoints. First, the RGB bounding box of the detected
cones is converted to the LAB color space and the ”b”
channel, which represents the color axis from blue to yellow,
is extracted. Then, an Otsu threshold [21] is used to obtain a
binary image where, performing contour fitting, three vertices
from the top region of the cone can be identified. These three
vertices are then extended, using the known dimensions of the
cone, to obtain further four more keypoints. This approach
has however shown not to be robust in edge cases, which led
the teams to resort to deep learning methods. Here, custom
CNNs [9], [28] with a ResNet-based architecture [15] were
developed to detect ”corner-like” features on the input image
– the bounding boxes of the previously detected cones. The
detected keypoints are used as 2D points on the image to
make correspondences with the respective points on the 3D
model of a cone. Using the correspondences and the camera
intrinsics, PnP is used to estimate the 3D position of every
detected cone. As for stereo camera setups, the 3D position of
the detected cones can be estimated using stereo matching
algorithms that compute the points’ depth by getting the
disparity map between the two images.

Regarding the more classical computer vision techniques,
two methods were tested by Zeilinger et al. [31] in order
to detect the cones using a stereo camera. The first one
performs a block-matching algorithm [3] on a depth image,
which allows to extract and remove 3D planes. Since the track
floor is geometrically known, it can be pre-segmented, making
cone proposals appear as isolated objects in the image. These
proposals are then further evaluated using classical image
processing steps on the estimated location in the image plane,
similar to the approach taken in [30]. The second method
is able to detect cones in both images separately by using
an algorithm that computes the disparity, i.e. , the distance

https://fstlisboa.com
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between two corresponding points in the left and right images
of the stereo camera, the z-depth, and, consequently, the 3D
position of the cone. In both methods, the color of the cones
is heuristically estimated by evaluating the RGB pixel values
of the cone’s centroid, which should be within a white or a
black stripe, and moving downwards until another color (blue,
yellow, or orange) is found.

B. LiDAR Only Approaches
These implementations [2], [4], [14] have in common their

two first LiDAR processing steps. Firstly, the ground plane
is removed using an adaptive ground removal algorithm [16]
that adapts to changes in the inclination of the ground using
a regression-based approach. This algorithm divides the Li-
DAR’s FoV into angular segments and it splits each segment
into radial bins from which a line is then regressed using
the lowermost points of all the bins in a segment. Finally,
all the points that are within a threshold distance to this line
are classified as ground points and are removed. The second
LiDAR processing step consists of clustering the point cloud.
Here, the Euclidean Clustering method is used to group the
point cloud into clusters by performing clustering extraction in
a Euclidean sense, i.e. , by computing the Euclidean distance
between each of the 3D points of the point cloud and, using
heuristic methods, evaluate whether that point corresponds to
the cluster or not. Having the cones clustered out, Agarwal et
al. [2] and Gosala et al. [14] apply some heuristic-based
filters to estimate the likelihood of the clusters being cones,
before going for the cones’ color estimation step. First, the
dimensions of a bounding box created around the cluster
and the elements of the covariance matrix are used to filter
candidates. Then, using the dimensions of the cones and the
vertical and horizontal angular resolutions of the LiDAR, a
rule-based filter is used to check whether the number of points
in that cluster is in accordance with the expected number
of points in a cone at that distance. Only the clusters that
successfully go through these filters are considered to be cones
and are forwarded to the color estimation step.

To estimate the color of the validated cones, all the teams
chose to use different deep learning methods. These teams
exploit the fact that the cones used in Formula Student can be
distinguishable not only by their color pattern but also by their
intensity pattern. Yellow cones have a yellow-black-yellow
pattern whereas blue cones have a blue-white-blue pattern,
which results in differing LiDAR intensity patterns. Gosala et
al. [14] exploits the differing LiDAR intensity patterns of
the cones to develop a custom CNN whose input image
corresponds to an image created by mapping the 3D bounding
boxes of the validated clusters and whose pixel values store the
intensities of points in the point cloud. Similarly, Agarwal et
al. [2] use binary classification techniques by developing
a shallow 1D CNN that exploits the mean intensity and
number of points per ring in the validated clusters. Following
a different route, and inspired by the different colors of cones
that distinguish the left and right boundary of the track,
Chen et al. [4] chose to use a custom CNN to distinguish
the geometric distribution of cones and, consequently, find the
color of the validated clusters.

C. LiDAR and Camera Approaches
These implementations [13], [29] start by identifying the

cones using methods similar to those described in Sec. II-B,
i.e. , methods that only rely on the LiDAR. First, the raw
point cloud is filtered using either a box region to remove
points that are outside it or a pass-through filter that performs
a simple filtering along any specified axis, removing points
that lay outside the defined range for each axis. Then, the
ground points are removed from the point cloud using Random
Sample Consensus (RANSAC) [8] with the assumption that
the ground plane is flat. Finally, Euclidean clustering is used
to cluster the point cloud into groups and to compute their
correspondent centroids, which are then projected onto the
image plane.

Tian et al. , in [29], create a Region of Interest (ROI) around
the projected centroids and, from these ROI boxes, gradient
features are extracted using Histogram of Oriented Gradients
(HOG) [7]. Furthermore, using the extracted HOG features,
a Support Vector Machine (SVM) [6] classifier is trained to
distinguish cones from other clustered objects. The RGB color
space of the ROI patches is then converted to the HSV color
space and the color of the cones is estimated by extracting the
main color present on the ROI.

In [13], the FST Lisboa team proposes using YOLOv3-
tiny [1], a lightweight version of the 2D real-time object
detector YOLOv3, to classify and identify the location of
the cones on the camera image. Then, for each projected
centroid, it is evaluated if it falls inside any of the bounding
boxes that surround the detected objects. Those who do,
receive the color associated with the class of the correspondent
bounding box. Although this approach combines the best
features of each sensor by using the position estimated by
the LiDAR and the color estimated using the camera, it is
a very calibration dependent approach, in the sense that a
single projected point is used to evaluate if it matches any
bounding box and, since the further the detected cones are,
the smaller the bounding boxes will be, this matching task
becomes more demanding and less forgiving for further away
cones. Moreover, this approach involves using the full image
to detect the cones, something that is very computationally
expensive, even running, on GPU, a lightweight version of a
real-time object detector like YOLOv3-tiny.

The perception pipeline proposed in this work fits inside this
last approach category, in the sense that it fuses the information
between the two sensors to identify the cones and classify their
color. However, the proposed perception pipeline differs by
not using heavy object detectors to detect the different colored
cones in the full camera image. Instead, the cones are detected
using the LiDAR information and are then projected onto the
camera image plane, where 2D bounding boxes are created
around the cones. These 2D bounding boxes are cropped
from the original image and, using custom lightweight CNNs,
the resultant image patches are classified, something that is
significantly less computationally expensive.

III. PROPOSED PIPELINE

This section describes the vehicle setup, the proposed per-
ception pipeline and how it helps solve the problems identified
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(a) Side view. (b) Top View.

Fig. 1: Position and Field of View (FoV) of LiDAR and
Camera.

while using the perception pipeline previously implemented by
the FST team. The vehicle setup is described in Sec. III-A.
In Sec. III-B it is described the process of identifying the
cones that delimit the Formula Student tracks using only the
LiDAR sensor. Then, in Sec. III-C, it is detailed how the
sensors can be fused to help the cone’s color classification task
described in Sec. III-D. Finally, in Sec. III-E, it is described
the implementation of a tracking algorithm that allows to
mitigate misclassifications by taking into account previous
observations.

A. Vehicle Setup

The vehicle chosen to be transformed to compete in the
Formula Student Driverless (FSD) class was the last prototype
developed by the Formula Student Técnico (FST) team, the
FST09e. This was the ninth prototype developed by the team
and it is currently the most successful and reliable prototype
developed and built by the team. In order to meet the set of
challenges imposed by the FSD competition, the prototype
was equipped with a set of sensors that replaces the driver’s
ability to perceive the environment. The first sensor added to
the car was a Velodyne VLP-16 LiDAR sensor, which allows
to accurately get the distance to obstacles that are within a
100-meter range and inside a 360 degrees horizontal Field
of View (FoV). The LiDAR was positioned on top of the
front wing of the car as it corresponds to the position that
maximizes the number of point returns per cone, allowing
to detect further away cones. The second perception sensor
added to the prototype was a Lucid Triton TRI032S camera,
responsible for collecting rich and colorful information of the
environment in the form of an RGB image, complementing
the sparse information, in the form of a point cloud, retrieved
by the LiDAR. This camera offers a useful 65 degrees of FoV
with a 2048 × 1536 resolution and a frame rate of 30 FPS.
The camera is positioned on the main hoop of the car, close
to where the eyes of the pilot would be, as this positioning
allows to reduce the occlusion among cones and to still be
able to perceive cones that are placed one behind the other (in
line of sight). The positioning of these sensors as well as a
representation of their FoV are represented in Fig. 1.

B. Cones Detection

This section describes the process of identifying and gener-
ating cone proposals, and their corresponding position, using
only the point cloud generated by the LiDAR. The generated
cone proposals will later be used in the classification step

described in Sec. III-D, where it will be assessed which
proposals actually represent cones and with what color. These
cone proposals are generated through a multi-step point cloud
processing that includes a pass-through filter to trim the
LiDAR Field of View (FoV), a ground removal algorithm to
remove points that belong to the ground, a clustering algorithm
to extract and group the point cloud into clusters, a cone
reconstruction algorithm to retrieve points incorrectly removed
during the ground removal process and a final cone validation
step to remove any remaining outliers.

1) Pass-through Filter: As described in Sec. III-A, the
LiDAR used in the FST autonomous prototype has a range
of around 100 meters and a horizontal FoV of 360 degrees
with a 30-degree vertical FoV angle. Due to specifications
and positioning of the LiDAR, most of the points of the
generated point cloud lay outside the Region Of Interest (ROI).
Therefore, in order to remove these points from the point cloud
and avoid using them on future point cloud processing steps,
which would increase their total execution time, a pass-through
filter, from the Point Cloud Library (PCL) [26], is applied
to the raw point cloud generated by the LiDAR. This pass-
through filter performs a simple filtering along any specified
axis, removing points that lay outside the defined range for
each axis. Thus, applying this pass-through filter on all three
axes allows not only to remove all the points that are behind
the vehicle, but also points that are much higher than the height
of a cone used in Formula Student competitions and points
that are much farther, widthwise, than the width of a Formula
Student track.

2) Ground Removal: Although most of the points that
lay outside the ROI were removed in the previous LiDAR
processing step, there are still several points in the ROI that
were generated by the reflection of the LiDAR laser beams
on the ground. Since these points can be considered noisy
data, as they mostly belong to the ground plane and do not
represent cones, the same principle of removing these points
to avoid using them in LiDAR processing steps is followed.
To accomplish this, an implementation of the iterative Random
Sample Consensus (RANSAC) [11] method, from the sample
consensus module of the PCL library, was used. This imple-
mentation allows to choose a mathematical model to be used
as the mathematical model whose parameters will be estimated
by the RANSAC method. RANSAC is a resampling technique
that generates candidate solutions by using the minimum
number of observations (data points) required to estimate the
underlying model parameters. In this case, the points to be
removed belong mostly to the ground, which in the Formula
Student context can be approximated to a plane. Thus, the
iterative RANSAC method was implemented using the PCL
sample consensus plane model, which defines a plane model
for 3D plane segmentation. This allows identifying the ground
plane and removing it from the point cloud.

3) Euclidean Clustering: After the previous two LiDAR
processing steps, one gets an unorganized point cloud where
all of the 3D points are contained in the ROI, the majority
of them belonging to cones. However, despite knowing that
most of these 3D points belong to cones, one does not know
to which cone each of these points belongs, i.e. , at this
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point, there can be either as many cones as the number of
3D points in the point cloud or a single cone to which every
3D point belongs. To address this problem, the Euclidean
Distance Clustering method [27], is used, which performs
cluster extraction in a Euclidean sense, i.e. , it computes the
Euclidean distance between each one of the 3D points of
the point cloud and it groups them into clusters based on
predefined parameters such as the minimum and the maximum
number of points that a cluster can contain in order to be
considered valid, the maximum distance between two points
so that they can be considered part of the same cluster, and the
spatial tolerance for new cluster candidates. These parameters
can be tuned taking into consideration the dimensions of a
cone used in Formula Student competitions and the expected
distance between cones.

4) Cone Reconstruction: During the ground removal pro-
cess, it was noticed that the bottom-most layer of points
hitting a cone was often being removed, as it was being
associated with the ground plane. Given the small number
of LiDAR layers hitting cones resulting from the not so fine
LiDAR vertical resolution, which is an hardware drawback,
these layers can act as invaluable information, especially in
the cone classification step presented in Sec. III-D1. Thus,
an extra step in the LiDAR processing is done in order to
retrieve these so valuable layers of 3D points. To retrieve these
points, a cylindrical area, with similar dimensions to those of
a Formula Student cone, is created around each cluster using
its corresponding centroid. The cylindrical areas, which are
an approximation to the geometrical shape of a cone, are then
used to assess if any of the 3D points from the removed ground
point cloud is contained inside it. Those that are contained
inside the created cylindrical area are then added back to
the filtered point cloud and associated with its corresponding
cluster.

5) Cone Validation: Even though in Formula Student com-
petitions the tracks are in a substantially controlled envi-
ronment when compared to urban traffic, there can still be
obstacles or objects nearby that are not cones and therefore
not part of the track. Despite not being part of the track,
these obstacles can be present in the LiDAR FoV and in
the desired ROI, which may cause them to be considered as
clusters while not being cones. To avoid using these outlier
clusters in the classification task, one last LiDAR processing
step is done. In this step, and similarly to what was done in
Sec. III-B4, a cylindrical area with similar dimensions to those
of a Formula Student cone, is fitted around each of the cone
proposal’s centroid and it is assessed if all the points of the
proposal’s cluster are contained inside the respective cylinder.
At this point, only the clusters whose all points fall inside
the correspondent cylindrical area are considered and used to
generate cone proposals to later be classified and assigned a
color.

C. Sensor Fusion

The clusters validated in the last step of the LiDAR, which
may not all be cones, are considered to be cone proposals.
These cone proposals need to be classified in order to validate

if they are actually cones and with which color. Since these
cone proposals may be outside the Field of View (FoV) of the
camera, which commonly happens in tight corners or when
the cone proposals are very close to the car, two different
Convolutional Neural Networks (CNNs) are used to classify
the proposals: one that resorts to the camera image to classify
the image patches of the proposals and one that resorts to
the point cloud intensity to generate grayscale images of the
cone proposals. The choice of the CNN to be used in the
classification task is based on whether the camera is able to see
the cone proposal or not. To determine this, both sensors are
fused by fitting a 3D bounding box, with similar dimensions to
those of a cone used in Formula Student competitions, around
each 3D cone proposal’s centroid and then projecting it onto
the image plane. Considering that on an image it is possible
to define a bounding box using only its top-left and bottom-
right points, only the two correspondent 3D points need to be
projected onto the camera’s image plane. To compute these
two points for each 3D centroid P = (X,Y, Z) ∈ R3, two
new points, P1 and P2, are created. These points are created
by keeping the centroid’s X coordinate, which represents the
depth of the cone proposal’s centroid, and by taking into
account the cone’s dimensions, as follows:

P1 = (X,Y + w/2, Z + h/2), (1)

P2 = (X,Y − w/2, Z − h/2), (2)

where w and h represent the width and height of a cone,
respectively. Here, the first point, P1, represents the top-
left point of the bounding box while the second point, P2,
represents the bottom-right point of the bounding box.

These two points can be mapped to points in pixel coordi-
nates on the image plane using the 3×4 perspective projection
matrix P , as follows:uv

1

 ∼ K
[
R|T

] 
X
Y
Z
1

 = P


X
Y
Z
1

 , (3)

with P = K
[
R|T

]
, where K represents the camera’s intrinsic

matrix and
[
R|T

]
represents the extrinsic matrix. The camera’s

intrinsic matrix K transforms 3D camera coordinates into 2D
homogeneous image coordinates using a perspective projection
modeled by the ideal pinhole camera model and is parameter-
ized as

K =

fx 0 cx
0 fy cy
0 0 1

 , (4)

where fx and fy represent the camera’s focal length, i.e. , the
distance between the camera’s pinhole and the image plane,
and cx and cy represent the principal point offset, which is
the location of the principal point relative to the image plane
origin. The extrinsic matrix

[
R|T

]
, given by

[
R|T

]
=

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 , (5)

is a 3× 4 matrix that takes the form of a rigid transformation
by concatenating a 3 × 3 rotation matrix R, whose columns
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represent the directions of the LiDAR axes in camera coor-
dinates, and the 3 × 1 translation column-vector T , which
can be interpreted as the position of the LiDAR origin in
camera coordinates. The extrinsic matrix describes how the
LiDAR is transformed relative to the camera, i.e. , it allows
to map points from the 3D LiDAR coordinate system to the
3D camera coordinate system.

Using Eq. (3) to project the two points from each of
the 3D boundig boxes, it is possible to create 2D bounding
boxes around the cone proposals in the image plane. By
simply checking if the entire 2D bounding boxes fit inside
the camera image, it can be concluded which cone proposals
fall inside the camera’s FoV and which don’t. For those
who do, the corresponding bounding box is cropped from
the original camera image, resulting in an image patch with
the cone proposal. This image patch corresponds to the input
image of the CNN further described in Sec. III-D2. On the
other hand, the cone proposals that are outside the camera’s
FoV go through a preparation process that converts their 3D
point cloud clusters into grayscale images so that these cone
proposals can be classified using only information given by
the LiDAR, as further described in Sec. III-D1.

D. Cones Classification

As previously mentioned, two CNNs are used to classify
the color of the identified cone proposals. In Sec. III-D2 it
will be described the CNN that resorts to the camera image
to classify the image patches of the proposals that fall inside
the camera’s FoV. Then, in Sec. III-D1 it will be described
the CNN that resorts to the point cloud intensity to generate
grayscale images of the cone proposals that are outside the
camera’s FoV.

1) Cone’s Color Classification with LiDAR: In tight corners
it is common for the camera not to be able to see the cones
placed on the outer side of the turn, due to the camera being
rigidly mounted to the car and pointing forward. This means
that the cones placed on the inner side of the curve will not be
able to be classified using the camera image. In such situations,
and due to the nature of the path planner algorithm developed
by the FST Lisboa team, the resulting trajectory may not be
representative of a good trajectory for the car to follow, as
only one side of track is visible.

According to the rules imposed by the Formula Student
competitions [12], the different cones used in Formula Student
Driverless must have always the same dimensions, shape and
color pattern. This means that a yellow cone will always be
distinguishable by its yellow-black-yellow pattern and a blue
cone by its blue-white-blue pattern. Since the intensity of the
LiDAR points correspond to the returned strength of the laser
pulse that generated the point, which is directly influenced by
the object’s reflectivity, each cone can also be distinguished in
the point cloud according to its intensity pattern. Therefore,
since black reflects less than yellow and white reflects more
than blue, a yellow cone can be described, from top to bottom
and in terms of intensity, as having a high-low-high pattern,
while a blue cone can be described as having a low-high-low
pattern. The orange cones are not considered here due to their

(a) Blue cone. (b) Yellow cone. (c) Unknown.

Fig. 2: Representation of the input image of the LiDAR CNN
for each class.

intensity pattern being similar to the intensity pattern of the
blue cones. The orange cones can be distinguished by their
orange-white-orange pattern which, in the point cloud, is also
translated to a low-high-low intensity pattern. Furthermore,
these cones are traditionally placed on straights and therefore
can be seen by the camera.

This intensity gradient pattern is then exploited to estimate
the cone proposals’ color using a CNN with a similar archi-
tecture to the one proposed by Kabzan et al. [19]. The input
of this CNN corresponds to a 32×32 grayscale image with
the intensity points of the cone proposal and the output cor-
responds to the probability of the proposal being blue, yellow
and unknown. The backbone of the CNN, which performs the
feature extraction, consists of four convolutional layers with
a max-pooling layer between them, which not only reduces
the number of parameters in the model by downsampling the
feature map but it also makes feature detection more robust
to object orientation and scale changes. In order to introduce
non-linearity into the model, the Rectified Linear Unit (ReLU)
activation function is used after each convolutional layer and
after each of the five fully connected layers that compose the
classifier. The output of the network is normalized to a prob-
ability distribution over the three classes using Softmax. Fur-
thermore, the aforementioned CNN uses a cross-entropy loss
function that increases as the predicted probability diverges
from the actual label, penalizing and adjusting the model
weights based on how far the predicted probability is from the
actual expected value. It is also less computationally expensive
when computing the network’s gradients, which, consequently,
converges faster to the optimal value. Moreover, while training
the model, Dropout [17] - a regularization technique that
randomly “deactivates” neurons in the neural network - and
batch-normalization [18] - a technique that normalizes the
distributions of the hidden layer’s inputs - are used to prevent
complex co-adaptations between neurons, control overfitting
and improve the generalization of the network.

The input images, similar to those represented in Fig. 2 are
created by mapping every point of the cone proposal’s cluster
to a 32 × 32 image whose pixel values store the intensity
of the LiDAR beam in that point. These points are mapped
into a 32 × 32 matrix, using a linear interpolation, which
leaves a boundary of 3 points around the cone. In order to
enhance the intensity pattern of the cones, the pixel values
are scaled using a linear scale factor, benefiting high-intensity
values and penalizing low ones. This network has been trained
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(a) (b)

Fig. 3: 2D bounding boxes created using the 3D-2D projection,
represented in (a), and an example of an image patch with the
cone proposal, represented in (b).

with a custom dataset of over 19 000 images with the mapped
intensity values of blue and yellow driverless Formula Student
cones and noisy identified clusters to represent the unknown
class.

2) Cone’s Color Classification with Camera: The classifi-
cation of the remaining cone proposals, whose projected 2D
bounding boxes fit inside the camera image, is performed using
a CNN with an architecture similar to the one described in
Sec. III-D1. However, this CNN takes as input a 32×32 RGB
image that corresponds to the image patch of the projected
bounding box that surrounds the cone proposal, as shown in
Fig. 3. Furthermore, the architecture of the network described
in this section has one less convolutional layer in the feature
extraction stage, a change that allowed to achieve better
computational times while maintaining an acceptable accuracy
and reliability, as demonstrated in Sec. IV.

This CNN consists of three convolutional layers that per-
form feature extraction and, similarly to the CNN described
in Sec. III-D1, after each convolutional layer a max-pooling
layer is used to downsample the feature maps after using
Rectified Linear Unit (ReLU) as the activation function to
introduce non-linearity to the model. As for the classifier, it
consists of five fully connected layers, where to the output
of each one is also applied the ReLU activation function.
The output of the network is normalized to a probability
distribution over the five classes using Softmax. Additionally,
while training the model, dropout and batch normalization
were also used to randomly “deactivate” some neurons in
the neural network and to normalize the distributions of
the hidden layer’s inputs, preventing complex co-adaptations
between neurons, controlling overfitting and improving the
generalization of the network. This network has been trained
with a custom dataset of over 100 000 images of the four
classes of Formula Student Driverless cones and background
images to represent the unknown class. The dataset was
originally only composed of images from FSOCO [10] - a
collaboration between Formula Student teams that aims to
accelerate the development of camera-based solutions in the
context of Formula Student Driverless - but has since been
enlarged with more images gathered from runs on different
testing sites, with different weather/light conditions and with
different cameras.

E. Tracking

Given the simplicity of the CNNs described in Sec. III-D1
and in Sec. III-D2, which allow to classify and associate a
color to the cone proposals generated through the LiDAR
processing described in Sec. III-B, a Nearest Neighbor [5]
based tracking algorithm was developed in order to mitigate
possible misclassifications returned by either CNNs. By taking
into account previous observations, it is possible to keep track
of the colors associated with each cone proposal and thus
decide the cone’s color based on the number of times each
color was associated with the proposal.

This tracking algorithm starts by fusing the information
returned by both neural networks, the cone detections with
an associated position and color. Once all the cone detections
are fused, a different ID is assigned to each of them and,
simultaneously, the cone’s color is registered. Having assigned
the first IDs, the Nearest Neighbor based tracking algorithm
is used to associate the next set of cone detections to the
already existing and tracked cone detections. So, for each
previously tracked cone detection, it is searched for the closest
cone detection, within the new set of cone detections, and the
tracked cone’s position is updated and the color is registered,
both using the information of the closest cone detection. It
should be noticed that, to avoid miss associating new cone
detections to a tracked cone that, although is the closest one,
it is too far away, a searching radius is used taking into account
the minimum distance between cones defined by the Formula
Student competitions rules. The cone detections that were not
associated with any previously tracked cone are considered
to be new cones and an ID is assigned to them, allowing
them to be used as tracked cones in the next iteration. On
the other hand, the previously tracked cones that were not
associated with any new cone detection are registered as being
missed. By keeping note of the number of times a tracked
cone was missed, it is possible to remove not only outliers
that stopped being identified but also cones that have already
left the LiDAR FoV, e.g. , cones that have already been passed
by the car and are now behind it.

Furthermore, the cone’s color is decided by searching for the
color that was most associated with that cone ID. For example,
a cone tracked with the ID 56 that was classified eight times as
being blue, if the last color classification happens to classify
the cone as a yellow cone, the cone will still go through as
being a blue cone, because it has already been previously
classified as being blue many more times. The implemented
tracking algorithm has proven to be a powerful filter, as it helps
to smooth out cone color estimation and make the pipeline
more robust to misclassifications, something that significantly
helps the path planning algorithms in a previously unknown
track.

IV. EXPERIMENTAL RESULTS

In this chapter, the overall results of the proposed perception
pipeline will be evaluated in terms of performance and compu-
tation cost. First, the overall results of the Convolutional Neu-
ral Network (CNN) that solely relies on the information from
LiDAR are presented in Sec. IV-A. Similarly, in Sec. IV-B,
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it is presented the overall results of the CNN that relies on
the created image patches with the cone proposals. Then, in
Sec. IV-C, an ablation study on the LiDAR processing methods
is conducted in order to justify the design choices made on
the LiDAR pipeline. Finally, in Sec. IV-D, it is performed a
comparison of the overall perception pipeline results with and
without the tracking module.

A. LiDAR Classification

The model of the LiDAR CNN was trained on an NVIDIA
GeForce GTX 1070 for 100 epochs with a batch size of 128
and using the Adam optimizer [20] with a learning rate starting
on 0.0001. Resorting to a learning rate scheduler, the learning
rate is dynamically reduced by a factor of 0.1 whenever the
validation loss stops decreasing for more than 10 epochs,
which indicates that the learning has stagnated.

First, to validate the importance of the using the LiDAR
CNN, a study was conducted on the number of cones that
it helps classifying. For this, the full perception pipeline was
run over raw data gathered from a lap performed around a
Formula Student Driverless track with and without using the
LiDAR CNN. The results of this study showed that using the
LiDAR CNN allows identifying 16 more cones in a track with
a total of 93 cones, which represents an increase of 17.2%
in the number of identified cones. From Fig. 4 it is possible
to conclude that the LiDAR CNN is essential to identify the
cones placed in the inner side of the curves, where mostly
cones from the opposite class can be seen by the camera.

Fig. 4: Number of cones classified without using the LiDAR
CNN.

Then, in order to validate the importance of the cone re-
construction step detailed in Sec. III-B4, which retrieves cone
points that were incorrectly removed in the ground removal
step, a comparison between the LiDAR CNN results with and
without performing this reconstruction step was conducted.
To perform this comparison, a new test dataset was created
with the same cone images used in the splitted test dataset but
without performing cone reconstruction. The results obtained
from the trained model on both test datasets are detailed in
Table I.

Observing Table I, one can conclude that the overall re-
sults obtained when cone reconstruction is not performed is
around 10% worse across all performance metrics. This can
be explained by the missing bottom-most layer of points in the
input images of the LiDAR CNN when no reconstruction is

TABLE I: Results of the trained LiDAR CNN model on the
test dataset.

Method Class Precision (%) ↑ Recall (%) ↑ F1 (%) ↑ Accuracy (%) ↑

With Cone
Reconstruction

Blue Cone 93.34 85.98 89.51
87.77Yellow Cone 94.38 84.02 88.90

Unknown 76.51 94.93 84.73

Without Cone
Reconstruction

Blue Cone 90.08 73.03 80.66
77.17Yellow Cone 89.14 69.01 77.79

Unknown 60.87 92.99 73.58

performed. This is especially noticeable for further away cones
which, due to the not so fine vertical resolution of the LiDAR,
lack on the number of beams that hit them. For these cones, the
missing layer of points breaks the intensity pattern used as the
base for this CNN, turning the intensity pattern of the cones
into low-high and high-low intensity patterns, respectively for
a blue cone and a yellow cone. These intensity patterns are
much less distinguishable, which justifies the increase of false
positives for the unknown class, evidenced by its 15% lower
precision.

B. Camera Classification

The camera CNN model was trained on an NVIDIA
GeForce GTX 1070 for 250 epochs with a batch size of 64 and
using the Stochastic Gradient Descent (SGD) optimizer [25]
with a learning rate starting on 0.00001. Similarly to the
train performed on the LiDAR CNN model, a learning rate
scheduler was used to dynamically reduce the learning rate by
a factor of 0.1 whenever the validation loss stops decreasing
for more than 10 epochs.

As mentioned in Sec. III-D2, the architecture of the feature
extractor of this CNN was reduced from four convolutional
layers to only three. This design choice was based on a
study conducted on the camera CNN performance in terms
of classification and computation costs. The results obtained
from this study are represented in Table II and Table III.

TABLE II: Average inference time of the camera CNN on
GPU and CPU for both architectures.

Average Inference Time (ms) ↓
Architecture GPU CPU

4 Convolutional Layers 1.9 4.5
3 Convolutional Layers 1.6 2.3

TABLE III: Results of the trained camera CNN model on the
test dataset.

Architecture Class Precision (%) ↑ Recall (%) ↑ F1 Score (%) ↑ Accuracy (%) ↑

4 Convolutional
Layers

Blue Cone 96.32 96.00 96.16

93.58
Yellow Cone 97.25 94.99 96.11
Orange Cone 89.48 90.01 89.74

Big Orange Cone 91.00 87.00 88.96
Unknown 90.69 95.99 93.26

3 Convolutional
Layers

Blue Cone 94.84 94.00 94.42

90.40
Yellow Cone 95.37 91.99 93.65
Orange Cone 83.23 86.00 84.59

Big Orange Cone 86.53 82.00 84.20
Unknown 87.26 93.84 90.43

Regarding the inference times of the CNN, it is possible
to conclude that the architecture that resorts only to 3 con-
volutional layers is faster on both GPU and CPU. Although
the decrease in inference time is less noticeable when the
model is run on GPU, decreasing only 0.3 ms, on CPU the
inference time decreases by almost 50%, from 4.5 ms to
2.3 ms. Furthermore, from Table III, it can be observed that



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 9

both models achieve around 90% on almost all performance
metrics for almost all classes. It is also possible to observe
that the expected loss of performance between the two models
is not very accentuated, decreasing only around 3% on all
performance metrics, except for the Orange and Big Orange
Cone classes, when the model with three convolutional layers
is used. The bigger performance decrease in these two classes
can be justified by the fact that these two cones are only
distinguishable by the extra white stripe on the big orange
cones and, since a deeper CNN is able to extract deeper
features, the model with four convolutional layers can extract
deeper features and thus correctly classify these classes more
often. Furthermore, the lower performance on the orange and
big orange cones in both models can also be explained by
the class distribution of the training dataset, as these cones
are around 10% less represented. This small decrease in the
classification performance of the camera CNN allied to the
possibility of being able to run the CNN on CPU, justifies the
choice of decreasing the feature extractor architecture of the
camera CNN.

C. LiDAR Processing Ablation Study

To justify the need of all the LiDAR processing steps
described in Sec. III-B, an ablation study was conducted on
the implemented methods presented in the LiDAR pipeline.
The results from this ablation study are depicted in Table IV.

TABLE IV: Number of cone proposals and correspondent
distribution per iteration for each CNN after removing certain
LiDAR processing steps.

Method Cones on Track Number of
Cone Proposals

Avg. Number of Cone Proposals
per Iteration

LiDAR CNN Camera CNN
Full LiDAR Pipeline 147 168 2.25 5.24

Without Pass-through Filter 147 4 937 44.05 176.19
Without Ground Removal
and Cone Reconstruction 147 109 1.46 3.39

Without Cone Validation 147 214 2.86 6.68

Initially, the pass-through filter used to trim the LiDAR
FoV was removed, significantly increasing the number of cone
proposals identified and, consequently, the number of cone
proposals sent to both classification CNNs. Removing the
pass-through filter, which, per iteration, only takes an average
of 1.65 ms to trim the LiDAR FoV, causes an increase of over
6 ms in the euclidean clustering average execution time. Since
the euclidean clustering method is responsible for grouping the
point cloud into clusters, the greater is the LiDAR FoV, the
greater will be the number of points in the point cloud, which
explains this increase in the execution time of the algorithm
and in the number of cone proposals identified. Furthermore,
these increases in the number of points in the point cloud
and in the number of cone proposals identified, cause the
subsequent LiDAR processing and classification steps to also
significantly increase their execution times per iteration, as
there are more information to be processed and more cone
proposals to be classified. Consequently, the average execution
time per iteration of the full perception pipeline increases by
over 2300%, from which can be concluded that the pass-
through filter is essential in the proposed LiDAR pipeline.

TABLE V: Analysis of the average execution time per iteration
after removing certain LiDAR processing steps.

Average Execution Time per Iteration (ms)

Method Method Euclidean
Clustering

Full LiDAR
Pipeline

LiDAR CNN Camera CNN Total Execution
Time (ms)

GPU CPU GPU CPU GPU CPU
Full LiDAR

Pipeline 4.13 0.33 4.13 3.6 5.18 8.38 12.05 16.11 21.36

Without
Pass-through Filter 1.65 6.55 37.23 70.48 101.32 281.9 405.24 389.61 543.79

Without
Ground Removal

and
Cone Reconstruction

2.16 35.71 37.30 2.34 3.36 5.42 7.80 45.06 48.46

Without
Cone Validation 0.02 0.33 4.14 4.58 6.58 10.69 15.36 19.41 26.08

The second method removed from the LiDAR processing
was the ground removal and, consequently, the cone recon-
struction, as it is no longer necessary. Removing the ground
removal step from the LiDAR pipeline decreases the number
of identified cone proposals and, consequently, the number
of classifications performed by both classification CNNs.
Although these decreases cause a reduction on the execution
time per iteration of the classification task, which is explained
by the reduced number of cone proposals to be evaluated, this
reduction in the number of cones means that less cones are
being identified. Since the ground is not being removed, the
euclidean clustering algorithm tends to associate the ground
points to cones that are closer to them, which can cause the
group of points to exceed the defined maximum number of
points that a cone can have and therefore not being considered
as clusters. Furthermore, by removing the ground removal step,
the number of points in the point cloud significantly increases,
even more than when the pass-through filter is removed.
As previously explained, this causes a significant increase
in the average execution time per iteration of the euclidean
clustering algorithm (over 35 ms) and, consequently in total
execution time of the full perception pipeline. Therefore, since
removing this step decreases the number of cones identified
while increasing the total execution time, it is essential to
maintain it on the LiDAR processing.

Finally, it was assessed if it was worth performing the cone
validation step that allows to remove most of the outliers
from the cone proposals identified. Removing this method,
slightly increases the number of cone proposals identified and,
consequently, the number of classifications performed by the
classification CNNs. As this method is performed over the
already clustered cone proposals, the average execution time
per iteration of the euclidean clustering remains unchanged.
This extra step only takes an average of 0.02 ms and it is the
only extra delay added to the LiDAR pipeline, i.e. , it does
not cause any further delay on the LiDAR pipeline. However,
with this small delay comes a decrease of over 3 ms on the
total execution time of the perception pipeline, as the number
of classifications performed by both the LiDAR CNN and the
camera CNN are reduced.

D. Tracking

In order to test the influence of the developed tracking
algorithm, the proposed perception pipeline was run over raw
data from an acceleration track in a controlled environment,
where the position and color of the cones is known. The
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number of color corrections made by the tracking algorithm
is depicted in Table VI, from where it is possible to conclude
that 92% of the misclassifications got its color corrected by the
tracking algorithm. Most of the remaining misclassifications
belong to cases where the cone was associated with the
Unknown class several times at the beginning, which can
happen for further cones if the camera-LiDAR calibration is
not perfect. For these cones, only when the respective color
surpasses the unknown classifications, the color is corrected.

TABLE VI: Number of misclassifications per class and number
of color corrections.

Class Number of
Misclassifications

Number of Color
Corrections

Blue 92 84
Yellow 114 106
Orange 70 65

Big Orange 39 36
Total 315 291

V. CONCLUSION

The perception pipeline proposed in this thesis fuses the best
features from the two available perception sensors (a camera
and a LiDAR) by combining the cone’s position estimated
by the LiDAR pipeline, which processes the raw LiDAR data
to generate cone proposals, with the cone’s color likelihood
estimated by either the camera CNN, a custom CNN that
classifies the image patches of the correspondent generated
cone proposals, or the LiDAR CNN, a custom CNN that
classifies the color of the cone proposals’ cluster resorting
to the intensity pattern that distinguishes the different cones.
Furthermore, given the simplicity of the custom CNNs used,
a Nearest Neighbor based tracking algorithm was developed
to correct the estimated cone’s color taking into account the
estimated color of previous observations.

The results show that the proposed perception pipeline is
able to accurately detect and classify the cones even when
running the pipeline on CPU, something that can bring benefits
on the Efficiency event of the Formula Student Competitions.
Furthermore, they also show the importance of the developed
LiDAR CNN in order classify the detected cones that the
camera is not able to see, which most of times correspond
to the cones places in the inner side of the curves. Moreover
the developed tracking algorithm has shown to help correcting
the color of misclassificated cones, avoiding the propagation
of those misclassification to the path planning algorithms that
follow. Further work can extend the taken approach to detect
and classify other objects in other environments by relaxing
the assumptions made for the Formula Student context.
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